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Preface

Was plane geometry your favorite math course m high school? Did you like prov-
ing theorems? Are gou sick of memorizing integrals? If so, real analysis could be
your cup af tea. In contrast to calenlus and elementary algelbra, o tnvolves neither
formula manipulation nor applications to other fields of science. None. It is pure
mathematics, and [ hope it appeals to you, the budding pure mathemafician.

This book is set out for college juniors and senjors who love math and who profit
from pictures that illustrate the math. Rarely is a picture a proof, but I hope a good
picture will cement your understanding of why something is true. Secing is believing,

Chapter 1 gets vou off the ground. The whole of analysis is built on the system
of real numbers B, and especially on its Least Upper Bound property. Unlike many
analvsis texts that assume B and its properties as axioms, Chapter 1 contains a
natural construction of R and a natural proof of the LUB property. You will also see
why some infinite sets are more infinite than others, and how to visualize things in
four dimensions.

Chapter 2 is about metric spaces, especially snbsets of the plane. This chapter
contains many pictures you have never seen. € and & will become your friends. Most
of the presentation uses sequences and limits, in contrast to open coverings. It may
b less elegant but it's easier to begin with. You will get to know the Cantor set well.

Chapter 3 is about Freshman Caleulus - differentiation, integration, L'Hapital's
Rule, and so on. for functions of a single variable - but this time you will find out
why what you were taught before is actually true. In particular you will see that a
bounded function is imegrable if and only if it is continuous almost everywhere, and
how this fact explains many other things about integrals.

Chapter 4 is about functions viewed en masse. You can treat a set of functions
as a metric space, The “points” in the space aren’t munbers or vectors - they are
functions. What is the distance between two functions? What should it mean that a
sequence of functions converges to a limit function? What happens to derivatives and
integrals when vour sequence of functions converges to a limit function? When can
vou approximate a bad function with a good one? What is the best kind of function?
What does the typical continuous function look like? {Answer: “horrible.” )

Chapter 5 is about Sophomore Caleulus - functions of several variables, partial
derivatives. multiple integrals, and so on.  Again vou will see why what vou were
taught before is actually true. You will revisit Lagrange multipliers (with a picture
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proof ). the Implicit Function Theorem, ete. The main new topic for you will bhe
differential forms. They are presented not as mvsterious “multi-indexed expressions,”
but rather as things that assign numbers to smooth domains. A 1-form assigns to
a smooth curve a pnmber, a 2-form assigns to a surface a number, a 3-form assigns
to a solid a mumber. and so on. Orientation (clockwise, counterclockwise. ete.) is
important and lets vou see why cowlicks are inevitable - the Hairy Ball Theorem.
The culmination of the differential forms business is Stokes” Formula, which unifies
what you know about div. grad. and curl. It also leads to a short and simple proof
of the Brouwer Fixed Poimt Theorem - a fact usually considered too advanced for
undergraduates,

Chapter 6 i= about Lebesgue measure and integration. It is not about measure
theory in the abstract. but rather about measure theory in the plane, where yvou can
see jt. Surely 1 am not the first person to have rediscovered J.C. Burkill's approach
to the Lebesgue integral, but 1 hope vou will come to value it as much as 1 do, Afier
vou understand a few nontrivial things about area in the plane. vou are naturally led
to define the integral as the area nuder the curve  the elementary picture vou saw in
high school calenlus, Then the basic theorems of Lebesgue integration simply fall out
from the picture. Included in the chapter is the subject of density points -~ points at
which a set “clumps together.” [ consider density points central 1o Lebesgue messane
theory,

At the end of each chapter are a great many exercises, [Intentionally, there is no
solution manual. You should expect to be confused and frustrated when von first
try to solve the harder problems. Frustration is a good thing. It will strengthen yvou
and it is the natural mental state of most mathematicians most of the time. Join the
club! When you do solve a hard problem yourself or with a group of vour friends. you
will treasure it far more than soanething vou pick ap off the web, For encouragement.,
read Sam Young's storv at http:/ /legacyrimoore.org, reference/ voung.html.

| have adopted Moe Hirsch's star system for the erercises. One star is hard, teo
stars 15 very hard. and a three-sfar exercise is a question to which I do not know the

answer, Likewise, starred sechons are more challenging.

Berkeley, Californin, USA CHARLES CHAPMAN PUGH


http://legacyrlmoore.org/reference/young.html
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Real Numbers

1 Preliminaries

Before we discuss the svstem of real numbers it is best to make a few general remarks
about mathematical outlook.

Language

By and large, mathematics is expressed in the language of set theory. Your first
order of business is to get familiar with its vocabulary and grammar. A set is a
collection of elements. The elements are members of the set and are =aid to belong
to the set. For example, M denotes the set of natural numbers. 1. 2, 3. .... The
members of M are whole numbers greater than or equal to 1. Is 10 a member of 7
Yes, 10 belongs to M. Is () a member of M7 No. We write

reA and yeE B

to indicate that the element r is & member of the set A and g is not a member of B,

Thus, 651% € M and 0 & M.

We try to write capital letters for sets and small letters for elements of sets,
Other standard sets have standand pames. The set of integers is denoted by Z.
which stands for the German word Zahlen. (An integer is a positive whole number,
zeta, or a negative whole munber.) Is +/2 € Z7 No. V2 # Z. How about —157 Yes,
-15 € L.

(€) Springer International Publishing Switzerland 2015 l
C.C. Pugh, Real Mathematical Analysis, Undergradunte Texts
in Mathematics, DOT 10,1007 /978-3-318-17771-7.1



2 Real Numbers Chapter 1

The set of rational numbers is called Q. which stands for “guotient.” (A
rational number is a fraction of integers, the denominator being nonzero.) Is 2 a
member of @7 No. 2 does not belong to Q. Is 7 a member of Q7 No. Is 1.414 &
member of Q7 Yes,

You should practice reading the notation “{x € A :" as “the set of # that belong
to A such that.” The empty set is the collection of no elements and is denoted by
@ Is 0 a member of the empty set? No, 0 @,

A singleton set has exactly one member. It is denoted as {r} where r is the
membeer. Similarly if exactly two elements r and y belong to a set. the set is denoted
as {x. w}-

If A and 3 are sets and each member of A also belongs to & then A is a subset
of B and A is contained in B, We write!

AcCB.

Is M a subset of £7 Yes. Is it a subset of Q7 Yes. If A is a subset of B and B i= a
subset of C, does it follow that A is a subset of C7 Yes. Is the empty set a subset of
M? Yes, @ C M. Is 1 asubset of N7 No. but the singleton set {1} is a subset of M.
Two sets are equal if each member of one belongs to the other. Each is a subset of
the ather. This is how vou prove two sets are equal: Show that each element of the
first belongs to the second. and each element of the second belongs to the first.

The union of the sets A and B is the set AU B, each of whose elements belongs
to either A, or to 8. or to both A and to B, The intersection of A and B is the set
AN B each of whose elements belongs to both A and to B. If AN B is the empty
set then A and B are digjoint, The symmetric difference of A and B is the set
AAR each of whose elements belongs to A but not to 8. or belongs to B but not to
A. The difference of A to I i the set A% B whose elements belong to 4 but not
to 8. See Figure 1.

A class is a collection of sets. The sets are members of the class. For example
we colld consider the class £ of sets of even natural numbers, Is the set {2,15} a
member of £7 No. How about the singleton set {6}7 Yes. How about the empty
set? Yes. each element of the empty set is even.

When is one class a subelass of another? When each member of the former belongs
also to the latter. For example the class T of sets of positive integers divisible by 10

"When some malhensmiwians write A © B they mean that A = a subset of B bt 4 £ B We
div nat adopt this convention. We accept A4 C A



Section 1 Preliminaries 4
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Figure 1 Venn diagrams of union, intersection, and differences

is a subclass of £, the class of sets of even natural numbers, and we write T C £,
Each set that belongs to the class T also belongs to the class £ Consider another
example. Let 8 be the class of singleton subsets of M and let D be the elass of subsets
of M each of which has exactly two elements, Thus {10} € 8 and {26} e D. Is 8 a
sithclass of D7 No. The members of & are singleton sets and they are not members of
T. Rather they are subsets of members of D, Note the distinetion, and think about
it.

Here is an analogy. Each citizen is a member of his or her country - 1 am an
element of the USA and Tony Blair is an element of the UK. Each countrv is a
member of the United Nations. Are citizens members of the UNT No. countries are

memnbers of the UN.

In the same vein is the concept of an equivalence relation on a set 5. It is
a relation s ~ &' that holds betwesn some members s,5' € § and it satisfies three
properties: For all .4'. " € 8§

{a) &~ &.
(b) 5~ & implies that &' ~ s.
{c) &~ & ~ &" implies that 5 ~ ",

Figure 2 on the next page shows how the equivalence relation breaks § into
disjoint subsets called equivalence classes' defined by mutual equivalence: The
equivalence class containing 5 consists of all elements &' € 5 equivalent to s and
is denoted |s|. The element s is a representative of its equivalence class. Think
again of citizens and countries. Say two citizens are equivalent if they are citizens of
the same country. The world of equivalence relations is egalitarian: 1 represent my
equivalence class USA just as much as does the president.

"I'he phrase “eequivalence clpss" s standard and widespread, although it would be more consgsten
with the icdea that a class = a collection of sets (o refer instead o an “eguivalence set.”
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Figure 2 Equivalenoe classes and representatives

Truth

When 15 a mathematical statemnent accepted as true? Gone rallv. mathemat ician=
wollld answer “COuly when it bas s proof inside a fanelisr mat hematical framework,”
A picture may be vital in getting vou to belicve a statement. Ao analogy with
something you know to be true may help vou anderstand it. An authoritative teacher
may foree vou to parrot i1, A formal proof. however, s the ultimate and only reason
to accept a mathematical statement as e, A recent debate in Berkeley foowsed b
issue for me. According to a math teacher from one of our local private high schoaols.
hiz students found proofs in mathemastios weee of litthe valoe, especially compared to
“convincing arguments.”  Besides, the mathematical statements were often seen as
obviously true and in no need of formal proof anyway. | offer von a paraphrase of

Bob Usserman’s responss,

But a convincing armunent is not a proot. A mathematician oener-
ally wantz both, and certainly would be less likely to accept a convineing
argument by itself than a formal proof by itself. Least of all wonld a math
ematician accept the proposal that we should genernlly replace proofs with

CONVINCINE aArguments

There has been a tendency in recent vears to take the notion of proof
down from its pedestal. Critics point out that standands of rigor change
from century to century, New gray areas appear all the time. Is a proof
by computer an acceptable proof”? Is a proof that 1s spread over many
journals and thousands of pages, that is too long for any ooe person to
master. & proof T And of course, venerable Euclid is full of Haws. some

lilled in by Hilbert, others possibly still lurking,
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Clearly it is worth examining closely and critically the most basic notion
of mathematics, that of proof. On the other hand, it is important to bear
inn mind that all distinctions and niceties about what precisely constitutes
a proof are mere quibbles compared to the enormous gap between any
generally accepted version of a proof and the notion of a convincing ar-
gument. Compare Euclid, with all his Baws to the most eminent of the
ancient exponents of the convincing argument - Aristotle. Much of Aris-
totle’s reasoning was brilliant. and he certaimly convineed most thought ful
people for over a thousand years, In some cases his analyses were exactly
right, but in others, such as heavy objects falling faster than light ones,
they turned out to be totally wrong., In contrast. there is not to my
knowledge a single theorem stated in Euclid's Elements that in the course
of two thousand vears turned out to be false. That s quite an aston-
ishing record. and an extraordinary validation of proof over convincing
ATEUIent,

Here are some guidelines for writing a rigorous mathematical proof. See also
Exercise (1.

1. Name cach object that appears in vour proof. (For instance, you might begin
yvour proof with a phrase, “Consider a set X. and elements r, y that belong to
X" etc.)

2, Draw a diagram that captures how these objects relate. and extract logical
statements from it. Quantifiers precede the objects quantified: see below,

3. Bevome confident that the mathematical assertion vou arve trving to prove is
really true before trving to write down a proof of it. If there a specific function
involved - say sinx® - draw the graph of the function for a few values of o
before starting any ¢, 8 analvsis, Belief first and proof second.

4. Proceed step by step. each step depending on the hypotheses, previously proved
theorems, or previous steps in vour proof,

5. Check for “rigor”: All cases have been considered. all details have been tied
down, and cireular reasoning has been avoided.

fi. Before vou sign off on the proof, check for counterexamples and any implicit
assumptions vou made that could invalidate your reasoning.
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Logic
Among the most frequently used logical symbaols in math are the quantifiers v
and 3. Read them always as “for each” and “there exists,” Avoid reading ¥ as “for

all.,” which in English has a more inclusive connotation. Another common svmbal is
=. Read it a8 “implies.”

The rules of correct mathematical grammar are simple: Quantifiers appear at the
heginning of a sentence, they modify only what follows them in the sentence. and
assertions ocour at the end of the sentence, Here is an example.

(1} For each integer n there 15 a prime number p which is greater than n.
In symhals the sentence reads
YneX Ipe P such that p>n.

where 7 denotes the set of prime numbers. (A prime number is a whole number
greater than 1 whose only divisors in M are itself and 1.) In English, the same idea
can he reexpressed as

(2} Every integer 15 less than some prime number.
ar
(d) A prime number can always be found which s kigger than any integer.

These sentences are correct in English grammar. but disastrously WRONG when
transcribed directly into mathematical grammar.  They translate into disgusting
mathematical gibberish:

(WRONG (2)) Wn€Z n<p IpeP
(WRONG (3)) dpeP p>n  v¥nel

Moral Quantifiers first and assertions last. In stating a theorem. try to apply the
saime principle. Write the hvpothesis first and the conclusion second. See Exercise ().

The order in which quantifiers appear is also important. Contrast the next two
sentences in which we switch the position of two quantified phrases.

(4} (vneM) (YmeN) (dpe P) suchthat {nm < p).

(5) (vneM) (3pe ) such that (Yme M) (nm < p).
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{4) is a true statement but (5) is false. A quantifier modifies the part of a sentence
that follows it but not the part that precedes it. This is another reason never to end
with a quantifier.

Moral Quantifier order is crucial.

There is a point at which English and mathematical meaning diverge, It concerns
the word “or.” In mathematies “a or b always means “a or b or both a and b," while
in English it can mean "o or & but not both a and 5" For example, Patrick Heory
certainly would not have accepted both liberty and death in response to his cry of
“Give me liberty or give me death.” In mathematics, however, the sentence “17 is a
prime or 23 is a prime” is correet even though both 1T and 23 are prime. Similarly,
in mathematics @ = b means that if a is true then b is true but that b might also
be true for reasons entirely unrelated to the truth of a. In English, a = b is often
confused with b= a.

Moral In mathematics “or” is inclusive. It means and//or. In mathematics a = b is
not the same as b= a.

It is often useful to form the negation or logical opposite of a mathematical sen-
tence. The symbol ~ is usually used for negation, despite the fact that the same
symbol also indicates an equivalence relation. Mathematiclans refer to this as an
abuse of notation. Fighting a losing battle against abuse of notation, we write -
for negation. For example, if m.n € M then ={m < n) means it is not true that m is
less than n. In other words

=slm<mn) = m>7n.

(We use the symbol = to indicate that the two statements are equivalent.) Similarly,
=[x € A} means it is not true that r belongs to A. In other words,

-lred) = rg A

Douibile negation returns a statement to its origioal meaning. Slightly more interesting
is the negation of “and” and “or.” Just for now, let us use the symbols & for “and”
and ¥ for “or.” We claim

(6) ~akeb) = =a v-b

(7] —fa v b) —a & —h.
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For if it is not the case that both o and & are troe then at least one must be false,
This proves (6). and (7) is similar. Implication also has such interpretations:

(") g=h = —aue=-bh = -avh

() o=k = uak b
What about the negation of a gquantified sentence such as
=(¥n € M. Ip € F such that n < p).

The rule is: change each ¥ to 3 and vice versa, leaving the order the same, and negate
the aszertion. In this case the pegation s

dneM, Ypel nzp

In Englizh it reads “There exists a patural momber g, and for all primes p we have
n 2 p" The sentence has correct mathematical grammar but of course is false. To
help translate froi mathematies to readable Eonglish, a comomna can be read as “and,”
“we have,” or “such that.”

All mathematical assertions take an implication form o = b The hypothesis is
a and the conclusion is & If yon are asked to prove @ = b, there are several ways
to proceed. First you may just see right away why o does imply b Fine. if you are
g0 lucky. Or vou may be puzzled. Does a really imply 7 Two routes are open 1o
voui. You may view the implication in its equivalent contrapositive form —a <= —h as
in (8). Sometimes this will make things clearer. Or vou may explore the possibility
that a fails to imply b If vou can somehow deduee from the failure of a implving b
a contradiction to a known fact (for instance, if you can deduce the existence of a
planar right triangle with legs r.y but r* + y":" 2 K, where b is the hypotenuse).
then vou have succeeded in making an argument by contradiction. Clearly (%) is
pertinent here. It tells you what it means that a fails to imply b namely that a is
true and simultaneously b is false,

Euclid's proof that M contains infinitely many prime munbers is a classic example
of this method, The hypothesis is that M is the set of natural mumbers and that
is the set of prime numbers. The conclusion is that P is an infinite set. The proof of
this fact begins with the phrase “Suppose not.” It means to suppose. after all, that
the set of prime pumbers P is merely o fnite set. and see where this leads yvou. It
does not mean that we think P really is a finite set, and it is not a hypothesis of a
thearem. Rather it just means that we will try to find out what awful consequences
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would follow from P being finite. In fact if P were! finite then it would consist of m
numbers py. ..., pm. Their product ¥ = 2:3-5 --- - pyy, would be evenly divisible
(f.e.. remainder O after division) by each g and therefore N + 1 would be evenly
divisible by no prime (the remainder of p; divided into N 4+ 1 would always be 1).
which would contradict the fact that every integer > 2 can be factored as a product
of primes. (The latter fact has nothing to do with P being finite or not.) Since the
supposition that P is finite led to a contradiction of a known fact. prime factorization.
the supposition was incorrect. amd 7 s, after all, infinite.

Aficionados of logic will note our heavy use here of the “law of the excluded
middle,” to wit, that a mathematically meaningful statement is either true or false.
The possibilities that it is neither true nor false, or that it is both true and false, are
exeJinded,

Notation The symbol § indicates a contradiction. It is used when writing a proof
in longhand.

Metaphor and Analogy

In high school English. you are tanght that a metaphor is a figure of speech in
which one idea or word is substituted for another to snggest a likeness or similarity.
This can occur very simply as in “The ship plows the sea.” Or it can be less direct,
as in “His lawvers dropped the ball.,” What give a metaphor its power and pleasure
are the secondary suggestions of similarity. Not only did the lawyers make a mistake,
but it was their own fanlt. and. like an athlete who has dropped a ball. they could
not follow through with their next legal action. A secondary implication is that their
enteTprise was just a game.

Often a metaphor associates something abstract to something conerete, as “Life
is a journey.” The preservation of inference from the concrete to the abstract in this
metaphor suggests that like a journey. life has a beginning and an end. it progresses
in one direction. it may have stops and detours, ups and downs, ete. The beauty of
a metaphor is that hidden in a simple sentence like “Life is a journey” lurk a great
many parallels, waiting to be uncoversd by the thoughtful mind.

"In English grammar, the subjunctive mode indicates doulst, amd 1 have written Euclid’s prood in
that Form - “if P were finite” instead of “if P is finite,” “each prime would divide N evenly,” instesd
of “each prime divides N evenly,” etc. At Frst it seemes like a fine jden to write all arguments by
contrsdiction in the mlhjullrl:m' e, 1'|.-|-:r|r]:|.' e:l:ll:il!r:llhl,g thilr i||:||.|-t'|.‘|lu|.||&|:|r.1e'. Saon, however, the
subjpinetive and condivional language beconses ridiculously stilted and archaic, For consistency then,
as much as possible, uwse the present fense
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Metaphorical thinking pervades mathematics to a remarkable degree. [t is of-
ten reflected in the language mathematicians choose to define new concepts. In his
construction of the system of real numbers, Dedekind could have referred to A|B as
a “tvpe-2, order preserving equivalence class,” or worse, whereas “cut” is the right
metaphor. It corresponds closely to one's physical intuition about the real line, See
Figure 3. In his book. Where Mathematics Comes From. George Lakoff gives a coan-
prehensive view of metaphor in mathematics,

An analogy is a shallow form of metaphor. It just asserts that two things are
similar. Althongh simple. analogies can be a great help in aceepting abstract coneepts,
When yvou travel from home to school. at first vou are closer to home. and then vou
are closer to school. Somewhere there is a halfway stage in your journey. You know
this. long before yvou study mathematics. So when a curve connects two points in
n metric space (Chapter 2). vou should expect that as a point “travels along the
curve,” somewhere it will be equidistant between the curve's endpoints. Reasoning
bv analogy s also referred to as “intuitive reasoning.”

Moral Try to trapslate what vou know of the real world to goess what s troe in
mathematics.

Two Pieces of Advice

A colleague of mine regularly gives his students an excellent piece of advice, When
vou confront a general problem and do not see how to solve it, make some extra
hvpotheses, and try to solve it then. If the problem is posed in n dimensions. try
it first in two dimensions. If the problem assumes that some function is continuois,
does 1t get easter for a differentiable function? The idea 15 to reduce an abstract
probilem to its simplest concrete manifestation, rather like a metaphor in reverse, At
the minimum, look for at least one instance in which vou can solve the problem. and
build from there.

Moral If you do not see how to solve a problem in complete generality. first solve it
in some special cases,

Here is the second piece of advice, Buy a notebook. In it keep a diary of your
own opinions about the mathematics vou are learning. Draw a picture to illustrate
every definition. concept. and theorem.
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2 Cuts

We begin at the beginning and diseuss B = the system of all real numbers from a
somewhat theological point of view, The current mathematics teaching trend treats
the real number system R as a given - it is defined axiomatically. Ten or so of
its properties are listed. ealled axioms of a complete ordered field, and the game
hecomes to deduce its other properties from the axioms. This is something of a
frand. considering that the entire structure of analysis is built on the real numbwer
system. For what if a system satisfying the axioms failed to exist? Then one would
be studying the empty set! However. you need not take the existence of the real

numbers on faith alone - we will give a concise mathematical proof of it.

It is reasonable to accept all grammar school arithmetic facts about

The set M of natural numbers, 1.2, 3,4, ...
The set £ of integers, 0,1,-1,-2,2,....
The set Q of rational numbers p/g where p. g are integers, g # (.

For exmnple, we will admit without guestion [acts like 2 + 2 = 4, and laws like
i+ b= b+a for rational numbers a, b, All facts you know about arithmetic involving
integers or rational numbers are fair to use in homework exercises too.! It is clear
that M ¢ £ < Q. Now E improves M becanse it contains negatives and @ improves
Z because it contains reciprocals. Z legalizes subtraction and @ legalizes division.
Still, Q@ weeds further improvement. It doesn’t admit irrational roots such as 2 or
transcendental numbers such as 7. We aim to go a step beyond Q. completing it to
form R so that

NcZcQcR.

As an example of the fact that @ is incomplete we have

1 Theorem No number r in Q has square equal to 2; i.e., v2 & Q.

Proof To prove that every r = p/q has r* # 2 we show that p* # 2¢%. It is fair to
assume that p and g have no common factors since we would have canceled them out
beforeland.

Case 1. pis odd. Then p* is odd while 2¢* is not. Therefore p* £ 2¢°.

'A subtler fact that you may find useful is the prime ctorization theorem mentioned shove, Ay
integer = 2 can be factored indo a product of prime numbers. For example, 120 s the product of
prboees 22235 Primse factorization is unbgque exeepd for the order in which the faciors appear.
Amn easy consequence is that il & prime number p divides an integer & and if & is the product me of
integers then p divides o oor it divides n. Alter all, by wnigquendsss, the prime factorization of & is just
the praduct of the prime betorieations of moand n.




12 Real Xumbers Chapter ]

Cisr 2. pis even. Since p and g have no common factors, g is odd, Then p? is divisible
by 4 while 2¢* is not. Therefore 2 # 2¢%,

Sinee p* # 2¢° for all integers p, there is no rational number ¥ = p/g whose square
i 2, o

The set 3 of rational numbeers is incomplete, [t has “gaps.” one of which oceurs at
V2, These gaps are really more like pinholes: they have zero width. Incompleteness
is what is wreng with Q. Our goal is to complete @ by filling in its gaps. An elegant
mrthiod to acrive at this goal is Dedekind cuts in which one visualizes real mnbers

as places at which a line may be cut with scissors. See Figure 1,

Figure 3 A Dedekiod ot

Definition A cut in Q is a pair of subsets A, B of @ such that
(o) AUR=0 A0 B0 ANnZ=0
by faee Aand be B then e < b
(el A contains ne largest element,

A is the left-hand part of the cut and 1 is the right-hand part. We denote the
cut as r = A|B. Making a semantic leap, we now answer the question “what is a real

mnaan e

Definition A real number = a cut i .

R is the class’ of all real nunbers r = AJB. We will show that in a natural way B
is a complete ordered feld containing . Before spelling ont what this means. here

are bwo exaiples of cuis,

"I'he word “class™ is used instead of the word “set” o emphaskee that for now O memlers of B
mre sed-pairs AH, and not the numbsers that bedong 1o A or . The notation AN could be shortened
biv A shee B s jusd the rest of Q0 We write A|H. however, as o minemonic deviee. 1 looks like a cut.
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(i) AlIB={reQ:r<1}|{reQ:r=1}.
(i) AIB={reQ:r<0orr? <2}|{reQ:r>0andr? > 2}

It is convenient to say that A|B is a rational cut if it is like the cut in {i): For
some fixed rational number e, A s the =0t of all rationals < c while B is the rest of QL.
The B-zet of a rational cut contains a smallest element o, and conversely, if A|B is a
cut in  and B contains a smallest element ¢ then A|B is the rational cut at ¢. We
write ¢ for the rational cut at ¢. This lets us think of @ C R by identifving ¢ with
e*. It is like thinking of Z as a subset of { since the integer n in Z can be thought of
as the fraction n/1 in Q. In the same way the rational number ¢ in @ can be thought
of as the cut at ¢, It is just a different way of looking at . It is in this sense that we
write

NcZcQcCR.
There is an order relation r < y on cuts that fairly cries out for attention.

Definitlon If x = A|B and y = C|D are cuts such that A € C then r is less than
or equal to y and we write 7 < y. [ A < C and A # C then x is less than y and
wo write & < .

The property distinguishing B from @ and which is at the bottom of every signifi-
cant theorem about R involves upper bounds and least upper bounds or. equivalently,
lower bounds and greatest lower bounds,

M € R is an upper bound for a set §C R if each 5 € 5 satisfies

3= M.

We also say that the set § is bounded above by M. An upper bound for &5 that
is lesg than all other upper bounds for 5 is a least upper bound for 5. The least
upper bound for 5 is denoted Lu.b.(8). For example.

3 i= an upper bound for the set of negative integers,

—1 is the least upper bound for the set of negative integers.

1 i= the least upper bound for the set of rational numbers 1 - 1/n with n & M.
—1(M} is an upper bound for the empty set.

A least upper bound for § may or may not belong to 5. This is why you should say
“least upper bound for 87 rather than “least upper bound of 87
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2 Theorem The sel B, constructed by means of Dedekind cuts, is complete’ in the
sense that it satisfies the
Least Upper Bound Property: If 5 is a nonempty subsel of R
and 15 bounded above then in B there erists a least upper bound for 8,

Proof Easy! Let € C R be any nonempty collection of cuts which is bounded above,
say by the cut X|Y. Define

C = {a€ Q: for some cutA|B € € we have a € A} and D = the rest of Q.

It is easy to see that z = C|D is a cut. Clearly. it is an upper bound for € since the
A for every element of € is contained in ©. Let 2" = C'[L¥ be any upper bound for
€. By the assumption that A|B < C'|D' for all A|B € €. we see that the A for every
member of € is contained in C'. Henee © € O, a0 2 < 2", That is, among all upper
bounds for €. z 1s least. O

The simplicity of this proof is what makes cuts good. We go from Q to R hy
pure thought. To be more complete, as it were, we descrilse the natural acithmetic
of cuts. Let cuts r = A|B and y = C|D be given. How do we add them? subtract
them? ... Generally the answer is to do the corresponding operation to the elements
comprising the two halves of the cuts, being careful about pegative numbers, The
sum of r and y is r + y = E|F where

E
F

]

{reQ: for some a € A and for some ¢ € O we have r = o + ¢}

Ehes rest of .

il

It iz easy to see that E]F is a cut in @ and that it doesn’t depend on the order in
which x and y appear. That is. cut addition is well defined and r + y = y + x. The
zero cut s 0° and 0* + r = = for all + € R. The additive inverse of + = A|F is
—r = (D where

C = {[reQ: for some b e B, not the smallest element of B, r = b}
D = the rest of Q.

Then {—z} + r = 0". Correspondingly, the difference of cuts is r —y = r + (—y).
Another property of cut addition 1= associativity:

(E+y]l+2 = o+ ly+ z).

"There is another, related, sense in which B is complete. See Theorem 5 helow
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This follows from the corresponding property of Q.

Multiplication is trickier to define. It helps to first say that the cut & = A|B is
positive if 0* < r or negative if r < 0" Since 0 lies in A or B, a cut is either
positive. negative, or zero. If r = AIB and y = C|D are positive cuts then their
product is r -y = E|F where

E={reQ:r<lorJac Aand 3c € C such that a >0, e > 0, and r = ac})

and F is the rest of Q. If r is positive and y is negative then we define the produoct
to be —(r - (—y)). Since r and —y are both positive cuts this makes sense and is
a negative cut. Similarly, if r is negative and y is positive then by definition their
product is the negative cut —{(—x) - y). while if x and gy are both negative then their
product is the positive cut {—x) - (—g). Finally, if x or y is the zero cut (" we define
r -y to be (%, {This makes five cases in the definition.)

Verifving the arithmetic properties for multiplication is tedious, to say the least,
and somehow nothing seems to be gained by writing out every detail. (To pursue
cut arithmetic further you could read Landau’s elassically boring book, Foundations
of Analysis.) To get the flavor of it. let's check the commutativity of multiplication:
ry=y- rforcuts x = A|B, y = C|D. If r,y are positive then

{ac:ia€ A, ceC.a>0,e>0} = {ca:ceEC.a€A c>0, a>0}
implies that = .y = y-r. If r is positive and ¥ is negative then
roy = ~(z-(=p) = ~((-p)-7) = y-x.

The second equality holds because we have already checked commutativity for positive
cuts. The remaining three cases are checked similarly. There are twenty seven cases
to check for associativity and twenty seven more for distributivity, All are simple
and we omit their proofs. The real point is that cut arithmetic can be defined and it
sutisfies the same held propertics that @ does:

The operation of cuf addition s
well defined, natural, commutative, associative, and
has inverses with respect to the neutral element 0,

The operabion of cul multiyplication
is well defined, natural, commutative, associative,
disiributive over ewd addition, and has tnoerses of
nenzere elements with respect to the nentral element 1%,
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By definition. a field is a system consisting of a set of elements and two oper-
ations, addition and multiplication, that have the preceding algebraic properties
commutativity, assceciativity, ote, Desides just existing, cut arithmetic s consistent
with  arithmetic in the sense that if e.r € Q then

e*+r* = (e+r)* and e r®=(er)*
By definition. this s what we mean when we sav that O 15 a subfield of E. The cut
order enjovs the additional propertics of

transitivity r < y < 2 implies r < 2.
trichotomy Either r < g, y < r, or r = gy, but only one of the three things
I8 Trie.

translation r < y implics ¥+ 2 < y+ 2.

By definition. this is what we mean when we say that R is an ordered fAeld.
Besides. the product of positive cuts is positive and cut order is consistent with G
order: ¢® < r®if and only if ¢ < r in @. By definition, this is what we mean when we
say that Q is an ordered subfield of B, To summarize

3 Theorem The sef R of all cuts in @ is a complete ordered field that contfains
as an ordercd subfield.

The magnitude or absolute value of r € R s

Iriz{ T if 220

—F if <.
Thus, r < |x]. A basic. constantly wsed fact about magnitude is the following,
4 Triangle Inequality For all r.y € B we have [r 4+ y| < ||+ |y|-

Proof The translation and transitivity properties of the order relation imply that

adding y and =y to the inequalities r < |r| and =r < |r| gives

r+y < |x|+y

P

fr| <+ |y
—r—p = |x|—u £ ||+ |y

A

Since

-+ fr+g=0
eyl =4 7 !
=r=y Hrgp=i

and both r+ y and —r — y are less than or equal to | x| + |y, we infer that |z 45| <
|#] + |u| as asserted, O
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Next, suppose we try the same cut construction in R that we did in Q. Are there
gaps in B that can be detected by cutting B with scissors? The natural definition of
a cut in R is a division A|B, where A and B are digjoint, nonempty subeollections of
R with AUB = R. and o < b for all @ € A and b € ‘B. Further, A contains no largest
element. Each b € B is an upper bound for A. Therefore y = Lu.b.(A) exists and
a<y<hforalaeAand be B, By trichotomy,

AB={zeR:z<y}|{zeR x> p].
In other words, R has no gaps. Every cut in B occurs exactly af a real number.

Allied to the existence of R is its uniqueness.  Any complete ordered field F
containing @ as an ordered subfield corresponds to ® in a way preserving all the
ordered field structure. To see this, take any o € F and associate to it the cut A|B
whiere

A={reQ:r <y inF} B = the rest of Q.

This correspondence makes F equivalent to K.

Upshot The real number system R exists and it satisfies the properties of a complete
ordered field, The properties are not assumed as axioms. but are proved by logically
analyzing the Dedekind construction of B. Having gone through all this cut rigmarale,
we must remark that it is a rare working mathematician who actually thinks of B as
a complete ordered field or as the set of all cuts in Q. Hather, he or she thinks of R
as points on the r-axis, just as in caleulus. You too should picture B this way, the
only benefit of the cut derivation being that you should now unhesitatingly accept
the least upper bound property of R as a true fact.

MNote +oc are not real numbers, since Q) and #Q are not euts.  Although some
mathematicians think of R together with —as¢ and +ac as an “extended real number
system,” it is simpler to leave well enough alone and just deal with R itself. Newv-
ertheless. it is convenient to write expressions like “r = oc” to indicate that a real
variable r grows larger and larger without hound.

If & is a popempty subset of B then its supremum is its least upper bound when
5 is bounded above and is said to be +0c otherwise: its inflmum is its greatest lower
bound when & is bounded below and is said to be —oc otherwise. (In Exercise 19 vou
are asked to invent the notion of greatest lower bound.) By definition the supremm
of the empty set is —a¢. This is reasomable, considering that every real number, no
matter how negative, is an upper bound for #, and the least upper bound should be
as far leftward as possible, namely —oc. Similarly, the infimmn of the empty set is
+2c, We write sup & and inf 8§ for the suprenmm and infimum of 5.

Alisher Navoiy

zﬂ[iﬁ’;’ 1 nomidagi
9525 O'zbekiston MK .
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Cauchy sequences

As mentioned above there is a second sense in which R is complete. It involves the
concept of convergent sequences. Let ay. 09 05,04, ... = (g ), m& M, be a sequence
of real numbers, The sequence (o,) converges to the limit & € R as n = o
provided that for each ¢ > 0 there exists N € M such that for all n = N we have

|2y — B < €.

The statistician’s language is evocative here. Think of n = 1.2, ... as a sequence of
times and say that the sequence (a,) converges to b provided that evenfually all its
berims mearly equal b In symbols,

Ye>03IN e Msuch that n 2 N = |a, — b < .
If the limit & exists it is not hard to see | Exercise 20) that it is unique, and we write

lim a,, =b or a, = b
n—x

Suppose that lim a, = b. Since all the numbers a, are eventually near b they are
R—+30
all near each other: ie., every convergent sequence obeys 8 Cauchy condition:

Ye>10 3N € M such that if n.k > N then |a, — a;| < e
The converse of this fact is a fundamental property of K.

5 Theorem R 15 complete with respect to Cauchy sequences in the sense that if
{ag] is a seguence of real numbers which sbeys o Couchy condition then of converges
to a limit in K.

Proof First we show that (a,) is bounded. Taking ¢ = 1 in the Cauchy condition
implies there is an N such that for all v, & > N we have |a, = ay| < 1. Take K large
enough that - K < ay..... ay < K. Set M = K + 1. Then for all n we have

-M < ay, < M,
which shows that the sequence 5 bownded.
Define a set X as
X = {z € R: 3 infinitely many n such that a, > r}.

—M € X since for all n we have a, > — M, while M ¢ X since no ry, is = M. Thus
X is a nonempty subset of B which is bounded above by M, The least upper bound
property applies to X and we have b= Lu. b X with <A < b < AS.
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We claim that e, converges to b as n — 20. Given ¢ > (0 we must show there is
an N such that for all n > N we have |a, — b < ¢. Sinee (a,) i8 Canchy and /2 is
positive there does exist an N such that if n. & = N then

3
|ﬁ,| = |:.I:J|-| < E.
Since & — €/2 is less than b it is not an upper bound for X, so there is x € X with
b—¢/2 < r. For infinitely many » we have a, > x. Since b+ ¢/2 > b it does not
belong to X, and therefore for only finitely many » do we have a, > b+ ¢/2. Thus,
for infinitely many nowe have
b—%frfun£h+£—.
Since there are infinitely many of these n there are infinitely many that are > N
Pick one, say a,, with ng > ¥ and b—- ¢/2 < a,, < b+ ¢/2. Then for all n > N we
have

£ [
jan =8 € i —ang| +lang =Bl < 545 = ¢

2.2
which completes the verification that (a, ) converges. See Figure 4. O
iy ﬂn..
- . . - . »
-M b—ef2 b b+ef2 M

Figure 4 For all n > N we have |a, — b < ¢

Restating Theorem & gives the
6 Cauchy Convergence Criterion A sequence (a,) m R converges if and only if

Ve>0 INeNsuchthat nk=ZN = |ag —ap) <=

Further description of &

The elements of B are irrational numbers, If o i irrational and r is rational
then y = # + r is irrational. For if y is rational then so is y —r = 7, the difference of
rationals being rational. Similarly, if # 3 0 then rr i@ irrational. It follows that the
reciprocal of an irrational number is irrational. From these observations we will show
that the rational and irrational numbers are thoroughly mixed up with each other.

Let a < b be given in R. Define the intervals (o, b) and [a, b] as
(ab)={z€R:a<zx<b
[a.b] = {reR:a <r < b
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T Theorem Every mterval (o, b, no matter how small, conteins beth mbional and
irrational nummibers. In fact of contmns infinitely many rational numbers and imfinitely
many irrational numbers,

Proof Think of a, b as euts 0 = A|A', b= B|H. The fact that a < b implies the set
B Ais a nonempty set of rational numbers. Choose a rational r € B A, Sinee B
has no largest element. there is a rational 5 with a < r < 5 < b Now consider the
transformation

Tt r 4+ (a—r)t

It sends the interval [0, 1] to the interval [r, 5], Since r and & — r are rational, T sends
rationals to rationals and irrationals to irrationals. Clearly [0, 1] contains infinitely
many rationals, say 1/n with n € M. so |r, 5] contains infinitely many rationals. Also
0, 1] contains infinitely many irrationals, say 1/ny2 with n € M. so [r, s] contains
infinitely many irrationals. Sinee [r, 5] contains infinitely many rationals and infinitely
many irrationals. the same is true of the larger interval (a, b). (]

Theorem T expresses the fact that between any two rational munbers lies an irra-
tional number. and between aony two ircational numbaers les s rationa]l number, This
i= a fact worth thinking about for it seems implansible at first. Spend some thne
trving to picture the situation, especially e light of the following related facts:

{a) There is no first (i.e.. smallest) rational number in the interval (0, 1),

(b)) There = o fest ircationad oowmber o the ioterval (0, 1.

(¢) There are strictly more irrational oumbers in the interval (0, 1) (in the cardi-
nality sense explained in Section 4) than there are rational numbers.

The transformation in the proof of Theorem 7 shows that the real loe is like
rubber: streteh it out and it never breaks.

A somewhat obscure and trivial fact about X is its Archimedean property: for
each r € B there i an integer n that s greater than o In other words, there exist
arbitrarily large integers. The Archimedean property is true for Q since pfg < |p|. It
follows that it is true for B Given = AR, just choose a cational number - & &2
and an integer n > r. Then n > r. An equivalent way to state the Archimedean
property is that there exist arhitrarily small reciprocals of integers.

Mildly interesting is the existence of ordered fields for which the Archimedesn
property fails. One example is the field Rir) of rational functions with real coeth-
cients, Each guch function is of the form

Rixr) = pLx)

gl
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where p and g are polynomials with real coefficients and g is not the zero polynomial.
(It does not matter that g{x) = 0 at a finite number of points.) Addition and
mutltiplication are defined in the usual fashion of high school algebra. and it is easy to
see that R{x) is a feld. The order relation on Rix) is also easy to define. If R(x) = 0
for all sufficiently large x then we say that R is positive in Rir). and if # = § is
positive then we write § < R. Sinee a nonzero rational function vanishes (has value
zero) at only finitely many x € R, we get trichotomy: either R =S . R< S.or § < R.
{ To be rigorous, we need to prove that the values of a rational function do not change
sign for r large enough,) The other order properties are equally easy to check, and
H(zx) is an ordered field.

Is B(r) Archimedean? That is, given K € R(r). does there exist a natural number
n € [{x) such that B < n? (A number n is the rational function whose mumerator is
the constant polynomial plr) = n. a polynomial of degree sero. and whose denomina-
tor is the constant polyvnomial g{x) = 1.) The answer is “no.” Take R(r) = x/1. The
munerator is r and the denominator is 1. Clearly we have n < . not the opposite.
so Bir) [nils to e Archimedean.

The same remarks hold for any positive rational function B = pir)/q(x) where
the degroe of p exceeds the degree of g, In Rix). R is never less than a natural
number, (You might ask yourself: exactly which rational functions are less than n?)

The e-principle

Finally let us note a nearly trivial principle that turns out to be invaluable in
deriving inequalities and equalities in R,

8 Theorem (e-principle) If a.b are real numbers and if for cach ¢ > 0 we have

a<h+e thena < b If ry are real numbers and for each € > 0 we have |[r -yl < ¢
then © = y.

Proof Trichotomy implies that either @ < bor a > b In the latter case we can
choose ¢ with 0 < ¢ < a — b and get the absurdity

Foa—h = g

Henee o < b Similarly. if r # y then choosing ¢ with 0 < ¢ < |r — y| gives the
contradiction ¢ < [r — y| < £. Hence r = y. See also Exercise 12, O
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3 Euclidean Space

Given sets A and £, the Cartesian product of 4 and 8 is the set 4 x B of all
ordered pairs (o, b) such that ¢ € A and b € B, (The name comes from Descartes
who pioneered the idea of the rg-coordinate syvstem in geometry.] See Figure 5.

lad, M)

h

H Ax i

.'l ]

Figure 5 The Cartesian product 4 = 8

The Cartesian product of R with itself m times is denoted R™. Elements of B™
are vectors. ordered m-tuples of real numbers (ry, ..., Tpy). In this terminology real
numbers are called scalars and B iz called the scalar feld. When vectors are added.
subtracted, and multiplied by scalars according to the rules

(L= a Tm) + (He--oaltm) = (21 + 910 oy Tm + Wm)
[ 5 TR Loy ) (Maasey m ! (E1 = $1eeens Lo lim )
i e of PEECRRHEE, Fag ] =  LEE[aason O )

then these operations obey the natural laws of linear algebra: commutarivity, as-
sociativity, etc. There is another operation defined on B™, the dot product (also
called the scalar product or inner product). The dot product of r = (ry,.... F ) At

H = (e bipg) I8

(z.p) = F1pi + ... + Tl

Remember: the dot product of two vectors is a scalar, not a vector. The dot product
aperation is bilinear. symmetric, and positive definite; ie., for any vectors r, y, = € B™
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and any ¢ & B we have

(roy+ez) = (ry) + elz.z2)

(z.¥} = (1)
{r.z)y = Oand (r,x) = 0if and ounly if r is the zero vector.

The length or magnitude of a vector » € B™ is defined to be

ol = Vi a) = yfed + ...+ 22,

See Exercise 16 which legalizes taking roots. Expressed in coordinate-free language.
the basic fact about the dot product is the

9 Cauchy-Schwarz Inequality For all r,y € B™ we have (r.y) < |z]lyl.

Proof Tricky! For any vectors r, y consider the new vector w = r + ty, where t € R
is a varving scalar. Then

Qit) = (ww) = (r+ty. =+ ty)

is & real-valued function of £. In fact, Q#) > 0 since the dot product of any vector
with itself is nonnegative. The hilinearity properties of the dot product imply that

Qt) = {r.z} + 2{r. ) + Clp.y) = + W + at?

is a quadratic function of f, Nonnegative quadratic functions of ¢ € R have nonpositive
discriminants. b* —4ae < 0. For if ¥ —4ae > 0 then Q(t) has two real roots, between

which Gt} 15 negative. See Figure B,

Q) positive,
o real root

L) non-negative,
one double roat ¢ Q both positive
and negative,

twin resl roots
A 7]

B -dac<D ¥ =dar=0D W — 4ae =0

X

Figure 6 Quadratic graphs
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But b* = dae < 0 means that 4{r, )* — 4{e, Dy, ) £ 0, ie.
{r.g)* < (r.o){yp).

Taking the square root of both sides gives (e, g} < ir 2yl = [x)|y]. (We nse
Exercise 17 here and below withont further mention., ) |

The Canchy-Schwarz inequality implics casily the Triangle Inequality for vec-
tors: For all z.p € B™ we have

|+ wl = |xf + |yl

For lr+ 4" ={r+y, 2+4 = (r.0) + 2. + (y.u). By Cauchy-Schwarz,
2{r.y) < 2|x||ly|. Thus.

lz+ wl* = [«* + 2x|lw] + lv* = (I + |w])*.

Taking the square root of both sides gives the result,

The Euclidean distance bhetween vectors ooy € B™ is defined as the length of
their difference,

le=pl = iz=-m r=p) = V{zi =) + ... + (Zm = yum)2-

From the Triangle Incquality for vectors follows the Triangle Inequality for dis-
tance. For all r.y. 2 € R™ we Lave

lr—z| < le—yl + |lv—2zl

To prove it. think of r— 2 as the vector sum (x —y) + (= ) and apply the Triangle
Inepuality for vectors. See Figure 7.

Geometric intuition in Enclidean space can earry you a long way in real analysis,
pepecially in betng able to forecast whether a given statement s true or not.  Your
geometric imtuition will grow with cxperience and contemplation,. We begin with
some vorabulary.

In real analysis. vectors in B™ are referred to as points in B™. The 1 coordinate
of the point {r)..... Ty) is the munber r; appearing in the ™ position. The ™
eoordinate axis is the set of points r € B™ whose k*" coordinates are zero for all
k # j. The origin of R™ is the zero vector, (0..... (0). The Arst orthant of B™ is
the set of points r € R™ all of whose coordinates are nonnegative. When m = 2,
the first orthant is the first quadrant. The integer lattice is the set £ © B™ of
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X ¥y

Figure T How the Triangle Inequality gets its name

. . i sieses il feirveasteies
" ’ > 2 e . 3% : . =4
S |15 (11148111 AR
L ] s . Vel C ' e "
- el & ekl - e e by oo
- ; ; G D B G e B
L N -
1
B s A R R i WA P A R BT TR e
- - " ™ Y TR - ' o &
: i T e e T R l"l.l ......
e & i -
oI I|-axXk
L L] 4 L] LY L] L3 L]

Figure 8 The integer lattice and first quadrant
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ordered m-tuples of integers. The integer lattice is also called the integer grid. See
Figure 8,

A box is a Cartesian product of intervals
[y, by =« % |ﬁm- hlr:ll

in B™. [A box is also called a rectangular parallelepiped.) The unit cube in

R™ is the box [0,1]™ = [0,1] x --- x [0,1]. See Figure,

vertex

b cubie

Figure 9 A box and a cube

The unit ball and unit sphere in ™ are the sets

B" = {zeR"™:|r] <1}
sl = {reR™:jr =1}

The reason for the exponent mo— 1 is that the sphere 15 (= 1 )-dimensional as
an object in its own right although it does live in m-space. In 3-space, the surface of
a ball is a two-dimensional film, the 2-sphere 5% See Figure 10,

Aset EC R™is convex il for cach pair of points r.y € E. the straight line
segment between r and p is also contained in £, The unit ball is an example of a
convex set. To see this, take any two points in 8™ and draw the segment between
them. If “obviously™ lies in 8™, See Figure 11,

To give a mathematical proof, it is useful to describe the line segment between
r and y with a forouida, The straight line determined by distinet points o,y € B™

i the set of all linear combinations sr + ty where s +t = 1. and the line segment is
the set of these linear combinations where s and ¢ are = 1. Such hnear comianations
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B? = dis 5% = sphere

Figure 10 A 2-disc B*® with its boundary circle, and a 2-sphere 52 with its

eojuator

Figure 11 Convexity of the hall

sr+ty with s+ =1and 0 < 5§ < | are called convex combinations, The finge

segment is denoted as [r.y|. (This notation is consistent with the interval notation

o, b). See Exercise27.) Now if r.y € B™ and sz + ty = = is a convex combination of

x oand ¥ then, using the 1:'.'|.‘.:||:'§'|:'.'-5|'||'.J.'.u!':-' ]:n-qll::]'if_‘:' and the fact that 2= = ), we get
3

(5,5 = &IEE 4 el + .’."L::q._n,l:-

e Lol ol

1

)zt + 2at|zlly] + |y

< S 4+2+2= (41 =1.

laking the square root of both sides gives |z = 1, which proves convexity of thi

Laall.
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Inner product spaces

An inner product on a vector space 17 is an operation { , ) on pairs of vectors
in ¥ that satisfies the same conditions that the dot product in Euclidean space does:
Namely, hilinearity, svmmetry, and positive definiteness. A vector space equipped
with an inner product is an inner product space. The discriminant proof of the
Canchy-Schware Inequality is valid for any inner product defined on any real vector
space, even if the space is infinite-dimensional and the standard coordinate proof
woilld make no seuse, For the diseriminant proof wses only the inner product prop-
erties. and not the particular definition of the dot product in Euclidean space,

E™ has dinension m becanse 1t has a basis oy, ..., £m- Other vector spaces are
more general. For example, let O([o. b, B) denote the set of all of continuous real-
valued Pinctions defined on the interval [a,b]. (See Section 6 or your old calenlus
book for the definition of continuity.) It is a vector space in a natural way, the
sum of continuous funetions being continuous and the scalar multiple of a continuons
function being continuous. The vector space O |a, B, B), however, has no finite hasis.

It is infinite-dimensional. Even so. there is a npatural inner product.

{f.q) =ff|fr]y|':]d.r-

Cauchy-Schwarz applies to this inper product, just a2 to any inner product, and we
infer a general integral inequality valid for any two continuons functions.

L { pb I|I &
ff{-.l':l,f_f[l:lff.r < \ff fir) dr u‘f gle)dr

It would be challenging to prove such an inequality from seratch. would it not? Soee
also the first paragraph of the next chapter.

A norm on a vector space Vs any function | | 2 V' = B with the three properties
of vector length: Namely, if v, w € V and A € R then
[v] = O and |o] = 0 if and only if v =1,
|Av] = |A] [e],

v+ | < |o| + |wl.

? b —
An inner product { , ) defines a norm as |o] = /(e ¢}, but not all norms eome
from inner products. The unit sphere {v € V @ (v, p) = 1} for every inner product is

smooth {has no cormers) while for the porm

Wlax = e [erg |, Jral}
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defined on v = (v, v9) € B?, the unit sphere is the perimeter of the square {{1, 1) €
B? - [ty] < 1 and || < 1}. It has comers and o it does not arise from an inner
product. See Exercises 46, 47. and the Manhattan metric on page 76.

The simplest Euclidean space beyond B is the plane B?, Its ry-coordinates can
be used to define & multiplication.

(r.y) o (£'.¢)) = (22" =y, =y + 2y).

The point (1,1)) corresponds to the multiplicative unit element 1, while the point (0, 1)
corresponds to § = /=1, which converts the plane to the field C of complex numbers.
Complex analysis is the study of functions of a complex variable. Le.. functions f(z)
where z and f(z) lie in C. Complex analysis is the good twin and real analysis the
evil one: beautiful formulas and elegant theorems seem to blossom spontaneously in
the complex domain, while toil and pathology rale the reals. Nevertheless, complex

analysis relics more on real analvsis than the other way around.

4 Cardinality

Let A and B be sets. A function [ : A = B is a rule or mechanism which, when
presented with any element a € A. produces an element b = fla) of B. It need not
be defined by a formmla. Think of a function as a device into which you feed elements

of A and ont of which pour elemems of B, See Figure 12. We alzo call f 4 mapping

S
-"“'l
‘ '
i I:"‘:l// ﬂ

Figure 12 The function f as a machine

orf a map or a transformation. The set A is the domain of the function and B is
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its target, also called its codomain. The range or image of [ iz the subsct of the
birget

{he B: there exists at least one elememt a € A with fla) = b}

Sewe Flmure 13

Figure 13 The domain, target. and range of a function

Ity to write [ instead of fle) to denote a function. The function i the deviee
which when confronted with input & produces output f(r). The function is the

deviee, not the out puat.

Think also of a function dynamically. At time zero all the elements of 4 are
gitfing peacefully in A. Then the function applies itself to them and throws them
imto . At time one all the elements that were formerly in 4 are now transferred into

B. BEach a € A gets sent o soine element fla) € 8.

A mapping § : A = I is an injection (or i= one-to-one) if for each pair of

distinet elements a,. a0’ € A, the elements rl"lu'. _irl:r."'_l are distinct in 8. That is,

a#a = [flao] # fla')

The mapping f is a surjection {(or is onto) if for each b € B there is at least one

a € A =uch that fla) = b That is. the range of [ is 8.
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-

A mapping is a bijection if it is both injective and surjective. It is one-to-one
and onto. If f: A = B is a bijection then the inverse map £~ : B = A is a bijection
where f"l[&:l is bv definition the unique element a € A such that fla) = b

The identity map of any set to itself is the bijection that takes cach a € A and
seniels it to itself. id(a) = a.

Iff: A= Band g: B = C then the compaosite ge f: A — C is the function

that sends a € A to g( f(a)) € C. If f and g are injective then so is g o f. while if f
and g are surjective then so is go f,

A

gof

In particular the composite of bijections is a bijection, If there is a hijection from
A outo B then A and B are said to have equal cardinality.” and we write 4 ~ B.
The relation = is an equivalence relation. That is,
fa) A~ A,
(b) A~ B implies B ~ A.
fc] A~ B ~C implies 4 ~ C.,

{a) follows from the fact that the identity map bijects A to itself. (b} lollows from
the fact that the inverse of a hijection A — B is a hijection B — A. (c) follows from
the fact that the composite of bijections f and g is a hijection go f.

Aset §is
finite if it is empty or for some n € M we have 5 ~ {1, ..., n}.
infinite if it is not Anite.
denumerable if 5§~ M.

countable if it is finite or denumerable.
uncountable if it 1= not countable,

"I'he word “cardinal” indicates the number of elements in the set. The eardinal numbers ane
0,1, % ... The first infinite cardinal number s aleph null, #s. One sayvs the B has By elements, A
mystery of math is the Continuum Hypothesis which states that B has carlinality 8, the second
infinite cardinal. Equibvalently, if M © 5 £ B, the Continuum Hypothesis asseris that 5 ~ N or

5 ~ R. Mo intermediate cardinalitics exist, You can pursue this issuwe in Paol Cohen’s book, Sef
Theory and the Conbinuum Hypothesis,
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We also write card A = card f and #A4 = #8 when A. B have equal cardinality.

If § is denumerable then there is a bijection f: N — 5. and this gives a way to
list the elements of 5 as 5y = f(1). 82 = f(2). 83 = f(3). etc. Conversely. if a sct
S is presented as an infinite list (without repetition) 5 = {s;.52.55....}. then it is
denumerable: Define f(k) = s, for all & € M. In brief, denumerable = listable,

Let's begin with a truly remarkable cardinality result, that although ™ and B are
both infinite, B is more infinite than M. Namelv,

10 Theorem B s uncownfable.

Proof There are other proofs of the uncountability of B, but none so beantiful as
this one. It is due to Cantor. 1 assune that vou accept the fact that each real number
r has a decimal expansion. .r = Norprarg ... . and it is unigquely determined by - if
one agrees never to terminate the expansion with an infinite string of 9. (See also
Exercise 18.) We want to prove that R is uncountable. Suppose it is not uncountable.
Then it is countable and, being infinite, it st be denumerable.  Accordingly Lot
f M = K be a hijection. Using f, we list the elements of R along with their decimal
expansions as an array. and consider the digits ry; that oceur along the diagonal in

this array. See Figure 14,

i
-

J{1)

g Fiz Fia L4 Fis Fae AT

il

Ji(2) Ny rgy ¥z ra fu Y T I
F3) = Ny oqy ryp raz raa Tan fwm Iav
Ji4) = Ny zyp Taz Taa Taa Tan Tae  Tuy
b)) = Ny sy Fsp Fsn a4 Tss Tss  Eay
fl6) = Ng ray Tep Tex Fe4 Ten Tes Tav

7)) = Ny on T T3 T Is T Er7

Figure 14 Cantor’s dingonal et hoad

For each 1, choose a digit y, such that g, # ry and 4 # 9. Where is the number
= (hypapy..." Isit f{1)? No, becanse the first digit in the decimal expansion of
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Fi1) is xyp and gy # xy. Is it f{2)7 No, because the second digit in the decimal
expansion of f(2) is oy and g # . Is it f(k)7 No. because the K digit in the
decimal expansion of f(k) is x4 and gy # rge. Nowhere in the list do we find p.
Mowhere! Thercfore the list could not account for everv real oumber, and & must
have besn uncountable, 0

11 Corollary [a,b] and (a.b) are uncountable

Proof There are hijections from (e, b) onto (-1, 1) onto the unit semicircle onto R
shown in Figure 15. The composite [ bijects (a,b) onto B, so (a,b) i uncountable,

Figure 15 Equicardinality of {(a.b). (—=1,1), and R

O

Sinee [, b] contains (o, b). it too is uncountable.

The remaining results in this section are of a more positive favor.

12 Theorem Each infinite set § confains a denumerable subset,
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Proof Since § is infinite it s nonempty and contains an element s, Since § i
infinite the set S5 {51} = {8 € §: & # 51} is nonempty and there exists 52 € 55 {5 }.
Since 5 is an infinite set. 5 {8,853} = {8 € § : 5 # 51,53} is nonempty and there
exists 83 € 5% {#), 8}, Continuing this way gives a list (s,) of distinet elements of
K. The set of these elements forms a denumerable subset of 5. O

13 Theorem An infimite subset A of a denumemble set B 15 denumerable.

Proof There exists a hijection f: M — B. Each element of A appears exactly once
in the list f{1). f{2). f(3).... of B. Define g(k) to be the &*" element of A appearing
in the list. Since A is infinite, g(k) is defined for all E e M. Thus g : M — A is a
bijection and A ks denumerabile, 0O

14 Corollary The sets of even mmtegers and of prime integers are denumerable.
Proof They are infinite subsets of M which is denumerable, O
15 Theorem M = M is denumerable,

Proof Think of M =« M ag an o = ac matrix and walk along the successive counter-
diagonals. See Figure 16. This gives a list

(1,1), (2, 1), (1,2, (3, 1), (2,2), (1, 9), (4, 1), (3.2). (2.3). (1, 4), (5. 1), . ..

of M x M and proves that M x M is denumerable. (|

Figure 16 Counter-diagonals in an 2 x »¢ matrix
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16 Corollary The Cartesian product of denumerable sefs A and B 18 denumerable.
Proof N ~ BHxHN ~ A4x B o
17 Theorem If f: M — B 1s a surjection and B s infinite then B is denumerable.

Proof For each b & B, the set {k € M : f(k) = b} is nonempty and hence contains a
smallest element; say h(h) = k Is the smallest integer that is sent to b by f. Clearly. if
bt € B and b # b then h{l) # h(¥). That is, h : B — N is an injection which bijects
B to kB C M. Since B is infinite. so is hf3. By Theorem 13, AR is denumerable and
therefore so is B. O

18 Corollary The denumerable union of denumerable sets is denumerable.

Proof Suppose that Ay, Ag, ... is a sequence of denumerable sets. List the elements
of A; a8 ayy., a0, ... and define

F:HxH = A=U A
|:.j1_j':| — '”'I_I
Clearly f is a surjection. According to Theorem 15, there is a bijection g : N —

M x M. The composite f o g is a surjection M -+ A, Since A is infinite, Theorem 17
implies it i# denumerable, O

19 Corollary O s denumerable,

Proof (} is the denumerable union of the denumerable sets A, = {p/q : p € L} as
q ranges over 4. |

20 Corollary For each m € M the sef 7' is denummerable.

Proof Apply the induction principle. If m = 1 then the previous corollary states
that @' is denumerable. Knowing inductively that ™! is denumerable and Q™ =
Q™! x Q, the result follows from Corollary 16. O

Combination laws for countable sets are similar to those for denumerable sets, As
iz easily checked,

Every subset of a countable set is countable.

A countable set that containzg a denumerable subset is denumeralsle.
The Cartesian product of finitely many eountable sets is countahble.
The countable union of countable sets s countable,
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5* Comparing Cardinalities
The following result gives a way to conclude that two sets have the same cardinality.
Roughly speaking the condition is that card A < card B and card 8 < card A,

21 Schroeder-Bernstein Theorem [f A. 8 are sets and f: A = B, g: = A
are njeciions then there erists a bgecton B A = B,

Proof-sketch Consider the dyoamic Venn disgram. Figure 17, The dise labeled g f A

Figure 17 IMictorial proof of the Schroeder-Bernstein Theorem

is the image of A under the map go f. It is a subset of A. The ring between A and
g fA divides into two subrings, Ay i the set of points in A that do not lie in the image
of g, while A; is the set points in the image of g that do not lie in gf A, Similarly,
By is the set of points in I that do not lie in fA. while ) is the set of points in
fA that do not lie in fgB. There is a natural bijection b from the pair of rings
Ag U Ay = A gfA to the par of rings B0 By = B> fgB. It equals § on the outer
ring Ao = A% g8 and it is ¢! on the inner dng 4y = @B gf A, (The map ¢! is
not clefeed oo all of A, Bt it s defined on the set 8. In this notation. b sends 4y
onto ) and sends A onto By, It switches the indices, Repeat this on the next pair
of rings for A amd B, That i, look at _r,lf.-’l instead of A auad rlrll,lﬂ instead of &, The

next twa rings o A 07 ace

Ay = gfANgfoB Ay = gfgB N gfafA
By = [fgB\ fgfA By = fafA ™ falfgH.

Sencl Az to By by foand Ag to B by g7'. The rings A; are disjoint, and so are
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the rings B;, so repetition gives a bijection
é¢: QA& = LUB.

(I indicates disjoint union) defined by

o) flx) if € A; and ¢ 15 even
:" —
g x) ifxe A and 1 s odd,

Let Ae= A (| A) and Be= B (U B;) be the rest of A and B. Then f bijects
A to Bs and ¢ extends to a bijection b : A =+ B defined by

{aq.r} if r € |J A
hir) =
flz) Hze A O

A supplementary ald in understanding the Schroeder Bernstein proof is the fol-
lowing crossed ladder diagram. Figure 15,

.||.| .*5 '*'

\j' r"

A Ay Az Ay
, 1 i % a4
A .-"" I 4 .--"'I I P
: 7
/\\ A /\n M
By B, B, i

- F ﬂ‘ Jﬁ ﬂ‘

H"x f.l'“' \s .:’H \.: l!" ) =
/\x /\\ /\\ y
Ao Ay As As Ay As A.

Figure 18 Diagramatic proof of the Schroeder-Bernstein Theorem

Exercise 36 asks you to show directly that (a,5) ~ [0 b]. This makes sense sinee
{a,b) € [a,b] € R and {a.b) ~ R should certainly imply (a.b) ~ |08 ~ R. The
Schroeder- Bernstein theorem gives a quick indirect solution to the exercise. The in-
clusion map i : (a,b) =+ [a. b] sending r to r injects (a. b) into [a, 5], while the function
jlx) = &/2 + (a+ b)/4 injects [, b] into (a. b}, The existence of the two injections
implies by the Schroeder-Bernstein Theorem that there is a bijection {a, b) ~ [, b).
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6* The Skeleton of Calculus

The behavior of & continuous function defined on an interval |¢:, b is at the root of all
caleulus theory, Using solely the Least Upper Bound Property of the real numbers we
rigorously derive the basic properties of such functions. The function f : [a. b = R
i= continuous if for each ¢ > 0 and each r € [a.b] there is a § > 0 such that

t € fobland|t-xl<d = |flt)= flz)] < e

See Figure 19.

Figure 19 The graph of a continuous function of a real variahble

Continmons functions are found everywhere in analvsis and topology.  Theo-
rems 22, 23, and 24 present their simplest properties. Later we generalize these
pesilts to functions that are neither real valued nor dependent on a real variable.
Although it is possible to give a combined proof of Theorems 22 and 234 | prefer to
highlight the Least Upper Bound Property and keep them separate,

22 Theorem The values of a continuous function defined on an imferval [a, b form
a bounded subset of R. That s, there exst m, M € R such that for all x € [a,b] we
have m < fir) < M.

Proof For r € [a.b]. let 1V} be the value set of f(f) as f varies from a to r,

Vi = {yeR: for some ¢ € [a, z] we have y = f(i)}.

X = {r€ |aob]: V; is a bounded subset of R}.
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We must prove that b € X. Clearly o € X and b is an upper bound for X. Sinee
X is nonempty and bounded above, there exists in B a least upper bound ¢ < b for
X. Take ¢ = 1 in the definition of continnity at e. There exists a 4 > () such that
|r=e| < & implies |f{x) = flc)}| < 1. Since ¢ is the least upper bound for X, there
exists r € X in the interval [c — 4, ¢|. (Otherwise ¢ — & is a smaller upper bound for
X.) Now as t varies from a to . the value f{t) varies first in the bounded set V; and

then in the bounded set J = (fie) — 1. fle) + 1). See Figure 20,

Figure 20 The value set Ve and the interval J

The union of two bounded sets s a bounded set and it follows that Vo s booanded,
so ¢ € X, Besides, if ¢ < b then f(t) continues to vary in the bounded sot J for t > e
contrary to the fact that ¢ is an upper bound for X. Thus, e = b b € X. and the

values of [ form a bounded subset of K. O

23 Theorem A continucus function f defined on an interval [o, b takes on absolute
manimum and absolute marimum values: For some .0y € |a, b] and for all x € [a, b]
we have

fleo) = flx] = fln).
Proof Let M = l.u. b, f(t) as ¢ varies in |a, b]. By Theorem 22 M exists. Consider

the set X = {r € [a. b : Lu.b.V; < M} where, as above. V is the set of values of f{t)
as t varies on [a, x].
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Case 1. flo) = M. Then f takes on a maxinnum at a and the theorem is proved.

Case 2. fla) < M. Then X # @ and we can consider the least upper bound of X, say
o If flr) < M. we choose £ > 0 with ¢ < M - f{c). By continuity at ¢, there exists
a & = 0 such that |t — ¢| < 6 implies | f(t) = flc)] < e. Thus, Lub Vo< M. Ifec < b
this implies there exist points ¢ to the right of ¢ at which Lu.bl, < M. contrary to
the fact that ¢ is an upper bound of such points. Therefore. ¢ = b which implies that
A = M. a contradiction. Having arrived at a contradiction from the supposition
that f{r) < M. we duly conclude that f{c) = M. so f assumes a maximum at . The
situation with minima is similar. O

24 Intermediate Value Theorem A continuous funcfion defined on an inderval
|, b| takes on for “achieves,” “assumes,” or “altains”) all itermediate values: Thal
s, if fla) = a, fih) = 3, and 7 is given, 0 < 7 < 3, then there is some ¢ € [a, b
such that fle) =, The same conclusion holds if 3 < 5 < o,

The theorem is pictorially obvious, A continnous function has a graph that is a
curve without break points. Such a graph can not jump from one height to another.
It must pass through all intermediate heights.

Proof Set X = {x € [a.b] : Lnb.V: € 7} and ¢ = Lu.b.X. Now ¢ exists becanse X
is nonempty (it contains a) and it is bounded above (by &), We claim that fie) = 7.
as shown in Figure 21,

To prove it we just climinate the other two possihilities which are f{c) < 7 and
fle) = 7, by showing that each leads to a contradiction. Suppose that fie) < 3
and take ¢ = 5 = f(e). Contimity at ¢ gives 4 > (0 such that |t = ¢f < 4 implies
[t = fir)] < €. That is,

tE(c=4 c+4 = f(t) <9,

so 4+ 4/2e X, contrary to ¢ being an upper bound of X.

Suppose that f(c) > % and take ¢ = f{r) = %. Continuity at ¢ gives § > 0 such
that [t — ¢| < 4 implies [f(t) — fie)| < . That is,

te(e—4 c+4) = flt) >,

so ¢ — a2 is an upper bound for X, contrary to ¢ being the least upper bound for
X. Since f{c) is neither < 5 nor > 7 we get fic) = 7. O

A combination of Theorems 22, 23, 24, and Exercise 43 conld well be called the
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Figure 21 r € X implies that f{r) < 7.

25 Fundamental Theorem of Continuous Functions Every confinuous real val-
ued function of a real varable x € [0, b] 5 bounded, achicves minumum, intermediate,
and marmum values, and is uniformly continuous.

7* Visualizing the Fourth Dimension

A lot of real analysis takes place in B™ but the full m-dimensionality is rarely im-
portant. Rather, most analvsis facts which are true when m = 1. 2, 3 remain troe for
m = 4, Still, | suspeet you would be happier if vou could visualize BY, R, ete. Here
is how to do it.

It is often said that time is the fourth dimension and that B! should be thought
of as ryzi-space where a point has position (r.y. z) in 3-space at time . This is
only one possible way to think of a fourth dimension. Instead, vou can think of color
as a fourth dimension. Imagine our usual 3-space with its ryz-coordinates in which
points are colorless, Then imagine that vou can give color to points { “paint™ them)
with shades of red indicating positive fourth coordinate and blue indicating negative
fourth coordinate. This gives ryze-coordinates, Points with equal ryz-coordinates
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bt different colors are differemt points,

How is this useful? We have not used time as a coordinate, reserving it to describe
motion in 4-space. Figure 22 shows two circles - the unit crele O in the horizontal
ry-plane and the circle V' with radius 1 and eenter (1,0,0) in the vertical rz-plane.
They are linked. No continuous motion can unlink them in 3-space without one

Figure 22 ' and ¥ ware linked circles.

crossing the other. However, in Figure 23 you can watch them unlink in 4-space as

ferllowes,

Just gradually give redness to C while dragging it leftward paralle]l to the r-axis,
until it is to the left of V. (Leave V' always fixed.) Then diminish the redness of
' until it hecomes colorless. It ends up to the left of V' and no longer links it. In
formilas we can let

Clt) ={(z.pec) eR e+ 2P+ =1, 2=0, and ot} = t{t - 1))

for 0 <¢ < 1, See Figure 24,

The moving circle C(t) never touches the stationary circle V. In particular, at
time £ = 1/2 we have C(¢) NV = 0. For (=1.0,0,1/4) # (-1,0,0,0).

Other parameters can be used for higher dimensions, For example we could use
pressure, temperature, chemical concentration. monetary value, etc. In theoretical
mechanics one uses six parameters for a moving particle - three coordinates of position
and three more for momentum.

Moral Choosing a new parameter as the fourth dimension (color instead of time)
lets one visualize 4-space and observe motion there,
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cobor bess f@'h'm V

roslorles=

reddish €(1,/4)

reddest O 1/2) colorlesa V'

reddish C(3/4) @lﬁrhﬁ L
colorless (1) ) @w vV

Figure 23 How to unlink linked circles nsing the fourth dimension
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Exercises

(). Prowve that for all sets A, B, " the formula
An{Bud=(AnBiuldn)

is true. Here s the solution written out in gory detail. fmitate this style in
uriting oul proafs in this course. See also the guidelines for writing a rigorons
proof on page . Follow them!

Elllﬁr][]“'!iiri.. A, B, C are sets

[ IE'I!II:']'I':“iI iy A BUu={(AnBiuiAn 7).

Proof. To prove two sets are cqual we must show that every element of the first
wib 1% an element of the second set and vice versa. Referring to Figure 24, let #
denote an element of the set AN (B UC). It belongs to A and it belongs to B
of to O, Therefore x belongs to A7 B or it belongs to AN C. Thus r belongs
to the set (AN B)U(ANC) and we have shown that every element of the first
set AN (BUC) belongs to the second set (AN B)U (AN,

A A
. ~
AT A

3 T F i _.|lr

B C B C

Figure 24 A is ruled verticallv. # and C are ruled horizontally, A0 8 is
ruled diagonally, and AN C s raled counter-diagonally.

{Ou the other hand let y denote an clement of the set (AN B)L{ANC) It
helongs to AN R or it belongs to ANC, Therefore it belongs to A and it belongs
to 8 or to €. Thus y belongs to AN (B U C) and we have shown that every
element of the secoud set (AN BTU{ANC) belongs to the Arst set AN {BUC).
Sinee each element of the first set belongs to the second set and each element
of the second belongs to the first. the two sets are equal. AN (BU ) =
(AN B u{ANC). QED
1. Prowve that for all sets A, B.C the formnla

AUfBNCi={AU BN (AL
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*4.

=

10

11.

i% true,
If soveral sets A, B, 7, ... all are subsets of the same set X then the differences
X%A XyvB XA(C, ... are the complements of A, B.C.... in X and are
denoted A® 8°,C%, ..., The symbol A° i= read “A complement.”
(a) Prove that (A%) = A.
(b) Prove De Morgan’s Law: (AN B)" = AU B" and derive from it the law
(AU B) = An B~
(c] Draw Venn diagrams to illustrate the two laws.
(d) Geperalize these laws to more than two sets.
Recast the following English sentences in mathematics. using correct mathe-
matical grammar, Preserve their meaning,
(a) 2 is the smallest prime number.
ib] The area of any bounded plane region is bisected by some line parallel to
the r-axis.
*(¢) “All that glitters is not gold
What makes the following sentence ambiguous? “A death row prisoner can't
have too much bope.”

. Negate the following sentences in English using correct mathematical grammar.

ia) If roses are red. violets are blue.
*{b) He will sink unless he swims.

. Why is the square of an odd integer odd and the square of an even integer even”

What is the situation for higher powers? [Hint: Prime factorization.]
{a) Why does 4 divide every even integer square?
(h) Why does B divide every even integer eube?
(o] Why can 8 never divide teice an odd coulse?
(d) Prove that the cube root of 2 is irrational.
Suppose that the natural number & is not a perfect n'™ power.
a Prove that its #*" root is irrational,

b Infer that the #'" root of a natural number is either a natural number or
it is irrational. It is never a fraction,

Let r = A|B. 2’ = A'|B' be cuts in . We defined
47 ={A+A")| rest of Q.

(a) Show that although B + B is disjoint from A + A', it may happen in
depenerate cases that @ is not the union of 4 + A" and B + &,
(b} Infer that the definition of r + 7' as (A + A') | (B + B') would be incorrect.
(¢} Why did we not define - 2" = (A A")| rest of {7
Prove that for each eut x we have & + (=x) = 0% [This is not entirely trivial.]
A multiplicative inverse of a nonzero cut z = A|B is a cut y = C|D such that
Eo == 1%
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(a) If x > 0%, what are C and [D?
(b) If z < 0%, what are they?
(c) Prove that r uniquely determines y.

12, Prove that there exists no smallest positive real number. Does there exist a
smallest positive rational number? Given a real number r, does there exist a
smallest real number y > =7

13. Let b= Lu.b. &, where § is a bounded nonempty subset of R.

(a) Given ¢ > () show that there exists an 5 € § with
b= < 8 < h

(b} Can s € § always be found so that b —¢ < 5 < b7

{¢) Ifx = A|B is a cut in Q. show that r = l.u.b.A.

14. Prove that /2 € R by showing that z-r = 2 where r = A|B is the cut in Q@ with
A={r=0Q:r <0orr? < 2}. [Hint: Use Exercise 13. See also Exercise 16,
below, |

15. Given y € R. n € M. and ¢ > (), show that for some § > 0, if « € R and
|u = g| < & then |[u" = y"| < ¢. [Hint: Prove the inequality whenn=1, n=2,
and then do induction on n using the identity

W' — " = (u—-gy)u"t + u""ﬂy+...+y”_|}.]

16, Given r > 0 and n € M, prove that there is a unique y > 0 such that 3" = r.

That is, the n'" root of r exists and is unique. [Hint: Consider

y=lLub{seR:s" <r}.

Then use Exercise 15 to show that y" can be neither < r nor > x.]
17. Let r,y € R and n € M be given.

(a) Prove that r < y if and only if z" < y".

(b) Infer from Exercise 16 that r < y if and only if the n** root of r is less

than the n'™ root of y.

18. Prove that real numbers correspond bijectively to decimal expansions not ter-

minating in an infinite strings of nines. as follows. The decimal expansion of
r€ Ris Nayrg..., where ¥V is the largest integer < r, r is the largest integer
< 10{r = N}, 12 is the largest integer < 100{x — (N + r/10}), and so0 on.
(a) Show that each r, is a digit between 0 and 9.
(b) Show that for each & there is an £ > &k such that x; # 9.
{e] Conversely, show that for each such expansion N.ryrs ... not terminating
in an infinite string of nines, the set

: X ... T1I , T2
NN+ —, N —_— m—
! oVt t e
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is bounded and its least upper bound is a real number ¢ with decimal
expansion N.ryra....
{d) Repeat the exercise with a general base in place of 10

19. Formulate the definition of the greatest lower bound (g.l.b.) of & set of real
numbers. State a glb, property of B and show it is equivalent to the Lu.b.
property of K.

2. Prove that limits are unique, ie.. if (a,) s & sequence of real noumbers that
converges to a real number b and also converges to a real number b, then
b=1#.

21. Let f: A = B be a function, That is. f is some rule or device which, when
presented with any element a € A, produces an element b = fla) of B. The
graph of f is the set S of all pairs {a,b) € A x B such that b= f(a).

(a) If von are given a subset § C A x B, how can you tell if it is the graph of
some function? (That is, what are the set theoretic properties of a graph?)

ib) Let g: B — C be a second function and consider the composed function
gef:A—=C. Asume that A= 8=C = [0, 1], draw A x B = C as the
unit cube in 3-space. and try to relate the graphs of f. g, and go f in the
cube.

22. A fixed-point of a function f: A — A is a point a € A such that fia) = a.
The diagonal of A x A is the set of all pairs (a,a2) in 4 = A.

ia) Show that f : A — A has a fixed-point if and only if the graph of f
intersects the diagonal.

(b} Prove that every continuous function f: [0,1] — [0.1] has at least one
fixed- point.

{e) Is the same true for continuous functions f: (0L1) = (0, 1)

() Is the same true for discontinnous functions?

23, A rational number p/q is dyadic if g is a power of 2, ¢ = 2¥ for some nonnegative
integer k. For example, 0, 3/8, 3/1, —3,/256, are dyadic rationals, but 1/3,5/12
are not, A dvadic interval is [a,b] where a = p/2* and b = (p+ 1)/2%. For
example, [75. 1] is a dyadic interval but [1. =], [0, 2], and [.25, .75 are not. A
dvadic cube is the product of dyadic intervals having equal length. The set of
dyadic rationals may be denoted as Qg and the dyadic lattice as Q5.

(a) Prove that any two dyadic squares (i.e., planar dyadic cubes) of the same
size are either identical, intersect along a common edge, intersect at a
common vertex, of do not intersect at all.

(1x) Show that the corresponding intersection property iz true for dvadic cubes
in ™,

PA gquestion posed in this manoer means that, as well as answering the question with a “yves™ or
a “min,” you should give s proof if your answer s “ye=” or a specific counterexample i your answer
s “nn” Also, o do this exercize you should read Theorems 32, 23, 24,
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24. Given a cube in R™. what iz the largest ball it contains? Given a ball in
E™. what is the largest cube it contains? What are the largest ball and eube
contaied o a given box in B™7

25. (a) Given € = (), show that the unit dise contains finitely many dvadic squares

whose total area exceeds 7 — ¢, and which intersect each other only along
their boundaries.

**(b) Show that the assertion remains troe if we demand that the dvadic squares
are elizjodnt.

{¢] Formulate (a) in dimension m = 3 and m > 4,

**(d) Do the analysis with squares and dises interchanged. That is, given ¢ > ()
prove that finitely many disjoint closed discs can be drawn inside the ani
sqare so that the total area of the dises exceeds 1 — ¢, [Hint: The Pile
of Sand Principle. On the first day of work. take away 1/16 of a pile of
saml. On the second day take away 116 of the remaming pile of sand.
Continue. What happens to the pile of sand after n davs when n — xc?
Instead of sand. think of your obligation to place finitelv many disjoine
dyvadic squares (or discs) that ocoupy at least 116 of the area of the unit
dise (or unit square).|

“26. Let W) and s( /) e the mmmber of integer unit cubes in & that intersect the
hall and sphere of radius R, centered at the origin.
(a) Let m = 2 and calenlate the limits

. slR) . a{R)*
I e O | ;
R B T s W
(I] Take e > 3. What exponent & makes the Lot
lim atilh
H—ae BIR)

interesting”
(e] Let o) be the number of integer unit cubes that are contained in the
baall of racdius K. contersd at the ongin, Caleulate

. rlR)
o ey

id) Shift the ball to a new. arbitrary center (not on the integer lattice) and
ri-calenlate the limits.

27. Prove that the interval [u, b in B is the same as the segment [o, b in R, That
I8,

{freR:n<r<b}
= {yER:3st € [0l]with s +1! =1 and y = sa + th}.

[Hint: How do you prove that two sets are equal?]
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28. A convex combination of wy. .... we € K" is a vector sum
Y= 8|1 4+ - = Spltg
such that gy + -+ sp=land 0 < &y, ..., 5 = L.

{a) Prove that if a set E is convex then E contains the convex combination of
any finite number of points in E.
{b) Why is the converse obvious?
M. (a) Prove that the ellipsoid
2 2 '
E:{{.‘r.y.;}Eﬂiﬂ:% + % + “E‘_: 1}
is convex. [Hint: E is the unit ball for a different dot product. What is
it? Does the Cauchy-Schwarz inequality not apply to all dot products?]
ib) Prove that all boxes in B™ are convex.
30. A function [ : (o, b) = R is a convex function if for all x,y € (a,b) and all
gt € [0.1] with & + ¢ = 1 we have

flar +ty) < saf(x) +tf(y).

(a) Prove that f is convex if and only if the =et 5 of points above its graph is

convex in B%. The set § is {(x, ) : flz) < v}
*(b) Prove that every convex function is continuous.

() Suppose that f is convex and a < r < w < b The slope o of the line
through (r, f{x)) and (u. f{u)) depends on r and «u, say o = air, u). Prove
that o increases when ¢ increases, and o increases when o increases.

(d) Suppose that f is second-order differentiable. That is, [ is differentiable
and its derivative f' is also differentiable. As is standard, we write (f')' =
F". Prove that [ is convex if and only if f"(x) = 0 for all = € (a.b).

(0] Formulate a definition of convexity for a function f : M — K where
M < R™ is a convex set. [Hint: Start with m = 2.

*31. Suppose that a function f : [a.b] = B i= monotone nondecreasing, That s,
xy < rp implies firy) < f(za).

(a) Prove that f is continnous except at a countable set of points. [Hint: Show
that at each = € {a,b), f has right limit f(r+) and a left limit f(r—).
which are limits of f{x+ &) ag h tends to 0 through positive and negative
values respectively. The jump of [ at ris f{r+) — fir—). Show that fis
continuous at ¢ if and only if it has zero jump at r. At how many points
can f have jump = 17 At how many points can the jump be between 1/2
and 17 Between 1/3 and 1/27]

(b} Is the same assertion true for a monotone function defined on all of R?

*32. Suppose that E is a convex region in the plane bounded by a curve C,
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(a) Show that (" has a tangent line except at a countable number of points.
[For example. the circle has a tangent line at all its points, The triangle
has a tangent line except at three points, and so on.]

(b) Similarly, show that a convex function has a derivative except at a count-

able set of points.

*13. Let f{k, m) be the mumber of k-dimensional faces of the m-cube, See Table 1.

m=5 m m+ 1
H JL 5 Hloen) | F(0,m =1}
] Ji1.8) Hle) | fil.ma 1)
k=l 1] 1 Lo J3.4) | F35) faom) | fit,m=1}
k=3 0 0 1 Jia. 4y | 3.5 fiam) | fidme 1}
k=1 0 ik Ay | U4, 5) Fidom) | Fidom =1}

Table 1 f(k.m) is the number of k-dimensional faces of the me-cube.

(a) Verify the mumbers in the first three columns.

(k] Calculate the columns m = 4, m = 5§, and give the formula for passing
from the m'™" column to the (m + 1)®.

{e] What would an m = 0 column mean?

(d) Prove that the alternating sum of the entries in any column is 1. That is.
2=1l=1, 4=4+1=1. B=1246~=1 = 1, amd in peneral E[-!]kﬂk. m) =
l. This alternating sum is called the Euler characteristic.

4. Find an exact formula for a hijection f: M = B — M. Is one

Flijl=i+ (0 +24+--+(i+ji-2) =

it 4 i(2j-3) - j+2,

2

35, Prove that the union of denumerably many sets By, each of which is countable,

is countable. How could it happen that the union is finite?

36, Without using the Schroeder-Bernstein Theorem,
{a) Prove that [a, b ~ (a, b] ~ (a.b).
(b) More generally, prove that if C is countahle then

RO ~ R ~ RUC.

() Infer that the set of irrational numbers has the same cardinality as R, ie.,
B\Q ~ R. [Hint: Imagine that you are the owner of denumerably many

hotels, Hy, Hq

all fully occupied. and that a traveler arrives and asks

you for accommodation, How could vou re-arrange vour current guests to
make room for the traveler?]
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*37. Prove that B ~ R, [Hint: Think of shuffling two digit strings
(ayagag .. Jhe(bybabs ...} = (a1byaghaaghs .. ).

In this way vou could transform a pair of reals into a single real. Be sure to
face the nines-termination issue.|

38, Let § be a set and let P = P(S) be the collection of all subsets of S, [P(5) is
called the power set of §.) Let F be the set of functions f: § — {01}
{a) Prove that there is a natural bijection from F onto P defined by

frriscd: fls)=1}

*(b) Prove that the cardinality of P is greater than the cardinality of §. even
when 5 is empty or finite.

[Hints: The notation ¥ is sometimes used for the set of all functions X — Y.
In this notation F = {0,1}* and assertion (b) becomes #(5) < #({0,1}%).
The empty set has one subset. itself, whereas it has no elements, so #(0) = 0,
while #({(, 1}'3] = 1, which proves (h) for the empty set. Assume there is a
bijection from 8 onto P. Then there is a bijection 3 : § — F. and for each
s € 8, 3(#) s a function, say fy: § — {0, 1}. Think like Cantor and try to find
a function which corresponds to no 5. Infer that 3 could not have been onto.|

39. A real number is algebraic if it is a root of a nonconstant polvonomial with
integer coefficients.

{a) Prove that the set A of algebraic numbers is denumerable. [Hint: Each
polvnomial has how many roots? How many linear polynomials are there?
How many quadratics? ... ]

ib) Hepeat the exercise for roots of polynomials whose coeflicients belong to
some fixed, arbitrary denumerable set § C R,

*(c] Repeat the exercise for roots of trigopnometric polbynomials with integer
coefficients.

(d) Real numbers that are not algebraic are said to be transcendental. Try-
ing to find transcendental numbers is said to be like looking for hay in a
haystack. Why?

d(). A finite word is a finite string of letters, say from the roman alphabet.

(a) What is the cardinality of the set of all finite words, and thus of the set of
all possible poems and mathematical proofs?

(b} What if the alphabet had only two letters?

(e What if it had countably many letters?

(d) Prove that the cardinality of the set X, of all infinite words formed using
a finite alphabet of n letters, n > 2. is equal to the cardinality of K.
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41.

42.

*q4.

*14.

*44.

(e} Give a solution to Exercise 37 by justifving the equivalence chain
RR=RxR ~ I;x%; ~ T, x%, ~ R

(£} How many decimal expansions terminate in an infinite string of 97 How
many don't?

If #is a value of a continous function [ : |a.b] = R use the Least Upper
Bound Property to prove that there are smallest and largest & € [, 5] such that
Fiz) = v.

A function defined on an interval [o,b) or (0.b) is uniformly continuous
if for each ¢ > 0 there exists a 6 > 00 such that |r — | < & implies that
Ifix) — f(t)] < ¢ (Note that this 8 cannot depend on r. it can only depend
ol ¢, With ordinary continmity, the 4 can depend on both r and e}

(a) Show that n uniformly continuous function is contimuous but continuity
does not imply uniform continuity. (For example. prove that sin(l/r) is
contimous on the interval (1), 1) bot is not uniformly contimeons there.
Graph it.)

(b} Is the function 2r uniformly contimeous on the unbounded interval [ —a0, a)?

(¢} What about 27

Prove that a continuous function defined on an interval Je, 4 is uniformly con-
tinuous. [Hint: Let ¢ > 00 be given. Think of ¢ as fixed and consider the
S5
Af)={u€ |ab]:ifz.t € [o.u| and |z -] < 4
then |f{r) = f(t)| < €}
A= J Ald).
A=)
Using the Least Upper Bound Property, prove that b€ A, Infer that f is uni-
formly continuous. The fact that continuity on [a. b implies uniform continuity
i one of the important. fudamental principles of continuous functions, |
Drsfiee injections [ M = M amd g: 8 = 8 by firn] = 2n amld g(n) = 2n. From
[ and g. the Schroeder-Bernstein Theorem produces a bijection M — M. What
i it7
Let {ay, ) be a sequence of real munbers. 1t is bounded if theset A = {ay, 09, ...}
i= bounded, The limit supremum. or limsup. of a bounded sequence (o, ) as
o= oG 15
Ii::n ::i:]'l!!,, — "i_llll:!.t {:;115:::1;‘:]
(a) Why does the limsap exist?

(b} If supla,} = 2. how should we define limsupa,,?
-
(c) If lim a, = =2, how should we define limsupa,?
LT =t
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(d) When is it true that

limsup{a, + b,) < limsupa, + limsupb,

n—s3 =30 F—+0
limsupea, = climsupa,”
L 1] m—30

When is it true they are unequal? Draw pictures that illustrate these
relations.

{e) Define the limit infimum, or liminf, of & sequence of real numbers, and
find a formula relating it to the limit supremum.

(I} Prove that “IHJ;: iy exists if and only if the sequence (a,) is bounded and

liminf a, = limsupa,.
i —ko0

**46. The unit ball with respect to a norm || || on B* is
{ve R o] <1}

{a) Find necessary and sufficient geometric conditions on a subset of ®* that
it is the unit ball for some norm,

(h) Give necessary and sufficient geometric conditions that a subset be the
unit hall for & norm arising from an inner product.

{¢) Generalize to B™. [You may find it useful to read about closed sets in the
next chapter, and to consult Exercise 41 there.]
47, Assunmwe that V ois an inner product space whose inner product induces a norm
as |r| = m

(a) Show that | | obeys the parallelogram law
Jr + ol + |&—yf® = 2= + 2)*

for all z,y € V.

*ib) Show that any norm cbeying the parallelogram law arises from a unigue
inuer product, [Hints: Define the prospective inner product as

]

T+ yl *

2

=y
2

(£ y} =

Checking that { . } satisfies the inner product properties of symmetry and
positive definiteness is easy. Also, it is immediate that |z|* = {r, 7}, s0
{ ;) induces the given norm. Checking bilinearity is another story.

(i) Let x,y.z € V be arbitrary. Show that the parallelogram law implies

{x+p 2) + (r=y. 2) = 2r.p).
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and infer that (2r, 2) = 2(r, z). For arbitrary w,v € V set r = 2(u+v)
and y = $(u — v). plug in to the previous equation. and deduce

(u, 2} + (0, 2) = (u+w, 32),

which is additive I}:i]inf'arit\- in the first variable. Why does it now fol-
bow at once that {, ) is also additively bilinear in the second variable?
{ii}) To check 11tulnplua'r|w hilinearity, prove by induction that if m € &
then m{z.y} = (maz.y), and if n € N then M{r.y) = {}r.y). Infer
that rir.y) = (rr.y) when v is rational. Is A = (A .y} = Alr.y)
a coutinaous function of A € K, and does this give multiplicative
bilinearity?]
48. Consider a knot in 3-space as shown in Figure 25, In 3-space it cannot be

Figure 25 An overhand koot in J-space

unknotted. How can vou unknot it in 4-space?
*49. Prove that there exists no continuous three dimensional motion de-linking the
two circles shown in Figure 22 which keeps both circles flat at all times.
. The Klein bottle 5 a surface that has an oval of self intersection when it is
shown in d-space, See Figure 26. It can live in 4-space with no self-intersection.

ovnl of self-intersection

Figure 26 The Klein Bottle in 3-space has an oval of self-intersection.

Hiww?
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Exercises Real Numbers

[ ]

51. Read Flatland by Edwin Abbott. Try to imagine a Flatlander using color to
visualize I-space,

H2. Can you visualize a 4-dimensional cube - its vertices, edges, and faces? [Hint: It
mav be easier (and equivalent) to picture a 4-dimensional parallelepiped whose
eight red vertices have ry:-coordinates that differ from the ryz-coordinates
of itz eight colorless vertices. It is a 4-dimensional version of a rectangle or
parallelogram whose edges are not parallel to the coordinate axes. |






A Taste of Topology

1 Metric Spaces

It may seem paradoxical at first. but a specific math problem can be harder to solve
than some abstract generalization of it, For instance if you want to know how many
rocda the squation

can have then you could use calenlus and figure it out. It would take a while. But
thinking more abstractly. and with less work, you could show that every n'"-degree
polviomial has at most n roots, In the same way many general results about functions
of a real variable are more easily grasped at an abstract level - the level of metric

BPACES.

Metric space theory can be seen as a special case of general topology, and many
hooks present it that wav. explaining compactness primarily in terms of open cov-
erings. In my opinion, however, the sequence/subsequence approach provides the
easiest and simplest route to mastering the subject, Accorndingly it gets top billing
throughout thi= chapter

A metric space is a set M. the elements of which are referred to as points of Af,
together with a metric d having the three properties that distance has in Euclidean
apace, The metric = d(r, y) is a real number defined for all points r, y € M and
d{r.y) is called the distance from the point r to the point . The three distance

properties are as follows: For all x, y.z € M we have

{C) Springer International Publishing Switzerland 2015 57
C.C. Pugh, Real Mathematical Analysis, Undergraduate Texts
in Mathematics, DO 10,1007 /978-3-319-17771-7.2
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{a) positive definiteness: dir. y) = 0, and d{r. g) = 0 if and only if r = y.
(b) symmetry: d(r, y) = dy. r).
(¢) triangle inequality: d(r, z) < d{r,y) + d{y, z).

The function o is also called the distance function. Strictly speaking. it is
the pair (M, d) which is a metric space, but we will follow the common practice of
referring to “the metric space M." and leave to vou the job of inferring the correct
metric,

The main examples of metric spaces are R, B, and their subsets. The metric
on Risd{r.y) = |r = y| where r.y € R and |r = y| is the magnitude of r = y. The
metric on B™ is the Euclidean length of £ — y where x, y are vectors in R™. Namely,

diz, y) = (x - yﬁ§+ voot (T —1,.-,,,,'IE

boT £ = [Fjeeves Ton) A0 5= [irg, o0y Wim )

Since Euclidean length satisfies the three distance properties, o i= a bona fide
metric and it makes B™ into A metric space. A subset M C R™ becommes a metric
space when we declare the distance between points of A to be their Euclidean distance
apart as points in B™. We say that A inherits its metric from ™ and is a metric
subspace of B™. Figure27T shows a few subsets of B? to suggest some interesting
netTic Spaces.

There is also one metric that is hard to picture but valuahle as a source for
counterexamples. the discrete metric. Given any set A, define the distance between
distinet points of A to be 1 and the distance between every point and itself to be
{). This is a metric. See Exercised. If M consists of three points. say M = {a, b c}.
vou can think of the vertices of the unit equilateral triangle as a model for M. See
Figure 28. Thev have nutual distance 1 from each other. If M consists of one, two, or
four points can you think of a model for the discrete metric on W7 More challenging
is to imagine the discrete metric on B. All points, by definition of the discrete metric.
lie mt unit distance from each other.

Convergent Sequences and Subsequences

A sequence of points in a metric space M is a list py, pe. ... where the points
P belong to Af. Repetition is allowed, and not all the points of M need to appear
in the list. Good notation for a sequence is (p,). or (pglnery. The notation {p,}
i also used but it is too easily confused with the set of points making up the se-
quence. The difference between (py lpen and {p, : n € M} is that in the former case
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©

Figure 27 Five metric spaces - a closed outward spiral. a8 Hawaiian earring,

a topologist’s stoe circle, an infnite television antenna, and Zeno’s maze

Figure 28 The vertices of the unit equilateral triangle form a dizcrete
MetTic apace,
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the sequence prescribes an ordering of the points, while in the latter the points get
jumbled together. For example. the sequences 1.2,3, .. _and 1,2,1,3,2,1,4,3.2.1.. ..
are different sequences but give the sanwe set of points. namely M.

Formally, a sequence in M is a function f: N — M. The n'® term in the sequence
is f(n) = py. Clearly, every sequence defines a function f : M = M and conversely,
every function f: B — M defines a sequence in Af. The sequence (py ) converges
to the limit pin AL if

We > 0 AN € M such that
ne€Maudn2zN = dp,.p) <e

Limits are unique in the sense that if (p,) converges to poand if (py ) also converges
to ¢ then p = p'. The reason is this. Given any ¢ > 0. there are integers N and N’
such that if n = N then d(py, p) < e, while if n > X' then d(p,. p') < e. Then for all
n 2 max{N, N'} we have

dip.f) < dip.pa)+dipn.p) < 46 = 2

But ¢ is arbitrary amd so d{p. p') = 0 and p = p'. (Thix is the e-priveiple again. )

We write p, = p, or py = pas n = 00, or
"hm_r fn = P

to indicate convergence. For example, in B the sequenee p, = 1/n converges to () as
n — oc. In B? the sequence (1/n, sinn) does not converge as 1 — 2. In the metric
space {J (with the metric it inherits from B} the sequence 1, 1.4, 1414, 14142, . ..
does wot copverge,

Just as a set can havwe a subset, a sequence can have a subsequence. For ex-
ample, the sequence 2,4.6,8, ... is & subsequence of 1,23, 4,.... The sequence
3.6, 711,13, 17, ... is a subsequence of 1,3, 5, 7.9, .. .. which in turn is a subsequence
of 1.2,3.4..... In general, if (py, )pen and (g Jgen are sequences and if there is a
SEQUENCE 1y < My < fy < ... of positive integers such that for each & € N we have
i = Py, then (g ) i= a subsequence of (p, ). Note that the terms in the subseguence

ocenr in the same order as in the mother sequence,

1 Theorem Every subsequence af a convergent sequence in M converges and it con-

verges fo the same limif as does the mother sequence,
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Proof Let (ge) be a subsequence of (pg). ge = py,. where ny < ng < ... Assume
that {p,) converges to p in M. Given ¢ > (). there is an N such that for all n > &
we have d{p,, p) < . Sinece ny,ng, ... are positive integers we have & < ng for all k.
Thus, if & = N then ng 2 N and d{ge. p) < . Henee (i) converges to p. O

A common way to state Theorem 1 is that limits are unaffected when we pass to
a subsequence.

2 Continuity

In linear algebra the objects of interest are linear transformations. In real analvsis
the ohjects of interest are functions, especially continuous functions. A function f
from the metric space M to the metric space N is just that; f: M — N and [ sends
points p € Af to points fp € N. The function maps M to N, The way vou should
think of functions - as devices, not formulas - is discussed in Section 4 of Chapter 1.
The most common type of function maps Af to K. It is a real-valued function of the
variable p € M.

Definition A function f : M — N is continuous if it preserves sequential
convergence: [ sends convergent sequences in A to convergent sequences in N,
limits belng sent to limits. That s, for each sequence (p,) in M which converges to
a limit p in M. the image sequence ( f(py)) converges to fpin N.

Here and in what follows, the notation fp is often used as convenient shorthand
for fip). The metrics on M and N are dyy and dy. We will often refer to either
mietric as just d.

2 Theorem The composite of continuous funchons 15 confinuous.
Proof Let f: AMf — N and g: N = P be continnous and assume that
Jim pa =
in M. Sinee fis continuous, lm fip,} = fp. Sincee g s continaons, lim g fip, )] =
s A

gl fp) and therefore go f: M — P iz continuous, See Figure 20 on the next page. O

Moral The sequence condition is the easy way to tell at a glanoe whether a function
is continuous,
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Figure 29 The composite function g o f

There are two “obviously” continuous functions

3 Proposition For every metric space M the identity map id : M — M is continu-

ous, and so 5 every constant function f: M < N

Proof Lt Py =+ p in M. Then '.l:ifl'-'-ll =Py P = il!:I.'.I a8 n — o0 which gives
coutinuity of the identity map. Likewise. if f(r) =qg& N forallr € M and if p, =+ p
in M then fp=gand fip,) =g for all n. Thus Hpn) = fpasg i — oo which gives

coutinuity of the constant fanction f

Homeomorphism

Vector spaces are isomorphic if there is a linear bijection from one to the other.
When are metric spaces isomorphic” They should “look the same.” The letters ¥
and T look the same; and they look different from the letter O, If F : M — N
is a bijection and [ is continuous and the inverse bijection f~' : N = M is also
continuous then f is a homeomorphism' (or 8 “homen” for short) and W, N are
homeomorphic. We write M = N to indicate that A and & are homeomorphic.
= 15 an equivalence relation: M 2 M zince the identity map s a homeomorphism
M =+ M; M = N clearly implies that N 2 A; and the previous theorem shows that

the compozite of homeomorphisms 5 a homeomorphism.

Geometrically speaking, a homesmorphizm is a bijection that can bend, toist

streteh, and wrinkle the space Af to make it coincide with N, but it cannot rip

1 B
[his 1s & rare case bn meathemates o which spelling s impoetant. Homeomorphism ¢ homaamor-

phiizm
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puncture. shred, or pulverize M in the process, The basic questions to ask about
metric Spaces are:

(a) Given M and N, are they homeomorphic?

(b) What are the coptinuous functions from A to N

A major goal of this chapter is to show you how to answer these gquestions in
many cases, For example, is the circle homeomorphic to the interval? To the sphere?
etc. Figure 30 indicates that the circle and the (perimeter of the) triangle are homeo-
morphic. while Figure 15 shows that (a,b), the semicirele, and R are homeomorphic.

1x]

fix)
Figure 30 The circle and triangle are homeomorphic.

A natural question that should occur to you is whether comtinuity of £~ is actu-
ally implied by continuity of a bijection f. It is not. Here is an instructive example.

Consider the interval |0,2r) = {re R: 0 < r < 2x} and define f: [0,27) = §°
to be the mapping f(r) = (cosz, sinr) where §' is the unit circle in the plane.
The mapping [ is a coutinuous bijection. but the inverse bijection is not continuos,
For there is a sequence of points {z,) on 5 in the fourth quadrant that converges
to p = (1,0) from below, and f~Yz,) does not converge to f~'{p) = 0. Rather it
converges to 2r. Thus, f is a continuous hijection whose inverse bijection fails to
be comtinwnis, See Figure 31, In Exercises 49 and 50 you are asked to Bod worss
examples of continuous hijections that are not homeomorphisms.

To build your intuition about continuous mappings and homeomorphisms, con-
sider the following examples shown in Figure 32 - the unit circle in the plane, a trefoil
knot in B, the perimeter of a square, the surface of a donut (the 2-torus), the surface
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r
Feil,o
|
a
C i X 4
C F)
0 x

Figure 31 f wraps [0, 2r) bijectively onto the dircle,

of a ceramic coffee cup, the unit interval [0, 1], the unit disc including its boundary.

Equip all with the inherited metric. Which should be homeomorphic to which?

D

Figure 32 Seven metric spaces
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The (e, §)-Condition

The following theorem presents the more familiar (but equivalent!) definition
of continuity using ¢ and 4. It corresponds to the definition given in Chapter 1 for
real-valued functions of a real variable.

4 Theorem f: M — N is confinuous if and only if if satisfies the (e, §)-condition:
For each ¢« > 0 and each p € M there exists § > 0 such that if r € M anddy{r.p) < 4
then dy(fr. fp) < €.

Proof Suppose that f is continnous. [t preserves sequential convergence. From the
supposition that f fails to satisfy the (e, 4)-condition at sone p € M we will derive
a contradiction. If the (¢, §)-condition fails at p then there exists ¢ > 0 such that for
each & > 0 there is a point r with d(z.p) < § and &{fz. fp) = ¢. Taking d = 1/n
we get a sequence (x,) with diz,. p) < 1/n and o f(x,), fp) 2 ¢, which contradicts
preservation of sequential convergence. For r, — p but f{r,) does not converge
to fp, which contradicts the fact that [ preserves sequential comvergence.  Sinee
the supposition that [ fails to satisfy the (¢, §)-condition leads to a contradiction, f
actually does satisfv the (€. 4 ]-condition.

To check the converse. suppose that J satisfies the (¢, 8)-condition at p. For each
sequence (ry) in M that converges to p we must show flr,) = fpin N as n = o,
Let ¢ > (0 be given. There is & > 0 such that dy{xr.p) < 6 = dy(fzx, fp) < e
Convergence of 1, to p implies there s an integer K such that for all n > K we have
dy( ey, p) < 8. and therefore dy( flor,), fp) < €. That is. f{x,) = fpasn = o0, See
also Exercise 13, O

3 The Topology of a Metric Space

Mow we come to two basic concepts o a metric space theory - closedness and opei-
ness, Let M be a metric space and let 5§ be a subset of M. A point p € M is a limit
of § if there exists a sequence (py) in 5 that converges to it

' A limit of S 18 akso sometimes called a lmit point of . Take care though: Some mathematicians
recpuire thit & limit point of ¥ be the limit of a sequence of destinet points of 5. They would say that
a f[nite set has no limit points. We will nof adogl Useir gasind of view. Anoiler word wsed in ihis
comtest, especially by the French, is “adberence.” A point p adberes o the set 5 0f and only il p
s a limit of 5, In more general circnmstanees, limits are delined osing “pets” stend of sequences.
They are like “uncountable sequences.” You can rend more about nets in graduate-level topology
books swrh as Topology by James Munkres,
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Definition 5 is a closed set if it contains all its limits.'
Definition 5 is an open set if for each p € § there exists an r > 0 such that
dip.g) < r = geEB&.

5 Theorem Openness s dual to closedness: The complement of an open sel is a
closed set and the complement of a closed set is an open sef.

Proof Suppose that § © M is an open set. We claim that 5° is a closed set. If
Pn =+ pand py € 5% we must show that p € 8% Well, if p @ 5° then p £ § and, since
& is open, there s an r > 00 such that

dipg) <r = gES&

Since p, =+ p. we have d(p,p,) < r for all large n. which implies that p, € §.
contrary to the sequence being in 5%, Since the supposition that p lies in S leads to
a contradiction, p actually does lie in §°. proving that §° is a closed set,

Suppose that 5 is a closed set. We claim that §° is open. Take any p € 8°. If
there fails to exist an r > 0 such that

dip.gl <r = gqe5°

then for each r = 1/n with n = 1,2,... there exists a point p, € S such that
dip.pa) < 1/n. This sequence in § converges to p € 5%, contrary to closedness of 5.
Therefore there actually does exist an r > 0 such that

dipgl <r = ge5°

which proves that 5% is an open set. O

Muost sets, like doors, are neither open nor closed. but ajar. Keep this in mind.
For example neither (a.b] nor its complement is closed in B; (o, 4] is neither closed
nor open. Unlike doors, however, sets can be both open and closed at the same
time. For example. the empty set 0 is & subset of every metric space and it is always
closed. There are no sequences and no limits to even worry about, Similarly the
full metric space M is a closed subset of itself: For it certainly contains the limit of

"Note how similarly algebraists use the word “closed.” A fleld {or group or ring, eic.) is chosed
umder s arithmetic operations: Sums, differences, products, and quotienis of elements in the field
atill lie in the field. In our case i is limits. Limits of sequences in 5 most lie in 8
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every sequence that converges in M. Thus, @ and M are closed subsets of M. Their
complements, M and 0. are therefore open: § and AL are both closed and open.

Subsets of Al that are both closed and open are elopen. See also Exercise 125. It
turns out that in R the only clopen sets are § and R. In Q. however, things are quite
different, sets such as {r € @ : =2 < r < +/2} being clopen in Q. To summarize,

A subset of o metric space can be
closed, open, both, or neither.

You should expect the “typical” subset of a metric space to be neither closed nor
Open.

The topology of M is the collection T of all open subsets of M.

6 Theorem T has three properties! as a system it is closed under union, finite
intersection, and it confains §, M. That 1s,

fa) Every union of open sets is an open set,
{b) The intersection of finitely many open sets is an open sel.
fe) O and Al are open sets,

Proof (a) If {U/,} is any collection! of open subsets of M and V = |J U7, then V is
open. For if p € V then p belongs to at least one U, and there is an ¢ > 0 such that

dipg) <r = gel,.

Since U7, < V', this implies that all such g lie in V', proving that V' is open.

(b) IE Ly, .... U5 are open sets and W = [} U7 then W is open. For if p € W then
for each k. 1 < k < n, then there &2 an rg > 0 such that

dip.g) <rp,. = g€l
Take r = min{ry,...,ra}. Then r > 0 and

dipgl <r = g€l

T Any collection T of subset= of a set X that satisfies thess three progerties b called a lopology on
X, and X iz called o topological space. Topological spaces are more general than matric spooes:
There exist togeologies that do not arise from o metre. Think of thens as pathobogieal. The question
of which topologice can be generated by a metric and which capnot is discussed in Topology by
Yankres See nleo Exercise 30,

e o in the notation £, “indexes” the sete. 80 = 1,2,.._ then the collection is countable, but
we are just s happy 1o et o ronge through uncountable index sets,
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for each k; ie., g € W = YU proving that W is open.
{e) It is clear that B and M are open sets. |

T Corollary The intersection of any number of closed sets is a closed set; the finste
unton of closed sets 15 a closed set; B and M are closed sets.

Proof Take complements and use De Morgan's laws. If { K, } i= a collection of closed
sets then U7, = (K, )" is open and

K =Ka = (UUa)".

Since YU, is open., its complement & is closed. Similarly, a fnite union of elosed
sets is the complement of the finite intersection of their complements, and is a closed
st O

What alaait an infinite union of closed sets? Generally, it 15 not clised,  For
example, the interval [1/r, 1] is closed in R, but the union of these intervals as »
ranges over M is the interval {0, 1] which is not closed in B, Neither is the infinite
intersection of open sets open in general.

Two sets whose closedness fopenness properties are basic are;

im&% = {pe M :pisalimit of 5}
Mp = {ge M dip.qg)<r}.

The former is the limit set of §; the latter is the r-neighborhood of p.
8 Theorem lim 5 s a closed st and Mop is an open sef.

Proofl Simple but not immediate! See Figure 33,
Suppose that p, — p and cach p, lies in lim 5. We claim that p € lim S, Sinee
Pn is a limit of § there is a sequence (py, ¢ Jeey in 5 that converges to p, as & = o0,
Thus there exists g, = py gigy € 5 such that
1
dpn.qn) < =
i
Then, as n — 3 we have
"“.F'- qu) = r.fl:j.l.j?.r] +dlpnge) = 0

which implies that g, < p. so p € lim 5. which completes the proof that lim & is a

o] =0,
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Figure 33 §=(0,1) x ((,b1) and p, = (1/n,0) converges to p = (().0) as

n =+ 2c. Each py, is the limit of the sequence pg e = (1/n,1/k} as & — 2.

The sequence g, = (1/n, 1/n) lies in 8 and converges to (0,0). Hence: The
limits of limits are limats.

Figure 34 Why the r-neighborhood of p is an open set
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To check that M, p is an open set, take any q € M, p and observe that
sg=r—dpq) =0,
By the triangle inequality, if d(q, ) < s then
dip.r) <dp.qg)+dig.x)<r

and hence Mg © M.p, See Figure 34, Since each g € Myp has some Mg that is
contained in Mp, M;p is an open set. O

9 Corollary The inferval (o, b) is open in B and so are {—a¢, b)), (o, 2¢), and (—>¢, 2],
The interval [a,b] is closed in R.

Proof (a,b) is the r-neighborhood of its midpoint m = (a+b) /2 where r = (h—a) /2.
Therefore (a,b) is open in R, Since the union of open sets is open we see that

Ub=nb=1/n)=(=2c.b)
nEM
is open. The same applies to (@, 2c). The whole metric space B = (—ac, oc) is always

open in itself,

Since the complement of [a, b] is the open set (—oc,a) L (b oc). the interval [a, b]
1= elosied, O

10 Corollary lim 5 s the “smallest” closed set that contams 5 in the sense that of
K =85 and K is closed then K D lim §

Proof Obwions. K must contain the limit of each sequence in & that converges in
M and therefore it must contain the limit of each sequence in § C K that converges
in M. These limits are exactly m 5. O

We refer to lim S as the elosure of § and denote it also as §. You start with §
and make it closed by adding all its limits. You don't need to add any more points
because limits of limits are limits. That is. lim(limS) = im 5. An operation like
this is called idempotent. Doing the operation twice produces the same outoore as
doing it once,

A neighborhood of a point p in M is any open set V' that containg p. Theorem 8
implies that V' = AMp is a neighborhood of p. Eventually, vou will run across the
phrase “closed neighborhood™ of p. which refers to a closed set that contains an open
sef that contains p. However, until further notice all neighborhoods are apen.
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Usually, sets defined by strict inequalities are open while those defined by equal-
ities or nonstrict inequalities are closed. Examples of closed sets in B are finite sets,
[, &), M, and the set {0} U {l/r:n € N}. Each contains all its limits. Examples of

open sets in B are open intervals, bounded or not,

Topological Description of Continuity

A property of & metric space or of a mapping between metric spaces that can
4 property of f I mapping hetwesn met res that ¢
be described solely in terms of open sets (or eguivalently, in terms of closed 20ts) is

called a topological property. The next result describes continuity topologically.

P g
S 1.6 * 0

] ]

Figure 35 The function f: (&, g} =+ 2° + y° + 2 and its graph over the

preimage of 13, 6]

Let f: M = N be given. The preimage’ of o set 17 C 0V =
b Ll ' {pe M. flp)l eV}

For example. if f: R* = R is the function defined by the formula

fAryl=z"+ 4y + 2

then the preimage of the interval |3, 6] in B is the anoulus in the plane with ineer

Y H - Py i — &
radius 1 and outer radius 2, Figure 35 shows the domain of [ as B* and the target

! |'!||' D e e ||f I s -||'\-|| callad the i“'ﬁ'i'!’h‘l" i1!|'|r'lﬂ|=' of ¥V and is denoted by _f ! 1., Unbess _I'

is i bijection, this notation leads to comfusion, There may be no map [~ and vetl exprssions like
| _|' _l' VN Aare Wil I||:|I X Emaps and nofmaps |'-'. I|'d' wav, if _," sendds nio (LR of Al into
¥ then M™%V is the coipiy set.

i i
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as K. The range is the set of real numbers > 2. The graph of f is a parabaoloid
with lowest point ((1L0,2). The second part of the figure shows the portion of the
graph lving above the annulus. You will find it nseful to keep in mind the distinetions
among the concepts: function. range. and graph.

11 Theorem The following are equivalent for contimuity of f: M — N.
(i} The (€, &)-condition,

{t) The sequential convergence preservation condition.

fits) The closed sel condition: The pretmage of each closed set in N is closed in
M.

fiv) The open set condition: The preimage of vach open set in N is open e M.

Proof Totally natural! By Theorem 4. (i) implies {ii).
(i) implies (iii). If & © N is closed in N and p, € P K) converges to p e A
then we claim that p e fP™(K). By (ii). f preserves sequential convergence so
lim fip,) = fp
—
Sinee K isclosed in N, fp& K. sope [P™(K). and we see that fP™(K) is closed in
M. Thus (ii) implies (iii).
(iti) implies (iv). This follows by taking complements: { ff™([7))" = ff(07).

[iv) implies (i), Let € > 0 and p € M be given. N (fp) is open in N, so its
preimage U = (N (fp)) is open in M. The point p belongs to the preimage so
openness of 7 implies there is a 8 > (0 such that Ms(p) © U, Then

flMgp)) € U C NdSfm

gives the ¢, & condition, dy{p.r) <4 = dy(fp fr) < e. See Figure 36. O

I hope vou find the closed and open set characterizations of continuity elegant.,
Note that no explicit mention is made of the metric, The open set condition is purely
topological. It would be perfectly valid to take as a definition of comtinuity that the
preimage of each open et is open. In fact thi= s exactly what's done in general
topology.

12 Ci}'l'ﬂuﬂ.r}" A hr:rr]rf.li'.liu.l:l'r_rﬁr'xrn il M N hJJIH'f."I the collection 1:IljII ol sels i
M to the collection of open sets in N It bijects the topologics.
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M N
Ml fipd
a o
SiMyp) |
f _ '
T 1N e I
[

Figure 36 The ¢, 4 - condition for a continuous function f: M — ¥

Proof Let V' be an open set in N. By Theorem 11, since f is continuous. the preimage

of ¥ is open in M. Sinee f is a bijection, this preimage ' = {pe M : fpe V}is
exactly the image of V' by the inverse bijection, I = f~'(V'). The same thing can he
said about £~! since f~! is also A homeomorphism. That is. V = fU7. Thus, sending
L' to fI7 bijects the topology of M to the topology of N O

Beeause of this corollary, a homeomorphism is also called & tnpnlnglra] eruiv-
alence.

In general. continuous maps do not need to send open sets to open sets.  For
-:=:-.;.:|.'|'|||1|_|'. 1||1‘- _-ir|'||.'|:|i|||.{ map r — .r" from B to B is continuous but 1t sends the open

interval (=1,1) to the nonopen interval [0.1). See also Exercise 28

Inheritance

If & =et 5 is contaiped in a metric -I||‘|-|:IH-:'|.' N © M voun need to be careful when
virn say that 5 s open or closed. For example,

S={reQ:—rx<r<r}

i5 a subset of the metric subspace T C B, Tt is both open and closed with respect Lo

Q but is neither open nor closed with respect to B, To avoid this kind of ambignity

it i& best 1o say that 5 is -:'|-:'|-|‘:l|"'|| “with respect to 7 but not with respect 1o R, ar
} |

more briefly that § 15 clopen "in @ but oot in K" Nevertheless there 12 a simple

relation between the topologies of M and N when N s a metric subspace of M.
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13 Inheritance Principle Every metric subspace N of M inherits its topology
Jrom M in the sense that each subset V C N whick is open in N s actually the
imntersection V = N NI for some U' C M that is open in M, and vice versa.

Proof It all boils down to the fact that for each p € N we have
Nep= NnM.p.

After all. Nip is the set of r € N such that dy{r.p) < r and this is exactly the
same as the set of those r € Mep that belong to N, Therefore N inherits its r-
neighborhoods from M. Since its open sets are unions of its r-neighborhoods, N also
inherits its open sets from Af.

In more detail. if V' is open in N then it is the union of those N.p with NepC V.,
Each such Nyp is N N M,p and the union of these Mp is [, an open subset of
Al. The imersection N N L equals V. Conversely, if U7 is any open subset of Af
and p € V = NNU then openness of ' implies there is an Myp C U'. Thus
Nep= N Mp C V., which shows that V is open in V. O

14 Corollary Every metric subspace of M inherits its closed sefs from Al

Proof By “inheriting its closed sets™ we mean that each closed subset L © N is the
intersection N M A for some closed subset K C M and vice versa. The proof consists
of two words: “Take complements.” See also Exercise 34. O

Let's return to the example with Q C Rand S= {r e Q: -7 < r < n}. The
set & is clopen in Q. so we should have § = QU for some open set U C R and
5 = QN K for some closed set K C R, In fact 7 and K are

U=(-mn and K =|-7m 7|
15 Corollary Assume that N és a metric subspace of M and also 15 a closed subset
of M. A set L C N is closed in N if and only if if 15 closed in M. Similarly, of N 1s
a metric subspace of M and also s an open subset of M then ' C N 15 open in N of

and only if i 15 open in M.

Proof The proof is left to the reader ag Exercise 34, O
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Product Metrics

We next define a metric on the Cartesian product M = X = ¥ of two mwetric
spaces. There are three natural ways to do so:

delpp') = Vix(z, 2P +dyv(y )’
donx(p. F) = max{dy({z,z"), dyip, ')}
dum(p.p) = dx(r. o) +dy{y. o)
where p = (r,y) and ¢’ = (', ') belong to M. (dg is the Euclidean product

metric.) The proof that these expressions actually define metrics on M is left as
Exercise 8.

Proof Dropping the smaller term inside the square oot shows that dy.., = dg:

=

comparing the square of dg and the square of oy, shows that the latter has the
terms of the former and the cross term besides, so dp < oy and clearly oy B oo
larger than twice its greater term, 50 deym < 2d 0. O

17 Convergence in a Product Space The following are equivalent for a sequence
M= {Flrt-]‘*.?r:] mnM=M = M

{a) (pn) converges with respect to the metric dmes .
(b} (pa) converges with respect to the mefric dg.
{e] (pa) converges with respect to e metric s p—

{d) (prn) and (ps,) converge in Afy and My respectively.
Proof This is immediate from Proposition 16, O

1B Corollary If f : M — N and g : X = Y are continuous then so is their
Cartesian product f x g which sends (pr)e M = X to (fp.gr)e N =Y.

Proof If (py,2q) = (p,x) in M x X then Theorem 17 implies p, — p in M and
I, = r in X. By contimity, f(p,) = fp and g(x,) = gr. By TheoremlT.
(flpa). glxq)) = (fp.gx) which gives continuity of [ x g. 0

The three metrics make sense in the obvious way for a Cartesian product of m > 3
meetric spaces. The inequality
dopx € g £ dpgm = Mgy

is proved in the same way, and we see that Theorem 17 holds also for the product of
m metric spaces, This gives



Tt A Taste of Topology Chapter 2

19 Corollary (Convergence in B™) A sequence of vectors (1y,) in B™ comverges
in R™ if and enly if each of its component seguences (vy,) converges. 1 << m. The
limit of the vector sequence is the vector

r= lim vy = ( lim vy, lim vy, .... lim -:-*..m).
M=t i =p L b & il =T
The distance function o : M = M — R is a funetion from the metric space Af = Af
to the metric space K. so the following assertion makes sense.

20 Theorem o i confinions,

Proof We check (¢, &)-continnity with respect to the metric dyyy,. Given ¢ > 0 we
take 8 = e, I ey (p. q). (P, g")) < 6 then the triangle inequality gives

dip gV +dlp gV +dig.q) < dip.q)+e
dip, p)+dipgl+digq) < dipg)+e

d(p.q)
dip'.q)

1A 1A

which gives

dipgl—¢ < dip'.q) < dip.g)+e

Thus |d{p'.q') = dip.q)| < ¢ and we get continuity with respect to the metric dogy,-
By Theorem 17 it does not matter which metric we use on R =< R, O

As vou can ser, the use of dyy,, simplifies the proof by avoiding square root
manipuilations. The suimn metric is also called the Manhattan metrie or the taxicab
metric. Figure 37 shows the “unit dises” with respect to these metrics in %, See
also Exercise 2,

21 Corollary The metrics diyga. dp. and dgy, are continuous,
Proof Theorem 200 asserts that all metrics are continuons, O

22 Corollary The absolule value is a conlinuous mapping B = R. In fact the norm
is o confinuous mapping from any normed space to K.

Proof |jv|| = d{vr.0). O
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{0, 1)

Eﬂll} il 1

# e e (1,0 {1.0)

max (. [¥) < 1

Figure 37 The unit disc in the max metric is a square, and in the sum
metric it 15 a rhombns,
Completeness

In Chapter 1 we discussed the Canchy eriterion for convergence of a sequence of
real numbers. There is a natural way to carry these ideas over to a metric space Af.
The sequence (p, ) in M satisfies a Cauchy condition provided that for each ¢ > ()
there is an integer N such that for all Eon > N owe have d(pe. pg) < e oand () s
said to be a Cauchy sequence. In syvinbols.

Ye = 0 AN such that k,n > N = dipe, ps) < €

The terms of a Cauchy sequence “bunch together” s n —= 20, Each convergent
sequence (py ) is Cauchy, For if (pg,) converges to p as n — oo then, given € > (. there
is an N such that for all n > N we have

£
I{pn.p) < 3.
dipn.p) < 3
By the triangle inequality, if &,n 2 N then
d{pg. ) < dipg.p) + dip. py) < e

so convergence = Cauchyv.

Theorem 1.5 states that the converse is true in the metric space B, Every Cauchy

sequence in R converges to a limit in R, In the general metric space, however, this
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need not be true. For example. consider the metric space Q of rational numbers.
equipped with the inherited metric d{x, y) = | — y|. and consider the sequence

(ra) = (1.4, 141, 1414, 1.4142, ...).

It is Cauchy. Given ¢ > (), choose N > —logqe. If bom 2 N then |rg — vy <
10-% < e, Nevertheless, (ry,) refuses to converge in Q. After all, as a sequence in
R it converges to 2, and if it also converges to some r € @, then by uniqueness of
limits in ® we have r = 2, something we know is false. In brief, convergence =

Cauchy but not conversely,

A metric space M is complete if each Cauchy sequence in M converges to a limit
in M. Theorem 1.5 states that ® iz complete.

23 Theorem R™ is complete,
Proof Let (p,) be a Canchy sequence in B™. Express p, in components as

Pn = {Fl:nw-w Pr.lln]-

Because (py,) is Cauchy, each component sequence (py, yen i8 Canchy, Complete-
ness of B implies that the component sequences converge, and therefore the vector

SEIETIOE COVET TS, O

24 Theorem Every closed subset of a complete metric space is a complete metric
aubspace.

Proof Let A be a closed subset of the complete metric space A and let (pg) be a
Cauchy sequence in A with respect to the inherited metric. It is of course also a
Cauchy sequence in M and therefore it converges to a limit pin M. Sinee A is closed
we have p € A. O

25 Corollary Every closed subset of Euclidean space s a complete metrie space.
Proof Obwvious from the previous theorem and completeness of B™. O

Remark Completeness is not a topological property. For example. consider B with
its usual metric and (=1, 1) with the metric it inherits from R. Although they are
homeomorphic metric spaces, B s complete but (=1, 1} is not,

In Section 10 we explain how every metric space can be completed.
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4 Compactness

Compactness is the single most important concept in real analysis. It is what reduces
the infinite to the finite.

Definition A subset A of a metric space M is (sequentially) compact if every
sequence (a,) in A has a subsequence (g, ) that converges to a limit in A,

The empty set and finite sets are trivial examples of compact sets. For a sequence
(0y) contained in a finite set repeats a term infinitely often, and the corresponding
constant subsequence couverges,

Compactness is a good feature of a set. We will develop criteria to decide whether
a st is compact. The first is the most often used, but beware! - its converse is
generally false,

26 Theorem Every compact set is closed and bounded.

Proof Suppose that A is a compact subset of the metric space M and that p is
a limit of A. Does p belong to A? There iz a sequence (o) in A converging to
p- By compactness, some subsequence (@, ) converges to some § € A, but every
subsequence of a convergent sequence converges to the same limit ag does the mother
sequence, 50 g = pand p € A. Thus A is closed.

To see that A is bounded, choose and hx any point p e M. Either A s bounded
or else for each n € M there is a point a, € A such that d{p, a,) > n. Compactness
implies that some subsequence (a,, ) converges. Convergent sequences are bounded.
which contradicts the fact that d{p. a,, } = 20 as & = 0. Therefore (a,) cannot exist
and for some large r we have A C M;p, which is what it means that A is bounded.[]

27 Theorem The closed interval [a, b C B is compact.
Proof Let {r,) be a sequence in [a. b and set
C={z€ ol :z, < only finitely often}.

Equivalently, for all but finitely many n. r, > r. Since a € C we know that C # .
Clearly b is an upper bound for C'. By the least upper bound property of R there
exists ¢ = L u. b. ' with ¢ € [a,b]. We claim that a subsequence of {2, ) converges to
. Suppose not, i.e.. no subsequence of (iry, ) converges to . Then for some r > 0, r,
lies in (¢ = r, ¢+ r) only finitely often, which implies that ¢ + r € C, contrary to
¢ being an upper bound for C. Hence some subsequence of (2,) does converge to ¢
and [a, 8] is compact. O
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To pass from R to B™ we think abont compactness for Cartesian products.

28 Theorem The Cartesian product of two compact sels is compart.

Proof Let (ag. b)) € A x B be given where A © M amd 8 © N are compact, There
exists a subsequence (a,, | that converges to some point @ € 4 as & — x. The
subsequence (b, | has a sub-subsequence (b,
{ = 2. The sub-subsequence (ag,,, ) continees to converge to the point @, Thus

b othat converges to =ome b & I as

[ PR "lr,,”] — [a, b)
as { — ac. This implies that A = B is compact. 0
29 Corollary The Cartesian product of m compact sets 18 compact,

Proof Write 4 = Ag» o2 Ay = A % (Ag = --- x Ay ) and perform induction on
m. {Theorem 28 handlez the bottom case m = 2.) O

30 Corollary Every bor [ag. ] = -+« % oy, by] m B™ 15 compact.

Proof Obwious from Theorein 27 and the previous corollary, L3

An equivalent formulation of these resules is the

31 Bolzano-Weierstrass Theorem Every bounded sequence in B™ has a conver-
gend subsequenice,

Proof A bounded sequence is contaimesd m a box, which s compact. and therefore
the sequence has a subsequence that converges to a limit in the box, See also Exer-
cise 1 O

Here is a simple fact about compacts,

32 Theorem FEvery closed subsel of a compae! s compact.

Proofl If A is a closed subset of the compact set K and if (0,) 15 a sequence of points
in A then clearly (a,) is also & sequence of points in K, so by compactiess of K there
is a subsequence (a,, ) converging to a limit p € K. Sinoe 4 is closed, p lies in A
which proves that A is compact, O

Now we come to the first partial converse to Theorem 26.
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33 Heine-Borel Theorem Every closed and bounded subset of B is compact.

Proof Let A C R™ be closed and bounded, Boundedness implies that A is contained
in some box, which is compact. Since A is closed. Theorem 32 implies that A s
compact. See also Exercise 11, a

The Heine-Borel Theorem states that closed and bounded subsets of Euclidean
space are compact, but it i vital' to remember that a closed and bounded subset
of a general metric space may fail to e compact. For example, the set M of natural
numbers equipped with the discrete metric is a complete metric space, it is closed in
itself (as is every metric space), and it is bounded. But it is not compact. After all.
what subsequence of 1,2, 3. ... converges?

A more striking example oceurs in the metric space C([0, 1], R) whose metric is
d{ f.q) = max{|f(z) — g{r)|}. The space is complete but its closed unit ball i not
compact. For example, the sequence of functions f, = 2™ has no subsequence that
converges with respect to the metric o. In fact every closed ball is noncompact.

Ten Examples of Compact Sets

. Any hAnite subset of & metric space. for nstance the cmpty set.

. Auy closed subset of & compact set,

The unton of Anitely many compact sets.

The Cartesian product of finitely many compact sets.

The intersection of arbitrarily many compact sets.

The closed unit ball in &*.

The boundary of a compact set. for instance the unit 2-sphere in B,
Theset {réR:3In €N and x =1/n} U {0}

The Hawaiian earring. See page 58,

The Cantor set. See Section 8.

SIS

ol

._.
=

Nests of Compacts

IfA 24 0= 4, 2 4,01 O...then (A,) is a nested sequence of sets.
[ts intersection iz

A, = {p: for cach n we have p € A},
1

ﬁ:u-:

I have asked variants of the following Troe or False question on every analysis exam 've given:
“Every closed and bounded subset of & complete metric space s compact.” You woubd be surprised
at how many stwdents answer “ee.”
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See Figire 38,

Figure 38 A nested sequence of sets

For example, we could take A, to be the disc {z € B ; |z| < 1/n}. The intersec-
tion of all the sets A, is then the singleton {0}. On the other hand, if A, is the ball
[zeR':|z| <1+ 1/n} then ] Ay is the closed unit ball B3,

34 Theorem The intersection of a nested sequence of comparct nonempty sets is
compact and nonempty.

Proof Let (A,) be such a sequence. By Theorem 26, A, is closed. The intersection
of closed sets is always closed. Thus, [}A, is & closed subset of the compact set A,
and is therefore compact. It remains to show that the intersection is nonempty,

Ap 18 nonempty, so for each n € M we can choose a, € A,. The sequence {a,)
lies in Ay since the sets are nested. Compactness of A; implies that (a,) has a
subsequence {ay, ) converging to some point p € A;. The limit p also lies in the set
Az since except possibly for the first term. the subsequence (aq, ) lies in Ay and Aj
is a closed set. The same is true for Az and for all the sets in the nested sequence.
Thus, p € Az and [} A, is shown to be nopempty. O

The diameter of a nonempty set § C A is the supremum of the distances d(r, y)
between points of 5,
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35 Corollary If in addition to being nested, nonempty, and compact, the sets A,
have diameter that tends to 0 as n — 2 then A = A, is a single point.

Proof For each n € M, A is a subset of A,. which implies that A has diameter zero.
Since distinet points lie at positive distance from each other. A consists of at most one
point, while by Theorem 34 it consists of at least one point. See also Exercise 52. [

Figure 39 This nested zequence has cmply intersection

Figure 39 shows a nested sequence of nonempty noncompact sets with empty in-
tersection. They are the open dises with center (1w, () on the r-axis and radies 1.
They contain no common point. {Their closures do intersect at a common point, the
origin. )

Continuity and Compactness

Mext we diseuss how compact sets behave under continuous transformations.

36 Theorem If f: M — N is continuous and A 15 a compact subset of M then fA

is a compact subset of N. That s, the continuous image of a compact is compact.

Proof Suppose that (b,) is a sequence in fA. For each n € M choose a point 4, € A
such that fla,) = b,. By compactness of A there exists a subsequence (a,, ) that

converges bo sone point p € A, By continuity of it follows that

by, = flan,) =+ fp e fA
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as kb — oo, Thus, every sequence (b, ) in fA has a subsequence converging to a limit
in fA. which shows that fA is compact. |

From Theorem 36 follows the natural generalization of the min/max theorem in
Chapter | which concerns contimmous real-valued funetions defined on an interval
[, b]. See Theorem 1.23.

a7 Corollary A continuous real-valued function defined on o compact set 15 bounded;
it assumes marimeum and minimum ralues,

Proof Let f: M — R be continnous and ket A be a compact subset of M. Theo-
rem 36 implies that f4 is a compact subset of R, so0 by Theorem 26 it is closed and
bounded., Thus. the greatest lower bound. v, and least upper bound. V. of fA exist
and belong to fA: ie.. there exist points p, PP € A such that for all 6 € A we have
vm fpCfas fPmV. [l

Homeomorphisms and Compactness

A homeomorphism is a bicontinuous bijection. Originally, compactness was called
bicompactuess. This is reflected in the next theorem.

38 Theorem [f M 1s compact and M is homeomorphie to N then N is compact.
Comnpactness is a topologioal property.

Proof N is the continuons image of /. so by Theorem 36 it is compact. O
39 Corollary [0.1] and R are not hemeomorphic,
Proof One is compact amd the other isn'. O

40 Theorem [f M is compact then o continuous bijection [ M — N s a homeo-

morphism — its inverse bijection [~ N — M is automatically continuous,

Proof Suppose that g, = qin N. Since f is a bijection, p, = f~ g} and p= F~'{q)
are well defined points in M. To check continnity of £~ we must show that p, — .
If (py ) refuses to converge to p then there is a subsequence (pg, ) and a § > 0 such
that for all & we have dip,, . pl > 4. Compactness of M gives a sub-subsequence
[Png,,, ) that converges to a point p* € M as § — x.
Necessarilv, dip, p*} = 8, which implies that p # p* Since [ is continuous we

hiave

Fipng) = 1PN
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as £ — o0, The limit of a convergent sequence is unchanged by passing to a subse-
quence, and so f(pn, ) = gn,, = q8s £ = oc. Thus, f(p®) = ¢ = f{p). contrary to
f being a bijection. It follows that p, — p and therefore that £~ is continuous. O

If M i= not compact then Theorem 40 becomes false. For example. the function
[ :[0,27) = R? defined by f(r) = (cosr, sinr) is a continwous bijection onto the
unit circle in the plane, but it is not a honeomorphism. This useful example was
discusaed on page 65, Not only does this f fail to be a homeomorphism. but there
is no homeomorphism at all from [0.27) to 8. The circle is compact while [0, 27) is
not. Therefore they are not homeomorphic. See also Exercises 49 and 50.

Embedding a Compact

Not only is a compact space M clogsed in itself, a8 is every metric space, but it
is also a closed snbset of each metric space in which it is embedded. More precisely
we say that b M = N embeds M imo N if b ig a homeomorphism from Al onto
hM. (The metric on AM is the one it inherits from N.) Topologically M and hM
are equivalent. A property of M that holds also for every embedded copy of M is an
absolute or intrinsie property of M.

41 Theorem A compact s absolutely closed and absolutely bounded.

Proof Obvious from Theorems 26 and 36, O

For example, no matter how the circle is embedded in ®?, its image is always
closed and bounded. See also Exercises 48 and 1210,
Uniform Continuity and Compactness

In Chapter 1 we defined the coneept of uniform continuity for real-valued functions
of a real variahle. The definition in metric spaces is analogous. A function [« M — &
is uniformly continuous if for each ¢ = 0 there exists a 4 > 0 auch that

g Manddylp.q) <d = dylfp.fg) < e

42 Theorem Every continuous funcfion defined on a compact is uniformly contin-
e LS,

Proof Suppose not, and f : M — N i= continuous, M i compact. but f fails to
be uniformly continuous. Then there s sone £ > 0 such that oo matter how small
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8 is, there exist points p.g € M with d{p.q) < § but d{fp. fq) > ¢. Take § = 1/n
and let {py) and (g,) be sequences of points in M such that d(p,. g.) < 1/n while
d( f{ps). flga)) = . Compactness of M implies that there is a subsequence py,, which
converges to some p € Al as k — oc. Since d(py.gq) < 1/n — 0 a8 n — 20, (g, )
converges to the same limit as does (p,, ) as k — oc; namely q,, — p. Continuity at
p implies that f{p,, ) = fpand figs, ) = fp. [k is large then

dUf(pag ) flgn,)) = d{fipa,). fp) + dfp, flga)) <

contrary to the supposition that df f{p, ). flgs)) = ¢ for all n. a

Theorein 42 gives a second proof that continuity implies uniform continuity on an
interval |a,b). For [, b] is compact.

5 Connectedness

As another application of these ideas, we consider the general notion of connectedness.
Let A be a subset of a metric space M. I A s peither the empty set nor M then A
is a proper subset of M. Recall that if A is both closed and open in M it is said to
be clopen. The complement of a clopen set s clopen. The complement of a proper
subset is proper.

If Ml has a proper clopen subset A then A is disconnected. For there is a
separation of Af into proper, disjoint clopen subsets,

M= AuUuA.

[The notation U indicates disjoint union.) Af is connected if it is not disconnected,
Le.. it contains no proper clopen subset. Connectedness of A does not mean that A
i= connected fo sommething, but rather that A is one unbroken thing. See Figure 40,

Figure 40 M and N illustrate the difference between being connected and
being disconnected.
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43 Theorem If M is connected. f: M — N is continueous, and [ 15 onfo then N 18
connected. The confinuous tmage of a connected is connected.

Proof Simple! If 4 is a clopen proper subset of N then, according to the open and
closd set conditions for continuity, fFP™(A) is a clopen subset of M. Since [ is onto
and A # @, we have f"™(A) £ 0. Similarly. f™{A°) # 0. Therefore f™(4) is a
proper clopen subset of Af. contrary to A being connected. It follows that A cannot
exist and that N is connected. O

44 Corollary [If M is connected and M is homeomorphic to N then N s connected.
Connectedness 5 a topological properiy.

Proof N is the continuous image of A, so Theorem 43 implies it is connected, O

45 Corollary (Generalized Intermediate Value Theorem) Every continuous
real-valued function defined on a connected domain has the mmtermediafe value prop-

EFTH,

Proof Assume that f : M — B is continmons and A s connected. If f assumes
values a < @ in R and if it fails to assume some value ¥ with a < 7 < 4, then

M={reM: flr) <vYu{reM: flzr) > 7}
is a separation of M. contrary to connectedness. O
48 Theorem K is connected.

Proof If U © R is nonempty and clopen we claim that 7 = B. Choose some p € L'
and consider the set

X = {r € U : the open interval (p. 2) is contained in 7},

X is nonempty since U7 is open. Let & be the supremum of X, If = is finite {i.e., X is
bhounded above) then & = | u. b. X and 5 is a limit of X. Since X © U7 and U7 is closed
we have 5 € I7. Since U7 is open there is an interval (5 = r,8 + r) C U, which gives
an interval (p, s+ r) C U/, contrary to s being an upper bound for X. Henee s = oo
and 7 = (p, 0c). The same reasoning gives 7 2 (=oo. p). so 7 = R as claimed. Thus
there are no proper clopen subsets of B and B is connected, O

47 Corollary (Intermediate Value Theorem for B) Foery comtinuons  function
f:R = R has the intermediate value propery.
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Proof Immediate from the Generalized lotermediate Yalue Theorem and conpeet-
eclness of H. ]

48 Corollary The following metric spaces are connected: The infervals (o, ), (o, b],
the circle, and all capital letters of the Roman alphabet.

Proofl The interval (a.b) is homeomorphic to &, while |o, 5] 15 the continmons image
of B under the map whose graph is shown in Figure 41, The circle is the continuons
image of K under the map ¢ — (cosf,sint), Connectedness of the letters A, .. .. Z is
copually clear. O

fixi=h

— -

i b

Figure 41 The function f surjects R coutinuonsly to [a. b

Connectedness properties give a good way to distinguish nonhomeomorphic sets.

Example The union of two disjoint closed intervals is not homeomorphic to a single
interval. Oune set is disconnected and the other is connected.

Example The closed interval ja. b is not homeomorphic to the eircle §'. For removal
of a point r € {a.b) disconnects [a. b while the cirele remains connected upon removal
of any point. More precisely, suppose that b : jo,b) — 5' is a homeomorphism.
Choose a point r € (a,b). and consider X = Ja, 8% {r}. The restriction of b to X is
a homeomorphism from X onto ¥, where Y is the circle with the point br removed.
But X is disconnected while ¥ is connected. Henee & cannot exist and the segment
is not homeomorphic to the circle.

Example The circle is not hoseomorphic to the Agure eight. Removing any two
points of the circle disconnects i, bat this is not troe of the Ggure eight, Or, removing
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the erossing point disconnects the fgure eight but removing any point of the circle
leaves it connected.,

Example The circle is not homeomorphic to the disc. For removing two points
disconnects the circle but does not disconnect the disc.

As vou can see, it is useful to be able to recognize disconnected subsets 5 of a
metric space A, By definition, 5§ is a disconnected subset of Af if it is disconnected
when considered in its own right as a metric space with the metrie it inherits from
M ie., it has a separation 5 = AU B such that A and B are proper clopen subsets
of §, The sets A. B are separated in § but they need not be separated in M. Their
closures in Al may intersect.

Example The punctured interval X = [a, b % {¢} is disconnected if & < ¢ < b For
X = [a.c)d{c,b] is a separation of X, The closures of the two sets with respect to
the metric space X do not intersect, even though their closures with respect to B
do intersect. Pay attention to this phenomenon which is related to the Inheritance
Principle.

Example Any subset ¥ of the punctured interval is disconnected if it meets both
[a,¢) and (e.b]. For ¥ = (Ja, c) MY ) L {(e.B] NY) is a separation of ¥,

49 Theorem The closure of a connected set is connected. More generally, f S € M
is comnected and § © T < 8§ then T is connected,

Proof It iz equivalent to show that if T is disconnected then S is disconnected.
Disconnectedness of T implies that

T's AULB
where A, B are clopen and proper in T, It is natural to expect that
S=KuUL

i= a separation of § where K = ANS and L = BNS. The sets K and L are disjoint,
their union is 8, and by the Inheritance Principle they are clopen. But are they
proper!

If K =@ then A C 5. Since A is proper there exists p € A. Since A is open in
T, there exists a neighborhood Mep such that

TnMpcCc AcC S5
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The neighborhood M.p contains no points of 5. which is contrary to p belonging to
5. Thus. K # 0. Similarly, L = BNS £ 0. 50 § = K UL is a separation of S,
proving that 5 is disconnected. O

Example The outward spiral expressed in polar coordinates as
S={{rf):(l-—r)f=1and &> 52}

has § = SU §', where §' is the unit circle. Since 5 is connected, so is 5. (Recall
that 5 is the closure of §.) See Figure 27,

50 Theorem The union of connected sets sharing a common point p 1s connected.

Proof Let § = | 5, where each S, s connected and p € [} 55, If 5 is disconnected
then it has a separation § = 4 U A" where A, A® are proper and clopen. One of
them contains p; say it is A. Then AN S, i a nonempty clopen subset of §,. Since
8y s connected., AN S, = &, for each o, and A = §. This implies that A =0, a
contradiction. Therefore § is connected. O

Example The 2-sphere 5% is connected. For §2 is the union of great circles, each
passing through the poles.

Example Every convex set C'in B™ (or in any metric space with a compatible linear
structure] is connected. If we choose a point p € C then each g € © lies on a line
segment [p, ] © C. Thus, C is the union of connected sets sharing the common point
p. It is connected.

Definition A path joining p to g in a metric space M is a continuous function
f:[a.b] = M such that fo = p and fb = g. If each pair of points in M can be joined
by a path in M then A is path-connected. See Figure 42,

51 Theorem Path-conneeted implies connected.

Proof Assume that M is path-connected but not connected, Then M = A U A° for
soane proper clopen 4 © M. Choose p € A and g € A", There is a path f: [a,b] = M
from p to g. The separation fP™[A) U fP™{A°) contradicts connectedness of [a, b].
Therefore A is connected. O

Example All connected subsets of B are path-connected. See Exercise 67,
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Figure 42 A path f in M that joins p to g

Example Everv open connected subset of B™ is path-connected. See Exercises il
and 6.

Example The topologist's sine curve is a compact connected set that is not
path-connected. It i M = HFUY where

G = {(r,)) eER*:y=sinl/rand0 < z < 1/7}
Y {(0.y) e R* : =1 < ¢ < 1}.

See Figuredd., The metric on M is just Euclidean distance. Is M connected? Yes!

ﬂ ™ T T S ha

05

-1
L] Qo8 ol 015 LU 025 LR 05

Figure 43 The topologist’s sine curve M is a connected set. It includes the

vertical segment ¥ at & = (.

The graph G is connected and M = &. By Theorem 49 M is connected.
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6 Other Metric Space Concepts

Here are a few standard metric space topics related o what appears above, If § © Af
then its elosure is the smallest closed subset of M that contains 8. its interior is the
largest open subset of M contained in 5. and its boundary is the difference between

its closure and its interior. Their notations are
S =cl8= cloureof § imS = interiorof § 45 = houndary of §.

Tor avord inheritance ambdguity 1t would be better (but too cumbersome) to write
cly 5. intyy S, and 9y S 1o indicate the ambient space A, In Exercise 95 vou are
asked to check varions simple facts about them, such as & = lim & = the intersection

af all elosed sets that contain 5.

Clustering and Condensing

Two comeepts similar to limits are clostering and condensing, The set § “clusters”
at p (and p is a cluster point’ of &) if each M, p contains infinitely many points
of 5. The set 5 condenses at p (and p is & condensation point of 5) if each
M, p contains uncountably many points of 8. Thus, S limits at p. elusters at p, or
condenses at p aceonding to whether each My p contains some. infinitely many. or

uncouwmtably many points of 5. See Figure 44,

Figure 44 Limiting. clustering, and condensing behavior

'Clhester polnts are also called accumulation points. As mentioned above, they are alzo some-
timies called limit poinds, o usage that conflicts with the limit idea. A finite =1 5 hns no cluster
podntz, bist of conrse, oach ol 18 poants pois a il of 5 stace the constant sequenee (popp. .0

CONVOTESS 1o g0
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52 Theorem The following are equivalent conditions to 5 clustering at p.

{i) There is a sequence of distinet points in § that converges to p.
{ii) Each neighborhood of p contains mfinitely many points of 5.
(it} Each neighborhood of p contains af least fwo points of S.
{iv) Each neighborhood of p contains at least one point of § other than p.

Proof Clearly (i) = (ii) = (i) = (iv). and (ii) is the definition of elustering. It
remains to check (iv) = (i).

Assume (iv) is true: Each neighborhood of p contains a polnt of § other than
p- In Myp choose a point gy € (S5 {p}). Set rp = min(1/2, d(p;,p)). and in
the smaller neighborhood M,p. choose pp € (5 {p}). Procesd inductively: Set
rn = min{l/n, dipy—1.p)) and in M, p, choose p, € (S {p}). Sinece vy —+ 0 the
sequence (py, ) converges to p. The points p, are distinet since they have different
distances to p.

dipp.p) = rg > dipa.p) =2 vy > dipap) = ...
Thus (iv) = (i) and the four conditions are equivalent. |
Condition (iv) is the form of the definition of clustering most frequently used.

although it is the hardest to grasp. It is customary to denote by 8 the set of cluster
points of 5.

53 Proposition 5 U 58 = §.
Proof A cluster point is & type of limit of . s0 5 C lim &5 = 5 and
sSus c 8
On the other hand. if p € § then either p € § or else p € § and each peighborhood

of p contains points of § other than p. This implies that pe SUS . =0 § C SUS,
and the two sets are equal. O

64 Corollary 5 is closed if and only of Scs

Proof § is closed if and only if § = 5. Since § = S U 8", equivalent to 8" ¢ § is
5 =38, 0

55 Corollary The least upper bound and greatest lower bound of a nonempty bounded
set 5§ C R belomg to the closure of 5. Thus, 1f 5 15 closed then they belong to 5.

Proof If b= L.u.b. 5§ then each interval (b~ r, b contains points of 5. The same is
true for intervals [0, a +r) wherea =g. L. b. § O
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Perfect Metric Spaces

A metric space M is perfect if M' = M, ie, each p € M is a cluster point of
M. Recall that M clusters at p if each M, p is an infinite set. For example [a, b] is
perfect and  is perfect. M is not perfect since none of its points are cluster points.

56 Theorem Every nonempty, perfect. complete metric space is uncountable,

Proof Suppose not: Assume M is nonempty, perfect, complete, and countable, Since
M consists of cluster points it must be denumerable and not Anite. Say

M={r,zs,...}

is a list of all the elements of M. We will derive a contradiction by finding a point of
M not in the list. Define

fl—f-p = {ge M : dip.q) < r}.

It is the closed neighhurhuudd_d_}f radius r at p. Choose any y, € M with ¢ # 1,
and choose ry > 0 so that ¥ = M, () “excludes” r) in the sense that r; € Y. We
can take ry as small as we want, say r; < 1.

Since M clusters at y; we can choose g3 € M (1) with 32 # r2 and choose
rg > 0 so that ¥; = ﬁ,,{yg} excludes ry. Taking ry small ensures Y3 C Yy, (Here we
are using openness of My (g ).) Also we take ra < 1/2. Since Y3 C Y7, it excludes =,
as well as ro. See Figure 45,

Nothing stops us from continuing inductively, and we get a nested sequence of
closed neighborhoods ¥ 2 Y2 2 Y¥5... such that Y, excludes x)...., ;. and has
radius ry < 1/m. Thus the center points y, form a Cauchy sequence. Completeness
of M implies that

hlil};}yn =yeEM

exists, Since the sets Y, are closed and nested, y € Y, for each n. Does y equal 7
No, for ¥} excludes x;. Does it equal r2? No. for ¥5 excludes rg. In fact, for each n
we have y # r,,. The point y is nowhere in the supposedly complete list of elements
of M, a contradiction. Hence Af is uncountable, O

57 Corollary R and [a. b are uncountable.

Proof R is complete and perfect, while [a,b] is compact, therefore complete, and
perfect. Neither is empty. O
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Figure 45 The exclusion of successively more points of the sequence (x, )
that supposedly lists all the elements of Af

58 Corollary FEvery nonempty perfect complete mefric space is everyuthere uncound-
able in the sense thal cach r-neighborhood 15 uncounfable.

Proof The r/2-neighborhood M (p) is perfect: It clusters at each of its points.
The closure of a perfect set is perfect. Thus, M, q(p) is perfect. Being a closed
subset of a complete metric space. it is complete. According to Theorem 56. M, 4 (p)
is uncountable. Since M 2(p) © Mep, Mep is uncountable. O

Continuity of Arithmetic in R

Addition is a mapping Sum ; E x K — K that assigns to (o, ) the real number
T+ y. Subtraction and multiplication are also such mappings. Division is A mapping
R x (R {0}) = R that assigns to (r,y) the number x/y.

50 Theorem The arithmetic operations of B are confinuous.

60 Lemma For each real number ¢ the function Mult, : E — K thaf sends ¢ to cx
18 CORLImUOLS.
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Proof If ¢ = 0 the function is constantly equal to 0 and is therefore continnous, 1f
¢ # 0 and e > 0 is given, choose §d = ¢/ |o|. If |x — | < & then

[Mult () = Mult (g} = |||z —wl < |c|d=¢
which shows that Mult, is continois, a
Proof of Theorem 59 We use the preservation of sequential convergence criterion
for continuity, It's simplest. Let (zq.40) = {2, 0) a8 n = .

By the trinngle inequality we have
Esum{-l'm!.l'n] = E"'-lm[J'~.|;|':|| < ltg =2+ |!1|':| - p] = d:mm{:-rrr-!:rrl_:L [+, 4]}

By Corollary 21 dayy is continwonus, so degm{(2a, ol (2 0)) = 0 a8 n — oo, which
completes the proof that Sum is continuous. By Theorem 17 it does not matter
which metric we use on R = K.

Suldtraction is the composition of continmons functions
Sublx, y) = Sum o (id % Mult_)(x, y)
and is therefore continuous, (Proposition 3 implies id is continuous, Lemma 6 implies
Mult_ is continnons, and Corollary 18 implies id = Mult_; is continuous. )

Multiplication is continuous since

IMult{xy. s ) = Multi{r, y)| = |fnpn — ]

[0 = | |3t | + 2] [t — vl

B(lz = x| + |y = mal)

Mult gldeym((Tn, g ): (z.0))) = 0

1A 1A

]

as 1 =+ oo, where we use the fact that convergent sequences are bounded to write
lya| + || < B for all .

Reciprocation is the function Ree : RS {0} — R {0} that sends x o /e, If
Iy —+ & 2 0 then there is a constant & = (0 such that for all large n we have [1/r,| < b
and [1/r| < b Since
|-rrl - I

= ——— < Multg(|zy =x|) =+ 0

1 1
|[Rec{ry,) — Rec{x)| = |r'_.._; lzza|l ~

as m = oo we see that Hec is continuous,

Division is comtinuous on R = (K {0}) since it is the composite of continuons
mappings Mult o {id = Rec) : (r.g) = (x, 1/y) = 2 1. O



Section 6 Other Metric Space Concepts a7

The absclute value is a mapping Abs : R — R that sends x to [z]. It & contin-
uous sinee it is o{r,0) and the distance function is continnous. The maximum and
minimum are functions B = B — R given by the formulas
ﬂ +| u [Ili].l[.]'. yl] ==

2 2

so they are also continuous,

r+y |lr-y
- 2

max(r, y) =

61 Corollary The sums, differences, products, and guotients, absolute values, mar-
ima, and minima of real-valued continuous functions are continuous. [The denomi-

nator functions should not egual zero, )

Proof Take. for example. the sum f + g where f.g : M — K are continuous. It is
the composite of continnous functions

ar D, gugp 2O, g
r = (fr.gz) — Sumlfz, gr).
and is therefore comtinuous. The same applies to the other operations. O

62 Corollary Polynomials are continuous functions.

Proof Proposition 3 states that constant functions and the identity function are con-
tinnons, Thus Corollary 61 and induction imply that the polynomial ag + a4+ 4
" 15 coutinuous. O

The same reasoning shows that polynomials of m variables are continuous func-
tions R™ — R.

Boundedness
A subset S5 of a metric space Af is bounded if for some p € A and some r > (.
5 C Myp.

A st which is not bounded is unbounded. For example. the elliptical region 40 +
¥ < 4 is a bounded subset of R?. while the hyperbola ry = 1 is unbounded. It is
easy to soe that if § is bounded then for each ¢ € M there is an s such that Mg
contains 5.

Distinguish the word “bounded™ from the word “finite.” The first refers to phys-
ical size, the second to the mumber of elements, The concepts are totally different.
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Also, boundedness has little connection to the existence of a boundary - a clopen
subset of a metric space has empty boundary, but some clopen sets are bounded.
others not,

Exercise 30 asks you to show that every convergent sequence is bounded, and to
decide whether it i also true that every Cauchy sequence is bounded, even when the
metric space is not complete,

Boundedness iz not a topological property. For example, (=1, 1) and E are home
omorphic although (-1, 1) is bounded and & is unbhounded. The same example shows
that completeness is not a topological property.

A function from M to another metric space N is 4 bounded function if its
range is a bounded subset of N. That is. there exist g € N and r > 0 such that

fMC N.q.

Note that a function can be bounded even though its graph is not. For example,
r—+ sin r is a bounded function ® — R although its graph, {(r,y) € B? : y = sin s},
is an unbounded subset of R®,

7 Coverings

For the sake of simplicity we have postponed discussing compactness in terms of open
coverings until this point. Typically. students find coverings a challenging concept.
It i= central. however, to much of analysis - for example, measure theory.

Definition A collection U of subsets of Af covers 4 — M if 4 15 contained in the
umion of the sets belonging to W, The collection U is & covering of A. If U and V
both cover A and if V C U in the sense that each set 17 € V belongs also to U then
wir say that U reduces to V. and that V= a subcovering of A.

Definition If all the sets in a covering U of A are open then U is an open covering
of A. If every open covering of A reduces to a finite subcovering of A then we say
that A is covering compact'.

The idea is that if A is covering compact and U is an open covering of A then
just a finite number of the open sets are actually doing the work of covering A. The
rest are redundant.

—

"Wou will Frespuently fingd it said that an open covering of A kas s finite subcovering. “Has™ means
“redluces to.”
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A covering U of A is also called a cover of A. The members of U are not called
covers. Instead, vou could call them seraps or patches. Imagine the covering az a
patchwork quilt that covers a bed. the quilt being sewn together from overlapping
scraps of cloth. Ses Figure 44,

—

oer T

N

Figure 46 A covering of A by eight scraps. The set A is cross-hatched.
The scraps are two discs, two rectangles, two ellipses. a pentagon, and
triangle. BEach point of A belongz to at least one scrap.
The mere existence of a finite open covering of A is trivial and utterly worthless,
Every set A has such a covering, namely the single open set W, Hather, for A to

be covering compact, each and every open covering of A must reduce to a Hnite

subcovering of 4. Deciding directly whether this is so0 s daunting. How could vou
hope to verify the Boite reducibility of all open coverings of A7 There are 20 many of
them. For this reason we concentrated on seqquential compactness; it 15 relatively easy

to check by inspection whether every sequence in s set s a convergent subsequence,

I'o check that a set 15 not covering comnpact it suffices to find an open covering

which fails to reduce to a finite subeovering, Oeeasiopally this is simple. For example,
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the et (0, 1) is not covering compact in & because its covering
U= {{l/n2):neMN}
fails to reduce to a finite suboovering.

63 Theorem For o subsel A of a metrie space M the following ave equrvalent:

fa) A 15 covering comparct.

) A s sequentially compact,

Proof that (a) implies (b) We assume A is covering compact and prove it is se-
guentially compact. Suppose not. Then there is a sequence (pg ) in A, no subsequence
of which converges in A, Each point a € A therefore has some neighborhood Afa
such that p, € Mea only finitely often. (The radins r may depend on the point )
The collection {M,a:a € A} is an open covering of A and by covering compact iess
it reduces to a finite subcovering

{M;, (a1 ). My lag), ..., My (ag)}

of A. Since p, appears in each of these fnitely many veighborhoods M, (a;) only
finitely often, it follows from the pigeonhole principle that (g, ) has only finitely many
terms. o contradiction. Thus (p, ) cannot exist. and A is sequentially compact. O

The following presentation of the proof that (b)) implies (a) appears in Rovden's
ook, Real Analysis. A Lebesgue number for a covering U of A is a positive real
munber A such that for each a € A there 5 sone 7 € W with Msa © U7 OF course.
the choice of this [7 depends on o, It is erucial, however, that the Lebesgue number
A s independent of o £ A

The iddea of a Lebesgue number is that we know each point o € A is contained in
soane 7 € U, and if A is extremely small then Mya is just a slightly swollen point
s the same should be true for it too. No matter where A the oeighbochood 300
is placed. it should lie wholly in some member of the covering. See Figure 47,

If A is noncompact then it may have open coverings with no positive Lebesgue
mumber, For example, let A = (0,1) © B = M. The singleton collection {A} is
an open covering of A. but there is no A > {} such that for every a € A we have
(a — A a+ A) C A See Exercise 86,

64 Lebesgue Number Lemma Every open covering of a sequentiolly compact sel
has o Lebesgue number A > (),
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Figure 47 S5mall neighborhoodz are like swollen pointa, U has & positive
Lebespue number A, The A-neighborhood of each point the cross-hatclied

st A i wholly contained inat least one member of the covering

Proof Suppose not: U is an open covering of a sequentially compact set A, and yet
for each X > (0 there exists an a € A such that no U € U containg Mya. lake A= 1/n
and ket g, € A be a point such that no IV € U contains My, (a,). By sequential
compactness. there is a subsequence (a,,, | converging to some point p € A. Since U
ig an open covering of A, there exist r > [ and UDe U with MepZ U, If ks large

then diay, . p) < r/2 and 1 /g < ¢/2, which implies by the triangle ineqguality ©hat

LT i [y, ) T .'I:'.lll c I

contrary to the supposition that po UV e U contains My, log ). We conclude that,

after all. U does have a Lebesgue number A > 00 See Figure 48 |

Proof that (b) implies (a) in Theorem 63 Let U e an open covering of e
:-|'|i_!'.|"||1i:1||'-. |'|l.“.||:-:|-.| set A, We want to reduce U to a Anite !'\-II..:I':I\.ITI!'I"I'II;.:. ]]-_".' the
Lebesgie Number Letruna, W has a Lebesgoe number A = 00 Choose any oy € A and

some L £ U such that

Mty <y,
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Ml daag 1

Figure 48 The neighborhood A.p engulfs the smaller neighborloond
M in, (80, )-

U 2 A then U reduces to the finite suboovering (L7} consisting of a single set.
and the implication (b} = (a) is proved. On the other hand, as is more likely, if )
does not contain A then we choose a point a; € AN U and U5 € W such that

Mlag) € Uy

Either U reduces to the finite subcovering {07y, Uz} (and the proof is finished) or
else we can continue. eventually producing a sequence {a, ] in A and a sequence (17,)
in U such that

Myfa,) C Uy and aqpp € (AN (U U= UG)).

We will show that such sequences (ay ), (['y) lead to a contradiction. By sequential
compactness, there is a subsequence (o, ) that converges to some p € A, For a large
k we have d{a,, . p) < A and

P E l”.l['i-'m.] c E.I"k'

See Figure 49,

All a,, with £ = k lie outside U7, . which contradicts their convergence to p. Thus.

ab zoime finite stage the process of choosing points a, and sets U7 terminates, and U
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Figure 49 The point a,, is so near p that the neighborhood My (ay,, |

engulfs p.
recluces to a finite subcovering {07, ..., [} of A, which implies that A is covering
compact, See also the remark on page 421, 0

Upshot In light of Theorem 63, the term *compact” may now be applied equally to
any set obeving {(a) or (b).

Total Boundedness

The Heine-Borel Theorem states that a subset of R™ is compact if and only if
it is closed and bounded. In more general metric spaces. such as Q. the assertion is
false. But what if the metric space is complete? As remarked on page 81 it is still
false.

But mathematicians do not guit easily. The Heine-Borel Theorem ought to gen-
eralize bevond B™ somehow. Here i the coneept we need: A set A © A is totally
bounded if for each ¢ > () there exists a finite covering of A by e-neighborhoods. No
mention is made of a covering reducing to a subcovering, How close total boundedness
is to the worthless fact that every metric space has & finite open covering!

65 Generalized Heine-Borel Theorem A subset of a complete metric space is
compact if and only if it is closed and totally bounded.
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Proof Let A be a compact subset of M. Therefore it is closed. To see that it is
totally bounded. let € = 0 be given and consider the covering of A by e-neighborhoaods,

{M,z: £ € A},

Compactness of A implies that this covering reduces to a finite subeovering and
therefore A is wtally bounded.

Conversely. assume that 4 is a closed and totally bounded subset of the complete
metric space M. We claim that A is sequentially compact. That is. every sequence
(g ) In A has a subsequence that converges in A, Set e = 1/k b = 1.2,.... Sinee
A is totally bounded we can cover it by finitely many ¢ -neighborhoods

Mol oo My (gm )

By the pigeonhole principle, terms of the sequence ay, lie in at least one of these
neighborhoods inlinitely often, say it i AL, (g ). Choose

My, € A1 = ANM,, (m)-

Every subset of a totally bounded set is totally bounded. so we can cover A by finitely
many ¢x-neighborhoods. For one of them, say M, {(pz). ay lies in Az = A0 M, ()
infinitely often. Choose a,, € A; with ng > ny.

Proceeding inductively, cover Ag_y by finitely many eg-neighborhoods, one of
which, say AL, (py ). contains terms of the sequence (ag, ) infinitely often. Then choose
i, € A = Ag— MM, (pe) with ry = gy, Then (ay, ) 5 a subsequence of {a,). It
s Cauchy. For if ¢ = 0 is given we choose N such that 2/58 < e If k= N then

iy lig, € Ay and  diam Ay € 26y = v < E,

which shows that (ag, | is Cauchy. Completeness of M implies that (a,, ) converges

to some p & M and since A 15 closed we have p € A, Henee A is compact. O

66 Corollary A metric space is compact if and enly of it is complete and totally
Irvarmeded.

Proof Every compact metric space A s complete, This 1= because. given a Canchy
soquence (pyp) in M. compactness implies that some subsequence converges in M.
and if a Cauchy sequence has o convergent subsequence then the mother sequenee
converges ton. As observed above. compactness immediately gives total boundedness.

Conversely, assume that Af is complete and totally bounded, Every metric spaoe
i= closed in itself. By Theorem 65, A is compact. a
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8 Cantor Sets

Cantor sets are fascinating examples of compact sets that are maximally disconnected.
( To emphasize the disconnectedness, one sometimes refers to a Cantor set as “Cantor
dust.”) Here is how to construct the standard Cantor set. Start with the unit
interval [0,1] and remove its open middle third, (1/3,2/3). Then remove the open
middle third from the remaining two intervals, and so on. This gives a nested sequence
C'o 0 20 o where €9 = [D.1]. €7 is the union of the two intervals [0,1/3]
and [2/3, 1]. €* is the union of four intervals [0, 1,/9], [2/9.1/3]. [2/3,7/9], and [8/9, 1],

£ is the union of eight intervals, and so on. See Figure 50,

fll'

CI'
{-:
1:'1 —_— —— —— — .'Iflll'ﬂ?ﬂl'ﬂ - - . -

fl - - - - P - - - = - - -

£ e e i, | =T

Figure 50 The construction of the standard middle-thirds Cantor set

In general O™ is the union of 2" closed intervals, each of length 1/3%. Each €™ is
compact. The standard middle thirds Cantor set is the nested intersection

==
= n o

ra=il
We refer to O as "the” Cantor set. Clearly it contains the endpoints of each of
the intervals comprising C*. Actuallv, it contains uncountably many more points
than these endpoints! There are other Cantor sets defined by removing. say, middle
fourths. pairs of middle tenths, ete, All Cantor sets turn out to be honseomorphic to
the standard Cantor set. See Section 9.

A metric space A 15 totally disconnected if cach point p € A has acbitrarily
small clopen neighborhoods. That is, given ¢ > 0 and p € M, there exists a clopen
set [7 such that

pell c M;p
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For example, every discrete space is totally disconnected. So is Q.

67 Theorem The Cantor sef is a compact, nonempty, perfect, and totally discon-
nected metric space.

Proof The metric on ' is the one it inherits from R, the usual distance |r — y|. Let
E be the set of endpoints of all the C"-intervals,

E={0,1, 1/3. 2/3. 1/9, 2/9. 7/9. 8/9. ...}.

Clearly E is denumerable and contalned in O, so € is nonempty and infinite. It is
compact becanse it is the intersection of compacts.

To show € s perfect and totally disconnected, take any # € € and any ¢ > (.
Fix n so large that 1/3" < ¢. The point r lies in one of the 2" intervals [ of length
1/3" that comprise ", Fix this [. The set E N [ is infinite and contained in the
interval (x — ¢, & +¢). Thus C clusters at r and C is perfect. See Figure 51,

!
—e ‘. )
X=—g I X+E

T

Figure 51 The endpoints of C' cluster at r,

The interval [ is closed in R and therefore in C", The complement J = €™ f
consists of finitely many closed intervals and is therefore closed too, Thus, I and J are
clopen in ", By the Inheritance Principle their intersections with  are clopen in
so CN 1 is a clopen neighborhood of x in C which is contained in the e-neighborhood
of #, completing the proof that € is totally disconnected. O

68 Corollary The Cantor set is uncountable,

Proof Being compact, ' is complete, and by Theorem 56, every complete, perfect,
nonempty metric space is uncountable, O

A more direct way to see that the Cantor set is uncountable invelves a geometric
coding scheme. Take the code 0 = left and 2 = right. Then

Co = left interval = [0,1/3] Cy = right interval = [2/3,1],

and O' = Cy U C3. Similarly, the left and right subintervals of Oy are coded Cyg
and Cyy. while the left and right subintervals of Cy are Cy and Caa. This gives

C? = CooldCm U E-':gu Ll f"g';.
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The intervals that comprise C* are specified by strings of length 3. For instance, Cagy
is the left subinterval of Cas. In general an interval of C" is coded by an address
string of n symbols. each a 0 or a 2. Read it like a zip code. The first svmbaol gives

the interval's gross location (left or right). the second symbaol refines the location, the
third refines it more. and so on.

Imagine now an infinite address string w = wywewy ... of zeros and twos.
Corresponding to w, we form a nested sequence of intervals

Cin 2 Gy D Gy D=++ D Quipiiag D =eiy
the intersection of which is a point p = plw) € C. Specifically,

plw) = I"'I Ciln
nEN

where win = wy ... w, truncates o to an address of length n. See Theorem 34.

As we have observed, each infinite address string defines a point in the Cantor set.
Conversely, each point p € € has an address w = w(p): its first n symbols 0 = w|n
are specified by the interval C, of C" in which p lies. A second point ¢ has a different
address, since there is some n for which p and g lie in distinct intervals O, and O3
of O,

In sum. the Cantor set 1s in one-to-one correspondence with the set (} of addresses.
Each address w € {1 defines a point plw) € C and each point p € C has a unique
address wip]. The set {1 is uncountable. In fact it corresponds bijectively to R. See
Exercise 112,

If S c M and § = M then § is dense in M. For example, Q is dense in B, The
set 5 i somewhere dense if there exists an open nonempty set 7 © M such that
SAll o U, If § is not somewhere dense then it is nowhere dense.

69 Theorem The Cantor sef contains no interval and is nowhere dense in K.

Proof Suppose not and ' contains (a,b). Then (a.b) € C" for all n € M. Take n
with 1/3" < b — a. Since (o, b) is connected it lies wholly in a single C"-interval. say
I. But I has smaller length than (a, ), which is absurd, a0 ' contains no interval.

Next, suppose O i& dense in some nonempty open set 7 © R, fe. the closure of
O 0L contains L7, Thus

C=Ca20CnU 22U 2 (ab),

contrary to the fact that  contains no interval. O
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The existence of an uncountable nowhere dense set is astonishing. Even more is
true: The Cantor set is a zero set it has "outer measure zero.," By this we mean
that, given any ¢ > (), there is a coumtable covering of C by open intervals (ag. by ).
and the total length of the covering is

w0
ZM — fg < e,

(Onter mensure is one of the central coneepts of Lebesgue Theory, See Chapter6i.)
After all. C iz a subset of O, which consists of 2" closed intervals, each of length
13", If n is large enough then 2" /3" < ¢, Enlarging each of these closed intervals to
an open interval keeps the sum of the lengths < ¢, and it follows that C is a zero set.

If we discard subintervals of [, 1] in a different way, we can make a fat Cantor
get - oue that has positive outer measure. Instead of discarding the middle-thirds of
intervals at the n'™ stage in the construction, we diseard only the middle 1/n! portion.
The disrards are grossly smaller than the remaining imtervals, S5ee Figure52. The
total amount discarded from (1), 1] is < 1. and the total amount remaining, the outer
measure of the fat Cantor set, is positive. See Exercise 3.31.

Figure 52 In forming a fat Cantor set, the gap intervals occupy a
progressively smaller proportion of the Cantor set intervals.

9* Cantor Set Lore

In this sevtion. we explore some arcane features of Cantor sets,

Although the continuous image of a connected set is connected, the continnous
image of & disconnected set may well be connected. Just crush the disconnected set
to a single point. Nevertheless. 1 hope vou find the following result striking. for it
means that the Cantor set € is the universal compact metrie space. of which all
others are merely shadows.

70 Cantor Surjection Theorem Given a compact nonempty metvic space M, there

is @ contimuous surjection aof C onte A,

See Figure5d. Exercise 114 suggests a direct construction of a continuous sur-
jection € = [0, 1], which is already an interesting fact. The proof of Theorem T
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Figure 53 » surjects O onto 1.

involves a careful use of the address notation from Section 8 and the following simple
lemma about dividing a compact metric space M into small picces. A piece of A is

any compact nonempty subset of A,

Tl Lemma [f M s a nonemply compact metric space and ¢ > () is given then A
can be erpressed as the finife union of pieces, rach of diameter < e

Proof Reduce the covering { M, joix) : 7 € M} of A to a finite subcovering and take
the closure of each member of the subcovering, O

We say that A divides into these small pieces. The metaphor is imperfect
brcause the piecss may overlap, The strategy of the proof of Theorem T0 is to divide
M into large pieces, divide the large pieces into small pieces, divide the small pieces
into smaller pieces and continue indefinitely. Labeling the pieces coherently with
words in two letters leads to the Cantor surjection.

Let Win) be the set of words in two letters, say a and b. having length n. Then
#Win) = 2", For example W(2) cousists of the four words oo, B, ol and ba.

Using Lemma 71 we divide M into a finite number of pieces of diameter < 1 and
wit denote by M the collection of these pleces, We chioose ny with 2™ > #M) and
choose any surjection wy @ W) = M;. Since there are enough words in Win; ). wy
exists. We say wy labels My and if wylo) = L then o is a label of L.



110 A Taste of Topology Chapter 2

Then we divide each L € M, into finitely many smaller pieces. Let Ma(L) be the
vollection of these smaller pieces and let
My = U ML)
LeM;
Choose ngy such that 2" > max{#Mz(L) : L € M,} and label M; with words
ad € Win; 4+ ny) such that

If L = wy(a) then af labels the pieces § € Mg(L)

as 3 varies in W{na).

This labeling amounts to a surjection wq : Win, + nz) = Ms that is coherent with
wy in the sense that J — welad) labels the pleces 5 € wy{a). Since there are enough
words in Wing), wy exists. If there are other labels o' of L € M then we get other
labels o 3 for the pieces § € Ma(L). We make no effort to correlate them.

Proceeding by induction we get finer and finer divisions of A coherently labeled
with longer and longer words. More precisely there is a sequence of divisions (M)
and surjections uy, : Wi = Wing +--- + ng) = M, such that

(a) The maximum diameter of the pieces L € M. tends to zero as k — 2,
(b) My refines M, in the sense that each 5§ € M. is contained in some L & M.
[ “The small pieces § are contained in the large pieces L.")
{e) If L & My, and My1(L) denotes {S € My : 5 C L} then
L = u s
SeMy. (L)
(d) The labelings wy are coherent in the sense that if wi{n) = L € M, then
3= wig (o) labels Mgy (L) as 3 varies in W(ng.).

See Figure 54,

Proof of the Cantor Surjection Theorem We are given a nonempty compact
metric space W and we seek a continuous surjection & : C = M where C is the
standard Cantor set,

C = €™ where " is the disjoint union of 2" closed intervals of length 1/3".
In Section 8 we labeled these C*-intervals with words in the letters 0 and 2 having
length n. (For instance Cagg is the left Cinterval of Caz = [8/9, 1], namely Cyx =
|8/9,25/27].) We showed there is a natural bijection between C' and the set of all
infinite words in the letters 0 and 2 defined by

B.= n Ca'ln-
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il by
ab fiz
| M |
M,
M M
el bha
iah bbb
i1 baa
abh ]

Figure 54 Coherently labeled successive divisions of Af. Theyv have
ny =2 ng =1, and nyg = 6. Note that overlabeling is necessary.

We referred to w = w(p) as the address of p. (w|nr is the truncation of w to its frst n

letters.) See page 107,

For k=1,2 ... let M, be the fine divisions of M constructed above, coherently
labeled by wy. They obey (a)-(d). Given p € C we look at the nested sequence of
pieces Ly(p) € My such that Lg(p) = wy(w|(ny + -+ + ny)) where w = w(p). That
is, we truncate wip) to its first ny + < -+ ng letters and ook at the piece in M with
this label. (We replace the letters O and 2 with a and b.) Then (Li(p)) is a nested
decreasing sequence of nonempty compact sets whose diameters tend to () as & — ng.
Thus [} Leip) i= a well defined point in M and we set

oip) = ) Lelp).
BEM

We st show that @ is a continuous surjection © — Af. Continuity is simple. If
p.p’ € ' are close together then for large n the firsst noentries of their addresses are

equal, This implies that o{p) and #(p') belong to a common Ly and k is large. Since
the diameter of Ly, tends to (1 as & = oo we get continuity.

Surjectivity is also simple. Each ¢ € M is the intersection of at least one nested
sequence of pieces Ly, € M. For g belongs to some piece Ly € M;, and it also belongs
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to some subpiece Ly € My L), ete. Coherenve of the labeling of the M lmplies that
for each nested sequence (Lg) there is an infinite word o = oypagog. .. such that
iy € Winy) and Ly = wglay...0n) with m = n) 4 -+ 4+ ng. The point p € € with
address o is sent by o to q. a

Peano Curves

72 Theorem There erists a Peano curve, a continwons path o the plane which s
space-filling in the sense that ifts image has nonempty mferor. In fact there s 0
Peano curve whose image is the closed unit dise B2,

Proof Let a: C — B be a continnous surjection supplied by Theorem 70, Extend
o toamap [0, 1] = B? by setting

alr) ifreC
Tlx] = (1=t)ria) + ta(h) ifr={(1-ta+the (ah)

anned (o b) b5 a0 gap interval.

A gap interval is an interval (o, b) © € such that a. b € . Beeause & i continmons,
forim) = (b} = 0 as ja = b = 0. Hence 7 is continnons. Its image includes the disc
B? and thus has nonempty interior. In fact the image of 7 s exactly B2, since the
disc is comvex and T just extends o via linear interpolation. See Figure b5, ]

This Peano curve cannot be one-to-one sinee O is not homeomorphic to B2, (O
is disconnected while B? is connected,) In fact no Peano curve 7 can be one-to-one.

See Exercise 102,

Cantor Spaces

We say that M is a Cantor space if, like the standard Cantor set €, it i compact,
ponempty, perfect, and totally disconmected,

73 Moore-Kline Theorem Every Cantor spece M s homeomorphic to the sfan-
dard muddle-thinds Cantor set €7,

A Cantor piece is a nonempty clopen subset 5 of a Cantor space M. It is easy
to s that 5 is also o Cantor space. See Exercise LD, Sioee o Cantor space s totally
disconnected, each point has a small clopen peighborhood N, Thus, a Cantor space
can always be divided into two disjoint Cantor pieces. M = U 0 U".
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gap interval

R e e &

|

Figure 55 Filling in the Cantor surjection o to make a Peano space-filling
CUrve T

T4 Cantor Partition Lemma ween a Canlor space A and ¢ > 0, there 13 o newine-
ber N such that for each d = N there is a partition of M mto d Cantor pieces of
diameter < e, [ We care most aboud dyadic o. )

Proof A partition of a set is a division of it into disjoint subsets. In this case
the small Cantor pieces form a partition of the Cantor space M. Since Af is totally
disconnected and compact. we can cover it with finitely many clopen neighborhoods
Upson o U having diameter < . To make the sets L disjoint. define

Vi = U

Vo = Uil

Voe = U v{UhiU:Ulg ).

If any V; is empty, discard it. This gives a partition M = XjU---U Xy into N <m
Cantor pieces of dinmeter < ¢,
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If @ = N this finishes the proof. If d > N then we inductively divide Xy into
two, and then three, and eventually d — N + 1 disjoint Cantor pieces: say

Xy =¥ U U¥g i,
The partition M = X, U U Xy Ui U U Y- n. finishes the proof. O

Proof of the Moore-Kline Theorem We are given a Cantor space M and we
seck A homeomorphism from the standard Cantor set O onto M.

By Lemma T4 there is a partition M, of A into d; nonempty Cantor pieces where
dy = 2™ is dyadic and the pieces have diameter < 1. Thus there is a bijection

wy + Wy = M where W = Wing).

According to the same lemma. each L € M can be partitioned into N{L) Cantor
pieces of diameter < 1/2. Choose a dyadic number

dy = 2 = max{N(L): L €M}

and use the lemma again to partition each L into dy smaller Cantor pieces. These
pieces constitute My(L), and we set My = U, Ma(L). It iz a partition of M having
cardinality dydz and in the natural way described in the proof of Theorem T0 it is
coherently labeled by Ws = Winy + ny). Specifically, for each L € M, there is a
bijection wy : W(ng) = Mz(L) and we define wy : Wy = Ma by wg(nd) = 5 € My if
and only if wy{a) = L and wp (3} = &, This wy is a bijection.

Proceeding in exactly the same way, we pass from 2 to 3, from 3 to 4. and
eventually from & to & 4+ 1. successively refining the partitions and extending the
bijective labelings.

The Cantor surjection constructed in the proof of Theorem 70 is
alp) = N Lxlp)
k

where Ly(p) € M, has label w(p)im with m = ny + -+ -+ ng. Distinet points p,p’ €
have distinet addresses w. &', Because the labelings wy are bijections and the divisions
M are partitions, ' # & implies that for some &, Li(p) # Ly(p"). and thus a(p) #
a(f'). That is, 7 is a continuous bijection C' = M. A continuous bijection from one
compact to another is a homeomorphism. O

75 Corollary Every two Cantor spaces are homeomaorphic,

Proof Immediate from the Moore-Kline Theorem: Each is bomeomorphic to O, O
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T6 Corollary The fat Cantor set 15 homeomorphic to the standard Cantor set.
Proof Immediate from the Moore-Kline Theorem. O

TT Corollary A Cantor set 15 homeomorphic to its oum Cartesian square; that s,
CeCxC.

Proof It is enough to check that C x C is a Cantor space. It is. See Exercise 99, O

The fact that a noutrivial space is homeomorphic to 1ts own Cartesian square is
disturbing, is it not?

Ambient Topological Equivalence

Although all Cantor spaces are homeomaorphic to each other when considered s
abstract metric spaces. they can present themselves in very different ways as subsets
of Euclidean space. Two sets A, B in B™ are ambiently homeomorphic if there is
a homeomorphism of B™ to itself that sends A onto B. For example. the sets

A={0}u,2)u{d}] and B = {0}u{1}u [2.3]

are homeomorphic when considered as metric spaces, but there is no ambient homeo-
morphism of B that carries A to B. Similarly. the trefoil knot in B? is homeomorphic
but not ambiently homeomorphic in B? to a planar circle, See also Exercise 105.

T8 Theorem Every bwo Canfor spaces i B are ambiently homeomorploe,
Let M be a Cantor space contained in B. According to Theorem 73, A is home-

omorphic to the standard Cantor set C. We want to find a homeomorphism of R to
itself that carries C' to M.

The convex hull of § © BE™ is the smallest convex set H that contains §. When
m =1, H is the smallest interval that contains 5.

T Lemma A Cantor space M C R can be divided into fwo Cantor pieces whose
conver hulls are disjoint,

Proof Obvious from one-dimensionality of B; Choose a point r € B M such that
some points of Al lie to the left of r and others lie to its right. Then

M = MN({-2.2) U (r.axx)nM

divides M into disjoint Cantor pleces whose conves hulls are disjoint closesd intervals. O
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Proof of Theorem T8 Let M © ® be a Cantor space. We will find a homeomaor-
phism 7 : R — K sending C to M. Lemma 79 leads to Cantor divisions M such th
the convex hulls of the pieces in each My are disjoint. With respect to the left /right
order of B, label these picees in the same way that the Cantor middle third intervals
are labeled: Ly and La in M, are the left and right pieces of M. Ly and Ly are
the left and right picces of Ly, and so on. Then the homeomorphism o 1 O — A
constructed in Theorems 70 and 73 i= antomatically monotone increasing, Extend «
aeross the gap intervals athnely as was done in the proof of Theorem 72, and extend
it to R [0, 1] in any affine increasing fashion such that 7(0) = o{0) and 7(1) = a{1).
Then 7 : B = R extends o to ®B. The monotonicity of & implies that r is one-to-one,
while the continuity of & implies that T is continuous. 7@ X < R is a homeomorphism
that carries ' onto M.

If M' C Ris a second Cantor space and " : B — R is a homeomorphism that
sends O onto M’ then 7 e v7' is a homeomorphism of R that sends M onto M'. O

As an example, oue may construct a Cantor set in B by removing from [0, 1] its
middle third, then removing from each of the remaining intervals nine syimmet rically
placed subintervals: then removing from cach of the remaining twenty intervals, four
asymmetrically placed subintervals: and so forth. In the limit (if the lengths of the
remaining intervals tend to gero] we get o poostandacd Cantor set M. According to
Theorem 78, there is a homeosmorphism of B to itself sending the standard Cantor
set O onto M.

Another example is the fat Cantor set mentioned on page 108, It too is ambien |y
homemmorphic to O

Theorem Every twe Canlor spaces in B2 are ambiently homeomorphic,

We do not prove this theorem here. The kev step is to show A has a dvadic dise
partition. That is. M can be divided into a dyvadic number of Cantor pieces. each
piece contained in the interior of a small topological dise £y, the £ being mutually
disjoint. (A topological disc is any homeomorph of the elosed unit dise 52, Smallness
refers to diam D;.) The proofs 1 know of the existence of such dvadic partitions are
tricky cut-and-paste argmnents and are heyvond the scope of this book. See Moise's

book. Geometric Topolegy in Ddmensions 2 and 3 and also Exercise 135,

Antoine’s Necklace

A Cantor space M © B™ i tame if there is an ambient homeomorphisin &
E™ — E™ that carries the standard Cantor set O (imagined to lie on the rj-axis
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in B™) onto M. If M is not tame it 5 wild, Cantor spaces contained in the line
of plane are tame,. In 3-zpace, however, there are wild ones, Cantor sets 4 so hadly
embedded in B that thev act like curves. It is the lack of a “ball dvadic partition

lemuma”™ that causes the problem

The first wild Cantor set was discovered by Louis Antoine. aond s known as
Antoine's Necklace, |he construction involves the solid torus or anchor ring.
which is ||1r|||1'|:-I|I|.-I']|||i|' to the Cartesian |:'ll'l'|-.|ll|". B w8 Tt s SRSy to nmagine i
necklace of solid tori: Take an ordinary steel chain and modify it so its Bret and Last
links are alzo linked, See Figure 56,

Figure 56 A necklace of twenty solid tori

Antoine's construction then goes like this. Draw a solid torus A, Interior to A"
draw a necklace A' of several small solid tori, and make the necklace encircle the
hole of A, Repeat the construction on each solid torus T comprising A'. That is.
interior to each T, draw a necklace of very small solid tori so that it encireles the hole
of T. The result is a set 4* © A' which is a necklace of necklaces. In Figure 56, A*
wollld consist of ) zolid tord, Coptinue indebnitely, producing a oested decreasing
sequence 4° 4' 9 4% 3 .... The set A" s compact and conpsists of a large
nuimber [207) of extremely small solid tori arranged inoa kierarchy of necklaces, It

is an 71" order necklace, The intersection 4 = n A" is a Uantor space, sinee it is
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compact, perfect, nonempty. and totally disconnected. It is homeomorphic to C. See
Exercise 139

Certainly A is bizarre, but is it wild? Is there no ambient homeomorphism h of
R? that sends the standard Cantor set ¢ onto A? The reason that h cannot exist is
explained next,

Figure 57 » loops through A", which contains the necklace of solid tori.

Referring to Figure 57, the loop & passing through the hole of A" cannot he
continuously shrunk to a point in E* without hitting A. For i such a motion of &
avoids A then, by compactiess, it also avoids one of the high-order necklaces 4™ In
R it is impossible to continuously de-link two linked loops. and it is also impossible
to continuously de-link a loop from a necklace of loops. (These facts are intuitively

believable but hard to prove. See Dale Rallsen's ook, Knots and Links.)

On the other hand, each loop A in B* C can be contin msly shrunk to a point
without hitting {*. For there is no obstruction to pushing A through the gap intervals

of ¢,

Now suppose that there is an ambient homeomorphism k of B? that sends C 1o
A. Then A= h~Yx) is a loop in B* % €, and it can be shrunk to a point in B C,
avoiding C'. Applyving h to this motion of A continuously shrinks & to a point, avoiding

A. which we have indicated 15 impossible. Hence b cannot exist. and A is wild,
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10* Completion

Many metric spaces are complete {for example, every closed subset of Euclidean space
is complete), and completeness is a reasonable property to require of & metric space.
especially in light of the following theorem.

80 Completion Theorem Every metric space can be completed,

This means that just as B completes G, we can take any metric space A and find
a complete metric space A containing M whose metric extends the metric of M. To
put it another way, M is always a metric subspace of a complete metric space. In a
natural sense the completion is unigquely determined by A,

B1 Lemma (iven four points p.g, x4y € M, we have
ld(p.q) —d{x,y)| < dip.x) +dig.y).
Proof The triangle inequality implies that

dir.y) < d{z.p) + d(p.q) + dlg.y)
dip.gq) = dip.x) + dlx,y) + diy.q).

and henee

—(dip.z) + diq.¥)) £ dip.q) — dix,y) £ (dip.x) + dig.y)).

A number sandwiched between —k and & has magnitude < k. which completes the
praaof., O

Proof of the Completion Theorem 80 We consider the collection € of all Cauchy
sequences in Af, convergent or not, and convert it into the completion of Af. (Thisisa
bold idea, is it not?) Cauchy sequences (py, ) ad (g, ), are co-Cauchy if d(py,. g, ) — 0
as n — oo, Co-Canchyness is an equivalence relation on €. (This is easy to check.)
Define M to be @ modulo the equivalence relation of being co-Canchy. Points of
M are equivalence classes P = [(p, )] such that (p,) is a Cauchy sequence in M. The
metric on M is
D(F,Q) = lim d{pn.gn),

where P = [(p,}] and @ = [{g,)]. It only remains to verify three things:

(a) D s a well defined metric on ﬁ

(b) M c M.

] M is complete.
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Noue of these assertions is really hard to prove, although the details are somewhat
messy because of possible equivalence class representative ambiguity.

(a) By Lemma 81

|d|:Pm-"i|m I = ’F{T’m f5i :|| = I5vlr'[:|'-'.-h-- Pl + G e )

Thus (d{p,.g,)) is 8 Canchy sequence in B, and because B i complete,
L = ul.i.l-l~].: (g, gn
exists, Let (¢}, ) and (g} ) be sequences that are co-Canchy with () and (g, ). and let
| s | s F
L' = lim dip,,q,).
Then
|L=L| £ |L—dipn.gn)l + ld{pn, gu) — dlp @] + ld(pg.0,) = L.

As = 20, the first and third terms tend to 0. By Lemma#®1, the middle term is

|d(pn, gn) — diph.aull < dipa.pl,) + dign. a5 ).

which also tends to 0 as nn = 2. Henee L = L' and D is well defined on M. The
d-distance on M is symmetric and satishes the triangle inequality. Taking limits,
these properties carry over to [} on M, while positive definiteness follows directly
from the co-Cauchy definition.

{b) Think of each p € M as a constant sequence, f = (p.p.pup....). Clearly it
is Cauchy and clearly the D-distance between two constant sequences B and 7 is the
same as the d-distance between the points p and g. In this way M is naturally a
metric subspace of M.

{e) Let (P leen be a Cauchy sequence in M. We must find Qe M to which
Py converges as & — 2o (Note that (Fy) is a sequence of equivalence classes, not
a zequence of points i M, and convergence refers to D not o)) Becanse 0 iz well
defined we can use a trick to shorten the proof. Observe that every subsequence of
a Cauchy sequence is Cauchy, and it and the mother sequence are co-Canchy, For
all the terms far along in the subsequence are also far along in the mother sequence.
This lets us take a representative of Py all of whose terms are at distance < 1/& from
each other, Call this sequence (pg g lney. We have [(pr )] = Fr-

Set g, = py.n. We claim that (q,) is Canchy and D{ P, Q) = 0 as k = s, where
€ = [(ga)]. That is, M is complete,
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Let € = 0 be given. There exists N > 3/¢ such that if k. > N then
¢
Dif Byt = 3

At

|

dpr ks Pee)
'['r[j"l:.l." Pea) + d{r’#.u Pen) + r“.PI'.H-pJ'-I'.:'

dlige, qe )

[ gt

A

1 1
I + fi{'ﬂk.lr- Maul+ E

2e
E + "E[PJ.'.M- Mool

The inequality is valid for all n and the lefi-hand side. d{gy, g¢). does not depend on
n. The limit of d{pge. pen) a5 n = oo is D(FP. Fy). which we know to be < /3.
Thus, if k. f > N then digi. i) < ¢ and (g, ) Is Cauchy. Similarly we see that Py, — @
as k — ac. For, given ¢ > 0. we choose N > 2/¢ such that if k.n > N then
d(qi., iy ) < €/2, from which it follows that

1M

1A

d':_ﬂi.'.m ﬂrl::I d':]"'.!:.u- Prel) + "[{FJ.'.J:-"]'H}

= dlpg . Pri) + digr. ga)

1 -
o 1 ,
< k-r-:a{f

The limit of the lefi-hand side of this inequality, as n = o, is D(F, Q). Thus
lim Py =9Q
b e
and M is complete. : ]

Unigqueness of the completion is not surprising, and is left as Exercise 106. A
different proof of the Completion Theorem is sketched in Exercise 4.39.

A Second Construction of B from )

In the particular case that the metric space M is 0. the Completion Theorein leads
to a construction of B from Q via Cauchy sequences, Note, however, that applving
the theorem as it stands involves circular reasoning, for its proof nses completeness
of B to define the metric D). Instead, we use only the Canchy sequence strafegy.

Convergence and Cauchyness for sequences of rational numbers are concepts that
make perfect sense without a priori knowledge of R, Just take all epsilons and deltas
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in the definitions to be rational. The Cauchy completion {‘:; of @ is the collection
€ of Cauchy sequences in  modulo the equivalence relation of being co-Cauchy,

We claim that § is & complete ordered field. That is. Q is just another version of
R. The arithmetic on  is defined by

P+Q = |[.f-"1|+'?r:|::'] -F_{l:l:[':.i:"rl'_q:l]]
PQ = |(pagnll PiQ = [(pu/gn)]

where P = |(py)] and @ = [(gn)]. Of course @ # [(0.0....)] in the fraction P/Q.
Exercizse 134 asks you to check that these natural definitions make 'ﬁ- a field. Although
there are many things to check - well definedness, commutativity, and so forth - all
are effortless. There are no sixteen case proofs as with cuts. Also. just as with metric
spaces,  is naturally a subfield uf'ﬁ when we think of r €  as the constant sequence

F=lrr..)

That's the easy part - now the rest.

To define the order relation on § we rework some of the cut ideas. If P € Q has
a representative [(p, )], such that for some € > 0. we have p, = ¢ for all n then P is
positive. If —F is positive then P is negative,

Then we define P < Q if @ — P is positive. Exercise 135 asks you to check that
this defines an order on [‘i consistent with the standard order < on @ in the sense
that for all p.g € @ we have p < g < P < §. In particular. you are asked to prove
the trichotomy property: Each P € @ is either positive, negative, or zero, and these
possibilities are mutually exclusive.,

Combining Cauchyness with the definition of = gives

P=pa)] <Q=[{gw)] <=  thereexist e > Oand N € N
{1} such that for all m,n > N,
we have po + ¢ < gy,

It remains to check the least upper bound property. Let T be a nonempty subset
of } that is bounded above. We must find a least upper bound for P.

First of all, since P is bounded there is a B = (h,) € Q such that P < B for
all P € P. We can choose B so its terms lie at distance < 1 from each other. Set
b=t + 1. Then bis an upper bound for P. Since @ is Archimedean there is an
integer m = b, and 7 is also an upper bound for P. By the same reasoning P has
upper bounds ¥ such that r is a dvadic fraction with arbitrarily large denominator
v g
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Since P is nonempty, the same reasoning shows that there are dvadic fractions =
with large denominators such that ¥ i2 not an upper bound for F.

We assert that the least upper bound for P is the equivalence class @ of the
following Cauchy sequence (gg.qp.42....).

(a} gy is the smallest integer such that G is an upper bound for .

(b} g is the smallest fraction with denominator 2 such that @ is an upper bound
for .

() gy is the smallest fraction with denominator 4 such that § is an upper bound
for .

(d) ...

() gy is the smallest fraction with denominator 2" such that g5 is an upper bound
for P.

The sequence (g,) i well defined because some but not all dyadic fractions with
denominator 2° are upper bounds for P. By construction (g, ) is monotone decreasing
and gy—1 = gy < 1/2% Thus, if m < n then

0 g =t = 0 = Gn+1 + Pmtl — Gu+2+ "+ Gn—i — Gn
1 1 1

Sgma Tt E < g

[t follows that (g,) is Canchy and Q@ = |(ga.)] € «fj

Suppose that §) is not an upper bound for P. Then there is some P = [(p,])] € P
with @ < P. By (1), there is an ¢ > 0 and an N such that for alln > N,

QN + € < P

It follows that iy < F. a contradiction to §y being an upper bound for .

On the other hand suppose there is a smaller upper bound for P, say R = (r,) <
Q. By (1) there are ¢ > 0 and N such that for all m,n > N,

Fim + F < §n.

Fixak = N with 1/2¥ < ¢. Then forall m > N,

1

r'm'{gll‘-'-f{m-"':i:.

By (1), R = qe — 1/2%. Since R is an upper bound for P, so is g — 1/2*, a contradic-
tion to g being the smallest fraction with denominator 2% such that §; is an upper
bound for P. Therefore, (@ is indeed a least upper bound for P,
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This completes the verification that the Canchy completion of @ is a complete
ordered field. Uniqueness implies that it is isomorphic to the complete ordered field B
eonstriucted by means of Dedekind cuts in Section 2 of Chapter 1. Decide for vourself
which of the two constructions of the real number system vou like better - cuts
or Cauchy sequences.  Cuts make least upper bounds straightforward and algebra
awkward. while with Cauchy sequences it is the reverse.
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Exercises

1.

An ant walks on the Hoor, ceiling, and walls of a cubical room. What metric
is natural for the ant's view of its world? What metric would a spider consider
natural? If the ant wants to walk from a point p to a point g, how could it
determine the shortest path?

. Why is the sum metric on B? called the Manhattan metric and the taxicab

metric?
What is the set of points in R* at distance exactly 1/2 from the unit cirele S!
in the plane,

T = {peR*:3g€ 5" and dip.q) = 1/2
and for all §' € 8§ we have dip.q) < d{p.q")}?

4. Write ont a proof that the discrete metric on a set M is actually a metric.

L.

. For p.q € 5§, the unit circle in the plane, let

do(p. q) = min{|£L{p) — L(g)|. 27 - |L(p) = L{g)|}

where £(z) € [0, 2r) refers to the angle that = makes with the positive r-axis.
Use vour geometric talent to prove that d; is a metric on §',

. For pig € [0, %/2) let

iy(p. q) = sin |p— ql.

Use your calenlus talent to decide whether d, is a metric.

. Prove that everv convergent sequence (i, | in a metric space A is bounded. Le..

that for some r = 0, some g € M, and all n € M, we have p, € Mq.
Consider a sequence (#,) in the metric space B,

{a) If (x,) converges in B prove that the sequence of absolute values (|r,])

converges in B,

(h) State the converse.

ic] Prove or disprove it.

A sequence (ry,) in R increases if n < m implies r;, < ry. It strictly in-
creases if n < m implies r, < r,. It decreases or strictly decreases if
it o< moalways implies xy > g oor alwavs inplies o, > 0. A seglenee is
monotone if it increases or it decreases. Prove that every sequence in & which
is monotone and bounded converges in B

Prove that the least upper bound property is equivalent to the “monotone
sequence property” that every bounded monotone sequence converges.

"Thiz is nicely & expressed by Pierre Teilhard de Chardin, “Tou! oo qui mente converge,” in a
different context.
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11.

12.

14,

14,

16.
17.

15,
19,
200,

2]

Let {zy,) be a sequence in R.
*{a) Prove that (z,} has A monotone subsequence,

(b} How can you deduce that every bounded sequence in R has a convergent

subsequence”
(¢)] Infer that you have a second proof of the Bolzano-Weierstrass Theorem in
R.

(d) What about the Heine-Borel Theorem?

Let (pn) be a sequence and f : N — N be a bijection. The sequence (g )ien
with qi = pyie) 5 & rearrangement of (p, ).

(&) Are limits of a sequence unaffected by rearrangement”

(b) What if f is an injection?

ic) A surjection?
Assume that f: M — N is a function from one metric space to another which
satisfies the following condition: If a sequence (p,) in M converges then the
sequence (f(pg)) in N converges. Prove that f is continuous. [This result
improves Theorem 4.
The simplest type of mapping from one metric space to another is an isometry.
It is a bijection f : M — N that preserves distance in the sense that for all
pog € M we have

dx(fp. fa) = duaelpog).

1f there exists an isomnetry from M to N then M and N are said to be isometrie.
M= N. You might have two copies of a unit equilateral triangle. one centered
at the origin and one centered elsewhere. They are isometric. Isometric metric
spaces are indistinguishable as metric spaces.

(a] Prove that every isometry is continuous.

(b} Prove that every isometry is a homeomorphism.,

(e} Prove that [0, 1] is not isometric to [0, 2],

. Prove that isometry is an equivalence relation: If A is isometric to N, show

that N is isometric to M show that each M is isometric to itself (what mapping
of M to M is an isometry?); if M is isometric to N and N is isometric to P,
show that M s isometric to P,

Is the perimeter of a square isometric to the circle? Homeomorphic? Explain.
Which capital letters of the Roman alphabet are homeomorphic? Are any
isometric? Explain.

Is B homeomorphic to @7 Explain.

Is @ homeomorphic to N7 Explain.

What function (given by a formula) is a homeomorphism from (-1, 1) to B7? Is
every open interval homeomorphic to (0,1)7 Why or why not?

Is the plane minus four points on the r-axis homeomorphic to the plane minus
four points in an arbitrary configuration?
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22, If every closed and bounded subset of a metric space M is compact, does it
follow that M is complete? (Proof or counterexample. )

23, (0,1) is an open subset of R but not of B2, when we think of B s the r-axis in
E*. Prove this.

24. For which intervals [a. b} in R is the intersection [a, b N Q a clopen subset of the
mwetric space 7

25. Prove directly from the definition of closed set that every singleton subset of a
metric space A is a closed subset of M. Why does this imply that every hnite
set of points is also a closed set?

26, Prove that a set L' C A is open if and only if none of its points are limits of
its complement.

27. If 5. T < M, a metric space, and 5§ < T, prove that

(a) ScT,

(b} int(S) C int{T).

28. A map f: M = N iz open if for each open set I’ C M. the image set f{L7) iz
open in N.

(a) If f is open, is it continuous?”

(b) If f is a homeomorphism, is it open?

(e} If fis an open, continuous bijection, is it a homeomorphism?

{d) If f: R = R i= a continuous surjection, must it be open?

fe) If f: R = R is a continuous, open surjection, must it be a homeomaor-
phism?

{f) What happens in (e) if ® is replaced by the unit circle §'7

2. Let T be the collection of open subsets of & metric space W, and X the collection
of closed subsets. Show that there is a bijection from T onto X.

M. Consider a two-point set M = {a, b} whose topology consists of the two sets,
M and the empty set. Why does this topology not arise from a metric on M7

31. Prowve the following.

(a) If IV 15 an open subset of B then it consists of countably many disjoint
intervals [/ = U, (Unbounded intervals (—oo, b), (0, 00), and (-0, og)
are permitted. )

(b) Prove that these intervals LY are uniguely determined by 7, In other
words. there is only one way to express U7 as a disjoint union of open
intervals.

fe) HULV C R are both open, so I = U, and V' = IV, where I; and V|
are open intervals, show that [J and V' are homeomorphic if and only if
there are equally many U and V.

32, Show that every subset of M is clopen. What does this tell vou about every
function f: M — M. where M is A metric space?
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31, (a) Find a metric space in which the boundary of M.p i oot equal to the

aphwere of radius r at p. INMp) # {re M:dixr.p) =r}.
(b} Need the boundary be contained in the sphere?

#. Use the Inheritance Principle to prove Corollary 15,

35. Prove that 8 clusters ar p if and only if for each v > 0 there i3 a point g €
M.pn S, such that q # p.

36, Construct a set with exactly three cluster points.

37, Construct a function f: R — R that is continuous ouly at points of E.

38, Let XY be metric spaces with metries dy. oy, and et M = X = ¥ e their
Cartesian product. Prove that the three natural metries de. d.. and dgg on
M are actually metrics. [Hint: Canchy-Schwarz.|

#. (a) Prove that every convergent sequence is bounded, That is, if (p,) con-

verges in the metric spaoe M. prove that there is some neighborhood Mg
containing the set {p, : n € M}.
{b) Ix the same true for a Canchy sequence in an incomplete metric space?

4. Let Al be a metric space with metric . Prove that the following are equivalent,

ia) M is homeomorphic 1o Af equipped with the discrete metric,
(b} Every function f: M = A is continuons.

(¢} Every bijection g : Ml = A is o homeomorphism.

{d}) M has no cluster points.

(&) Every subset of M is clopen.

(f) Every compact subset of Al is finite.

41. Let || || be any norm on BR™ and let B = {r R™ : |lz]| < 1}. Prove that 1§ is
commpact, [Hint: It suffices to show that B is elosed and bounded with respect
to the Evclidean metric]

42. What is wrong with the following “proof” of Theorem 287 “Let (a6, )) be
any sequence in A x & where A and B are compact. Compactness implies the
existence of subsequences (ag, | and (b, ) converging toa € A and b€ 1 as
k — 2¢. Therefore {(an, )] is a subsequence of ((ag. by)) that converges to
a limit in A = B, proving that A x B is compact.”

43, Asmsume that the Cartesinn product of two ponempty =et= A A ol B C N
is compact in M =« 5. Prove that A and 3 are compact.

44, Consider a fonetion f @ M — K. Its graph is the set

{ipyle M xR:y= fp}).

{a) Prove that if fis continmons then its graph is closed (as a subset of Af <R,
(B} Prove that if £ is continuous and A is compact then its graph i compact,
(o) Prove that if the graph of s compact then [ is continuous,

(cl) What if the graph is merely closed? Give an example of a discontinuons

function f: R = R whose graph is closed.
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45. Draw a Cantor set O on the circle and consider the set A of all chords between
points of C.
{a) Prove that A is compaet.
*(b) Is A convex?
46, Assume that A, B are compact, disjoint. nonempty subsets of M. Prove that
there are ag € A and by € B such that for all a € A and b € B we have

d{an, bn) < da. b).

[The points ag. by are closest together|
47. Suppose that A, B C R
(a) If A and B are homeomorphic, are their complements homeomorphic?
*b) What if A and B are compact?
*=%{¢) What if 4 and B are compact and connected?

48. Prove that there is an embedding of the line as A closed subset of the plane.
and there is an embedding of the line as a bounded subset of the plane, but
there is no embedding of the line as a closed and bounded subset of the plane.

*449. Construct a subset 4 C B and a continuous bijection f : A —+ A that is not a
homeomorphism. [Hint: By Theorem 36 A must be noncompact. |
#*50. Construct nonhomeomorphic connected, closed subsets A, B © B? for which
there exist continuous bijections f : A = B oand g : B - A, [Hint: By
Theorem 36 A and B must be noneompact.|
=**4l. Do there exist nonhomeomorphic closed sets 4, B © R for which there exist
continuous bijections f: 4 — B and g: B — A?
62, Let (Ay) be a nested decreasing sequence of nonempty closed sets in the metric
space M.
ia) If M is complete and diam A, — (0 as n <+ oc. show that [} A, is exactly
one point,
{b) To what assertions do the sets [n, 20) provide counterexamples?”

id. Suppose that (/) i a nested sequence of compact nonempty sets, K 2 K D
cowoand K = YK, If for some p > 0. diam K, > p for all n, is it true that
disgm K > u?

M. If f: A= Band g: C — B such that A € € and for each 2 € A we have
fla) = gla) then g extends f. We also say that f extends to g. Assume that
f: 8 = R is a uniformly continnous function defined on a subset § of a metric
space M,

{a) Prove that f extends to a uniformly continuous function f: 5 — R,

(k) Prove that f is the unigue continuons extension of f to a function defined
on 5

(¢) Prove the same things when R is replaced with a complete metric space

N,
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.

*54.

G1.

62.

*h4.

67.

The distance from a point p in a metric space M to a nonempty subset 5 C M
is defined to be dist(p. §) = inf{d{p, s) : s € §}.

(a) Show that p is a limit of § if and only if dist{p. §) = (.

(b) Show that p s dist(p. §) is & uniformly continnous function of p € M.
Prove that the 2-sphere is not homeomorphic to the plane,

. If § is conmected, is the interior of 5 connected? Prove this or give a counterex-

ample.
Theorem 49 states that the closure of a connected set is connected.

{a) Is the closure of a disconnected set disconnected?

{b) What about the interior of a disconnected set?
Prove that every countable metric space (not empty and not a singleton) is
disconnected, [Astonishingly, there exists a countable topological space which
is connected. Its topology does not arise from a metric.

ia) Prove that a continuons function f : M —= K, all of whose values are

integers, is constant provided that A s connected.

{b) What if all the values are irrational?
Prove that the (double) cone {{z.y,z) € B? : & + y* = 27} is path-connected,
Prove that the annulus A = {z € B : r < |z| < R} is connected,

A subset E of B™ is starlike if it contains a point py (called a center for E)
such that for cach g € E, the segment between pg and g lies in E.

(a) If E is convex and nonempty prove that it is starlike.

(b) Why is the converse false?

{c] Is every starlike set connected?

(d) Is every connected set starlike? Why or why not?

Suppose that £ C R™ is open. bounded, and starlike. and po is a center for E,
(a) Is it true or false that all points py in a small enough neighborhood of py

are also centers for E7

(b} Is the set of centers convex?

(¢} Is it closed as a subset of E7

(d) Can it consist of a single point?

. Suppose that A, B < B? are convex. closed, and have nonempty interiors.

(a) Prove that A, B are the closure of their interiors.

(b} If A, B are compact, prove that they are homeomorphic.
[Hint: Draw a picture.|

(a) Prove that every connected open subset of B™ is path-connected,

(b} Is the same troe for open connected subsets of the circle?

[c}] What about connected nonopen subsets of the circle”
List the convex subsets of B up to homeomorphism. How many are there and
how many are compact?
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5.

i),
i,
7l

72,

78,

List the closed convex sets in B? up to homeomorphism. There are nine. How
many are compact?
Generalize Exercises 65 and 68 to RS, to B™.
Prove that (a.b) and [a, b) are not homeomorphic metric spaces,
Let M and N be nonempty metric spaces,

(a) If M and N are connected prove that M = N is connected.

(b) What about the converse?

(v) Answer the guestions again for path-connectedness.
Let H be the hyperbola {(r,y) € B* : ry = 1 and r,y > 0} and let X be the
T=HXIS.

{a) Is the set § = X U H connected?

(b) What if we replace H with the graph ¢ of any continuons positive function

fiBR = (0,ac); is X UG connected?
{c)] What if f is everywhere positive but discontinuous at just one point.

. Is the disc minus a countable set of points connected? Path-connected? What

about the sphere or the torus instead of the disc?
Let § = R* Q" (Points (r.y) € § have at least one irrational coordinate.) 1s
5 connected? Path-connected? Prove or disprove,

. Anare is a path with no self-intersection. Define the concept of arc-connectedness

and prove that a metric space 2 path-connected i and only i it 3s arc-connected,

(a) The intersection of connected sets nesd ot be connected. Give an exam-
ple.

(b} Suppose that 5. 52 53.... is a sequence of connected, closed subsets of
the plane and §; 2 8 2 .... I8 § = [} 5; connected? Give a proof or
counterexample.

*(¢) Does the answer change if the sets are compact?

(d) What is the situation for a nested decreasing sequence of compact path-
connected sets?

. If a metric space M is the union of path-connected sets 5, all of which have

the nonempty path-connected set K in common, is M path-connected?
{fm.....py) I8 an e=chain in a metric pace M if for each ¢ we have p; € M and
d{pi. pisy) < e. The metric space is chain-connected if for each ¢ > 0 and
vach pair of points p.g € M there is an e-chain from p to q.

{a) Show that every connected metric space is chain-connected.

(b) Show that if M is compact and chain-connected then it is connected.

(c) Is R % & chain-connected?

(d) If M is complete and chain-connected, is it connected?

Prove that if A is nonempty, compact, locally path-connected. and connected
then it is path-connected. [(See Exercise 143, below. )
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. The Hawaiian EH]'I!'iIIg is the union of circles of radius 1/n amd center r =

+1/n on the r-axis, for v € M. See Figure 27 on e 58,
fal Is it connected?

(b} Path-connected?

(e} I= it hownesnorphic to the one-sided Hawaiian earring”

The topologist’s sine curve is the set
{lry):r=0and |p| <lor0<x <] and y=sinl/r}

see Figure 43, The topologist’™s sine circle = shown in Fieure 58, (Tt is the
union of a circular are and the topologist's sine curve.) Prove that it is path-
connected but not locally path-connected. (M is locally path-connected
if for each p € M and each neighborhood U7 of p there is a path-connected

subneighborhood 1 of p)

Figure 58 The topologist's sine circle
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B2,

Ed.

5.

i

BT.

.

a1.

The graph of f: M =+ R is the set {(r,g) e M xR :y= fr}.
{a) If M is conmected and f i3 continuous, prove that the graph of f is con-
necbed.
(b Give an example to show that the converse is false,
i) If M is path-connected and f is continuous. show that the graph is path-
connected.
(d) What about the converse?
The open cylinder is (0, 1) x §'. The punctured plane is B {0}.
(a) Prove that the open cvlinder is homeomorphic to the punctured plane.
() Prove that the open evlinder. the double cone. and the plane are not
homeosmorphic.
Is the closed strip {{r,y) € B* : 0 < r < 1} homeomorphic to the closed
half-plane {(r, y) € B* : ¢ = 0}? Prove or disprove.

5. Suppose that M is compact and that U is an open covering of M which is

“redundant” in the sense that each p € M is contained in at least two members
of U, Show that U reduces to a Anite suboovering with the same property,
Suppose that every open covering of A has a positive Lebesgue number. Give
an example of such an M that is not compact.

Exercises B7- 04 treat the basic theorems in the chapter, avoiding the use of
sequences. The proofs will remain valid in general topological spaces.

Give a direct proof that [a,b] is covering compact. [Hint: Let U be an open
covering of Ja, 4 and consider the set

C = {r & [a.b] : Anitely many members of U cover [a. 1]}.

Use the least upper bound principle to show that be ')

Give a direct proof that a closed subset A of a covering compact set K is covering
compact. [Hint: If U is an open covering of A, adjoin the set W = A% A to 1.
Is W=UU{W} an open covering of K7 1F so, so what?]

Give a proof of Theorem 36 using open coverings. That is. assume 4 is a
covering compact subset of M and f : M — N is continuous. Prove directly
that fA is covering compact. |[Hint: What is the criterion for continnity in
terms of preimages?|

Suppose that f : M — N is a continuous bijection and M is covering compact,
Prove directly that f is a homeomorphism.

Suppose that A is covering compact and that f: M = N is continuous, Use
the Lebesgue number lemma to prove that [ is nniformly continuous,  [Hint:
Consider the covering of N by ¢/2-neighborhoods {N,2(q) : g € N} and its
preimage in M, { f*™ (N, =(q)) : g € N} ]
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0.
a7.

a8,

a9,

1400,

. Give a direct proof that the nested decreasing intersection of nonempty covering

compact sets is nonempty. [Hint: If Ay 2 A3 2 ... are covering compact,
consider the open sets U, = A5, 1f [} A, = 0. what does (I} cover?)

. Generalize Exercise 92 as follows. Suppose that M is covering compact and €

is a collection of closed subsets of M such that every intersection of finitely
many members of € is nonempty. (Such a collection € is said to have the
finite intersection property.] Prove that the grand intersection (... C
is nonempty. [Hint: Consider the collection of open sets U = {C°: C € €]

. IF every collection of closed subsets of M which has the finite intersection prop-

erty also has a nonempty grand intersection. prove that Af is covering compact.
[Hint: Given an open covering 1 = {I', }. consider the collection of closed sets
E={UZ}]

5. Let § be a subset of a metric space M. With respect to the definitions on

page 92 prove the following.
(@) The closure of § is the intersection of all closed subsets of Af that contain
&
ib) The interior of 5 is the union of all open subsets of Af that are contained
in §.
(e} The boundary of 5 is a closed set.
(d) Why does (a) imply the closure of § equals lim 57
{e] If § is clopen. what is 987
(f) Give an example of § © R such that 3(A5) # 0. and infer that “the
boundary of the boundary @ o d is not always zero.”
IfAC BCC. Aisdensein B, and B is dense in C prove that 4 is dense in .
Is the set of dyadic rationals (the denominators are powers of 2) dense in Q7
In R? Does one answer imply the other? (Recall that A is dense in Bif AC B
and A2 B.)
Show that § C M is somewhere dense in M if and only if int(5) # 0. Equiva-
lently, § is nowhere dense in M if and only if its closure has empty interior.
Let M, N be nonempty metric spaces and P = M = N,
(a) If M, N are perfect prove that P is perfect.
(b) If M. N are totally disconnected prove that P is totally disconnected,
{c) What about the converses?
(d) Infer that the Cartesian product of Cantor spaces is a Cantor space. (We
already know that the Cartesian product of compacts is compact. |
{e) Why does this imply that C x C = {{r.y) e R*:r e Cand y € C} is
homeomorphic to ., C being the standard Cantor set?
Prove that every Cantor piece is a Cantor space. (Recall that M is a Cantor
space if it is compact, nonempty. totally disconnected and perfect. and that
AC M is a Cantor piece if it is nonempty and clopen.)



Exercises A Taste of Tﬂpﬂh}g 135

*101.

102.

103.
104,

105.

1.

o7,

*108.

Let £ be the set of all infinite sequences of zeroes and ones.  For example,
(1011000011111 ...) € E. Define the metric

dla,b) = li"';.-_nﬁ

where a = (a,) and &= (b,) are points in E,

{a) Prove that E is compact.

(b) Prove that E is homeomorphic to the Cantor set.

Prove that no Peano curve s one-to-one.  (Hecall that a Peano curve 15 a
continuous map f: [0,1] — R? whose image has a nonempty interior. )

Prove that there is a continuous surjection B — B*, What about B™7

Find two nonhomeomorphic compact subsets of B whose complements are
homemmorphic.

As on page 115, consider the subsets of R,
A={D}Uul,Qu {3} and B = {0}u{l}u]2 3.

(a) Why is there no ambient homeomorphism of B to itself that carries A onto
a7
(b} Thinking of B as the r-axis, is there an ambient homeonorphism of B? ta
itself that carries A onto BT
Prove that the completion of a metric space is unique in the following natural
sense: A completion of a metric space M is a complete metric X space contain-
ing M as a metric subspace such that M is dense in X, That is. every point of
A is u limit of M.
a) Prove that A is dense in the completion M constructed in the proof of
Theorem R,
(b) If X and X' are two completions of M prove that there is an isometry
i: X — X' auch that i(p) = p for all p e M.
(¢} Prowve that i is the unique such sometry.
{d) Infer that M is e,
If M is a metric subspace of a complete metric space 5 prove that M is a
completion of M.
Consider the identity map id : Cpax = Ciyy where Oy is the metric space
([0, 1], B) of continuous real-valued functions defined on [0, 1], equipped with
the max-metric dyaxl f. g) = max | f{r) —g(z)|, and Oy 5 C([0, 1), R) equipped
with the integral metric,

di(f,5) = [. \f(z) — g(z)| de.

Show that id ks a continuons linear bijection (an isomorphism) but its inverse
is not contineons,
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*109. A metric on M is an ultrametric if for all r.y, : € M we have
dir.z) < max{d(r, y).diy. z)}.

(Intuitively this means that the trip from r to z cannot be broken into shorter
legs by making a stopover at some y.)

{a) Show that the ultrametric property implies the triangle inequality.

(b) In an ultrametric space show that “all triangles are isosceles.”

iv) Show that & metric space with an ultrametric is totally disconnected.

(d) Define a metric on the set £ of strings of zeroes and ones in Exercise 101

s
1 . . - f
== if n is the smallest index for which a, # b,
doa,b)=¢ ~
] if m=h.

Show that oy is an ultrametric and prove that the identity map is a home-
omarphism (E,d) = (X, d4).
*110. Q inherits the Evclidean metric from B but it also carries a very different metric,
the p-adic metric. Given a prime number p and an integer n, the padic norm
of n is "

[n|p = IF

where p€ is the largest power of p that divides n. (The norm of  is by definition
0.} The more factors of p. the smaller the p-norm. Similarly. if © = a/b s a
fraction, we factor r as

.
:=p"r;

where p divides netther v nor 2. and we set

1
|y = F

The p-adic metric on  is

dolz. ) = |2 — ylp.

{a) Prove that d; is a metric with respect to which @ is perfect - every paint
is a cluster point.

(b} Prove that oy is an ultrametric.

(¢} Let @y be the metric space completion of § with respect to the metric dj,
and observe that the extension of dy to G remains an ultrametric, Infer
from Exercise 108 that @ is totally disconnected.
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111

"112.

11:4.

*114.

(d) Prove that Q) is locally compact, in the sense that every point has small
compact neighborhoods.
(e} Infer that @y is covered by neighborhoods homeomorphic to the Cantor
set. See Gouvéa's book, p-odic Numbers,
Let M = [0, 1] and let M, be its division into two intervals [0, 1/2] and [1/2, 1].
Let Mz be its division into four intervals [0, 1/4], [1/4. 1/2], [1/2, 3/4], and
[4/4, 1]. Contimuing these bisections generates natural divisions of [0 1]. The
pieces are intervals. We label them with words using the letters () and 1 as
follows: O means “left™ and 1 means “right,” so the four intervals in My are
labeled as 00, 01, 10, and 11 respectively.
(a) Verify that all endpoints of the intervals (except 0 and 1) have two ad-
dresses. For instance,

0B - ) - 0 5

(b} Verify that the points (0, 1. and all nonendpoints have unique addresses.
Prove that #C = #R. [Hint: According to the Schroeder-Bernstein Theorem
from Chapter 1 it suffices to find injections ' =+ R and R = . The inclusion
C C R is an injection C — R. Each t € [0.1) has a unique base-2 expansion
7(t) that does not terminate in an infinite string of ones. Replacing each 1 hy
2 converts 7(1) to w(t), an infinite address in the symbols 0 and 2, It does not
terminate in an infinite string of twos. Set h{t) = Y75, w, /3" and verify that
B 0,1) = C is an injection. Since there is an injection B = [0, 1), conclude
that there is an injection B — ', and hence that #C = #R |

Remark The Continuum Hypothesis states that if 5 = any uncountalle subset
of B then &5 and K have equal cardinality. The preceding coding shows that
' is not only uncountable (as is implied by Theorem 56) but actually has the
same cardinality as B, That is, " is not a counterexample to the Continuum
Hyvpothesis, The same is true of all uncountable closed subsets of R, See
Exercise 151,

Let M be the standard Cantor set . In the notation of Section 8, " is the

collection of 2 Cantor intervals of length 1/3" that nest down to C as n — oc.

Verify that setting €, = CNC* gives divisions of C into disjoint clopen pieces,

{#) Prove directly that there is a continuous surjection of the middle-thirds
Cantor set €' onto the closed interval [0, 1), [Hint: Each r € C' has s base
3 expansion (r, ). all of whose entries are zeroes and twos. (For example.
2/3 = (20 huse 3 and 1/ = (02)page 3. Write y = (yn) by replacing the
twos in (1) by ones and interpreting the answer base 2, Show that the
map &~ i works,|
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(h) Compare this surjection to the one constructed from the bisection divisions
in Exercise 113,
115. Rotate the unit circle 5! by a fixed angle o, say R : §' = 8! (In polar
coordinates, the transformation R sends (1, &) to (1, § + a).)
{a) If a/7 is rational, show that each orbit of R is a finite set,
®[b) If a/x is irrational, show that each orbit iz infinite and has closure equal
to S,
116. A metric space Af with metric o can always be remotrized so the metric becomes
bounded. Simply define the bounded metric

d(p, q)

A= T

{a) Prove that p is a metric. Why is it olwiously bounded?
(b} Prove that the identity map M — M is a homeomorphism from M with
the d-metric to M with the s-metric.
(c) Infer that boundedness of M is not a topological property.
{d} Find homeomorphic metric spaces, one bounded and the other not.
117. Fuold a piece of paper in half.
(a) Is this a continnous transformation of one rectangle into another?
(b} Is it injective?
(¢} Draw an open set in the target rectangle. and find its preimage in the
original rectangle. Is it open?
{d) What if the open set meets the crease?
The baker's transformation is a similar mapping. A rectangle of dough is
stretehed to twice its length and then folded back on itself. Is the transformation
continuous? A formula for the baker’s transformation in one variable is f(r) =
1 — |1 = 2r|. The n*® jterate of fis f" = fofo .., of. n times. The orbit
of a point r is

1 W o U o M

[For clearer but more awkward notation one can write f*" instead of /™. This
distinguishes composition fo f from multiplication f - f.]
{e) If x is rational prove that the orbit of r is a finite set.
(f) If r is irrational what is the orbit?
*118. The implications of compactness are frequently equivalent to it. Prove
(a) If every continuous function f : M — R is bounded then M is compact.
ib) If every continwous bounded function f: Af — R achieves a maximum or
minimum then A is compact.
(¢} If every continuous function f : M = R has compact range fAf then A
is compact,
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11,

1200

[d) If every nested decreasing sequence of nonempty closed subsets of M has
nonempty intersection then M is compact.

Together with Theorems 63 and 65, (a) (d) give seven equivalent definitions of
compactness, [Hint: Reason contrapositively. If M is not compact then it con-
tains a sequence (pg ) that has no convergent subsequence. It is fair to assume
that the points p, are distinct. Find radii v, > 0 such that the neighborhoods
M., (pn) are disjoint and no sequence g, € M (p,) has a convergent subse-
quence. Using the metric define a function f,; : M (p,) = B with a spike at
Pn. such as

roy = dlz. pn)
iy + d(1, pe)
where a, > 0. Set f(z) = fulx) if £ € My, (py). and f{z) = 0 if z belongs to
no M (p,). Show that f is continnous. With the right choice of a,, show that
[ is unbounded. With a different choice of a,. it is bounded but achieves no
maximum, and o on.|
Let M be n metric space of diameter < 2. The cone for M is the set

C = C(M) = {m} U Mx(0,1]

Inlz) =

with the cone metric

|# = ¢ + min{s, }d{p, q)

]

plip. s). (g.1))
plip. s}, po)
plpo. ) = 0.

&

The point py is the vertex of the cone, Prove that p is & metric on C. [If M
is the unit circle, think of it in the plane z = 1 in B® centered at the point
(0,0,1). Its cone is the 45-degree cone with vertex the origin,]

Recall that if for each embedding of M, h : M = N, A is closed in /N then
M 5 said to be absolutely closed. If each A is bounded then M is absolutely
bounded. Theorem 41 implies that compact sets are absolutely closed and
absolutely bounded. Prove:

(a) If M is absolutely bounded then A is compact.
*(b) If A is absolutely closed then M is compact.

Thus these are two more conditions equivalent to compactness. [Hint: From
Exercise 118(a), if M is noncompact there is a continuous function f: M - R
that is unbounded. For Exercise 120(a}, show that F(x) = (z, f(x}) embeds
M onto a nonbounded subset of Af = B, For 120(b). justifv the additional
assumption that the metric on M is bounded by 2. Then use Exercise 118(b) to
show that if M is noncompact then there is a continuous function g : M — (0. 1]
such that for some nonclustering sequence (py, ). we have gip,) = (} a5 n — oc.
Finally, show that Gi{x) = (x, gr) embeds A onto a nonclosed subast 8 of the
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cone C{A) discussed in Exercise 119, 5 will be nonclosed because it limits at
o but does not contain it
121. (a) Prove that every function defined on a discrete metric space is uniforinly
OO TS,
(b} Infer that it is false to assert that if every continmous function f: M — R
ia uniformly continnous then M b= compact.,
(e} Prove, however. that if M is a metric subspace of a compact metric space
K and every contimons function @ M = B is uniformly continuous then
M is comnpact,
122. Recall that p is a cluster point of 5 if each M p containg infinitely many points
of 5. The set of cluster points of 5§ i= denoted as §°. Prove:
(a) HSCT then $ Cc T
(b} (SUT) =8"UT".
(e) & =(SY.
(d) &' is closed in M that is, 5" © 5" where 5" = (5]
{e} Caleulate M', @', R, (R» QY. and Q".
(f) Let T be the set of polnts {1/n : # € M}, Caleulate TV and T
(2] Give an example showing that 8" can be a proper subset of 57
123. Recall that p is a condensation point of 5 if each M.p contains uncountably
many points of 8. The set of condensation points of 5 is denoted as 5%, Prove:
() HSC T then §* C T
S uUr=s 0T
(¢) 8*c § where § = (5)*
() §*i= closed in M: that is. 8*' © §* where 5% = (8%,
(e] §** C 5" where 5** = [59*
() Caleulate N*. Q® R", and (R~ Q)%
(£) Give an example showing that 8% can be a proper subset of (8)% Thus,
[¢) is not in general an equality,
**h) Give an example that 5" can be a proper subset of 5% Thus, (¢] is
not in general an cquality, [Hint: Consider the set M of all functions
Foifab) = [0.1]. continuous or not, and let the metric on M be the sap
metrde, d(f.g) = sup{|f{z) = glz)| : ¢ € Jo, 8]}, Consider the set 5 of all
“A-functions with rational values.” |
**(i) Give examples that show in general that 8% neither contains nor is con-
tained in 5 where 8™ = (87)%, [Hint: d-functions with values 1/n, n € M|
124. Recall that p is an interior point of § C M if some Mp is contained in 5.
The set of interior points of & is the interior of 8§ and is denoted int 5. For all
subsets 8, T of the metric space M prove:
(a) intS§ = §\a85.
(b) int§ = (57",
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125,

1.

127,

128.

1249,
130.

(e} int(int §) = int 5.

(d) imt(SNT) = int(& rvint T,

(#) What are the dual equations for the closure?

(f) Prove that int{SUT) = int § Uint T. Show by example that the inclusion
can be strict, i.e.. not an equality.

A point p is a boundary point of a set § © M if every neighborhood Al p

contains points of both & and §°. The boundary of § is denoted 25, For all

subsets 5. T of & metrie space M prove:
(a) S is clopen if and only if 48 = @.
(b) A5 = a5".
(c) BG5S C 88.
(d) &S = a0s.
{e) B(SuT) c a5uar.
i(f) Give an example in which (¢) i8 a strict inclusion, i85 # A5,
{g) What about (e)?

Suppose that E is an uncountable subset of B, Prove that there exists a point

p € B at which E condenses. [Hint: Use decimal expansions. Why must there

be an interval [n, n+1) containing uncountably many points of E7 Why must it

contain a decimal subinterval with the same property? (A decimal subinterval
ez, b) has endpoints @ = n+k/10, b = n+(k+1)/10 for some digit &, 0 < & <9.)

Do yon see lurking the decimal expansion of a condensation point?] Generalize

to & and to B™.

The metric space M is separable if it contains a countable dense subset. [Note

the confusion of langnage: “Separable” has nothing to do with “separation.”|

{a) Prove that B™ is separable.
(b) Prove that every compact metric space is separable,

*(a) Prove that every metric sulspace of a separable metric space is separable,
and deduce that every metric subspace of B™ or of a compact metric space
is separable.

(b Is the property of being separable topological?
(] Is the comtinnons image of a separable metric space separable?

Think up & nonseparable metrie space,

Let B denote the eollection of all e-neighborhoods o B whose radius ¢ s

rational and whose center has all coordinates rational.

(a} Prove that B is countahble.
ib) Prove that every open subset of B™ can be expressed as the countable
uion of members of B,

(The union need not be disjoint, but it is at mest a countable union because

there are only countably many members of B, A collection such as B is called

& countable base for the topology of B™.)
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131. (a) Prove that every separable metric space has a countable base for its topol-
ogy. and conversely that every metric space with a countable base for its

topology is separable.
(b) Infer that every compact metric space has a countable base for its topology.
*132. Referring to Exercise 123, assume now that M is separable, § C M, and, as

13

*137.

*¥138.

before &' is the set of cluster points of § while 8% is the set of condensation
points of 8. Prove:

(a) §* c(5)* = (5)*

[IJJ S#i - SHI = .E;li.

{c) Why is (a] not in general an equality?

[Hints: For (a) write S C (8§ 8') U S and § = (§%5") U & show that
(5% 8% = @, and use Exercise 123(a). For (b), Exercise 123({d) implies that
5** c §* c 5 To prove that §* C 5**, write § C (§% 5% U 5* and show
that (§% 5" = 8]
Prove that

(a) An uncountable subset of R clusters at some point of R.

(b} An uncountable subset of B clusters at some point of itself.

[c) An uncountable subset of B condenses at uncountably many paoints of

itz

{d) What about R™ instead of R?

(e) What about any compact metric space?

{f) What about any separable metric space?
[Hint: Review Exercise 126.]
Prove that ﬁ the Cauchy sequences in @ modulo the equivalence relation of
being co-Cauchy, is a Beld with respect to the natural arithmetic operations
defined on page 122, and that @ is naturally a subfield of Q.

5. Prove that the order on @ defined on page 122 is a bona fide order which agrees

with the standard order on 4.
Let M be the square [0, 1], and let aa, ba, bb, ab label its four quadrants - upper
right, upper left, lower left. and lower right.

(a) Define nested bisections of the square using this pattern repeatedly, and let
7% be a curve composed of line segments that visit the E*"-order quadrants
systematically. Let v = limg 7 be the resulting Peano curve A la the
Cantor Surjection Theorem.

(b) Compare 7 to the Peano curve f : I — I? directly constructed on pages
271- 274 of the second edition of Munkres' book Topology.

Let PP be a closed perfect subset of a separable complete metric space M. Prove
that each point of P is a condensation point of P. In symbols, P = P =
P=P*

Given a Cantor space M C B2, given a line segment [p, q] C R* with p,g € M,
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and given an € > (), prove that there exists a path A in the e-neighborhood of
[, g} that joins p to g and is disjoint from M. [Hint: Think of A as a bisector
of Af. From this bisection fact a dyadic dise partition of A can be constructed,
which leads to the proof that M is tame.]
1:39. To prove that Antoine's Necklace A is a Cantor set. you need to show that A
ia compact, perfect, nonempty, and totally disconnected.
(a) Do so. [Him: What is the diameter of any connected component of A",
and what does that lmply about A7
**(b} If. in the Antoine construction two linked solid tori are placed very cleverly
inside each larger solid torus, show that the intersection 4 = [JA" s a
Cantor set.
*140. Consider the Hilbert cube

H={{x1,23,...) €[, 1] : for each n € N we have |z,| < 1/2"}.

Prowe that H & compact with respect to the metric
dix,y)) = sup |xn — yul
n

where & = (ry). ¥ = (i) [Hint: Sequences of sequences.

Remark Although compact. i is infinite-dimensional and is homeomorphic
to no subset of B™.

141. Prove that the Hilbert cube is perfect and homeomorphic to its Cartesian

square, = H = H,
=EEI42, Assume that M is compact, nonempty, perfect, and bomeomorphic to its Carte-
sian square, M = M = M. Must A be homeomorphic to the Cantor set, the

Hilbert cube, or some combination of them?

143. A Peano space is a metric space A that is the continuous image of the unit
interval: There is a continuous surjection 7 : [0, 1] = M. Theorem T2 states the
amazing fact that the 2-disc is a Peano space. Prove that every Peano space is

(a) compact.
(b} nonempty.
(c) path-connected,

*{d} and locally path-connected, in the sense that for each p € M and each
neighborhood [ of p there is a smaller neighborhood V' of p such that any
two paints of V' can be joined by a path in £/,

*144. The converse to Exercise 143 is the Hahn-Mazurkiewicz Theorem. Assume
that a metric space M is A compact. nonempty. path-connected, and locally
path-connected. Use the Cantor Surjection Theorem Tl to show that M is a
Peano space. [The key is to make uniformly short paths to fill in the gaps of
0,1]% C]
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145, One of the famons theorems in plane topology is the Jordan Curve Theorem.
A Jordan curve .J is a homeomorph of the unit circle in the plane. (Eguiva-
lently it is f([a,b]) where f: [o.b] = B? is continuous, f{a) = f(b). and for no
other pair of distinet 5.4 € [a, b does f{s) equal f(t). It is also called & simple
closed curve.) The Jordan Curve Theorem asserts that B* 5 J consists of two
disjoint, conpected open sets, its inside and its ontside, and every path between
them must meet J. Prove the Jordan Curve Theorem for the cirele, the square.
the trisngle, and - if vou have coursge - every simple closesd polygon.

L46. The utility problem gives thres houses 10 20 3 o the plane and the three
utilities, Gas. Water. and Electricity. You are supposed to connect each house
tor the three utilitios without erossing utility lines. { The houses and utilities are
disjoint. )

{n) Use the Jordan curve theorem to show that there is no solution to the
utility problem in the plane.
*(b)} Show also that the utility problem cannot be solved on the 2-sphere 5%,
*() Show that the utility problem can be solved on the surface of the torus.
*(d) What about the surface of the Klein bortle?

%) Given utilities Uy, .... Uy and houses Hy, ..., H, located on a surface
with g handle=, hnd oecessary and sufficient conditions on m. e, g =0 that
the utility problem can be solved,

147, Lot M D a metric space and let K denote the clazs of nonempty commpact
siibsets of M. The r-npeighborhood of A € X s

MA={reM:ZacAanddira)<ri= U Ma.

me A

For A. B € X define
DIAB) =inf{r>0: AC M, B and B C M A}.

(a) Show that D is a wetric on X, (It is called the Hausdorff metrie and X
is called the hyperspace of M.
(b)) Denote by F the collection of finite nonempty subsets of M and prove that
F is dense in K. That is, given A € X and given ¢ > 0 show there exists
F & F such that IMA, F) < ¢,
*(e) If A is compact prove that X is compact,
(o) If M s conpected prove that K s connected,
**(e) If M is path-connected is X path-connected™?
(£ Do homeomorphic metric spaces have homeomorphic hyperspaces?

Remark The converse to [£), K(M) 2= X(N) = M = N is false. The
hyvperspace of every Peanc space is the Hilbert cube, This is a difficult
result but a good place to begin reading about hyperspaces i= Saim Nadler's
book Continuum Theary.
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**148. Start with a set § € R and successively take its closure, the complement of
its closure, the closure of that, and so on: 5, <l{S). (c}{5))%,.... Do the same
to 5% In total, how many distinet subsets of B can be produced this way?
In particular decide whether each chain S, el(5). ... consists of only finitely
many sets. For example, if S = @ then we get . R, &, @, R, R.... and
Q° R, 0 0 R R, ... for atotal of four sets.

**149. Consider the letter T.

{a) Prove that there is no way to place uncountably many copies of the letter
T disjointly in the plane. [Hint: First prove this when the unit square
replaces the plane.]

(b) Prove that there is no way to place uncountably many homeomorphic
copies of the letter T disjointly in the plane.

ir] For which other letters of the alphabet is this true?

(d) Let U be aset in B? formed like an umbrella: It is a disc with a perpendic-
ular segment attached to its center. Prove that uncountably many copies
of I cannot be placed disjointly in RS,

()] What if the perpendicular segment is attached to the boundary of the
dise?

**150. Let M be a complete, separable metrie space such as B™. Prove the Cupcake
Theorem: Each closed set K © M can be expressed uniguely as the disjoint
union of a countable set and a perfect closed =et,

CuP =K,

**151. Let M be an uncountable compact metric space.
(8} Prove that M comains a homeomorphic copy of the Cantor set. [Hint:
Imitate the construction of the standard Cantor set O]
(b} Infer that Cantor sets are nbiguitous. There is & continnous surjection
a ' — M and there i3 a continuous injection ¢ : C — AL,
(¢} Infer that every uncountable closed set 5 © R has #5 = #R, and hence
that the Comtinuum Hypothesis is valid for closed sets in R, [Hint: Cup-
cake and Exercise 112,
(d) Is the same true if Af is separable. uneountable, and complete?
**152. Write jingles at least as good as the following. Pay attention to the meter as

well as the rhyme.
When a set in the plane
is closed and bounded,
vl can always draw

A CUrve ﬂ.]"'l:l"l.'l.tll'.! it.
Peter Prituk
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If a clopen set can be detected,
Your metric space is disconnected.
David Owens

A coffee cup feeling quite dazed,
said to a donut, amazed,
an open surjective continuous injection.

You'd be plastic and I'd be glazed,

Norah Esty

Tis a most indisputable fact

If you want to make something compact
Make it bounded and closed

For you're totally hosed

If either condition vou lack.

Lest the reader infer an untruth

{Which I think would be highly uncouth)
| must hasten to add

There are sets to be had

Where the converse is false, fo'sooth.

Karla Westfahl

For ev'ry a and b in &
if there exists a path that's straight
from a to b and it's inside

then “5 must be convex,” we state,

Alex Wang
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Prelim Problems'

)

8.

1

Suppose that f: R™ — R satishes two conditions:
(i) For each compact set K, f(K) is compact.
(ii) For every nested decreasing sequence of compacts (K, ).

I[n -hlﬂll:l — n.f{h‘n}.

Prove that f is continuous.

Let X C R™ be compact and f : X — K be continnous., Given ¢ > 0, show
that there is a constant A such that for all r,y € X we have |f(z) — fly)]| <
Mz =yl +e.

. Consider f: R? — E. Assume that for each fixed . g = f{ro. ) is continnous

and for each fixed gy, r = f{x. ) is contimoous. Find such an f that is not
continnous.

. Let f: B* - R satisfy the following properties, For each fixed x; € R the

function y — flap. y) is continuons and for each fixed yw € B the function
r =+ flr, gy is continuous. Also assume that if A is any compact subset of B2
then f{K') 15 compact. Prove that F is continuous.

Let f(r.y) be a continious real-valued function defined on the unit square

[0.1] = [0,1]. Prove that

glz) = max{fir.y): py € [0.1]}

= continuon=,

. Let {Ui} be a cover of B™ by open sets. Prove that there is a cover {1} of B™

by open sets ¥y such that Vi C Uy and each compact subset of B™ is disjoint
from all but finitely many of the V.

A function f : [0, 1] — R is said to be upper semicontinuous if given x € [0, 1]
and ¢ > 0 there exists a § > 0 such that |y—x| < § implies that f(y) < f(x) +e.
Prove that an upper semicontinuous function on [0, 1] is bounded above and
attains its maximum value at some point p € [0, 1].

Prove that a continuons function f: B — R which sends open seta to open sets
must be monotonic.

Show that [, 1] cannot be written as a countably infinite union of disjoint closed
subintervals,

A connected component of a metric space W 15 a maximal connected subset
of M. Give an example of M C R having uncountably many connected com-
ponents. Can such a subset be open? Closed? Does vour answer change if R?
replaces B

YIhese are questions taken from the exam given to first-year math graduate students at 1.0,
Berkeley,
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11.

12,

14,

14.

Let 7 € B™ bw an open set. Suppose that the map h : U7 — K™ is a homeo-
morphism from U7 onto B™ which is uniformly continnous. Prove that 7 = BR™.
Let X be a nonempty connected set of real numbers. If every element of X is
rational prove that X lhas only one element.

Let A C R™ be compact, r € A. Let (x,) be a sequence in A such that every
comvergent ubsequence of (r,) converges to o,

{a) Prove that the sequence (1, ) converges.

(b) Give an example to show if A is not compact, the resalt in (a) s oot

necessarily true,

Assume that f: R — R is uniformly continuous. Prove that there are constants
A, B such that |f(z)| < A+ Blz| forall £ € R.

. Let h:[0.1) = R be a uniformly continuous function where [0, 1) is the half-

open interval, Prove that there is a unigue continuous map g : [0, 1] = R such
that g{x) = hix) for all r & [0,1).



Functions of a Real Variable

1 Differentiation
The function f : (a.b) =+ B is differentiable at r if

(1) Litm M -

t—r e

L

exists. This means L is a real oumber and for each ¢ = 0 there exists a 8 = 0 such
that f 0 < |f = x| < & then the differential quotient above differs from L by < e
The limit L i= the derivative of f at =, L = [{x). In caleulus language, Ar =1 —
ia the change in the independent variable r while Af = fi#] = f(r) is the resulting
change in the dependent variable y = fir). Diflerentiahility at o means that
af
i '
[z} = lm —.
Flz) Ar—0 A
We begin by reviewing the proofs of somwe standard calenlus facts.
1 The Rules of Differentiation
fa) Differentiabality implies confinuity.
{b) If f and g are differentiable at © then so is [+ g, the derivative being
(f+g)(x)= f'lx) + g'(x).
fe) If f and g are differentiable al ¢ then so is their product f - g, the derivative

being given by the Leibniz Formula

(f-gV ()= f'{x)-glx) + flx) - g'(2).

i) Springer International Publishing Switzerland 2015 145
C.C Pugh, Real Mathemabical Analysiz, Undergraduate Texts
in Mathematios, DOT 10,1007 /978-3-319-17771-7.3
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{d} The derivative of a constant is zern, ¢ = 0.
(e} If f and g are differentiable at r and g(z) # 0 then their ratio f/g s differen-

fiable at xr, the derivative being

IV _ £00)-0(2) = f2) - 9'(2)
{E){ r= glx)?

(f} If [ is differentiable at r and g is differentiable at y = f(r) then their composite
go [ iz differentiable at x, the derivative being given as the Chain Rule

(ge f){x) = g'() flz).

Proof (a) Continuity in the calculus notation amounts to the assertion that Af — 0
as Ax — 0, This is obvious: If the fraction A f/Ar tends to a finite limit while its
denominator tends to zero, then its numerator must also tend 1o zero.

(b) Since A{f + g) = Af + Ag, we have

Alf+g) _af Egg ' ;
Ax _ﬁ:+'..'t;r_r'ﬂ'r}+g“]

as Ar — 0.
() Since A(f-g) = Af - g{r + Ax) + fir)- Ag. continuity of g at r implies that

AlT.
D) - S e a4 1)L - f)ol@) + fla)d (@),
as Ax = 0.

(d) If ¢ is a constant then Ac = 0 and ¢ = 0.

(] Since
| _ glz}Af = fiz)aAg

the formula follows when we divide by Ax and take the limit.
(f} The shortest proof of the chain rule for y = f(r) is by cancellation:

ag _ 2zl

ﬂ ﬁya gll[y}frt‘r}-

A slight Haw is present: Ay may be zero when Ax is not. This is not a big problem.
Differentiability of g at y implies that
Ag

Y
ay—.ﬂy]w
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where o = a{Ay) = 0 as Ay =+ 0. Define ()] = 0. The formula

Ag = (g'(y) + o)Ay

holds for all small Ay, including Ay = 0. Continuity of f at x (which is true by (a))
implies that Af — 0 as Ar - (. Thus

ﬁy . r E.E —p !
=, = @ +e(anN) T = ¢ f(x)
as Ar = (), =

2 Corollary The dermvative of a polynomial ag + apx + +++ + a,r" ensts af every
r € R and equals ay + 2090 + - + nag "L,

Proof Immediate from the differentiation rules, O

A function f : (a,b) = R that is differentiable at each r € (a, b) is differentiable.

3 Mean Value Theorem A continuous function f : |a, bl — R that is differentiable
on the interval (o, b) has the mean value property: There exists a point & € (o, b)

stuech that

f(B) = fla) = f'(@){b - a).

4 Lemma If f: (0,b) = R is differentiable and achieves a minimum or marimum
at some 8 € (a,b) then f'(#) = 0.

Proof Assume that [ has a minimum at #. The derivative f(#) is the limit of the
differential quotient (f(t)— f(#))/(t— @) as t = 8. Since f(t) = f(#) for all ¢ € (a, b).
the differential quotient is nonnegative for ¢ > & and nonpositive for ¢ < #. Thus
F(#) 15 a limit of both nonnegative and nonpositive quantities, so f'(#) = 0. Similarly
f{#) =0 when f has a maximum at #. O

Proof of the Mean Value Theorem 5ee Figure 50, where
fib) — fia)

=i i3

b=a

i5 the slope of the secant of the graph of F. The function diz) = flr] = 5o —a) iz
continuous on |a, b and differentiable on (a.b). It has the same value, namely fla),
at T = a and r = b Since [0 b is compact & takes on mmaximum and minimom
values, and since it has the same value at both endpoints, ¢ has a maximum or a
minimum that occurs at an interior point # € (a.b). See Figure ). By Lemma 4 we

have ¢'(#) = 0 and f{b) — fla) = 'O}k — a). O



152 Functions of a Real Variable Chapter 3

Figure 60 o'(#) = (.

5 Corollary If [ is differentiable and | ()] < M for all 7 € (0. b) then [ satisfies
the yfr]iiﬂ:l' Lipxr'hii.‘. candition Joralll o€ (er, ) e have

[fit) = flo)| < M}t = x|
In particular, if f'(x) =0 for all x € (o, b) then f{r) s constant,
Proof |fit) — flx)l = |f(#)(1 — )| for some 8 between - and £, O

Remark The Mean Value Theorem and this corollary are the most important tools
i caleulis for making estinutes,

It is often convenient to deal with two functions simultaneously, and for that we
have the following result.

6 Ratio Mean Value Theorem Suppose that the functions [ and g are confinuoms
am an interval [a, b and differentiable on the interval (a.b). Then there 1s a @ € {a, b)
such that

Af ') = Ag- 19
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where Af = f(b) — fla) and &g = q(b) — gla). (If g{xr) = z, the Ratio Mean Value
Theorem becomes the ordinary Mean Value Theorem. )

Proof If Ag # 0 then the theorem states that for some & € (o, b) we have

af _116)
Ay o'(8)

This ratio expression is how to remember the theorem. The whole point here is that
f" and g' are evaluated at the same 8. The function

$(r) = Af-(glr) —gla)) — Ag-(fir) = fla))

is differentiable and its value at both endpoints e, b is 0. Since $ is continuous it
takes on a maximum and a minimum somewhere in the interval Ja, 4. Since & has
equal values at the endpoints of the interval, it muost take on a maximum or minimum
at some point § € (a, b); e, 8 £ a,b. Then $'(8) = 0 and Af - g'(#) = Ag - F'(#) as
claimed. 0

7 L'Hopital’s Rule If f and g are differentiable functions defined on an interval
(m,B), both of which tend to 0 at b, and if the matio of their derivatives f'(x)/g'(x)
tends to a finite imel L at b then flx)/glr) alse tends to L at b, (We assume that
glx), g'(x) #0.)

Rough Proof Let r € (a.b} tend to b. Imagine a point ¢ € (e b) tending to b
mch faster than x does, It is a kind of “advance guard® for x. Then fi{t)/ f(x) and
qlt) fgix) are as small as we wish, and bv the Ratio Mean Value Theorem there is a
8 e [z, 1) such that

fiz) _ fiz) =0 . flz)— fit) _ ['(6)
glx) glr)=0 glz)-glt) g8

The latter tends to L because # is sandwiched between r and ¢ as they tend to b

The symbol = means approximately equal. See Figure 61. O
| hghiyear I mile ——= =—]| inch ==
» .. *
i x - | b

Figure 61 r and { escort # toward b,
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Complete Proof Given ¢ > 0 we must find 4 > 0 such that if |xr = & < 4 then
|fix)/glx) — L| < e. Since f{r)/g'(x) tends to L as r tends to b there does exist
# = 0 such that if r € (b— 4, b) then

f@) | .
e R )
For each x € (b - 4, b) determine a point # € (b— 4, b} which is so near to b that
glz)%e
O+ < SR+ e
o)) < 2

Since f(1) and g(t) tend to 0 as ¢ tends to b, and since glr) # 0 such a t exists. i
depends on x, of course, By this choice of ¢ and the Ratio Mean Value Theorem we
have

| fx) L‘ _ |#@) _ f@) - 1) | f=) - 00 _L|

|g(x) ~ |glz)  glx)-g(t) * glx) - glt)
glz)f(t) = fl=lg(t)| | F(&) _ L‘ i
a(x)(glx) - git)) g'(#) '
which completes the proof that f{z)/g(z) = L asr = b. O

It is clear that L'Hapital's Rule holds equally well as r tends to b or to a. It
is also true that it holds when r tends to £o0 or when [ and g tend to +oc. See
Exercises 6 and 7.

From now on feel free to use L'Hopital's Rule!

B Theorem If f s differentiable on (a,b) then its derivative function f'(z) has the
intermediate value property.

Diferentiability of f implies continuity of f, and so the Intermediate Value The-
orem from Chapter 2 applies to f and states that f takes on all intermediate values,
but this is not what Theorem# is about, Not at all. Theorem®8 concerns ' not
f. The function f' can well be discontinuous, but nevertheless it too takes on all
intermediate values. In a clear abuse of language, functions like [’ possessing the
intermediate value property are called Darboux continuous, even when they are
discontinuous! Darboux was the first to realize how badly discontinuous a derivative
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function can be. Despite the fact that [ has the intermediate value property, it can
be discontinuwous at almost every point of |e, b, Strangely enough, however, f* can-
not be discontinuous at every point. If f is differentiable. f' must be continuous at
a dense. thick set of points. See Exercise 25 and the next section for the definitions.

Proof of Theorem 8 Suppose that a < 1y < 72 < b and
a=fin) <7< flra) =8
We must find # € (), x3) such that f'(#) = 7.

Choose a small h. 0 < h < 9 — 1y, and draw the secant segment o{r) between
the points (z. f(r)) and (x4 h, fizr 4+ h)) on the graph of f. Slide r from ) to g = h
continuously, This is the sliding secant method. See Figure G2.

L] 1
ﬂ L] L] L L] i ¥ b
L - - - . I
o on+h X x+h xn-h 1

Figure 62 The sliding secant
When h is small enough. slope a(xr)) = f'(x;) and slope a{zy— h) = f{rs). Thus

slope oz} < ¥ < slope o{xs = h).

Continuity of f implies that the slope of o(x) depends continuously on x, so by the
Intermediate Value Theorem for continuous functions there is an r € (ry.oxp = h)

with slope o(x) = %. The Mean Value Theorem then gives a # € (2, r + h) such that

f'(8) =". |
9 Corollary The derivative of a differentiable function never has a jump disconti-
el

Proof Near a jump, a function omits intermediate values, O
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Pathological Examples
Nonjump discomtinuities of f* may verv well oceur. The function

7 1
r sin— ifr>1
Flx) = x
i if + <0
is differentiable everywhere. even at r = (), where f'[00) = 0. Its derivative function
foor o = 01 is |

fir) = 2rsin— — cos—,
rI I

which oscillates more and more rapidly with amplitude approximately 1 as ¢ — (0.
Since f'{x) A 0as r — 0, J'is discontinnous a1 r = 0. Figure 63 shows why [ is
differentiable at r = 0 and has {0} = . Although the graph cscillates wildly a1 0,
it does so between the envelopes y = £r°, and any curve between these envelopes is

tangent to the r-axis at the origin, Study this example. Figure 63,

001
I
0.008
03
0 0
=
=L
! 0.05 0.1 0 .08 0.1

Figure 63 The graphs of the function y = r“sin{l /) and its envelopes
i = 47 and the ;.[!'.u_[l]'l of its derivative

A similar but worse example i illustrated in Figure 64, where

P Higin— ifr>0
g ) = I

il ifr =0
Its derivative at r = is g'(()) = 0, while at r # 0 its derivative is
3 | 1 |

=/ Tsin = — 008

] "
i B il -
r T r

which oscillates with increasing frequency and anbounded amplitnde as & — (0 i

cause 1/ blows up at ¢ = (L
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W2zin(1/x). its envelopes y = 202, and its

Figure 84 The function y = r

derivarive.

Higher Derivatives
The derivative of ', if it exists, is the second derivative of f,
. . o . i) —1'(x)
(Y (x) = Mlx) = lim f—
L) (x) = fm 5= =

Higher derivatives are defined inductively and written f'"' = (f'"=YY. If fi"l{x)
exists then f is r*P-order differentiable at r. If f'"'(r) exists for each r € (a.b)
then f is r*P-order differentiable. If f17/(x) exists for all r and all r then f
i= infinitely differentiable or smooth. The zeroth derivative of f is f itself,
FO ) = flx).

10 Theorem If f is r''-order differentiable and r > 1 then f7~1(r) is a continuous
SJunction of x € (o, b].

Proof Differentiability implies continuity and f'"~'{x) is differentiable. |

11 Corollary A smooth function is continuous. Each dermvative of a smooth fune-
tion is smooth and hence continuows,

Proof Obwious from the definition of smoothness and Theorem 101 ]

Smoothness Classes

If f is differentinble and its derivative fanetion f'(x) is a continuous function of
then f is continuously differentiable and we say that f is of class €. If f is r*h
order differentiable and fU"'(x) is a continuous function of r then f is continuously
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rth.order differentiable and we say that f is of class €. If f is smooth then by
the preceding corollary it is of class O for all finite r and we say that f is of class
€. To round out the notation we say that a continuous function is of class €9,

Thinking of C" as the set of fanctions of class C7. we have the regularity hier-

archy

gl ) e B B o [ 2 P
rel

Each inclusion €7 > C™*! is proper. There exist continuous functions that are not
of class C', €' functions that are not of class C2, and so on. For example.

flz) = |z is of class C" but not of class C',
flz) = =z|z| isof class C! but not of elass €2,
flz) = |z|* isof class C? but not of class 7,

Analytic Functions
A funetion that can be expressed locally as a convergent power series is analytic.
More precizely, the function f : (a. b} = B is analytic if for each € (a, b), there exist

A pOwer series
5
E a.h

and a 6 > 0 such that if || < § then the series converges and

s

fle+h) =Y a b

F=fl

The concept of series convergence will be discussed further in Section 3 and Chapter 4.
Among other things we show in Section2 of Chapterd that analytic functions are

smooth, and if f(x+ k) =3 a.h" then
i)z} = rla,.

This gives uniqueness of the power series expression of a function: if two power
series express the same function [ at & then they have identical coefficients, namely
Frz) /!, See Exercise 4.38 for a stronger tvpe of unigueness, namely the identity

theorem for analvtic functions.

We write O for the class of analytic functions.
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A Nonanalytic Smooth Function

The fact that smooth functions need not be analytic is somewhat surprising; i.e..
C* is a proper subset of O A standard example is

- et fr=0
o if < 0.

Itz smoothness 15 left as an exercise o the use of L'Hopital's Rule and induction,
Exercise 17. At & = 0 the graph of ¢(x) is infinitely tangent to the r-axis. Every
derivative ¢ (0} = 0. See Figure 6.

04
038 |
03 r
028 |
0.2

01s E

005

L] 0.2 04 06 LR 1

[ 3

Figure 65 The graph of o[z) = ¢V

It follows that ¢fx) is not analytic. For if it were then it could be expressed near
x = ) as a convergent series e(h) = ¥ a h", and a, = /7{0) /7). Thus a, = 0 for each
r, and the series converges to zero, whereas ofh) is different from zero when b > (.
Although not analytic at x = 0, ¢{x) is analytic elsewhere. See also Exercise 4.37,

Taylor Approximation

The v"-order Taylor polynomial of an r'"-order differentiable function f at r

{
(4.

o {rly. r k)
Plh) = flr)+ Fllz)h + %h*+_” +%h' - Ef M[T:lhk_
kel
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The coefficients f*!{z)/k) are constants, the variable is i. Differentiation of P with
respect to b at b = 0 gives

Py = fix)

(1) flir)

PrHDY = FH=).

12 Taylor Approximation Theorem Assume that f o (a.b) = B is r'" ander
differentiable at x. Then

fa} P apprarimates [ to order r al r in the sense that the Taylor remainder
R{h) = flzr+ h) = P(k)

is ' order flat at h = 0; f.e., BB/ = 0 as h = 0.

() The Taglor polynomial 15 the only polynomial of degree < ¢ unth this approsx-
mation properiy,

{e) If, in addition, f is (r+1)"-order differentiable on (a, b) then for some 8 between

r oand 4+ bk iee heve
£rig) o

Rlh) =

Remark (c] is the Lagrange form of the remainder. 1f [f71(8)| < Af for all

f#f & (a,b) then

Mt
Hl::j-'} = m.

an estimate that is valid uniformly with respect to > and >+ b in (2, b). whereas (a) is
only an infinitesimal pointwise estimate. (f course (¢) requires stronger hyvpot heses
than {a).

Proof (a) The first r derivatives of R(&) exist and equal 0 at h =0, If & = 0 then
repeated applications of the Mean Value Theorem give

Rih) = RIM -0 = W{#)h = (R(6)-00h = R'(62)6,h
= oo o= ROV W0yl Bk

where D B < oon Sl < . This

R _ V8 a.. 0k
hr

Rr-4(g,_)—0
1

=

‘ Rih)

e ‘_’U
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as o =0, If b < 0 the same is true with < #) < oo By < (L

(b) If Q(h} is a polynomial of degree < r, @ # P, then @ — I is not e order
Hat at b =0, so f{r+ h) — Q(h) cannot be #*"-order flat either.

() Fix h = 0 and define

Rih) gl

hr+l

g(t) = flr +¢)— P(t) - ¢+l = R(t) - Rih)

lhr'r|

for 0 < t < h. Note that since P(t) is a polynomial of degree v, PU () = 0 for all
t, and

: I
ylr+|.ll:!.:| iy f‘:r+“{‘f + f} = I]!.ff_:?
Also, g(0) = g'(0) = --- = g'"'(0) = 0. and g{h) = R(k) — R(k]) = 0. Since g =10

at O and h, the Mean Value Theorem gives a t; € (0, h) such that g'(#;) = 0. Since
g'(0) and g'(#;) = 0, the Mean Value Theorem gives a tz € (0,8 ) such that g'(tz) = 0.
Continuing, we get a sequence 1 >tz > -+ > tpoy > 0 such that g™{tg) = 0. The
{r+ 1" equation, g'" " (t. ;1) = 0, implies that

R(k)

fir=l”

0= fr* Vet b)) = (r+ 1)

Thus. # = = + t.;; makes the equation in (¢} true. If A < 0 the argunent is
symmetric. a

13 Corollary For cach r € M the smooth nonaralytic function e(r) Haiuﬁrﬂﬁinh elh)/h"
e .

Proof Obvious from the theorem and the fact that !/} = 0 for all r. O

The Taylor series at r of a sinooth function [ is the infinite Taylor polynomial

Tih="%" %h*.
r=0 g

In ealeulus, yvou compute the Tavlor series of functions such as sinr, arctanr. %,
etc. These functions are analytic: Their Taylor series converge and express them as
power series. In general, however. the Taylor series of a sinooth function need not
converge to the function. and in fact it may fail to converge at all. The function
e(r) is an example of the first phenomenon. Its Taylor series at r = 0 converges, but
gives the wrong answer, Examples of divergent and totallv divergent Taylor series
are indicated in Exercise 4.37.
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The convergence of a Taylor series is related to how quickly the r** derivative
grows (in magnitude) as r — oo, In Section® of Chapter 4 you will find necessary
and sufficient conditions on the growth rate that determine whether a smooth function
is analytic.

Inverse Functions

A strictly monotone continmous function f @ (a,b) —+ R bijects {(a, §) onto some
interval {¢,d) where ¢ = limy_, f{#) and d = lim;_p in the increasing case. (We
permit ¢ or d to be infinite.) It is & homeomorphism (a, b = (e, d) and its inverse
function f=' : {e,d) = (0.b) is also a homeomorphism. These facts were proved in
Chapter 2.

Does differentiability of f imply differentiability of f=17 If f* # 0 the answer is
“yes," Keep in mind, however, the function f: 7~ 7%, It shows that differentiability
of ! fails when f{z) = 0. For the inverse function is y — '3, which is not
differentiable at y = 0.

14 Inverse Function Theorem in dimension 1 If f © (a,b) — (e, d) is a differ
entiable surjection and f'(z) is never zero then [ is a homeomorphism. Its inverse
is differentioble and its derivative at y € (¢, d) is

SR 1

(7)) = o7y

Proof If f' is never zero then by the intermediate value property of derivatives, it
is either always positive or always negative. We assume for all r that f'{z) > 0. If
a < 8 < < bthen by the Mean Value Theorem there exists 8 € (s.¢) such that
fith— fis) = f(#)(t = 8) > 0. Thus f is strictly monotone. Differentiability implies
continuity, so f is a homeomorphism (a. b) = (e d). To check differentiability of §~
at y € (. d), define

r=f""y) and Ax=f"'(y+Ay)-a
Then y = f(r) and Ay = flr+ Azx)— fr=Af, Thus

AF= Ny AR ="My As 1 1

Ay Ay -~ Ay Ay/Azr  AfjAr

Since [ is a homeomorphism, Axr — () if and only if Ay — 0, so the limit of Af " /Ay
exists as Ay — 0 and equals 1/f'(x) = 1/f & f~'{y). O
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A longer but more geometric proof of the one-dimensional inverse function theo-
rem can be done in two steps.
(i) A Rnction is differentiable if and only if its graph is differentiable.
(1) The graph of j"'l is the reflection of the graph of [ across the diagonal, and is
thus differentiable.

See Figure 66,

Figure 66 A picture proof of the inverse function theorem in R

If a homeomorphism f and its inverse are both of class C7, ¢ > 1, then [ isa C7
diffeomorphism.

15 Corollary If f : (a.b) = (c.d) is a homeomorphism of class C7. 1 < r < o0, and
for all x € (a, ) we have f'{x) # 0 then [ is a C" diffeomorphism.

Proof If r = 1, the formula {f~'Y(y) = 1/ o f~)(y) implies that (f~')(y) is
continuous, so f is a O diffeomorphism. The Rules of Differentiation and induction
on r > 2 complete the proof. O
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The corollary remains true for analytic functions — the inverse of an analytic
function with nowvanishing derivative is analytic. The generalization of the inverse

function theorem to higher dimensions is a principal goal of Chapter 5.

2 Riemann Integration

Let f:[a b = R be given. Intuitively, the integral of f is the area under its graph;
i, for f 2 0 we have

fi
j flz)dr = areall
where U is the undergraph of f.
U={(ryl:a<c<h and 0 <y < flz)}.

The precise definition involves approsimation. A partition pair consists of two finite

sets of points P, T © [u, b] where P = {xp,... Iyt and T = {t).....15} are imterlaced
A=

d=mp<hErnshsas Sty <xy,=0h
We assume the points ry, ... .. ry are distinct, The Riemann sum corresponding to
LET &

R(f.P.T)= EI{I-JJI. = flt1)Ar + flta)dxa + ... + fltu) A2y

i=]
where Ax; = x; — ;. The Riemann sum R is the area of rectangles which approxi-
mate the area under the graph of J. See Figure 67. Think of the points ¢; as sample
points. We sample the value of the function f at ¢,

The mesh of the partition P is the length of the largest subinterval [z, 5. A
partition with large mesh is coarse: one with small mesh is fine. In general, the Buer
the better, A real number T is the Riemann integral of f over [a.b] if it satishes
the following approximation eondition:

%e = 00 36 > ) such that if P, T is any partition pair then
meshP<d = |R=[|<¢

where & = Rif, P.T). If such an [ exists it is unique. we denote it as

ﬁf[J']d.:r:fz lim R(f.P.T),
a 0

miesh =

and we gay that [ is Riemann integrable with Ricmann integral [,



=
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fir)

a Kia & X% »

Figure 67 The area of the strip is f(8 )&y,

16 Theorem [If f is Riemann milegrable then of 5 bounded,

Proof Suppose not. Let [ = J':’ flr)dr. There is some 4 > 0 such that for all
partition pairs with mesh P < 4. we have | = f| < 1. Fix such a partition pair
P={m..., ), T={t),....ta}. If f is unbounded on |, # then there is also a
subinterval [y, ., z;,| on which it is unhounded. Choose a new set T = {#5, ..., ¢}

with #] = #; for all i # iy and choose £ such that
|j||":|:l i .-irl::'l']l':i'p'u - "!

This is possible since the supremum of {|fif)] : rio-1 < ¢ < 5,} s c. Let R' =
R(f,.P.T". Then |R - R'| > 2. contrary to the fact that both R and R differ from
[ by < 1. O

Let R denote the set of all functions that are Riemann integrable over [a. b

17 Theorem (Linearity of the Integral)

fa) R is a vector space and f — _||::"_.|'I.rfld.r is a finear map R — R.
(&) The constant funcfion hir) = k is integrable and its integral 18 kb — a).
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Proof (a) Riemann sums behave naturally under linear combination:
R(f+cg, P.T)= R{f.P.T) + cRig, P.T).

and it follows that their limits, as mesh P — 0, give the expected formula

b &
/‘h_f'[.r]-rcg[r]d::f _fl.’r!lr.f:+:7f glx)dr.
] i L]

(b} Every Riemann sum for the constant function h{x) = k is k(b — a). so its integral
equals this number too. O

18 Theorem (Monotonicity of the Integral) [f f.g € R and [ < g then

i &
[_,I"{.r:ldr = f glzr)dr.

Proof For each partition pair P, T, we have R(f, P.T) < Rig. P.T). O
19 Corollary If f € R and |f]| < A then |j'unl Hx)dz| < M(b - a).

Proof By Theorem 17. the constant functions £M are integrable. By Theorem 15,
~M < fir) < M implies that

~M(b—a) < ffir}ir < M(b-a).

Darboux Integrability

The lower sum and upper sum of a function f: [a, b = [=M, M| with respect
to a partition P of [a, b are

rn

i}
Lif, P} = ¥ mihz; and U(f.P) = Y Mz,
i=l

where
mi = inf{f(t):zi1 <t <5} My = sup{f(t) i zij_y £t € 54}.
We assume [ is bounded in order to be sure that m; and M, are real numbers. Clearly

Lif.P) < R{f.P.T) < U{(f.P)
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— b

?7?

i iy F; b

lower sum

il Ti—1 o ]

Figure 68 The upper sum. a Riemann sum. and the lower sum

for all partition pairs P, T. See Figure G&.

The lower integral and upper integral of f over [a,b] are

I = supL{f.P} and T = i.JIIJII'f."[f.I"fI.
F.'

P ranges over all partitions of |a, b when we take the supremum and infimum. If the
lower and upper integrals of f are equal, = T, then f is Darboux integrable and
their common value is its Darboux integral.

20 Theorem Riemann integrability 5 eguivalent to Darbouwr imtegrability, and ahen

it function is integrable, ils three integrals - lower, upper, and Riemann - are equal.
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To prove Theorem 20 it is convenient to refine a partition P by sdding more
partition points. The partition ™ refines P if P o P.

Suppose first that P = P U {w} where w € (z4-1.13,). The lower sums for
P and P are the same except that m, Axy in L{f, P) splits into two terms in
Lif, P'}. The sum of the two terms is at least as large as m;, Ax,,. For the infimum
of f over the intervals [, w] and [w, 75,] is ot least as large as myp. Similarly,
UL, P < Ul f, P). See Figure 69,

Hepetition continues the pattern and we formalize it as the

Refinement Principle Refining a partition causes the lower sum fo imerease and
the wpper sum o decrease.

' e .
4 T O 5 30 (B R T 4
|| M, Ax,
"'J,ﬂ'"h = i B
| I‘ |
1:|‘..| L I:L Ihl W rhl
lower . refimed lower refined upper : upsper
sipmmand stfmdmanid sumrmand summand

Figure 69 Refinement increases [ oand decresses 17

The common refinement P° of two partitions P, P of [a, b is
P'=PUF,.
Acrording to the Refinement Principle we have
Lif.P) < L{f.PY < U(f.PY < U(f. P

We conclude that each lower sum is less than or equal to each upper sum, the lower

integral is less than or equal to the upper, and thus

(2) A bounded funetion f: la, 8] = B is Darbonx integrable

if and only if ¥e = 00 3P such that UU(f, P) = L{f. P} < e
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Proof of Theorem 19 Let f: [0, b] — B. We assert that f is Riewmann integrable
if and only if it is Darboux integrable. One direction is eagy: Riemann = Darboux.
Riemann integrability implies that f is bounded and that for each £ > 0 there exists
a d > 0 such that if P is any partition with mesh P < 8 then

£

4

where B = Rif, P.T) and [ is the Riemann integral of f. Fix such a partition P and
choose a set of sample polnts T = {#;} such that f(t;) is so near m; that

|[R=1T| <

R(f.P.T) - L(f.P) < 2.

(It is enough to choose #; € |xi_y, 2] such that f(#,) — m; < €/d(b - a).] Choose a
second set of sample points T = {#} =0 that

Ulf.P) - Rif. P.T) < %
Both R = R{f, P,T) and ' = R({f, P.T") differ from [ by < ¢/4. Thus
Uml = (U=-R)+{(F=-DN+{T-M+(R=-L) <

from which (2) gives Darboux integrability. Since [, J. T are fixed numbers that
belong to the interval [L.U] of length e, and ¢ is arbitrary, the e-prineiple implies
that

[=F=T

which completes the proof that f is Darboux integrable and that the lower, upper,
and Riemann integrals are equal.

Next, we assume Darboux integrability and prove Riemann integrability, (The
proof is messier because checking Riemann integrability requires that we look at all
fine partitions P. not just at those for which L7 = L is small.) Darboux integrability
implies that f is bounded, say f : [a,b] = [-M, M|. By (2) we know that for each
¢ = (I there is a partition Py such that

U| = L; < .E—j
where Ly = L{f. P) and Uy = U(f, P). Fix
&

= m—

Gy A

where ny is the number of Fi-intervals, and consider a partition P with mesh P < 4.
Fix a set T of sample points for P. We claim that the Riemann sum R(f, P.T) for
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every such partition pair P, T differs from the Darboux integral T by less than e
Then. by the e-principle. f s Riemann integrable and its Riemann integral is I.

According to the Refinement Principle. the common refinement P* = P, U P has
LsL*stU* sl

where L* = L{J, P*) and U'* = U(f, P*). Hence U™ — L* < /3.

Write P = {x;} and P*= {.rj‘} for0<i<mand 0 <j<n® Since P* refines P
by adjoining Py to P, we have

n o= !'!t < m4mny.

There are only ny + 1 points of P two of which are the endpoints a and &, which leaves
only ny —1 points of P that might “contaminate” P-intervals. See Figure 70. Except

-
RN, O — S
L]
i
i
L]
[]

L
M_lg = J'IL- o E
L
L ]
1
[ ]
1
| ]
]
L ]
M} |
]
n
]
. » l * ]
N - N = El
Th-1 = Ty e =% Ti-1=Tjq F Fi=mIn

Figure 70 |71, 7:] is both a P- and a P*-interval. The point &} belongs
to P*% P and “contaminates” the P-interval [r_;, x;], splitting it into
[zi-1, 7] and [2],2]. Only a few P-intervals get contaminated,

for these contaminated P-intervals, each of length < 4, the sums U = 3~ MAr; and
U% = 3 M Ax] are identical. Their difference is the sum over the contaminated
P-intervals, of which there are fewer than ny. The contaminated differences M; = A J"

and M; — M, are at worst 2M in magnitude. Thus

- ind A Wy E.
E [ < 2 fﬂ 1 e -
Si]‘]lilﬂ.ﬂ,\-. L': == Ll = fll'll:i T].Ulﬁl

UmL=(U=U"+(U*=L")+([L*=L) <.
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Since I and R = R{f, P,T) both belong to [L,U]. an interval of length < ¢, we get
|/ — I < ¢. Therefore f is Riemann integrable and its Riemann integral equals the
Darboux integral T, O

According to Theorem 20 and (2) we get

21 Riemann's Integrability Criterion

A bounded function s Riemann inteqrable if and only of
¥e = 0 AP such that U(f. P) = L(f. P) < ¢.

Example Every continuous function f : [a, 8] — R is Riemann integrable, (Sec
also Corollary 24 to the Riemann-Lebesgue Theorem, helow.) Since [a, b is compact
and f 15 continuous, fis uniformly eontinuons. See Theorem 42 in Chapter 2, Lt
¢ > ) be given. Uniform continuity provides a 4 > 0 such that if t — s8] < 4 then
[f(th=fis)| < e/2{b~a). Choose any partition I with mesh P < 4. On each partition
Interval [x;_1, x;]. we have M —my < ¢/(b—a). Thus

L [ ]
| - = M, = i i i = .
=L Llf f; — my Ay < “J_”:I}_.ﬁ.r ¢

=]

By Riemann's Integrability Criterion f is Riemann integrahble.

Example The characteristic function (or indicator function) of a set £ C
E. xg. takes value 1 at points of £ and value 0 at points of E°. See Figure71.
Some characteristic functions are Riemann integrable, while others aren't. Riemann's

1l

Figure T1 The region below the graph of a characteristic function

Integrahility Criterion implies that the characteristic function of an interval {including
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—

the degenerate case that the interval is a point) is Riemann integrable, The integral
of Xy 18 b—a. A step function is a finite sum of constants times characteristic
functions of intervals and is therefore Riemann integrable. A step function is a special
tvpe of piecewise continuous function. ie.. a function that is continuous except
at finitely many points. See Figure 72, Bounded piecewise continuous functions are
Riemann integrable. See Corollary 25 below,

N

L3 —=

Figure T2 The graphs of a piecewise continuous function and a step
funetion.

Example The characteristic function of § is not integrable on [a, 5. It is defined as
Xglr) =1 when x €  and xgl(r) = 0 when r € Q. See Figure 73, Every lower sum

i h a ]
Figure T3 The graph of x5 amd the region below its graph
L{xg. P} s 0 and every upper sum is b — a. By Riemann's Integrability Criterion,

kg is not integrable. Note that X is discontinuous at every point, not merely at
ratiomal points.
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The fact that Xg fails to be Riemann integrable is actually a failing of Riemann
integration theory, for the function xg is fairly tame. Its integral ought to exist and
it ought to be 0, becanse the undergraph is just countably many line segments of
bejght 1. and their area ought to be 0.

A handy consequence of Riemann’s Integrahility Criterion is the

22 Sandwich Principle f: |o. b = R is Riemann integrable of. given ¢ > 0, there
are functions g, h € R such that g < [ < h and _J':h[a'] —gix)dr <&,

Proof For any partition P it is clear that
Lig.P) < L{fP) < U(LP) < UhP).

Let ¢ > 0 be given. Since g and h are Riemann integrable, there is a & > 0 such
that if mesh P < 6 then their Darboux sums differ from their integrals by < €/3. and
Ln hir)—glr)dr < ¢/3. Thus

b
fy{:}r.l’.r—L{g.P){% xivd l-'[h.f*]—fbh[:]fir:: 5

from which it follows that

fy{:]-ria' - ;I <Lig. PYSL{f.PY<=U(f.P)=UhP) < fh[:]dr + %

[}

Then f: hir)dr - f:g{.r] dr = _f"ﬁ he)—gle)dr < /3 gives U(f,P)— L(f.P) < ¢
and Riemann’s Integrability Criterion implies that f is Riemann integrable. See
Figure 74.

Figure T4 The graphs of g and h sandwich the graph of f.

Example Let f: [0, 1] = Q be defined a5 f{p/q) = 1/ when p/g € Q is written in
lowest terms, and f{r) = 0 when x is irrational. This is the rational ruler function.
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o I H N A 1 L T T3 L

Figure 75 The graph of the rational ruler function and the region below
its graph

Note that f is discontinuous at every r € @@ and is continuous at every r € . See
Figure 75. It is Riemann integrable and its integral is zero. For, given ¢ > (), we can
consider the degenerate step function

1] ot herwise,

1 i i, =
- { g iEplgeQniDl]and lfg=¢
Then f is sandwiched between the Riemann imegrable functions g = 00 and
hlx) = € Xjg,(x) + s(x).

The integral of h — g is ¢, 80 the Sandwich Principle implies that f € R.

Example Zeno's staircase function Z(x) = 1/2 on the first half of [0, 1], Z(r) =
3/4 on the next quarter of [0, 1], and so on. See Figure 76. It is Riemann integrable
and its integral is 2/3. The function has infinitely many discontinuity points, one at
each point (2F - 1)/2%. In fact, every monotone function is Riemann integrable.! See
Corollary 26 below,

"I'o prove this directly is not hard. The key observation to make & that a monsotone function is not
mugch different from a continuous funciion, Tt has onby jump discontinuities, and only countably neaoy
of them; given any ¢ > 0, there are only finitely many at which the jump is > . See Exercise 111,
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Figure T8 Zeno's staircase

These examples raise a natural question:
Eractly which functions are Riemann integrable?

To give an answer to the question, and for many other applications, the following
concept is very useful. A set £ C R is a zero set if for each ¢ > () there is a
countable covering of Z by open Intervals (a;, b ) such that

=
Eﬁu - <
1=1

The sum of the series is the total length of the covering. Think of zero sets as
negligible. If a property holds for all points except those in a zero set then one says
that the property holds almost evervwhere, abbreviated “a.c.”

23 Riemann-Lebesgue Theorem A funchion f: [a b = R s Riemann integrable
if and only if it is bounded and its sef of discontinuity points s a zero sel,

The set D of discontinuity points is exactly what its name implies,
D= {x e [a. b : fis discontinuous at the point r}.

A [unction whose set of discontinuity points is a zero set is continuous alimost every-
where, The Riemann-Lebesgue Theorem states that a function is Riemann integrable
if and only if it is bounded and continuons almost evervwhere.
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Examples of zero sets are

(] Every subset of a zero set,
(b) Every finite set.
{r] Every countable union of zero sets,

id) Every countable set.

(2] The middle-thirds Cantor set.

(a) is clear. For if 2y € Z where Z is a zero set, and if ¢ > 0 is given, then
there is some open covering of Z by intervals whose total length ks < e but the sane
collection of intervals covers 7y, which shows that 2 is also a zero set.

(b) Let Z = {2y, ..., za} be a finite set and let ¢ > 0 be given. The intervals
(zi=¢/2n, zi+¢f2n). fori=1, ..., n, cover £ and have total length ¢. Therefore
Z is a zero set, In particular, the empty set and any single point are zero sets.

(c) This is a typical “e/2"-argument.” Let 2y, Zy. ... be a sequence of zero sets
and £ = JZ;. We claim that Z is a zero set. Let ¢ > 0 be given. The set Z; can be
covered by countably many intervals (e, by ) with total length 5 (k) —a;) < /2.
The set £3 can be covered by countably many intervals (0. ba) with total length
Yo (bia—aig) < /4. In general, the set Z; can be covered by countably many intervals

(g5 By ) with total length
3
T
By = = —_
g{ ij = fjj) = 2

Since the countable union of countable sets is countable, the collection of all the
intervals (a;;, by; ) is & countable covering of Z by open intervals, and the total length
of all these intervals is

=

Z(Zh;~n.,)ii;——F+ +3+

i=l
Thnz £ is a gero et and {c) is proved.
{d) This is implied by (b) and (c).

ie) Let ¢ > () be given and choose n € M such that 2" /3" < ¢. The middle-thirds
Cantor set O is contained inside 2% closed intervals of length 1/3%, say [y..... [,
Enlarge each closed interval I; to an open interval (o, b)) 2 T such that by —a; = /27,
[Since 1/3" < /2", and §; has length 1/3"%, this is possible,) The total length of these
2" intervals (o, bi) 15 €. Thus €' is a zero set.

It is nontrivial to prove that intervals are not zero sets, See Exercise 29,
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In the proof of the Riemann-Lebesgue Theorem. it is useful to focus on the “size”
of a discontinnity, A simple expression for this size is the oscillation of f at r.

osce( f) = limsup f{t) — l'nr'n inf f(#).
— =l
Equivalently.
osc:( f) = EIII.Ii]. diam f{[z = r, z+7]).

(Of course, r = (1.) It is clear that f is continnous at r if and only if osc (f) = 0. It
is also clear that if T is any interval containing = in its interior then

My—my 2 oscelf)

where My and my are the supremum and infimum of f(t) as ¢ varies in I. See
Figure 77.

Figure TT The oscillation of f at r

Proof of the Riemann-Lebesgue Theorem The set D of discontinuity points of
[oifa b = [=M, M) paturally filters itsell as the countable union

D= U D
k=l
where
Dy = {r € [a,b] : msee(f) = 1/k],
According to (a). (c) above, [} is a zero set if and only if each Dy is a zero set.

Assume that f is Riemann integrable and let ¢ > () and & € N be given. By
Theorem 20 there is a partition P such that

U—L=3 (M;—m)Ax; <elk.
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We say that a P-interval I; is “bad” if it contains a point of Dy in its interior.
A bad interval has a fairly big f-variation, namely M; = m; = 1/k. Since ' = L =
SM; = my)Ar; < e/k is small, there cannot be too many bad intervals. | This is the
key insight in the estimates.) More precisely.

LU= L=Y(M-m)ar, > E[M, — A 2 ¢ > ax

implies (by canceling the factor 1/& from both sides of the inequality) the sum of
the lengths of the bad intervals is < e. Thus, except for the finite set Dy, N P, Dg is
comtained in finitely many open intervals whose total length is < e, Since finite sets
are zero sets and ¢ is arbitrary, each [y is a zero set. Therefore D) = |J Dy, is a zero
set,

Conversely. assume that the discontinuity set D of f : [a.b] — [-M, M] is a zero
set. Let ¢ > 0 be given. By Riemann’s Integrability Criterion. to prove that f is
Riemann integrable it suffices to find P with U{f, P) — L({f. P) < ¢, Choose k € N

s that
¥

1

e s
Since 7 is a zero set, so is [}y, and hence there is a countable covering g of Dy by
open intervals J; = (a;, b)) with total length

[
2.bi=a < op

These J; are “had” intervals: The f-variation on each J; is 2 1/k. On the other
hand, for each r € [o, 5 % Dy there is an open interval I; containing = such that

sup{fi{t) : t€ L} -inf{f(t):te ;} < 1/k

These intervals I are a covering 8 of the good set Ja, b % Dy. The union V=40 4
is an open covering of [o,b]. Compactness of [a,b] implies that V has a Lebesgue
number A = .

Let P = {xp,..., Ty} be any partition of |a, b having mesh P < A, We claim that
U{f. P) = L{[f. P} < ¢. Each P-interval [; is contained wholly in some I; or wholly
in some J;. (This is what Lebesgue numbers are good for,) Set

J={ie{l,..., n}: I; is contained in some bad interval J;}.

See Figure 78. For some finite m, Jy U--- U Jy contains those P-intervals [, with
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small osciblation on Ax, bag oscallaton an Ax,

A, wih i & 1 Ax, withre J

Figure T8 The P-intervals [; with large oscillation have ¢« € J and are
potentially “had,”

ieJd. Then

=L = E{.‘H. — iy ) Ay

=1
= E[M. -y ) Ar + Zi.’lf, - m, ) Ax;
icd igd
< Y 2MAx +3 " Axifk
ied el
i
- M z i"_l —ay +ih—a :I_,I'J;'
Jm1
¥ F -
< E =t i = f
For the total length of the P-intervals f, contained in the bad intervals Jy, ..., Sm
is no greater than % b, — a;. As remarked at the outset, Riemann's Integrabilicy
Criterion then implies that § i= integrable. O

The Riemann-Lebesgue Theorem has many consequences. ten of which we list as
coarollaries.

24 Corollary Every continuous function is Hiemann infegrable, and s0 18 every
bourided pieceunse conbimuous funetion,
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Proof The discontinuity set of a continuous function is empty. and is therefore a
eero set, The discontinuity set of a piecewise continuous function is finite. and is
therefore also a zero set. A continuons function defined on a compact interval [o, b]
is bounded. The piecewise continnons function was assimed to be bounded. By the
Riemann-Lebesgue Theorem, both these unctions are Ricmann integrable, O

25 Corollary The characteristic function of 8§ C [a.b] 15 Riemann integrable if and
only if the boumdary of 8§ is a zero set,

Proof 05 is the discontinuity set of Yy, See also Exercise 5.44 O
26 Corollary Every monotone function s Riemann mtegrobie.

Proof The set of discontinuities of a monotone function [ [0, 4 = R is countable
angd therefore 15 a zero set. (See Exercise 131 Since f s monotone. its values Lie
in the interval between fla) and fib), 20 [ s bounded. By the Riemann-Lebesgue
Theorem, f is Riemann integralile, O

27 Corollary The product of Riemann integrable functions s Riemann infegble.

Proof Let f.g € R be given. Thev are bounded and their product is bounded. By
the Riemann-Lebesgue Theorem their discontinuity sets, [ f)] and D{g). are zero
sets, and D0 P U D) contains the discontinuity set of the product £ - 9. Sinee the
union of two 2ero sets is a 2ero set, the Riemann-Lebesgue Theorem implies that g
i5 Riemnann integrahble, O

28 Corollary If f : [a.b] = [c,d] is Riemann integrable and ¢ : [e.d] = R is

continuons, then the compesite @ o f s Roemann anfegrabie.

Proof The discontinuity set of ¢ o f is contained in the discontinuity set of f. and
therefore bs a zero set, Sinee ¢ is contineons and [e, d] is compact, ¢ o [ is bounded.

By the Riemann-Lebesgue Theorem, ¢ o [ is Riemann integrable, O
29 Corollary If f € R then |f| € R.

Proof The function ¢ : y = |y| is continuons, so r — |f{r]| is Riemann integrable
according to Corollary 28, O

30 Corollary Ifa < c<band f:lo.b] = R is Riemann integrable then its restrie-
fions fo |.-:-.r] afied |1'. b are Riemann integrable and

fr r ]
ff{.rj.-f.r:fﬂ.r}n’:+f flar)dr.
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Conversely, Hiemann integrabitily on . el and e, § implies Hiemann infegra bility on

row
i,

Proof See Figure 79, The union of the discontimeity sets for the restrictions of [ to

(1] i fa
Figure T8 Additivity of the integral is equivalent to additivity of area.

the subintervals i.'.'.-"_. :: H is the discontinuity =et of f. The latter is a zero set if and
only if the former two are, and so by the Riemane-Lebesgue Theorem, i Riemann

integrable if and only if its restnietions to o, of and e, b are,

Let Xig. and Y.y be the characteristic functions of [o.¢] and [e, 4], By Corol-
larv 24 thev are integrable, and by Corollary 27, a0 are the :.'|I-|-:|".l".- X1 4 ¢+ F and
Niei * F- Since

= Xae - J + Xieti - |

the addition formula follows from linearity of the integral. Theorem 17.

31 Corollary If f: [a. b = [0, M] is Riemann integrable and has integral zero then

) =10 al every contingity point r of f, Dhus fle)] =0 aimos! everyihers

Proof SUppOse Hot; Let xy be a continuity Jeinit of f and assume that Fleg) = (.
Then for some & = 0 and each x £ {rg — & rg + &) we have Flr) > flog)/2 The

e R 10

gla) =

L othierwise

satisfies ) < glr) = fir) evervwhere. See Fipure 8l By monotonicity of the integral,
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4
o

graph g

,___/'\ﬂ._

i -0 % -8 b

Figure B0 The shaded rectangle prevents the integral of f being zero.

Theorem 18, we have

& ]
.Ir['-l‘-n]'5-=/ H[I]d.il',";:f flx)de =10,

a contradiction. Henee f{r) = () at every continuity point. O

Corollary 28 and Exercises 33, 35, 47, 49 deal with the way that Riemann inte-
grahility behaves under composition. If f € R and ¢ is contimwous then ¢ o f € K.
although the composition in the other order. f o ¢. may fail to be integrable. Con-
tinuity is too weak a hyvpothesis for such a “change of variable.” See Exercise 35. In
particular, the composite of Riemann integrable functions may fail to be Riemann
integrable, See Exercize 33, However, we have the following resalt.

32 Corollary If f is Riemann integrable and ¢ is a homeomorphism whose inverse
satisfies a Lipschit: condition then f o4 is Riemann integrable.

Proof More precisely, we assuine that f: [a, 5 = R is Riemann integrable, | bijects
e, d] onto [a. b, (e} = a. ¢(d) = b, and for some constant K and all s, ¢ € [a, b we
have

o~ ) =~ t)] < Kls=t|

We then assert that f o is a Riemann integrable function [e. d] = R.

Let [ be the set of discontinuity points of f. Then D' = ¢~ YD) is the set of
discontinuity points of f oy, Let ¢ > 0 be given. There is an open covering of
[} by intervals (a;, b)) whose total length is < /K. The homeomorphic intervals
{a). b)) = ¢~ ay, b)) cover D' and have total length

Y th-a € Y Kiby-a) < e

Therefore LY is a zero set and by the Riemann-Lebesgue Theorem, for is integrable.
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33 Corollary If f € R and ¢ : [c,d] —= [o,b] 15 a C" diffeomorphism then f oy is

Riemann imtegrable,

Proof The hypothesis that ¢ is a ' diffeomorphism means that it is a continuously
differentiable homeomorphism whose inverse is also comtinuously differentiable, By
the Mean Value Theorem, for all s, f € |a, b] we have

lets) —w ()| = K|s—1t
where K = mmfh ({1 ']r[r]l By Corollary 32, f oo iz Riemann integrable, O
i la
Versions of the preceding theorem and corollary remsan true without the hy-

potheses that v bijects, The proofs are harder because ¢ can fold infinitely often.
See Exercises 42 and 44.

In caleulus vou learn that the derivative of the integral is the integrand, This we
t.l:l“l prl:l.'l..l'.

34 Fundamental Theorem of Calculus If f : [a.h] = R 15 Riemann infegrable
then s sndefinite mbegral

T
Flr) = [ Jrl.“ i
d

is a continuous function of r. The dertvative of F(r) erists and equals f(x) at every
poind roal which [ is continuons,

Proof #1 (Mwious fromm Figure 51, O

ff

F(r)

] T r+h b

Figure 81 Why does this picture give a prool of the Fundamental Theorem
of Caleulus?
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Proofl #2 Since f i Riemann integrable, it is bounded; say |f(x)] < M for all 2.
By Corollary 30 we have
W
f Flt) et
i

Therefore F b= contimions. Given ¢ > (0. choose § < ¢/M. and observe that
|y — x| < 4§ implies that |F{y) = Flx)| < M§ < e, In oxactly the same way, if [ is
contimous at © then

Fir+hk) - Fir) e

r+fh
: ; j; fitydt = fir)

Fly) = Flr)| =

< M|y — x|

as h — 0. For if
mixr. h) = nf{f(s): |5 = | < |h]} M{x. k) = sup{fis):|s— x| < |h]}

thien

] eih ] fr+h
mi{e. bl = Tlf e h)dl =< ,f_[ Fit)
1 JJ-J.l K
= ﬁf Mir.h)dt = Mz h).

When [ is continuous at o, el B} amd A e b)) converge to flo) as i — 0, sl =0
st the integral sandwiched between them.

r+h
%j Fitldt = flr).

(If h < O then 3 [ NOpi) e s interpreted as —5 Jooq Jlt)dt) m|

35 Corollary The derivative of an indefinate Riemann mtegral ersts almaost every-
where and equals the integrand almaost cveryuhers,

Proof Assumwe that f : [6.b = R s Riemann integrable and Flr) is its indefinite
integral. By the Riemann-Lebesgue Theorem, f is continuous almost evervwhere,
and by the Fundamental Theorem of Calenlus. F*{x) exists and equals f{r) wherever
T is continos, L]

A sevond version of the Fundamental Theorem of Calenlns coneerns antideriva-
tives, If one fanction s the derivative of another. the second function s an an-
tiderivative of the first.
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Note When G is an antiderivative of g : [, b] = R, we have
G'(x) = glx)

for every x € [, b, not merely for almost every = € [a, b].

36 Corollary Fvery continuous function has an anhderivative.

Proof Assume that [ : [a.b] = R is continmous. By the Fundamental Theorem of
Calculus. the indefinite integral F(r) has a derivative everywhere, and F'{z) = f(r)
everywhere. a

Some discontinuous functions have an antiderivative and others don’t. Surpris-
ingly, the wildly oscillating function

] ifr<0
flx) = n

sin— ifxr>0
& i

has an antiderivative, but the jump function

=] 0 <0
L A

does pot, See Exercise 40,

37 Antiderivative Theorem An anfiderivative of a Riemann integrable function,
if it erists, differs from the indefinide indegral by a constant.

Proof We assume that f : |o, % — R is Riemann integrable, that (7 is an antideriva-
tive of f. and we assert that for all = € [, b] we have

Gl =f:4l'[f}rif+£“,
u
where O is a constant. (In fact, C' = G{e).) Partition [a, x] as
a=Ip<F]<.,.<Ty=E
and choose t € [ri_y. r] such that

Glry) = Glre—) = G'(ti)Axy.
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Such a fp exists by the Mean Value Theorem applied to the differentiable function
r. Telescoping gives

Glz)=Gla) = D Glm)-Glny) = Y flt)dx,.

k=1 k=1

which s a Riemann sum for f on the interval [, z]. Since f is Riemann integrable,
the Riemann sum converges to F(x) as the mesh of the partition tends to zero. This
gives Glr) — Gla) = F(x) as claimed. O

38 Corollary Standard integral formulas, such as
b B3
2
ir= ;
£ rdr 3

Proof Every integral formula is actually a derivative formula. and the Antiderivative
Theorem converts derivative formulas to integral formulas. O

are alid,

Example The logarithm function is defined as the integral.
=1
log x :f = g,
j B

Since the integrand 1/t is well defined and contimwous when ¢ > 0, logx is well
defined and differentiable for x > 0. Its derivative is 1/r. By the way, as is standard
in post-valeulus vocabulary, log » refers to the natural logarithm, not to the base-10
logarithm. See also Excereise 16,

An antiderivative of f has G7(r) = f(x) everywhere, and differs from the indefinite
integral F{r) by a constant. But what if we assume instead that H'(x) = f(r)
alrmost everywhere? Should this not also imply H(x) differs from Fix) by a constam?
Surprisingly, the answer is “no.”

37 Theorem There erists a continuous function H : [, 1] -+ R whose derivative
erists and equals zero almost everywhere, bud which 15 nof constant.

Proof The counterexample is the Devil's staircase function. also called the Can-
tor function. Its graph is shown in Figure 82 and it is defined as follows,

Each € [0, 1] has a base-3 expansion {.wiwaws . .. |3 where

el i
r=Y 4
il
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Figure 82 The Devil's staircase

Each wy 15 0. 1, or 2. If x € C, the standard Cantor set constructed in Chapter 2,
then r has a unique expansion in which each w; equals 00 or 2. The function H sends
reCto

oo

Hix) = ¥ “?ﬁ

=]

H has equal values at the endpoints of the discarded gap intervals and so we extend
f to them by letting it be constant on each. This aceounts for the steps in its graph.

There are two things to check - the definition of H makes sense and H has the
properties asserted. Continuity of the map H : € = [0, 1] is simple. As we showed
in Chapter 2, ' is the nested intersection [JC7 where O is the disjoint union of 2"
intervals of length 1/3". the endpoints of which are fractions with denominator 3.
Between the intervals O in C% there are open discarded intervals of length > 1/3".
Let € = 0 be given, choose n with 1/2" < ¢, and take § = 1/3", If r.2’' € C have
lr=2'| < & = 1/3" then they lie in a common interval € in C". For the distance
between different intervals C,, Cy in C" is at least 1/3". Therefore the base-3
expansion of r and 7' agree for the first n terms. which implies |H(x) — H(z")| <
Yienet 1/2 < € and gives continuity on €.
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=

At stage n in the Cantor set construction we discard the apen middle third of an
interval C, = [f,, £, +1/3%. where the left endpoint is

L]

== [
I“ —— l :1—: == [.I"I‘[ LE - R f.rihi-
=1

and each o is 0 ar 20 Thas the discarded interval is
(ba + 1/37H), o +2/3") = ([ l}s. (a2)s) = (0T, (a2))

since 1/3%4 = E;”_,? 203, This expresses both endpoints base-3 using ouly the
numerals 0 and 2. Evaluating i on them gives equal value:

fo +1/3" Y = H{[.o0T)3) = 3 g B L
Hila +1/3"") = H{(.n 03)3) g o+ +J§-ﬁj
- 1

2!‘ an+1 7
=1 "

Hila + 2/ ) = H{(a2)) =

This verilies that the definition of H Deing constant on the discarded intervals makes
sense and completes the proof that H is continnous on [0, 1],

It is clear that H (0] = 0 and

= 22
e

FE ]

H{l) = H({(.Z)a) =

Thus A is surjective. If r.0' € C and r < 1’ then it is also clear that H(r) <
H{z'). which implies that H s nondecreasing on [0, 1], Since H is constant on the
complement of the Cantor set, its derivative exists and is zero almost evervwhere, O

A yet more pathological example is a stretly monotone, continnous fanetion S
whose derivative is almost everywhere zero. Its graph is a sort of Devil’s ski slope.
almost everywhere level but also evervwhere downhill, To construct J, start with H
and extend it to a function H K = & by setting Hir+n)=H(r)+nforalln e E
and all ¢ € [0, 1]. Then set

= H(3*x)
Jixr) = "'""il_*-'--.
k=0

The values of H(3%r) for r € [0,1] are < 3%, which is much smaller than the de

nominator 4%, Thus the series converges and J{r) is well defined. Ar:'nnl_lng tar
the Weierstrass M-test., proved in the next chapter, J is continuous. Since H{3*x)
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strictly increases for any pair of points at distance > 1/3 apart, and this fact is
preserved when we take sums. J strictly increases, The proof that J'iz) = 0 almost
everywhere requires deeper theory, See Exercise 48 on page 456,

Next. we justify two common methods of integration.

38 Integration by Substitution If f € R and g: [e.d] = [0.b] 5 a confinuously
differentiable bijection with ¢' > 0 (g is a OV diffeomorphism) then

B i
ff{y}n‘-ar - f Flglx))gf (x) d.

Proof The first integral exists by assumption. By Corollary 33 the composite fog is
Riemann integrable. Since g' is continuous. the second integral exists by Corollary 27,
To show that the two integrals are equal we resort again to Riemann sums. Let P
partition the interval [¢, d] as

C= ¥y L L e Dy =
and choose £y € [zy_y, 2] such that
glxe) — gler-1) = g'(te)Ary.

The Mean Value Theorem ensures that such g #, exists, Since g 15 a diffecmorphiso
we have a partition @ of the interval [a, b

C=p<y <-..<Yp=b

where 4 = glrg), and mesh P — 0 implies that mesh ) = (0. Set s = gify). This
gives two equal Riemann sums

Y flsdam = 3 flalte))g'(t) A

k=1 k=]

which converge to the integrals _Il':fly‘.u ey and _ﬁ“f[giﬂlg'{:‘]df as mesh P — 0. Sinee
the limits of equals are equal. the integrals are equal. U

Actually. it i sufficient to assume that ¢ € K.

39 Integration by Parts If f.g: |[a.b] = R are differentiable and f'.q' € R then

f fle)g (x)de = f(blg(h) — fla)gla) - f f{x)gle) de.



1K} Functions of a Real Variable Chapter 3

Proof Differentiability implie= continuity implies integrabilitv. so f.g & R, Sinee
the product of Riemann integrable functions is Riemann integrable, f'g and fq'
are Riemann integrable. By the Leibniz Rule. (fg)'(r) = flz)g'(z) + f(z)g(x)
everywhere. That is. fg is an antiderivative of Mg+ fg'. The Antiderivative Theorem
states that fg differs from the indefinite integral of f'g + fo' by a constant. That is,
for all t € [a. b] we have

f
fit)git) = fla)gla) = [ fiziglx) + flz)g'(r)dr
4

¢ t
f [le)gle)dr + [ flz)g'(x)dr.
i L

O

Setting ¢t = b gives the result.

Improper Integrals

Assume that [ : [a.b) = R is Riemann integrable when restricted to any closed
subinterval [a.¢| C |a,b). You may imagine that f{z) has some unpleasant behavior
as r =+ b, such as limsup__, | f(r)| = oo andfor b = oo, See Figure 83.

] -

Figure 83 The improper integral converges if and only if the total
undergraph area s Aoite,
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If the limit of ‘f; Jiz)dr exists (and is a real number) as ¢ — b then it is natural
to define it as the improper Riemann integral

ffl:r}-r.t: = Iimfcﬂ.r}d:.
7 c—+b J,

In order that the two-sided improper integral exists for a function f : (a.b}) = R
it is natural to fix some point m € (a.b) and require that both improper integrals
I, flz)de and J-.t flz)de exist. Their sum is the improper integral [ f(x)dz.
With some ingenuity vou can devise a function [ : B = K whose improper integral
_E'; Jiz) dir exists despite the fact that [ is unbounded at both £0c, See Exercise 55,

3 Series
A series is a formal sum ¥ ag where the terms ay, are real numbers, The n*™ partial
sum of the series is
Ag=ag+ap + a4 - 4.
The series converges to A if 4, = A as n — oo, and we write

=5

A = zuk.

k={}

A series that does not converge diverges. The basic question to ask about a series
i2: Does it converge or diverge?

For example. if A is a constant and |A| < 1 then the geometric series

ac
ZA* = 14 A4t A4,

kit
converges to 1/(1 — A). For its partial sums are
[ = An¥l
=

and A"*! — 0 as n — o0, On the other hand, if [A] > 1 then the series 5~ A* diverges,

Ap = 14+A+ A4+ A" =

Let % a, be a series. The Cauchy Convergence Criterion from Chapter 1 applied
to its sequence of partial sums yvields the CCC for series

z"" converges if and only if

2]

PILT

F=m

e = 0 3N such that mn> N = < E
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One immediate consequence of the CCC is that no finite number of terms affects
convergence of a series. Rather, it is the tail of the series, the terms ag with & large,
that determines convergence or divergence, Likewise, whether the series leads off
with a term of index & = 0 or k = 1, ete, is irrelevant.

A second consequence of the COC i that if a; does not converge to zero as
k — oo then ¥ ag does not converge. For Canchyness of the partial sum sequence
{An) implies that ay = Ay — Ay—; becomes small when n — oc, If |A| = 1 then
the geometric series 5 A% diverges since its terms do not converge to zero. The
harmonic series
E.l_ = ]+l+l+...
ot & 234
gives an example that a series can diverge even though its terms do tend to zero, See
below.

Series theory has a large number of convergence tests.  All boil down to the
following result,
40 Comparison Test [f a series 3 by dominates a series Y gy m the sense that
for all sufficiently large k we have |ag| < by then convergence of 3 by implies conver-
gence of ¥ ay.

Proof Given ¢ > 0, convergence of % by implies there is a large N such that for all
m,m > N we have 50 b < ¢, Thus

Zrn_ < Z|rh|.| < zll[l.l.-{f

B k= k=

and convergence of ¥ ay follows from the CCC. O

Example The series ¥ sin(k)/2* converges since it is dominated by the geometric
series ¥ 1,/2%,

A series 3 ay converges absolutely if 3 |ay| converges. The comparison test
shows that absolute convergence implies convergence. A series that converges bt pot
absolutely converges conditionally. That is. 3 ap converges and ¥ |ay| diverges.
See below.

Series and integrals are both infinite sums. You can imagine a series as an im-

proper integral in which the integration variable is an integer,

=
ZHI =fn[n'k.
i |

ksl
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More precisely, given a series ) ay, define f : [0, 0c) — R by setting
fl_ f=ap if k—1<cxr=<k

e Figuare 84

(F | 2 E] 4 ¥ k k=] h+2

Figure 84 The pictorial proof of the integral test

Then

=

Zu,, — ’{E flx)dr.

k=il ikt
The zeries converges if and only if the improper integral does, The natural interpre-
tation of this picture is thie

41 Integral Test Suppose Hhaf _j','lx Jfir)ds is a geen improper integral and 3" ay, is
i JHen SerLes.

fa) If lag| < fiz) for all sufficiently large k and all r € (k = 1. k) then convergener
.-.l_'lr the improper f.'l."l"_l_.'."l‘]ll .'.li'.'p.'.lr.h COMUETRETL .'_.l_l|r the series

{hi IJF Flrl| = ag J|r-".lr all hi‘a_ﬁ'll'.'r' ntly ||r:|."!';|-' b oagnd all r € j.':.'.‘. + 1} then AEETgETiT
of the tmproper wnlegral tnphes divergenee of the series |

Proof (a) For some large Ny and all N > Ny we have

2
flrider = [ flix)dzx,

N 5

Y | < f

ko Ny 41 o
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which is a finite real number. An inereasing, bounded sequence converges to a limit, so
the tail of the series ¥ |ag| converges and the whole series ¥ |ag| converges. Absolute
convergenee implies convergence.

The proof of (b) is left as Exercise 58, O
Example The p-series % 1/ converges when p > 1 and diverges when p < 1.
Case 1. p > 1. By the Fundamental Theorem of Calculus and differentiation.

&1 [ | 1
— i = =+
P 1-p p—1

as b — oo, The improper integral converges and dominates the p-series, which implies
convergence of the series by the integral test,

Case 2. p < 1. The pseries dominates the improper integral

b1 log & if- p=1
_-;_I-'dI = M-P_1 .
1 = if p<l.

As b =+ oo, these quantities hlow up. and the integral test implies divergence of the
series. When p = 1 we have the harmonie series. which we have just shown to diverge.

The exponential growth rate of the series 3~ ay, is

a = limsup v/ lag|.

k—m
Example ¥ o* has exponential growth rate o.
42 Root Test Let o be the exponential growth rate of a series 3 ap. If o < 1 then

the series converges, if o = 1 then the series diverges, and if o = 1 then the root test
s inconclusioe,

Proof If o < 1 then we fix a constant 3 with
o 3l

Then for all large k we have |ag|'* < 3; ie., |ax] < 3% which gives convergence of
¥ ag by comparison to the geometric series ¥ 35

If @ = 1. choose 3 with 1 < 3 < . Then |ag] = 3* for infinitely many k. Since
the terms oz do not converge to (), the series diverges.
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To show that the root test is inconclusive when o = 1, we must find two series,
one convergent and the other divergent, both having exponential growth rate o = 1.
The examples are peseries. We haie

L\ _ —plog(k) —ploglz) —p/z
v (F) a K N x T 9
by L'Hopital's Rule as & = r — sc. Therefore o = limg_ae(1/67)V% = 1 for all

p-series. Since the square series 5 1/k% converges and the harmonic series 5 1/%
diverges the oot test is inconclusive when o = 1. O

43 Ratio Test Let the ratio between successive terms of the series Y ap be rp =
sy faag), and set

limsupr, = p liminf ry = A
f E—— k—boo

If p < 1 then the semies converges, if A = 1 then the series diverges, and otherwise
the ratio test is inconelusive.,

Proof If p < 1. choose 3 with p < 3 < L. For all k > some K, |apefag] < 3; ie.,
jax| < 84K jag| = CA*

where C = 37 ®ay| is a constant. Convergence of ¥ ay, follows from comparison with
the geometric series Ef-“ﬁ". If A > 1, choose 3 with 1 < 4 < A, Then |ag| = 85/C
for all large k. and % a; diverges because its terms do not converge to (. Again the
p-series all have ratio limit p = A = 1 and demonstrate the inconclusiveness of the
ratio test when p=lor A=1. O

Although it is usually easier to apply the ratio test than the root test, the latter
has a strictly wider scope. See Exercises 61 and 65,
Conditional Convergence

If () is a decreasing sequence in B that converges to (0 then its alternating
sEries

E[_”J:+Iu# =g —fdp+az—...

CLEIVETEES. For

Agy = (0; —az) + (aa —a4) + ... {42p-1 — G2



196 Functions of a Real Variahle Chapter 3

Uip—| = td3ap iy — {1y ] — iy
- — - - . - .
Mg T ] iy iy tia iy

Figure 85 The pictorial proof of alternating convergence

and ag_; — ay is the length of the the interval Iy = (ag,ag-1). The intervals [ are
disjoint. so the sum of their lengths is at most the length of (0,0 ). namely oy, See
Figure 84,

The sequence [ Ag, ) is increasing and bounded, so limg . Ay, exists. The partial

sum Agg o differs from Agy by agye ). A quantity that converges to 0 as n = oo, 5o

lim Agy = lim Agyoy
Rl—+0K

i —4 3

and the alternating series converges,
When ap = 1/& we have the alternating harmonic series.
l-rJ

it

k=1

T + aaia

L=
|
oy e

Bl =

which we have just shown is convergent,

Series of Functions

A series of functions is of the form

TR
3 hix),
k=1
where each term fi : (o, b) = R is a nction. For example, in o power series

Yo

the functions are monomials :;,.r I The coefficients ¢, are constants and s a real
variable.} If you think of A = & as a variable then the geometric series is a power
series whose coefficients are 1, namely % . Ancther example of a series of functions
is a Fourier series

Zm,. st k) = by, cosl k).
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44 Radius of Convergence Theorem If ¥ cpr' is a power series then there is
a unigue B with 0 < R < 2, ils radius of convergence, such that the series
converges whenever |xf < R, and diverges whenever [g) > R, Moreover R is qroen by

the formula l
& lim sup &Jeg]

h—aaC

Proof Apply the root test to the series E-ru.-;::". Then

x
lim sup y/ |epr®| = |z| limsup 3/ |cx| = lﬁl
k—=voo

=iz

If |2| < R the root test gives convergence. If [x| > R it gives divergence. O

There are power series with any given radius of convergence, 0 < i < oo, The
series 5 k*z* has R = 0. The series ¥ r* /o* has R = o for 0 < ¢ < 3¢, The series
5 oF k! has B = 0. Eventually, we show that a function defined hy a power series is
analytic: It has all derivatives at all points and it can be expanded as a Taylor series
at each point inside its radius of convergence, not merely at r = ). See Section 6 in
Chapter 4.
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Exercises
1. Asswime that f: R — R satisfies |f{t) — flz)]| < |t — z|* for all ¢.r. Prove that

a4

(=21

8.

f s constant.
A function [ : (0. b) — R satisfies a Holder condition of order e if o = ().
and for some constant H and all w, r € (a.b) we have

|flu) — flx)| < H|u— x|

The function is said to be a-Hdlder, with a-Holder constant H, (The terms
“Lipschitz function of order o” and “a-Lipschitz function” are sometimes used
with the same meaning. |
(a} Prove that an o-Holder function defined on {a, &) is uniformly continuwons
and infer that it extends uniguely to a continuous function defined on
[a. B Is the extended function a-Hilder”
() What does o-Halder continuity mean when o = 17
(¢} Prove that o-Holder continuity when o > | implies that f is constant.
Assume that e, b = R s differentialle.
{a) If f'{x) = 0 for all r. prove that f is strictly monotone increasing.
{b) If f'(x) = O for all r. what can you prove?

. Prove that wn+1—n = 0asn — x.
. Assume that f : R — R is continuous. and for all r # 0, f'{r) exists. If

J]-:i.]j.lljf[f:l = L exists, does it follow that (0} exists? Prove or disprove.
Ilu L'Hopital's Rule. replace the interval (a.b) with the half-line (o, ac) and
interpret “r tends to " as “r = 2c.” Show that if f/q tends to 0/0 and f'/q'
tends to L then f/g tends to L also. Prove that this continues to hold when
L = ¢ in the sense that if f'/q' = o then f/g = <.
In L'Hopital's Rule, replace the assumption thar f/g tends 1o 00 with the
assumption that it tends o aofoc, If f'/¢' vends to L. prove that f/g tends
to L also. [Hint: Think of a rear guard instead of an advance guard.] [Query:
Is there a way to deduce the oo/20 case from the 0/0 case? Naively taking
reciprocals does not work. |
(a} Draw the graph of a continuous function defined on [0, 1] that is differen-
tiabhle on the interval (0, 1) but not at the endpoints.
(e} Can vou fond a formula for such & funetion?
(] Does the Mean Value Theorem apply to such a function?
Assuime that [ R —= B is differentiable.
{a) If there is an L < 1 such that for each r € R we have f'(r) < L. prove
that there exists a unique point x such that f{r) = . [r is a fixed point
for f.]

(b} Show by example that (a) fails if L = 1.
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1), Concoet a function f; B — R with a discontinmity of the second kind at r =0

*11.

*12.

such that f does not have the intermediate value property there, Infer that it
15 incorrect to assert that functions without jumps are Darboux continnos.
Let f:(a,b) = K be given.

{a) If f"(x) exists, prove that

e £ = 1) = 2f(x) + S+ 1)

- fid

= f'{z).

(b} Find an example that this limit can exist even when f"(z) fails to exist.
Assume that f:(—1,1) = R and f'(0) exists. If o, 3, = 0 a5 n = oo, define
the difference quotient

D= I[L"I‘rl:' _.F.II"-EM:'r

ey — iy

(a) Prove that lim D, = f'(0) under each of the following conditions.
M—+0
(i) ag <0< 8,.

3
(i) O < ooy = 3y and o < M.
Ly
{iii) f'(r) exists and is continuous for all x € (-1,1).
(b) Set f(x)= r2sin(l/r) for x # 0 and f(0) = 0. Observe that f is differen-
tiable everywhere in (=1,1) and f(0) = 0. Find ., 4, that tend to 0 in
such & way that Dy, converges to & limit unequal to f'(0).

. Assume that [ and g are v*" order differentiable functions (a,b) = K. r 2 1.

Prove the Higher-Order Leibniz Produet Rule for the function [ - g.

(f-9)M2) =3 (;)ﬁ“[ﬂ g H(z).

k=0

where (r) = rl/(kYr = k)!) is the binomial coefficient, r choose k. [Hint:

k
Induction.|

14. For each r = 1, find a function that i €7 but not O7F,

L.

16

Define fiz) = 2 if r < 0 and fir) = = + 22 if + > 0. Differentiation gives
f(r) = 2. This is bogus. Why?
log r is defined to be ‘fr 1/t dt for x = . Using only the mathematics explained
in this chapter,

(a) Prove that log is a smooth function.

(b) Prove that log(xy) = log r + logy for all r, y = 0. [Hint: Fix y and define

flz) = loglzy) — logx — log y. Show that f(x) =0
(¢} Prove that log is strictly monotone increasing and its range is all of B
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17. Define ¢ : K — R by
e{T] = { e ?f x>
. 0 if x<0
{a) Prove that « is smooth; that is, « has derivatives of all orders at all points
x. [Hint: L'Hopital and induction. Feel free to use the standard differen-
tiation fornulas about ¢ from caleulus, |
(b} Is ¢ analytic?
() Show that the bump function

Alr) = e%ell - x) el + 1)

is smooth, identically zero outside the interval (=1, 1), positive inside the
interval (=1, 1), and takes value 1 at o = 0.7 (¢* is the square of the base of
the natural logarithms, while e(r) is the function just defined. Apologies
to the abused notation.)
() For |r| < 1 show that
Alzr) =¢ —a* flat -1 I

Bump functions have wide use in smooth function theory and differential
topology. The graph of 3 looks like a bump. See Figure 86.

0.5

=1 ~41.5 0 0.5 I
Figure 86 The graph of the bump function 3

**18. Let L e any closed set in B. Prove that there is a smooth function f: R — fo.1]
such that f(r) = 0if and only if 2 € L. To put it another way, every closed set
in & is the zero locus of some smooth function. [Hint: Use Exercise 17(c).

"I'he support of a function is the dosure of the set of poiots ol which the fusction B noneenn,
Phe support of J s [=1,1],
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19.

¥,

21.

“22.

-tza.

Recall that the oscillation of an arbitrary fanction f: ja, b = R at z is

sty f = limsup fit) —]i.lilli::]ff[f}

f=%r

In the proof of the Riemann-Lebesgue Theorem g refers to the set of points
with oscillation > 1/k.

(a) Prove that Dy, is closed.

i(b) Infer that the discontinuity set of f is a countable union of closed sets.

(This is called an Fy-set.)
{¢) Infer from (b) that the set of continuity points is a countable intersection
of open set2, (This is called a &5-8e1).)

Baire's Theorem (page 266) asserts that if a complete metric space is the count-
able union of closed subsets then at least one of them has nonempty interior.
Use Baire's Theorem to show that the set of irrational numbers s oot the
countable union of closed subsets of H.

Use Exercises 19 and 20 to show there is no function f : B — R which is discon-
tinnous at every irrational number and continuons at every rational number.
Show that there exists a subset S of the middle-thirds Cantor set which is never
the discontinuity set of a hinction [ : B = K. Infer that some 2600 sets ane
never discontinuity sets of Riemann integrable functions. [Hint: How many
subsets of C are there? How many can be conntable unions of closed sets?)
Suppose that f, @ [a, b = R is a sequence of continuous functions that converges
pointwise to a limit function f @ [a.b] —+ K. Such an f is said to be of Baire
class 1. [(Pointwise convergence is discussed in the next chapter. It means
what it says: For each x, f(r) converges to f{r) as n = oo, Continuous
functions are considered to be of Baire class (0, and i general a Baive class
r function is the pointwise limit of a sequence of Baire class r = 1 flunctions.
Strictly speaking, it should not be of Baire class r— 1 itself. but for simplicity 1
include continuous functions among Baire class 1 functions. It is an interesting
fact that for every r there are Baire class r functions not of Baire olass r = 1.
You might consult A Primer of Real Functions by Ralph Boas.)

Prove that the set [ of discontinuity points with oscillation > 1/k is nowhere
dense. as follows. To arrive at a contradiction. suppose that Dy is dense in
some interval (o, ) C |a,b]. By Exercise 19, Dy, is closed, so it contains (o, 3).
Cover B by countably many intervals (ag, by) of length < 1/k and set

Hy = f"(ay, by).

() Why does |J; He = [a. 5]

i) Show that no Hy contains a subinterval of (a, J).
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(¢} Why are

Fimn = {r€la.b]:a+ % < falz) < by = %],
Efmny = n Frmn

L
closed ?
{d] Show that
Hr = u .Efm."'.
m N EN
(e} Use {a) and Baires Theorem (page 243) to deduce that some Ejun con-
tains a subinterval of (o, 3).
(f) Why does (e) contradict (b) and complete the proof that Dy is nowhere
dense”
24. Combine Exercises 19, 23. and Baire's Theorem to show that a Baire class 1
function has a dense set of continuity points.
25, Suppose that g : [o.b] = R is differentiable.
{a) Prove that g' is of Baire class 1. [Hint: Extend g to a differentiable funetion
defined on a larger interval and consider

glr+1/n) = g(r)
1/n

fulx) =

for x € [a,b]. Is fulx) continuous? Does f,(r) converge pointwise ta g'(1)
as n — 207
(b} Infer from Exercise 24 that a derivative cannot be everywhere discontinu-
ous. It must be continnous on a dense subset of itz domain of definition.
26. Redefine Riemann and Darboux integrability using dvadic partitions.
(a) Prove that the integrals are unaffected.
i(b) Infer that Riemann's integrability criterion can be restated in terms of
dvadic partitions.
{c] Repeat the analysis using only partitions of [a, b] into subintervals of length
(b=a)/n.
27, In many calenlus books, the definition of the integral is given as
& . n % ;
| sz = tim e

where x} is the midpoint of the &'% interval of |a, b having length (b — a)/n.
namely

la + (k= 1)(b—a)/n. a+ kib—a)/n]
See Stewart's Calculus with Early Transcendentals, for example.
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(a} If fis continuous, show that the calenlus-style limit exists and equals the
Riemann integral of f. [Hint: This is a one-liner.|

(b) Show by example that the caleulus-style limit can exist for functions which
are not Riemann integrable,

() Infer that the calenlus-style definition of the integral is inadequate for real
analysis,

28, Suppose that £ C R. Prove that the following are equivalent.

(i) £ is a zero set.
(ii) For each ¢ = 0 there is a countable covering of Z by closed intervals [a;, by
with total length 3 & —ay < e,
(iii) For each ¢ > 0O there is a countable covering of Z by sets §; with total
diameter % diam 5; < e.
*20. Prove that the interval [a, 8] is not a zero set.
{a) Explain why the following observation is not a solution to the problem:
“Every open interval that contains [a, b has length > b—a."
(b) Instead, suppose there is a “bad” covering of [a, b] by open intervals { [}
whose total length is < b— a, and justify the following steps.
{i) It is enough to deal with finite bad coverings.
(i) Let B={I},..., I} be a bad covering such that n is minimal among
all bad coverings,
(1ii} Show that no bad covering has n = 1 s0 we have n = 2.
(iv) Show that it is no loss of generality to assume a € [y and Iy N Jy £ 0.
(v) Show that [ = I} U I is an open interval and |[| < [fy| + |f2]-
(vi) Show that B' = {[.I3...., I.} is a bad covering of |a, b] with fewer
intervals, a contradiction to minimality of n.

). The standard middle-quarters Cantor set (} is formed by removing the
middle quarter from [0, 1], then removing the middle quarter from each of the
remaining two intervals, then removing the middle quarter from each of the
remaining four intervals, and so on.

(a) Prove that {) is a 2ero set,
(b) Formulate the natural definition of the middle 53-Cantor set.
(e) Is it also a zero set? Prove or disprove.

*31, Define a Cantor set by removing from [0, 1] the middle interval of length 1/4.
From the remaining two intervals F' remove the middle intervals of length
1/16. From the remaining four intervals F? remove the middle intervals of
length 1/64. and so on. At the n*" step in the construction F™ consists of 2"
subintervals of F7-1,

{a) Prove that F = [} F" is a Cantor set but not a zero set. It is referred to
as a fat Cantor set.
(b Infer that being a zero set is not a topological property: If two sets are



204

Functions of n Real Variable Chapter 3

32

dab.

*34.

35,

i

homeomorphic and ome is a gero set then the other need not be g gero set.
[Hint: To get a seuse of this fat Cantor set, calenlate the total length of the
intervals which comprise its complement. See Figure 52 and Exercise 45,
. Consider the characteristic function of the dvadic rational numbers. f{r) = 1
if r=Kk/2" for some k€ Z and n € M, and fir) = 0 otherwise.
(a} What iz its set of discoutinnities”
(b} At which points is its oscillation > 7
(c] Is it integrable? Explain. both by the Riemann-Lebesgue Theorem and
directly froan the definition.
{d) Consider the dyadic ruler function g(r) = 1/2" if r = /2" and g(x) =
() otherwise. Graph it and answer the questions posed in (a). (b). (c).
ia) Prove that the characteristic function [ of the middle-thirds Cantor set
iz Riemann integrable bt the characteristic function g of the fat Cantor
set F o Exercise 31) 15 not.
(k) Why is there a homesmorphism b : [0, 1] = [0, 1] sending C onto F?
(¢} Infer that the composite of Riemann integrable functions need not be Rie-
mann integrable. How is this example related to Corollaries 28 and 32 of
the Riemann-Lebesgue Theorem? See also Exercise 35,
Assume that ¢ : [o, b = B is continously differentiable. A eritical point of
¢r is an r such that ¢'{r) = 0. A eritical value is a mumber g such that for at
lenst one critical point r we have g = ofr).
(a) Prove that the set of critical values is a gero set. (This is the Morse-Sard
Theorem i dimension one. )
(L) Generalize thiz to coutinnously differemtiable fanctions & — R,
Let F < [0, 1] be the Bt Cantor set from Exercise 31, and define

T
el = f dist{f, F}df
i
where digt(f, F') refers to the minimonmn distanee from ¢ to F.
(o) Why is ¢ a contimously differentiable homeomorphisi from [il, 1] onto
[0, L] where L = ¢(1)?
{b} What is the set of critical points of 7 (See Exercise 34, )
(¢} Why is ¢ F) a Cantor set of zero measure?
(d} Let [ be the characteristic function of ¢ F). Why is [ Riemann integrable
bat [ou not?
(e} What 15 the relation of (d) to Exercise 137
Sew also Exercise 6.77.
Generalizing Exercise 131, we say that f: (e, b) = R has a jump discontinu-
ity {or a discontinmity of the first kind) at ¢ € (a, b) if
Fle=) = hm Fflr) and fle7) = hm flr)

=& F—agt
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37

138

4.

41.

42,

exist, but are either unequal or are unequal to f(c). (The three quantities exist
and are equal if and only if [ is continuous at c.) An oscillating discontinuity
{or a discontinuity of the second kind is any nonjump discontinuity.
{a) Show that f: R — K has at most countably many jump discontinuities.
(bh) What about the fanction

fiz) = {si.n% ifz=0

0 if r <07

{r}] What about the characteristic function of the rationals?

. Suppose that f : B — R has no jump discontinuities. Does f have the interme-

diate value property? {Proof or counterexample. )
Recall that P(8) = 27 is the power set of 5, the collection of all subsets of S.
and X iz the set of Riemann integrable functions f: [a. b = R.
(a} Prove that the cardinality of R is the same as the cardinality of P(R).
which is greater than the cardinality of K,
(b) Call two lunctions in R integrally equivalent if they differ ouly on a
zern set. Prove that the collection of integral equivalence classes of R has
the same cardinality as B, namely 2%,
() Is it better to count Riemann integrable functions or integral equivalence
clazses of Riemann integrable functions
(d) Show that f,.g € R are integrally equivalent if and only if the integral of
|f = g| is zero.
Consider the characteristic functions f{r) and g(r) of the intervals [1,4] and
[2,5]. The derivatives f' and g’ exist almost everywhere. The integration-by-
parts formula savs that

3 i
[ fe)g () dr = F(3)a(3) — F(0)g(0) - f F(@)gle) dr.
0 1]

But both integrals are zero, while f(3)g(3) — f(0)g(0) = 1. Where is the error?

Set i
0 if r<0 0 ifr<0
“"]_{ﬁiug ifr>p ond _q-{.r}—{ 1 ifr>0.

Prove that f has an antiderivative but g does not.
Show that any two antiderivatives of a function differ by a constant. [Hint:
This is a one-liner. ]
Suppose that ¢ : |e. d] = |2, b] i= continuous and for every zero set Z C [a. b].
YPe(Z) is & zero set in o, d].

(a) If f is Riemano integrable. prove that £ o is Riemenn intesralle,

ib) Derive Corollary 32 from (a).
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43. Let ¢o(r) =rsinlfr for 0 < r < 1 and »(0) = 0.
(a) If f : [-1,1] = R is Riemann integrable. prove that f o4 is Riemann
integrahle.
(b) What happens for v{z) = Tsinl/z7
*44. Assume that ¢ : [e.d] = [a, 8] is continnously differentiable.
{a) If the critical points of ¢ form a zero set in [c,d] and [ is Riemann inte-
grable on [a, b prove that fo ¢ is Riemann integrable on [e, d].
(b) Conversely, prove that if f e is Riemann integrable for each Riemann
integrable f on [a, b, then the critical points of ¢+ form a zero set. [Hint:
Think in terms of Exercise 34.]
(e) Prove (a) and (b) under the weaker assumption that ¢ is continuously
differentinble except at finitely many points of |¢, ).
(d) Derive part (a) of Exercise 35 from (c).
(e} Weaken the assumption further to o being continuously differentiable on
an open subset of (e, d] whose complement is a zero set.

Remark The following assertion, to be proved in Chapter 6. s related to the
preceding exercises. If f @ [a.b] — R satisfes a Lipschitz condition or is
monotone then the set of points at which f'{r) fails to exist is a zero set,
Thus: “A Lipschitz function is differentiable almost everywhere,” which is
Rademacher’s Theorem in dimension 1. and a “monotone function is al-
most everywhere differentiable.” which is the last theorem in Lebesgue's book.
Legons sur l'intégration. See Theorem 6.57 and Corollary 6.59.

45. (a) Define the oscillation for a function from one metric space to another,
f:M=N,
i(b) Isit true that f is continuous at a point if and only if its cecillation is zero
there? Prove or disprove.
{c) Is the set of points at which the oscillation of f is > 1/& closed in AS7
Prove or disprove,
46. (a) Prove that the integral of the Zeno's staircase function described on page 174
is 2/3.
(b) What about the Devil's staircase?

47. In the proof of Corollary 28 of the Riemann-Lebesgue Theorem. it is asserted
that when @ is conmtinuous the discontinuity set of ¢ o [ is contained in the
digcontinuity set of f.

(&) Prove this.

(b) Give an example where the inclusion is not an equality.

(e) Find a sufficient condition on ¢ so that ¢o f and f have equal discontinuity
sets for all fe R

(d) Is your condition necessary too?
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45,

14,

el

Assune that f € R and for some m > 0 we have |f(z])| = m for all z € [a, b).
Prove that the reciprocal of f. 1/f(x). also belongs to R. If [ € R, |f{z)| > 0.
but no m = 0 is an underbound for [ f|, prove that the reciprocal of f is not
Riemann integrable,

Corollary 28 to the Riemann-Lebesgue Theorem asserts that if f € R and &
is continuous. then ¢o f & K. Show that piccewise continnity cannot replace
continuity. [Hint: Take f to be a ruler function and ¢ to be a characteristic
function.|

. Assume that f : [a, b —= |e.d] is a Riemann integrable bijection. Is the inverse

hijection also Riemann integrable? Prove or disprove,

. If f. g are Riemann integrable on [a. b, and f{z) < g{z) for all £ € |a, b], prove

that [ f(z)ds < j':_g[r] dr. (Note the strict inequality.)

Let [ : [a, 4] = R be given. Prove or give counterexamples to the following

assertions,

(a) fER=|f| € R

(b) [f|eR=FfeR

(c) feRand |[fir)| Ze>0forallr=1/fe R

(d} feR= ffeR.

{e) ffeR=>feR

if) feR=>feR

(g) ffeRand flr) >0 forall r = fE R
[Here f? and f? refer to the functions f(x) - fx) and flz) . flz). flz),
not the iterates.)

Given f.g € R. prove that max(f.g) and min{f.g) are Riemann integrable,

where max( f, g)(x) = max( f{zx), g{x)) and min{f, g)(x) = min{ f{x), g{x)).

. Assume that f,g: [0,1] = R are Riemann integrable and firx} = g(x) except

on the middle-thirds Cantor set O
(a) Prove that f and g have the same integral,
(b) Is the same true if f{r) = g{x) except for r € Q7
(e) How is this related to the fact that the characteristic function of Q@ is not
Riemann integrable?

. Invent a continuous function f: B — R whose improper integral is gero, but

which is unbounded as ¥ = —ac and r — oo, [Hint: f is far from monotone,|

. Assume that f: R — R and that the restriction of f to each closed interval is

Riemann integrable,

(a) Formulate the concepts of conditional and absolute convergence of the
improper Riemann integral of f.

(h) Find an example that distinguishes them.
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BT

G,

fil.

G2,

Gt

fid.
. Compare the root and ratio tests.

it

- Construet a function f: [-1.1] = R such that

- i
lllflrl{_,il Flxher -I--[ fi.r:lrhr}l

exists (and is a finite real pomber) but the improper integral |f_’| flrlde does
not exist. Do the same for a function g : B — K such that

_ I
Hll_lilLIHj{J-:n[r

exists but the improper integral fjcx gl )edr fails to exist. [Hint: The fnetions
are 1ot synunetrie across (0.

Let f 2 |0ioc) = [0,5c) and % ap be given. Assume that for all sufficiently
large k and all r € [k.k 4+ 1) we have f{z) < ag. Prove that divergence of the
improper integral .J'ux Jir)de implies divergenee of 3 ay.

Prove that if a, 2 0 and 3 g, converges then 3 ) /0 converges,

(n) IF% ag, comverges and (By ) is monotonie and bonnded. prove that % e, by,

CONVETEES.

(b If the monotonicity comdition is dropped. or replaced by the assmmuption
that limg o by = 0, find a connterexample to convergence of 3 agby.
Find an example of a series of positive terms that converges despite the fact
that limsupy, . [#ee1 /o] = 2. Infer that p cannot replace A in the divergence

half of the ratio test.

Prove that if the terns of & sequence decrease monotonically, ap > ag > ...
and converge ta 0 then the series Eru. converges iF and only if the associated
dyadic series

iy + 20y + dog + Bug 4+ 0= Zﬂﬁu.‘g

converges. (I call this the block test becanse it groups the terms of the series
in blocks of length 21

Prove that 3 1/k{log(k))" converges when p > 1 and diverges when p < 1
Here k= 2.3, ... [Hint: Integral test or block test]

Concoct a series 3 ay such that {=1%ap > 0. ag = (0, but the series diverges.,

() Show that if a series has exponential growth rate p then it has ratio imsup
jr. Infer that the ratio test is subordinate to the root test.
(b) Coneoct a series such that the root test is conelusive but the ratio test is
not. Infer that the root test has strictly wider scope than the ratio test,
Show that there i= no simple comparizon test for conditionally comvergent series:
(a) Find two series 3y, and % by, such that ¥ by converges conditionally.
ap /e — 1 as k= x, and % oy diverges.
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(b} Why is this impossible if the series ¥ by is absolutely convergent?”

G7. An infinite product is an expression [Jop where ¢ > 0. The n*" partial
product is C, = oy« . If O converges to a limit ¢ # 0 then the product
converges to O, Write e = 1 + ag. If each ap = 0 or each o < 0 prove that
% ay converges if and only if [] e converges. [Hint: Take logarithms.

8. Show that conditional convergence of the series 3 ay and the produet [](1+a;)
can be unrelated to each other:

(a) Set ay = [—!]"l.-' vk The series % ap converges but the corresponding
product [](1 + ax) diverges. [Hint: Group the terms in the product two
at a time,|

ib) Let ¢ = 0 when & i3 odd and e = 1 when k is even. Set by =
ep k4 (=115 /VE. The series 3 by diverges while the corresponding prod-
uct [Ji-q(1 + ty) converges.

69. Consider a series % a; and rearrange its terms by somwe bijection 3 : M - M.
forming a new series 3 a4y, The rearranged series converges if and only if the
partial sums agpy) + ... + @,y converge to a limit as n —+ oc,

{a) Prove that every rearrangement of a convergent series of nonnegative terms
converges - and couverges to the same sum as the original series.

ib) Do the same for absolutely convergent series.

*70. Let 3~ ay be given.

(a) If 3 ay converges conditionally, prove that rearrangement totally alters its
convergence in the sense that some rearrangements ¥ b of ¥ ay, diverge to
+30, others diverge to —ag, and others converge to any given real number.

{b) Infer that a series is absolutely convergent if and only if every rearrange-
ment converges, [ The fact that rearrangement radically alters conditional
convergence shows that although finite addition is commutative. infinite
addition (i.e., summing a series) is not.)

**71, Suppose that % g converges conditionally. 1637 by is a rearrangement of 3 ay,
let ¥ be the set of subsequential limits of { B,) where By, is the o' partial sum
of 3 by. That is. p € ¥ il and only if somwe By, — y a8 § — ¢,

{a) Prove that ¥ is closed and connected.

(b) If ¥ is compact and nonempty, prove that 3" by converges to ¥ in the
sense that dy (Y, ¥ ) — 0 as n = oo, where dpy is the Hansdorfl metric on
the space of compact subsets of B and Y, is the closure of {8y, : m = n}.
Sev Exercize 2,147,

(] Prove that each closed and connected subset of B is the set of subsequential
limits of some rearrangement of 3 ay.

The article. “The Remarkable Theorem of Lévy and Steinitz” by Peter
Rosenthal in the American Math Monthly of April 1987 deals with some
of these issues, including the higher dimensional situation.
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=*72. Absolutely convergent series can he multiplied in a natural way, the resolt being
their Cauchy product,

5 s x

(Za) (£0) -3a

§=i) §=il E=il
where o = aply + abe_p + - - - + aghy.

(a) Prove that ¥ o, converges absolutely.

(L] Formulate some algebraic laws for such products (commutativity, distribu-
tivity, and so on}. Prove two of them.

[Hint for (a): Write the products a;b; in an o x > matrix array M, and
let Ay, By, €y be the n™ partial sums of 5~ a;. by, ¥ 4. You are asked
to prove that (lim A, )(lim B,) = limC,,. The product of the limits is the
limit of the products. The product A, B, is the sum of all the a;b; in
the n = n cormer subiatrix of M oand o, is the sum of its antidisgonal.
Now estimate A, B, — C,. Alternately. assume that a,.b, > 0 and draw
a rectangle R with edges A, B. Ohserve that f is the union of rectangles
R, with edges a;, by.|

**73. With reference to Exercise 72,

(a) Reduce the hypothesis that both series 3 a; and 3 by are absolutely con-
vergent to merely one being absolutely convergent and the other conver-
gent. (Exercises 72 and T3(a) are known as Mertens' Theorem. )

(b) Find an example to show that the Cauchy product of two conditionally
convergent series may diverge.

**74. The Riemann {-function is defined to be {{s) = 5 n~® where s > 1. It
i% Bl s of the peseries when p = 5. Establish Euler’s product formaila.

= ]

¢ts1=11I

k=1

I

where py, is the &' prime number. Thus, p; = 2, ps = 3, and so on. Prove that
the infinite product couverges. [Hint: Each factor in the infinite product is the
sum of a geometric series 1+ p* + (pg "12 4 .... Replace each factor by its geo-
metric series and write out the #'" partial product. Apply Mertens” Theorem.
collect terms, and recall that every integer has a unique prime factorization.]



Function Spaces

1 Uniform Convergence and C"[a, b]

Points converge to a limit if they get physically closer and closer to it. What about
a sequence of functions? When do functions converge to a limit function? What
should it mean that they get closer and closer to a limit function? The simplest idea
is that a sequence of functions f, converges to a limit function f if for each r. the
values f,(r) converge to f(r) as m — oo, This is called pointwise convergence:
A sequence of functions f, : [a.b] = R converges pointwise to a limit function
f:[a,b] = R if for each x € [a, b] we have

lim fulx) = Flr).
=5
The function f is the pointwise limit of the sequence | f, ) and we write
fo—=f or .u“ﬂ; =i

Mote that the limit refers to n — oo, not to x —+ 20, The same definition applies to
functions from one metric space to another.

The requirement of uniform convergence is stronger. The sequence of functions
[ i |a, b = R converges uniformly to the limit function f : [a, b = R if for each
¢ > () there is an N such that for all » > N and all i € [a, b,

(1) |falz) = flz)| <e.

i) Springer International Publishing Switzerland 2015 211
C.C. Pugh, Real Wathematicnl Analysis, Undergradiare Texis
in Mathematics, DO 1001007 /978-3-319-17771-7_4
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The function [ is the uniform limit of the sequence | f, ) and we write
=3 f or uniflim f = f.
[ R e ad
Your imtuition about untform convergence is eracial, Draw a tube 1V of vertical

radius ¢ around the graph of f. For n large. the graph of f, must lie whollv in V.
See Figure 87, Absorb this picture!

Figure 87 The graph of f, is contained in the e-tube around the graph of

1.

It is clear that uniform convergence implies pointwise convergence. The difference
between the two definitions is apparent in the following standard example.

Example Define f, : (0,1) = R by fu{r) = £". For each r € (0.1) it is clear that
falx) =+ 0. The functions converge pointwise to the zero function as n — a0, They
do not converge uniformly. For if ¢ = 1/10 then the point ¢, = ,,.-“ﬁ is sent by f,
to 1/2 and thus not all points r satisfy (1) when n is large. The graph of f, fails to
lie in the etube V. See Figure 88,

The lesson to draw is that pointwise convergence of a sequence of functions is
frequently too weak a concept. Gravitating toward uniform convergence we ask the
natural guestion:

Whick properties af ﬁ.:.l.'.: tioris T

preserved unider wmiform convergenee ¥
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The answers are found in Theorem 1, Exercise 4. Theorem 6, and Theorem 9. Uniform
limits preserve continuity, uniform continuity, integrability, and - with an additional

hypothesis - differentiahbility.

Figure 88 Nop-uniform, pointwise convergenoe

1 Theorem [f f, = f and each f, is continuons at ry then f 18 continuons at ry.

In ather words,

The uniformm imit of conbtinuous functions s conbinuows,

Proof For simplicity, assume that the functions have domain [a,b] and target R.
(See also Section 8 and Exercise 2.) Let ¢ > 0 and x5 € [0, b] be given. There is an
N such that for all # > N and all = € [a. b] we have

[falr) = fl2)] < 3.

The function fy is continnous at g and so there is a & > {} such that |x — rp| < 46

nnplies
¢
i) = Fulxo)| < 3
Thus., if |r — rg| < 6 then
[fle) — flea)] = |f|.-l] = f‘-. (2)| + | fv(e) — fylxa)l + | falea) — flea)

T B
SR oL et

which coinpletes the proof that [ is coutinuous at oy, O
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Without uniform convergence the theorem fails. For example. we can define
fn 2 |0.1] = R as before, f,(z) = £". Then f,(r) converges pointwise to the function

0 #D<r<l
ftr}:{l ifr=1.

The function f is not continuous and the convergence is not uniform. What about the
converse? If the limit and the functions are continuous, does polntwise convergence
imply uniforin convergence? The answer is “no.” as is shown by =" on (0, 1), But
what if the functions have a compact domain of definition, o, b7 The answer is still
“no.”

Example John Kellev refers to this as the growing steeple.

1
nir f 0<z< =
e
g ) 2
folzg) =4 n—-n*r if —<x<=
n n
2
0 if —=x<1.
n

See Figure 89,

Then IIIiHL Julx) = 0 for each r, and f, converges pointwise to the function
f =10. Even if the functions have compact domain of definition. and are uniformly

bounded and uniformly continuous, pointwise convergence does not imply uniform
convergence, For an example, just multiply the growing steeple functions by 1/n.

The natural way to view uniform convergence is in a function space. Let O =
Cy(]a. b, R} denote the set of all bounded functions |e, 8] =+ R. The elements of C,
are functions f, g. ete. Each is bounded. Define the sup norm on ) as

IFl = sup{|fiz}| : = € [a. B}
The sup norm satisfies the norm axioms discussed in Chapter 1, page 28.

(fll =0 and || fll =0if and only if f =0
Hefll = |elllF]
NS+ gl < 171 + llgh-

As we observed in Chapter 2, any norm defines a metric. In the case at hand.

d(f.g) = sup{|f(z) - glz)| : x € [a. b]}
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| !

Figure 89 The sequence of functions converges pointwise to the ero
function, but not uniformly,

P2
. o
\\/-\ el gl

VAR

Figure 90 The sup norm of [ and the sup distance between f and g
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is the corresponding metric on Cy. See Figure ™. To distinguish the norm || f|| =
sup | f{x])| from other norms on Cy, we sometimes write || f|.,;, for the sup norm.

The thing to remember is that ) is a metric space whose elements are functions,
Ponder this.

2 Theorem Convergence with respect to the sup metric d is equivalent to uniform
CORVEFTETLCE,

Proof If d{f.. f) — 0 then sup{|fur — fr| : + € [a. 8]} = 0. 50 f, = f. and

comversely, O
3 Theorem C} is & complete metric space.

Proofl Let (f,) be a Canchy sequence in . For each individual 2 € [o, 8] the values
Jnlxn) form a Cauchy sequence in B sinee

I.FI'II:ID:I = Jrn'r'[-rﬂ” = H“]‘{ |4rr1{$} = .rml:.J'-':'l o = |ff-if]]' = fu: Fin)s

Thus. for each r € [a. b,
Hlﬂ'-g‘_ falx)

exists. Dwefine this limit to be f{r). It is clear that f,; converges pointwise to f. In
fact, the convergence i uniform. For let ¢ > 0 be given. Since (f,) is a Cauchy
sequence with respect to d, there exists N such that m.n = N imply

rj{;ﬂrjﬂhj = %-

Also, sinee f;, converges pointwise to f. for each r € |a, b there exists an m = m(r) >
N such that

|fmlx) = flx)] < ;_,

[fn> N and z € |a, b then

|fﬂ{f}_.rf'n]| < |LI{J'}'_!|"|:'|¢IH+|.rm|r||:f}_.”-r}|
3

3

L E + E = £
Hence f, = f. The function [ is bounded, For fy is bounded and for all @ owe
have |fa(r) = Flz)| < ¢. Thus f € Cy. By Theorem 2, uniform convergence implies
d-convergence. d( fi. 1 —= 0, and the Canchy sequence [ f,) converges to a limit in
the metric space Cf. O
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The preceding proof is subtle. The uniform inequality di fi,. f] < ¢ is derived by
nonuniform means - for each x we make a separate estimate using an m(r) depending
nomuniformly on x. It is a case of the ends justifying the means.

Let € = C%ja, b, R) denote the set of comtinuous functions [a.b) — R. Each
f & C" belongs to ) sinee a continuons Rinction defined on a compact domain is
bounded. That is, €9 ¢ C.

4 Corollary " is a closed subset of Cy. It is 0 complete melric space.

Proof Theorem 1 implies that a limit in O of a sequence of functions in C? lies in
CY, That is, € is closed in 5. A closed subset of a complete space is complete, [

Just as it 15 reasonable to discuss the convergence of a sequence of functions we
can also discuss the convergence of a series of functions 3~ fi. Merely consider the
n't partial sum

Fu(z) = 3 fula).
k=0

It is a function. If the sequence of functions (F,) converges to a limit function F
then the series converges, and we write

3 fulz).

kealy

Flr)

If the sequence of partial sums converges uniformly then we say the series converges
uniformly. If the series of absolute values % | fi(r)]| converges then the series % fy
comverges absolutely.

5 Weierstrass M-test If 5 M, is a convergent series of constants and of fi. € Oy
satisfies || fell < My for all & then Y fi converges uniformly and absolutely,

Proof If n > m then the partial sums of the series of absolute values telescope as

d[_f-';‘__.t-"]hll 5 d[f‘:‘.f;‘"_il + "'+lf[.F|u|+|. .E';":'

" "
= 3% llz Y M
k=m+] k=m+1

Since 3 My converges. the last sum is < ¢ when m,n are large. Thus (F,) is Canchy
in Oy, and by Theorem 3 it converges uniformly. O
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Next we ask how integrals and derivatives behave with respect to uniform con-
vergence, Integrals behave better than derivatives,

6 Theorem The uniform limit of Riemann integrable functions is Riemann mte-
grable, and the limit of the integrals is the mtegral of the limf,

] ]
IIIHlL/ﬂ frlz)de = j: 1H#E£mf,,{1}dx.

In other words, X, the set of Riemann integrable functions defined on [a, b, is a
closed subset of Cy and the integral functional f — j:f'_f{rjei:r is a continuous map
from R to R. This extends the regularity hierarchy to

G 2R3 3.2 0% o OV

Theorem b gives the simplest condition under which the operations of taking limits
and integrals comomte,

Proof Let f, € R be given and assume that f, = f as n = oc. By the Riemann-
Lebesgue Theorem, f, is bounded and there is a 2ero set Z, such that f,, is continuous
at each x € [o.b]% Z,,. Theorem 1 implies that f is continuous at each = € [a, b\ Z,,.
while Theorem 3 implies that [ is bounded. Since |J Z, is a zero set. the Riemann-
Lebesgue Theorem implies that f € R. Finally

fr
ff{:]drﬁffn{rjdr

]
Ef |flx) = fulzlldz = d(f, fa){b—a) =0

=

b
f F() = fulz) e

as n — oo, Hence the integral of the lmit is the limit of the integrals. O

T Corollary If f, € R and f, == f then the indefinite integrals converge uniformiy,

fr_r,.(:]dt =t fzj[:}dr.
Proof As aluwe,

f,r[r}dr—[j,.fsm

when n — a0, O

< d{fn. f)(x—a) < d{fu. f){b—a) =0
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8 Term by Term Integration Theorem A unifermiy convergent series of mte-
grable functions 3 i can be integrated term-by-term in the sense that

e 28 b
[ L sinyde = 3 [ suta)ae
0 k=0 k=0""

Proof The sequence of partial sums F,, converges uniformly to 3 fi. Each Fy
belongs to R since it is the finite sum of members of R. According to Theorem 6.

n -
fokcr]d: = fﬂtr}d:—rf Y fula)de.
=0 "9 a ® =0

This shows that the series 3 [ fi(z) dr converges to flr 5 fulx)dz. O

8 Theorem The uniform limit of a sequence of differentiable functions is differen-
tiable provided that the sequence of derivatives also comverges uniformiy.

Proof We suppose that f, : [a, b = R is diferentiable for each n and that f, = f
as . —+ 20, Also we assume that ff = g for some function g. Then we show that f
is differentiable and in fact f' = g.

We first prove the theorem with a major loss of generality - we assume that each
fois continuous. Then . g € R and we can apply the Fundamental Theorem of
Caleulus and Corollary 7 to write

& p X
i) o f..:u;l+f ftdt = fcu:+f alt) de.

Since f, = F we see that flz) = fla) + j:_q[l‘} ot and, again by the Fundamental
Theorem of Calculus, ' = g.

In the general case the proof is harder. Fix some r € |, b and define

Falt) — fulx)

dalt) = g i
Thlx) Hi=x
olt) = B ey

glr) if t =ux.
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Each function &, is continuous since ¢, (1) converges to flir) as ¢ = r. Also it
is elear that ¢, converges pointwise to @ as n — ¢, We claim the convergence is
uniform. For any w. n the Mean Value Theorem applied to the function fo, — [, gives

(fm{t) = fult)) = (fmlx) = fulr))

t=r

D (t) = (1) = = finl8) = [(8)

for some @ between f and . Since ) = g the difference f) — [ tends uniformly to 0 as
m.n =+ o0, Thus (g, ) is Cauchy in 0, Sinee C7 s complete, oy, converges uniformly
tooa limit function ., and ¢ is continnons. As already remarked, the pointwise limit
of @y is &, and s0 ¢ = ¢. Coutinuity of ¢ = ¢ implies that g{x) = f'{z). O

10 Theorem A uniformly convergent series of differentiable functions can be differ-
entiated term-by-term, provided that the derivative series converges uniformly,

= ¥ 2
(Z mrl) = 3 filz).
k=i k=il
Proof Apply Theorem 9 to the sequence of partial sums. O

Note that Theorem 9 fails if we forget to assume the derivatives converge, For
example, consider the sequence of hinctions f, : [=1,1] = R defined by

{ 1
Fulx) = r? 4 =

See Figure91. The functions converge uniformly to f(rx) = |z, a nondifferentiable
function. The derivatives converge pointwise but not uniformly. Worse examples
are ensy to imagine. In fact, a sequence of evervwhere differentiable functions can
comverge uniformly to a nowhere differentiable function. See Sections 4 and 7. It is one
of the miracles of the complex numbers that a uniform lmit of complex differentiable
functions is complex differentiable, and automatically the sequence of derivatives
converges uniformly to a limit. Real and complex analysis diverge radically on this

pasnt.

2 Power Series

As another application of the Welerstrass A -test we say a little more about the power
series % opr®, A power series is a special type of series of functions. the Functions
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Figure 91 The uniform limit of diferentiable functions need not be
diferentiable.

breing constant multiples of powers of r. As explained in Section 3 of Chapter 3. its
radius of convergence is
1

Fe—
limsup g

b —e

Its interval of convergence is (— i, /). If ¢ € (=R, K). the series converges and defines
a function f{r) = Zq..r*'. while if x & [- R, R] the series diverges. More is true on
compact subintervals of (=&, 7).

11 Theorem If r < R then the power series converges uniformly and absolutely on
the interval |—r, r].

Proof Choose § with r < 3 < R, For all large k. {/|ci] < 1/3 since 3 < K. Thus,

if |z < r then
".
lexx*] < (:i) '

These are terms in a convergent geometric series and according to the A -test 3 cpr®
converges uniformly when r € [—r,r]. 0

12 Theorem A power series can be integrafed and differentiated term-by-term on
its interval of convergence,
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For fiz) =% cpr® and |z < R this means

T i x 1|
f Jit)dt =E JL:JI]I“I and  f'{z) =Zkr:1.r}_|'
i k= k|

Proof The radius of convergence of the integral series is determined by the expo-
nential growth rate of it coefficients,

1k
lim sup ~1"r||'|b| = limsup (|egp_y|"/1E=11lk=117k (l) ;
k—sre k k—oc k

Since (k—1)/k = 1 and k"% — 1 as & — 20, we see that the integral series has the
same radius of convergence i as the original series. According to Theorem 8, term-
by-term integration is valid when the series converges uniformly. and by Theorem 11,
the integral series does converge uniformly on every closed interval [—r, r| contained
in (—R. R).

A similar calculation for the derivative series shows that its radius of convergence
too is . Term-by-term differentiation is valid provided the series and the derivative
series converge uniformly. Since the radius of convergence of the derivative series is
R. the derivative series does converge uniformly on every [-r.r] C (=R, R). O

13 Theorem Analytic functions are smooth, ie., O¥ C O™,

Proof An analytic function f is defined by a convergent power series, According to
Theorem 12, the derivative of [ is given by a convergent power series with the same
radius of convergence, so repeated differentiation is valid, and we see that f is indeed
smooth. O

The general smooth function is not analytic. as is shown by the example

i ez iz >0
Rl fz <0

on page 149, Near r = 0. o{z) cannot be expressed as a convergent power series.

Power series provide a clean and unambiguous way to define functions, especially
trigonometric functions. The usual definitions of sine, cosine, ete.  involve angles
and circular are length, and these concepts seem less fundamental than the functions
being defined. To avoid circular reasoning, as it were. we declare that by definition

(=1)kg2h+l =
xpE = E | sinr = Z [‘E; Cogr = Z—{-f]ﬁ;—'

kel k={p
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We then must prove that these functions have the properties we know and love from
caleulus.  All three series are easily seen to have radins of convergence it = oo,

Theorem 12 justifies term-by-termn differentiation. yielding the usual formulas,
exp (r) = expr sin'{x) =coszr cos'(r) = —sinz.
The logarithm has already been defined as the indefinite integral [ 1/tdt. We claim

that if [r| < 1 then log(1 + r) is given as the power series

s

AT,
logil + ) = z o

k=1

To check this, we merely note that its derivative is the sum of a geometric series.

1 1 - - ;

(log(1 +2))' = = = J o)t =5 -1t
z+1 1-{—z) - e

The last is a power series with radius of convergence 1. Since term by term integration

of a power series inside its radius of convergence is legal, we integrate both sides of

the equation and get the series expression for log(1 + r) as claimed.

The functions € and 1/(14 %) both have perfectly smooth graphs, but the power
series for €7 has radius of convergence oo while that of 1/(1 + #*) is 1. Why is this?
What goes “wrong” at radius 17 The function 1/{1+ 1) doesn't blow up or have bad
behavior at . = £1 like log(1 + x) does. 1t's because of €. The denominator 1 + =*
equals 0 when r = £4/=1. The bad behavior in C wipes out the good behavior in R,

3 Compactness and Equicontinuity in C"

The Heine-Borel theorem states that a closed and bounded set in B™ s compact,
O the other hand, closed and bounded sets in O are rarely compact. Consider, for
example. the closed unit ball

B={feCY0.1.R): | fl| <1}

To see that B is not compact we look again at the sequence fi,(r) = ™. It lies in

B. Does it have a subsequence that converges (with respect to the metric d of C9)

to a limit in CY? No. For if f,, converges to f in OV then f{r) = J.“m fuy(x). Thus
>0

fir)=0ifr < 1 and f(1) = 1, but this function [ does not belong to €7, The canse
of the problem is the fact that € is infinite-dimensional. In fact it can be shown
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that if V' is a vector space with a norm then its closed unit ball is compact if and
only if the space is finite-dimensional. The proof is not especially hard.

MNevertheless, we want to have theorems that guarantee certain closed and ooeded
subsets of € are compact, For we want to extract a convergent subsequence of fune-
tions from a given sequence of functions. The simple condition that lets us go ahead
i= equicontinuity. A sequence of functions (£, ) in C is equicontinuous if

Ye =0 4 = 0 such that
s =t <dandneM = |f,l8)=Ffalt]] <e

The functions f, are equally continuons, The & depends on ¢ but it does not depend
on 7. Roughly speaking. the graphs of all the f, are similar. For total clarity. the
concept might better be labeled uniform equicontinuity, in contrast to pointwise
equicontinuity. which reguires

¥e >0 and ¥r € [a.b] 34 > 0 such that
lr=t<bdandneN = |f.lz)— fut)] <.

The definitions work cogually well for sets of functions, not only sequences of functions,
The set £ OV is equicontinionus if

Ye =0 34 =0 such tha
[g—tl<dand fEE = |f(s)— f(t)] <.

The eruclal point is that 8 does not depend on the particular f € £, It is valid For all
f € £ simultaneously, To picture equicontionity of a family £, imagine the graphs.
Their shapes are nniformly controlled. Note that any boite monber of continons
functions |a, b = R forns an equicontinuons funily so Figures 92 and 93 are only
suggestive,

The basic theorem about equicontinuity is the

14 Arzeld-Ascoli Theorem Every bounded equconfmuoous seguence of functons
i CV[a. b), R) has a uniformly convergent subsequence.

Think of this as a compactness result. IF {f,) is the sequence of equicontinuos
functions. the theorem amounts to asserting that the closure of the set {f, 1 n € H}
i compact. Any compact inetric space serves just as well as o, b, and the target
space ® can also be more general, See Section 8,
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Figure 92 Equicontinuity

Figure 83 Nonequicontinuity



226 Function Spaces Chapter 4

15 Lemma [f (f;) is a subsequence of (g, ) then for each k we have fi = g, for some
F 2K,

Proof By definition of what a subsequence is. fi = g,, for some ng such that
l=np<ng <<y Henee r=mn, = k. |

Proof of the Arzela-Ascoli Theorem [a,b| has a countable dense subset D =
{dy.dy....}. For instance we could take D = QM [a.b]. Boundedness of {f,) means
that for some constant M, all x € [a, 5], and all n € M we have |fy(r)] < M. Thus
(fuldy)) i a bounded sequence of real mumbers, Bolzano-Weierstrass implies that
somne subseoguence of it converges to a lmit in &, say

Sieldy) = g as kb = oo,

The subsequence [ fy ] evaluated st the point ds 15 alse a bounded sequence in B
and there exists a sub-subsequence (fe ) such that fop{ds) converges to a limit in
R. say foulda) = yg as k = oc. The sub-subsequence evaluated at o) still converges
to . Continuing in this way gives a nested family of subsequences { f,, &) such that

{ fink) is a subsequence of (fo_y)

jEm = JI",,,Ikl:.'J'J:l —+ Y a8 k — oo,

Now consider the diagonal subsequence (§m) = (fmm). We claim that it converges
uniforinly to a lmit. which will complete the proof. First we show it converges
pointwise on 2. Fix any j € M and look at m % j. Lemma 15 implies that fo, . =
fin—1s, for some ry > m. Applving the lemma again. we see that fu_1r, = fu-2.ry
for some r3 > vy = m, Repetition gives

_.|rn.||.nr — m—1,7| — fﬂu—'.i.l"a —r = fJ.I'

for some r = ryp—j =+ 2 rg = 1y 2 m. Since ¢ 2 m this gives

ﬂ'r:-l':_d_,-_:' = fr:ll.r:u lTIJ_:' = f_r.r[d_r] —+ Iy

#s 1o — 0.

We elaim that gy (r) converges also at the other polnts r € [a, b and that the
convergence is uniform. It suffices to show that {gy,) is a Cauchy sequence in O,

Let ¢ > 0 be given. Equicontinuity gives a 4 > 0 such that for all s, € [a,b] we
have

£

s—tl<d = |gm(s)—gmit)] < 3

-
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Choose J large enough that every r € [a,b] lies in the d-neighborhood of some d,
with j < J. Since D is dense and [a, b] is compact, this is possible, See Exercise 19.
Sinee {d), ..., dr} is a finite set and gy (d;} converges for each d;, there is an N such
that for all £ m > N and all j < .J,
¢
lgm ) — geld;)| < 3

If£.m > N and r € |, b], choose d; with |d; = r| < § and j < J. Then

|.‘:.|'r|'|'{-"'-'}I - qlr)] = |£|'ru|{-i':| = glr-ll::dj}! + i!ufm':'ij] - Hi{d}}l + |ﬂ'!fd1]' = H!'{"”
£ £ €
= 3 + 3 s 3™
Hence (g ) is Cauchy in OV, it converges in €V, and the proof is complete. O

Part of the preceding development can be isolated as the

16 Arzela-Ascoli Propagation Theorem Pomtwise comvergence of an egquicon-
tinuons sequence of functions on a dense subset of the domain propagates to uniform
convergence on the whele domain.

Proof This is the «/3 part of the proof. O

The example cited over and over again in the equicontinuity world is the following.

17 Corollary Assume that f, : [a, b = R s @ sequence of differentiable funclions
whose derivatives are uniformly bounded, If for one point xg, the sequence [ fo(xo)) s
bounded as n — oo then the sequence ( f,) has a subsequence that converges uniformiy
on the whole interval [a, b].

Proof Let M be a bound for the derivatives |f,(x)|, valid for all n € N and all
r € |a, b|. Equicontinuity of (f,) follows from the Mean Value Theorem:

la=tl<d = |fals) = fult)] = | fu(€)] o = t] < M4
for some # between s and ¢, Thus, given ¢ > 00, the choiee § = ¢ /(M + 1) shows that
{ fu) 1s equicontinuous.
Let © be a bound for | fo(rg)], valid for all n € M. Then

Ifalx)l = |falx) = falzo)| + [falzo)] € Mz — 20| + C
< Mlb-a|+C

shows that the sequence (f,) is bounded in . The Arzela-Ascoli theorem then
supplies the uniformly convergent subseguence, O
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Two other consequences of the sane type are fundamental theorems in the Gelds
of ordinary differential equations and complex variables.

(a) A sequence of solutions to a continuons ordinary differential equation in B™
has & subsequence that converges to a limit, and that limit is also a solution of
the ODE.

(b} A sequence of complex analytic functions that converges pointwise, converges
uniformly {on compact subsets of the domain of definition) and the limit is
complex analytic.

Finally, we give a topological interpretation of the Areela- Ascoli theorem,

18 Heine-Borel Theorem in a Function Space A subset £ © O is compact of
and anly if i is closed, bounded, and equicontinuous,

Proof Assume that £ is compact. By Theorem 2.65, it is closed and totally bounded.
This means that given ¢ > 0 there is a finite covering of £ by neighborhoods in "
having radius /3. say N, 5(fi). with k = 1.....n. Each fi is uniformly continuous
20 there is a 4 > 0 such that

=t <d = |fuls) = fult)] < 5.
It f € £ then for some k we have f € N, (/i) and |5 — ¢ < § implies

Ifis) =t = [fs) = fulg)| + |fuls) — Sult)] + | Fult) — Fit)]
L3 L3 L3

Thus £ is equicontinuous.

Conversely, assume that £ is closed. bounded, and equicontinuous. If (f) is a
sequence in £ then by the Arzeli-Ascoli theorem. some subsequence ( fy, ) converges
uniformly to a limit, The limit lies in £ ginee € is closed. Thas £ is compact. O

4 Uniform Approximation in C"

Given a continuous but nondifferentiable function . we often want to make it
smoother by a small perturbation. We want to approximate f in €% by a smooth
function g. The ultimately smooth function is a polynomial, and the first thing we
prove is a polvoomial approximation result.

19 Weierstrass Approximation Theorem The set of polynomials is dense in
C%{|a, b, R).
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Density means that for each f € OV and each ¢ > 0 there is a polynomial function
pix) such that for all r € ja, b,

|f(x) = pla)| <«

There are several proofs of this theorem, and although they appear quite different
from each other. they share a common thread: The approximating function s built
from f by sampling the values of f and recombining them in some clever way. It is
no loss of generality to assume that the interval [a, b is [0, 1]. We do so.

Proof 21 For each n € M. consider the sum

i

mle) =3 (:) a1 - 2)™E,

k=

where ¢, = f(k/n) and (}) is the binomial coefficient n!/k!(n — k)!. Clearly pn is a
polynomial. It is called & Bernstein polynomial. We claim that the n'® Bernstein
polynomial converges uniformly to f as n = 20, The proof relics on two formulas

about how the functions
rplr) = (:)I‘ﬂ -z

whose graphs are shown in Figure 84 behave. Thev are

(2) Y onfz) = 1
k=il
(3 E{.ﬁ' —nrfrilz) = nx(l -1
=y

In terms of the functions rp we write

palz) =3 andz)  flx) =Y flz)nlz).

ke=1} =i}

Then we divide the sum p, — f = S (ex — firy into the terms where k/n is near r.
and other terms where k/n is far from r. More precisely, given € > (0 we use uniform
continuity of [ on [0, 1] to find § > 0 such that [t —s| < & implies | f(t) — f(s]] < /2.
Then we set

<4} and Ky = {0,....,n}\ K.
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Figure 94 The seven basic Bernstein polvnomials of degree 6,
(i) 21— 2P-Ek=0,....6

Thiz gives

Ipalz) = Flll £ % |ex = F@)irelz)

k=0
= 3l = fllrla) + 3 le = Flx)irala).
ki Ky kel

The factors |op = f{x)| in the first sum are less than €/2 since ¢, = f(k/n) and k/n
differs from x by less than 4. Since the sum of all the terms rg is 1 and the terms are

nonnegative, the first sum is less than £/2. To estimate the second sum, use (3) to
Write

Z[k - rr.e'ﬁ?rk[.r] = z {k = nz)rg(r)

=il kel
Y (nd)reiz),
ke K

nrll — =zl

I
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since k € Ky implies that (k = ne)? > (nd)?. This implies that

Z Sl nr(l — x) 2 1

ot (nd)* = 4nd*

since maxr(l — x) = 1/4 as r varies in [0,1]. The factors |cx — f{z)| in the second
sum are at most 200 where M = || f||. Thus the second sum is

M
2 lou = f@)ire(z) < 505 <
kely
when n is large, completing the proof that |p,(z) = f(r)| < ¢ when n is large.
It remains to check the identities (2) and (3). The binomial coefficients aatisfy
no_ . L [ T
(4) (x4 ) —kzuh(k); ot

which becomes (2) if we set y = 1 —x. On the other hand, if we fix y and differentiate
(4) with respect to T once, and then again. we get

|:.5]' nir+ £|I]ri—l E (:) k.r.k_ly"_""

k=0
() aln =1z + g™t = kziu (:) Rk — 1)h=Tymk,

Note that the bottom term in (5) and the bottom two terms in (6) are 0. Multiplying
(5) by = and (6) by 2? and then setting y = 1 = ¢ in both equations gives

]

(7l ny = Z(Dk-’rk{l_J‘]"'*=ikr}[:]-

k=0 k=n
(8) wln—112% = EE:% (1'_)1:[;— ~ (1 = 2} = Eﬁ-{k — Vrelz).

The last sum is % k*rp(x) — 5 kre(r). Hence (7) and (8) become

(9] E.i.jn,{.r} = n(n — 1]::1 + z.irrl.{.r:l = n{n = 1)z* + nz.
k=¥ ]
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Using (2}, (T). and (9] we get

Y (k= na)rifr)

k=1
= Eﬁ'zrﬁ.r} - ?r!.errk[:] + (nr)” Zr*[.r:l
=i} el =i

nln = 1)2* + nr — 2(nx)* + (nz)?

~nx? + nz = nr(l - r),
as claimeed in (3], O
Proof #2 Let f e CV{[0, 1], R) be given and let glr) = fir) — (mx + b) where

T = ﬂ_”—_f[‘ﬂ and b= Fi0}.

1

Then g € €Y and g(0) = 0 = g{1). If we can approximate g arbitrarily well by
polynomials, then the same is true of f sinee moe + b s a polyoomial, In other words
it is no loss of generality to assume that f{(0) = f{1) = 0 in the Arst place. We do
so0. Also, we extend f to all of R by defining flx) = 0 for all # € BN [0, 1], Then we
consider a function

Balt) =bufl =" =1<t<],

where the constant by, 15 chosen so that “L Apltyedt = 1. As shown in Figure %5, 4,

is & kind of polynomial bump function. For 00 < ¢ < 1., set

|
F‘,.Lr]=f fla + t)3.(8) dt.
-1

This 15 & weighted average of the values of F using the weight funcetion J,. We clam
that £, is a polynomial and £, (r) = fir) as n = x.

To check that P, is a polynomial we use a change of variables. u = r 4 f. Then.
for 0 < u < 1 we have

34

I
Polx) = fluddsluw— r)du = f1 flu)dgin — x)du
=1 i

since f = 0 outside [0 1]. The fnction 3, (e=r) = by{l ={u- :]1}" i= a0 polyoomial in
r whose coefficients are polvnomials in «, The powers of » pull out past the integral
and we are left with these powers of r multiplied by numbers. namely. the integrals
of the polynomials in w times flu), In other words, by merely inspecting the last
formmla. it becomes clear that f;(r) is a polyvnomial in r.
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Figure 95 The graph of the function 3(t) = LAGT(1 = 3%

To check that Py, = f as n =+ oo, we need to estimate 3,(t). We claim that if
& = 0 then

(10} up(t)=0asn = ocand 8 < |t < 1.

This is “clear” from Figure95. Proceeding more rigorously and using the definition
of 3, 88 Fa(t) = by(l = *)", we have

I. = ”I'IIT.b_ -'!"-II = 2 In
1 = j.l;:f,,f.']df = f_”ﬁ (1 -1 dt 2 &.ﬁ{l—zl.

Since 1/e = “Iiﬁ[l - 1/n)", we see that for some constant ¢ and all n,
by < ey,
See also Exercise 31. Hence, if & < [f| < 1 then
A (1) = by(1 = 121" < ey/nll — 651" = 0 as n = o,

due to the fact that /7 tends to ac more slowly than (1 — &)™ as n — oo, This
proves [ 10].
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From (10) we deduce that P, = f as follows. Let ¢ > 0 be given. Uniform
continuity of f gives & > 0 such that |¢]| < & implies |f(x + 1) = f(x)| < /2. Sinee 3,
has integral 1 on [—-1, 1] we have

1
\Puiz) — fla)] = | f e+~ )t :n|
|
E[ |flz + t) = Flx)]|3.(t) dt
-]

=f |_.|'{.r+r}—_r'f.r]-!.-i”[r}dHf |flx + ) — flx)|3alt) dt.
[t b [t 6

The first integral is less than /2, while the second is at most 20 [, d.(¢)df. By
{10). the second integral is less than €/2 when n is large. Thus F, = f as claimed.C]

Next we see how to extend this result to functions defined on a compact metric
space M instead of merely on an interval. A subset A of C"M = CYM.R) is a
function algebra if it is closed under addition, scalar multiplication. and function
multiplication. That is, if f.g € A and ¢ is a constant then f+ g, cf, and f - g belong
to A, For example, the set of polynomials is a funetion algebra, The function algebra
vanishes at a point p if f(p) =0 for all f € A. For example, the function algebra
of all polynominls with wero constant term vanishes at r = 0. The function algebra
separates points if for each pair of distinet points pp.ps € M there is a function
f & Asuch that f(p)] # f(pa). For example. the function algebra of all trigonometric
polynomials separates points of [0, 27) and vanishes nowhere.

20 Stone-Weierstrass Theorem [f M s a compact metric space and A is a fune:
tion algebra i COAf that vanishes nowhere and separates points then A is dense in

COM.

Although the Weierstrass Approximation Theorem s a special case of the Stone-
Weierstrass Theorem. the proof of the latter does not stand on its own; it depends
crucially on the former, We also need two lemmas,

21 Lemma [f A vanishes nowhere and separates pornts then there ensts f € A with
apecified values at any pair of distinet points,

Proof Given distinct points py, pp € M. and given constants ¢y, 0. we seek a function
F e A such that flp) = o and fip) = g
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Since A vanishes nowhere there exist gy, g0 € A such that g(m) £ 0 # go(pa).
Then g = g? = g% belongs to A and vanishes at neither pp noc g, Simce A separates
points there exists i € A with different values at py and ps. Consider the matrix

o |® ok |#m)  glmialm)
¢ cd alpa)  glm)hips) |

By construction a.c # () and b # d. Hence det H = acd = abe = ac{d = &) #£ 0, H has
rank 2, and the linear equations

ak + abn
+adn = o

]

have a solution (£, n). Then f = Eg + ngh belongs to A and f(p) = e, f(p2) = 2.0
22 Lemma The closure of a function algebra in COM is a function algebm.
Proof Clear enough. O

Proof of the Stone-Weierstrass Theorem Let A be & function algebra in €M
that vanishes nowhere and separates points. We must show that A is dense in CYM,
Given F € C"M and ¢ > 0, we must find & € A such that for all x € M we have

(11) Firl—e¢ < G(x) < Flx)+e.
First we observe that
(12) fed = |fleA

where A denotes the elosure of A in CYM. Let ¢ > 0 be given. According to the
Weierstrass Approximation Theorem, there exists a polynomial ply) such that

(13) sup{lply) - Ivll : 1wl < £} < 3

After all, |y| is a continnous function defined on the interval [—|| ], | Fll]. The constant
term of p(y) is at most €/2 since |p(0) = |0]] < /2. Let gly) = p{y) = p(0). Then gqly)
iz a polynomial with zero constant term and (13) becomes

(14) lgly) = [wll <e
for all y € [— |7l || Fl]. Write gly) = aju + agy® + - - + 24" and

g=ayf +asf*+ - +anf".



236 Function Spaces Chapter 4

(Here, ™ denotes £+ f-- f.) Lennna 2?2 states that A is an algebra, so g € Al
Besides, if ¥ € M and y = f{r) then
() — |FLe)]] = lglw) = |yl < e

Henee | f| € j = A as claimed in (12).

Next we observe that if f, g belong to A, then max| [ g) and min( f. ) also belong
to A, For

+ =
! ,r.r+lf 9l

max{f.g) = 5 2
ming f. 41 = f;-'”—l'r;'ql.

Repetition shows that the maximum and minimum of any finite mumber of functions

in A also belongs to A.

Now we return to (11). Let F e CYA and ¢ > 0 be given. We are trying to find
¢ € A whose graph lies in the e-tube around the graph of F. Fix any distinet points
P g € M. According to Lemma 21, we can find a function in A with specified values
at p.gq. 5o there exists Hy, € A that satisfies

Holp) = Fip) and Hplg) = Fig).
Fix p and let g vary. Each g € M has a neighluorhood L7y such that
(15) rely, = Flr)—c<Hylr).

For Hyylr) — Flr)+ ¢ is a comtinnons function of r which is positive at & = g. See
Figure 4.

Compactpess of M implies that finitely many of these peighborhoods U cover
M, say Uy, ... Uy, . Define

Gplr) = mux{Hge (5),. ., Hyq, (1))
Then Gy € A and, as shown in Figure 97, for all € M we have

(16) Gulp) = Flp) and Fix) — ¢ < Gplr).
Continuity implies that each p has a peighborhood V), such that

(17) rel, = Gylr)< Flx)+e
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F]'NI = Fipy

Figure 96 For all x in a neighborhood of g we have Hplx) > Flr) =«

Figure 97 &}, is the maximum of Hyy i =1,..., .
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Figure 98 G,(p) = F(p) and &y > F = ¢ everywhere.

See Fipure U5,

By compactness, finitely many of these neighborhoods cover M. say V... .V _.
St
Glz) = min(Gy, (x),-- -, Gpal2)).
We know that & € A and (16), (17) imply (11). See Figure 99, O

23 Corollary Any 2r-penodic confinuous funcfion of £ € K can be uniformly ap-
prorimated by a trigonometric polynomaial

m mn

T(r) = ap+ z iy cos bk + Z by sin kx,
k=1 k=1

Proof Think of [0, 2r) parameterizing the circle 5! by r — {cosx, sinz). The circle
is compact, and 27-periodic continuous functions on B become continuous functions
on §'. The trigonometric polynomials on 5' form an algebra T < C'S? that vanishes
nowhere and separates points. The Stone-Weierstrass Theorem implies that T is dense
in €781, O

'Bince o function algebra need not contain constant Tunclbons, it was mportant thal § has no
constant term. Une should not expect that g = ag +ayf + -+ @ [ belongs to I
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Figure 99 The graph of ¢ lies in the e-tube aroand the graph of F.
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L

Here is a typical application of the Stone-Weierstrass Theorem: Consider a con-
tinuous vector field F : A = B? where A is the closed unit disc in the plane. and
giippose that we want to approximate F by a vector feld that vanishes {equals zero)
at most finitely often. A simple way to do so is to approximate F hy a polynomial

vector held . Real polyvoomials in two variables are Goite sums

"

Plz,y) = ¥ eya'y

I f=A¥

where the o are constants. They form a function algebra A in C"{A,R) that sep-

arates points and vanishes nowhere. By the Stone-Weierstrass Theorem, A is dense

in £, 0 we can approximate the components of F = (F}, F3) by polynomials
=P Fy = Q.

(The symbol = indicates “almost equal.”} The vector field (P, ) then approximates

F. Changing the coefficients of P by a small amount ensures that P and @ have no
common polynomial factor and F vanishes at most finitely often,
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5 Contractions and ODEs

Fixed-point theorems are of great nse in the applications of analyvsis, including the
basic theory of vector caloules such as the general implicie function theorem,  If
fr M= M and for some p € M we have fip) = p then p is a fixed-point of f

When must f have a fixed-point™ This question has many answers, and the two most

famons are given in the next two theorems.,

Let Al be a metric space. A contraction of Af iz a mapping f: M — M such
that for some constant & < 1 and all roy € A we have

difr. fu) < kd{x.y).

24 Banach Contraction Principle Suppose that f : M — M s a contraction and
the metric space M is complete, Then [ has a unigue fired-point p and for any
r € M. the tteratet (x)= fo fo--- o fixr) converges to p as n — oo,

Brouwer Fixed-Point Theorem Suppose that f: B™ — B™ is continuous wherr
B™ is the closed unit ball in B™. Then f has a fired-point p e B™.

The proof of the first result is fairly easgy, the second not. See Figure 1060 (o picture
a contraction and Section 10 of Chapter 5 for a proof of the Browwer theorem.

Proof #1 of the Banach Contraction Principle Beautiful, simple, and dynam-
ical! See Figure 100. Choose any ry € M and define r, = f®(rg). We claim that for
all n & M we have

(18} iy, Pysy) < K d(rg, xy).
Thiz is ey

lil|_-"rJ~J'I|1-1] = "F':;”-"n I]-.“.J'.u:'] < kd(rg-1. 78} < -"j"n:fll 3 Iy

T e T EVdlEg.oxp)-

From thiz and a geometric series type of estimate, it follows that the sequence (ry, )
ig Cauchy. For let £ = 0 be given, Choose Y large enough that

i

14
(19) B

dlrg, r )= e

I:"iullr tlie alviise of motation. Tn he |lrlrnf of the Stone-Websrstrass T heorem. 1f""l.:l':l dleaietos et
'™ power of the real number flx), whilke ere f* denctes the composition of f with itself o times,
Draal wednh ar!
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i

Figure 100 f contracts M toward the fixed-point p.

Note that (19) needs the hypothesis & < 1. If N < m < »n then (18) gives

N s Ty ) D Ty Tl )+ Bl T 1s Traaed] + oo o F @l Eg—y1. Ea )

<
< K"d{xg.xr) + i ]rfi.n-.. nl+...+ & I'rfl:-l"u. Iyl

KL+ k+ ... + B ™ Nd(2g,21)

fe = "
= II-."\.E],-I;.fI:,Pﬂ,J"_ﬁ: R L_:I[J'D.J‘” £ F.

#=il L

Thus {x,) is Cauchy. Since M is complete, £, converges to some p € M as n — oc.
Let ¢ > 0 be given. For large n. the points r, and r,4; lie in the enrighborhood
of p. Since flr,) = ryep. the map f mows r, a distance < 2¢, and since € is
arbitrarily small, continmity of f implies f does not move p at all. It is a fixed-point
of f. Unigueness of the fixed-point is immediate. After all. how can two points

stmultaneously stay fxed and meve closer toeet her?! O

Proof #22 of the Banach Contraction Principle Choose any poinl oq £ M oand
choose ry so large that f{My(x)) € My (). Let By = M (xp) and B, =

f'ﬁﬁ,,-ﬁ The diameter of B, is at most &™ dicon] B, and this teonds o O as n— o0
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The sets B, nest downward as n — 3¢ and [ sends B, inside 8,.y. Since A is com-
plete, this implies that [JB, is a single point, say p, and f{p) = p. O

Proof of Brouwer’s Theorem in Dimension One The closed unit 1-ball is the
interval [—1,1] in R. If f : |-1,1] = [-1, 1] is continuous then so is g{x) = £ — f(x).
At the endpoints £1, we have g(=1) < 0 < g(1). By the Intermediate Value Theorem,
there is a point p € [—1. 1] such that g{p) = 0. That 5. f{p) = p. O

The proof in higher dimensions is harder. One proof is a consequence of the
general Stokes” Theorem, and is given in Chapter 5. Another depends on algebraic

topology, a third on differential topology.

Ordinary Differential Equations

The qualitative theory of ordinary differential equations ((JDEs) begins with the
hasic existence/uniqueness theorem, Picard's Theorem. Thronghout, [ is an open

sibset of m-dimensional Enclidean space B™,

A vector ODE on [ is given as m sinultaneous scalar equations

2y = FilZp2e .o 2m)

ry = falzy, x9..- ., Ten )
= el 2o Tl
where each f; is a function from 7 to B. One seeks m real-valued functions z{t),. ...
Tl t) such that
iy (t
J;;I[ ) = Siley(£), x2(t). ... 2m(H))
iralt
:j:[ ' = falas(t). 22(t). ... em(0)
'f m r
L) o flar( 22, . 2mlt)

hold identically and simultaneously. The functions xy(t), ..., ry(t) are said to solve
the ODE with initial condition

(21(0), 22(D). .. .. £ (0)).
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T

The ODE can be expressed geometrically as follows. The m real-valued functions
fi can be combined into a vector function F(x) = (fi(x)..... fin(z)) where r =
. P Il Thus F is a vector fleld on {7, and we seek a trajectory of F, that
is, & curve ¥ : (o, b) = U7 such that a < 0 < b and for all t € {a, b) we have

(20) ()= F(¥(t)) and ¥{0)=p.
The components of 7 are the functions x;(f) that solve the ODE and p is their initial

condition. | contend that this peometric view of an ODE as a vector ABeld s the best

way o get intuition about it. See Figure 101,

Figure 101 7 is always tangent to the vector field F.

We think of the vector field F defining at each x € U7 a vector Fx) whose foot
lies at & and to which 5 must be tangent. The vector (¢} is (¥ (£), ... .75, (1)) where
e “m are the components of 7. The trajectory 3(t) describes how a particle
travels with prescribed velocity F. At each time ¢, 3(t) is the position of the particle:
its velocity there is exactly the vector F' at that point. Intuitively. trajectories should

exist because particles do move,

The contraction principle gives a way to find trajectories of vector fields, or what
is the same thing, to solve ODEs. We will assume that F satishes a Lipschitz
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condition - there is a constamt [ such that for all poims .y € 7 we have
IF(x) — Fiy)| = Lz —gl.

Here, | | refers to the Euclidean length of a vector. F.r.y are all vectors in B™. [t
follows that F is continnous. The Lipschitz condition is stronger than continuity, bt
still fairly mild. Auy differentiable vector field with a hounded derivative is Lipschitz.

25 Picard’s Theorem Given p € U7 there exists an F-tragectory (1) in U7 through

p. This means that 3 ¢ (a.b) — U7 solves (20). Locally, 7 is unique.

To prove Picard's Theorem it is convenient to reexpress (2] as an integral equa-
tion; to do this we make a briel digression about vector-valued integrals, Let’s recall
four kev facts about integrals of real-valued functions of a real varable, y = f(r).
0T

(a) j:j{:]d'.r is approximated by Riemann sums B =% flte)Ar,.
() Comtimmous funetions are integrable.
{e) If f'{x) exists and is continmous then _|I': Fla)de = fiN) — fla).
(o} |_f:.f|fi':|'-r-i"| < Mib—a) where M = sup|fir)l.
The Riemann sum Rin (a) hasa =1 €S S 21 £ -+ € 1y = b and

all the Axrg = rp = ) are small.

Given a continuous vectar-vadued function of a real variable

fl.l':l = l.rjl:J'] ----- _|r|ru|:-r|:|-

a < r = b we define its integral componentwise as the vector of integrals

jlﬁf{r}dr:(j;hﬁ:.r}rir_ -iﬁfm[-r]d.r).

Corresponding to (a) - (d) are the following:

{a") [: flr)dr is approxdimated by B = (f),.... i), with ff; A Riemann sum for
L .

i) Continnons vector-valued funetions are integrable.

{¢') IF f'{ ) exists and is continuons. then J:' fir)dr = f(b) - fla).

(d) |-I:I_I’[J‘]-J'.J' =< M{b—a) where M = sup|fir)).
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(a'), (b"), and {¢') are clear enough. To check {d') we write

R = Y Rie;=3_3Y filti)Ozue;
b R
= ) filtedejaze =) flty)Axs
k- k
where ey, ..., £ 18 the standard vector basis for 8™, Thus,

IR < Y If(t)|Are 3 MAz = M(b=a),
k i

By (a'), R approximates the integral. which implies (d'). (Note that a weaker inequal-
ity with A replaced by /M follows immediately from (d). This weaker inequality
would suffice for most of what we do but it is inelegant. )

Now consider the following integral version of {(20),

¢
(21) Tt) = ;1+f F(7(s))ds.
0

A solution of (21) is by definition any continuous eurve ¥ : (a.b) — U7 for which
{21) holds identically in ¢ € (a,b). By (b') any solution of {21} is automatically
differentiable and its derivative is F{%(#]). That is, every solution of (21) solves (20).
The converse is also clear, so solving (20) is equivalent to solving (21) for a continnous
function y(t).

Proof of Pleard’s Theorem Since F is continuous, there exist a compact neigh-
borhood N = N, (p) c U and a constant M such that |[F(z)| < M for all r € N.
Choose v > 0 such that

(22) tM<r and vL<l

Consider the set € of all continuous functions 5.0 : [-7.7] = N. With respect to
the metric

d(¥, o) =sup{|v(t) —a(t)] : t € |-7.7]}

the set € is a complete metric space. Given 7 € €, define a new curve $(7) as

@i"r](z]=p+fﬂ Fivis))ds.

Solving (21) is the same as finding 7 such that ®{7) = 5. That is. we seck a Hxed
pavint of 4,
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We just nesd to show that ¢ is a contraction of €. Does & send € into itself?
Given ¥ € € we see that ®(7)(#) is a continuous (in fact differentiable) vector-valued
function of ¢ and that by (22),

g

i
BT(E) - ¢l = |] F(7(s)) ds
]

Therefore, 4 does send € into itself, P contracts € because

P
A(®(), #(a)) = sup| [ Flao)) - Flots))ds
(1]
< rsup|Fiv(s)) = Fla(s))|

< vsupL|y(s) = a{s)| < rLd(v,o)

and vl < 1 by (22), Therefore ¢ has a fixed-point %, and ${%) = 5 implies that ()
solves (21), which implies that 7 is differentiable and solves (20]).

Auy other solution o(f) of (20) defined on the interval [=7, 7| also solves (21) and
i# a fixed-point of &, $(o) = o, Since a contraction mapping has a unique fixed-point.,
% = . which i what local unigueness means. O

The F-trajectories define a flow in the following way: To avoid the possibility that
trajectories cross the boundary of [7 (they “escape from U™ ) or become unbounded in
finite time (they “escape to infinity™ ) we assume that 7 s all of R™, Then trajectories
can he defined for all time ¢ € K. Let 7(t. p) denote the trajectory through p. Imagine
all pointz p € B™ moving m wnison along their trajectories as ¢ incresses. They ace
leaves on a river. motes in a breeze. The point py = (. p) at which p arrives after
time #) moves according to Y(t, py). Before p arrives at py, however, p; has already
gone elsewhere. This is expressed by the flow equation

'||:f,j.l|]- =7t + f|.F:|.

See Figure 102.

The flow equation is true becanse as funetions of ¢ both sides of the equation are
F-trajectories through py, and the F-trajectory through a point is locally unique. It is
revealing to rewrite the low equation with different notation. Setting 2 (p) = (. p)
Eives

reslp) = @l 2slp)) for all t.5 € R.

& 15 called the t-advance map. [t specifies where each point moves after time t.
See Figure 103. The flow equation states that ¢ = 2 is a group homomorphism from
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Figure 102 The time needed to flow from from p to py is the sum of the
times needed to flow from p to py and from py to po.

Figure 103 The f-advance map shows how aoset A Hows 1o a 2ot 20 A)
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R into the group of motions of B™, In fact each 2¢ is a homeomorphism of R™ onto
itsell and its Inverse is @y, For ooy 0 2 = g and 5y is the time-zero map where

nothing moves at all. 2o = identity map.

6% Analytic Functions

Recall from Chapter 3 that a function f : (o, b) — B i= analytic if it can be expressed
locally as n power series. For each r € {(a,b) there exists a convergent power series
E: eeh® such that for all # + b near .+ we have

L 3

fla+h) =3 bt

=ik

As we have shown previously, every analytic function is smooth but not every smooth
function is analvtic. In thig sction we give a necessary and sufficient condition that
a smooth function be analytic., It involves the speed with which the @™ derivative

ErOWws as r — X0,

Let f:(a.b) = K be smmooth. The Taylor series for f at r € (0. b) is

Let I = [r = a, x4+ a] be a subinterval of (a,b). & > . and denote by M, the
maximmm of |f*7(#)| for t € [, The derivative growth rate of f on [ is

= lim '|:|]'|n||II ”"
—. = ——

F =k

Clearly, 1.',-"r|_,r'""l:.r]_'l."r'! < o M, /rl. so the radios of convergenee

1
R =
I i | r||:I | |
linn sip
=0 hl
of the Tavior series at o satishies
l < f.
'

[11 pasrticnlar, i o = fnite the radius of comvergence of the Tavior =eries 15 positive,
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26 Theorem [f no < 1 then the Taylor series converges uniformily to [ on the
interval [,

Proof Choose & > 0 such that (o + & < 1. The Tavlor remainder formula from
Chapter 3, applied to the (r = 1/®-order remainder, gives

i) {r)
fle+h) - E‘r [.r] = f76) FI{EJ h

for some # between r and x 4 h. Thus, for r large we have

ifr E
€ o = ((i) ) < ([0 + d)o)".

Since (o + 4)a < 1, the Taylor series converges uniformly to f{x + &) on I. O

(k)
fe+h) -'z L8 <

k=0

27 Theorem If f is expressed as a convergent power series f(x+h) = Y eph® with
radius of convergence B > a then [ has bounded derivative growth rate on I

The proof of Theorem 2T uses two estimates about the growth rate of factorials.
If yvou know Stirling's formula they are easy, but we prove them directly.

(23) lim | —=¢

(24) Dl =

Taking logarithms. applving the integral test, and ignoring terms that tend to
EOTO A5 T — 30 FIVES

1
l{luﬁ v =logr!) = logr—={logr+loglr—=1)+---+logl)
r ¥
F

1 [ 1
"'-']Ugil'——f logrdr = logr - j—_{;h.rg.r—.r]
LA

= 1—=

!

which tends to 1 as r — ac. This proves (23),
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To prove {24) we write A = ¢™® for p > 0, and reason similarly:

xSk = kik—1)(k=2)...(k=r+1) _,
Z(r)lk - Z ‘I".r e !

kmp k=¢
¢ PBic - Y
- r‘,' i St E i B
k=r 3
=1 Pl J.J_.r-l T|:F— 1]_:r_‘2 ol |-~
— E—— -H: — L -
rrr (.ﬁ + = + e + +J'-"r+])r
I. 2 ] r+1
< —e M+ 1" | —— :
= ¢ I (mln{l.p}l)

According to (23) the r*® root of this quantity tends to &'/ min(1, ) as r = .
completing the proof of {24).

Proof of Theorem 27 By assumption the power series 5 eph* has radius of con-
vergence i and o < R, Since 1/R is the limsup of {/]ee] as & — 2, there is a
number A < 1 such that for all large & we have |opo®| < A%, Differentiating the series
term by term with |h| < o gives

f4n)] € Yok —1)(k=2) .. (k =1+ 1)kt

O bk
r. I r &
; (F') |E*.l$f | E I:r—_r-' E (r).}-

k=r E=r

et

for v large. Thus,

: 1=
M, = (P 4+ B < = ( )A*_
o e+ R = — 2

r
k=r

According to (24).

M
= limsup {/ == < —HK Ak
e {57 < Zman {157 (P <
k=r
and § has bounded derivative growth rate on 1. O

From Theorems 26 and 27 we deduce the main result of this section.

28 Analyticity Theorem A smooth function is analytic if and only if of has locally
bounded derivative growth rate.
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Proof Assume that f @ (o, b) — R is smooth and has locally bounded derivative
growth rate. Then r € (a.b) has a neighborhood N on which the derivative growth
rate o is Anite. Choose ¢ > O such that I = [z —ar+ o] C N and oo < 1. We
infer from Theorem 26 that the Taylor series for f at r© converges uniformly to f on
I. Hence f is analytic.

Conversely. assume that f is analytic and let r € {a, &) be given. There is a power
series 3 o h* that converges to f(x+h) for all b in some interval (— R, /) with /& > 0.

Choose o with 0 < & < K. We infer from Theorem 27 that f has bounded derivative
growth rate on [. O

29 Corollary A smooth function is analytic if its derivatives are uniformly bounded.

An example of such & function is f{x) = sin z.

Proof 1f |78} < M for all r and # then the derivative growth rate of f is bounded,
In fact, or = 0 and B = . W]

30 Taylor's Theorem If f{x) =5 cpr® and the power series has radivs of conver-
gence i then [ is analytic on (- R, R).

Proof The fanction f s smooth, and by Theorem 27 it has bounded derivative
growth rate on each compact interval [ < (— R, R). Hence it is analytic. O

Taylor's Theorem states that not only can f be expanded as A convergent power
series at © = (0, but also at any other poimt oy € (=K. /). Other proofs of Taylor's
theorem rely more heavily on series manipulations and Mertens' theorem (Exercise 73
in Chapter 3).

The concept of analvticity extends immediately to complex functions, A function
fiD = Cis complex analytic if [7 is an open subset of C and for each = € D
there is a power series

Z e

such that for all z + { near z,

s

flz+¢) =3 et

L]

The coefficients ¢ are complex and 20 i8 the variable . Convergence occurs on a
dize of radius K. This lets us define %, log 2. sinz. cos 2 for the complex mumber 2
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kv setting

ac ok o kel k
N z -1 3
7 o= E E ]Hf.’,“. + -'.} _ E % when |:| <1
=il .L"l
t k 2k+1 k. k
-]
sinz: = |: } sz = [ ]
= NETEST ;,Z.. (2k)!

It is enlightening and reassuring to derive formlas such as

% = comfl + isind
directly from these definitions.  (Just plug in 2 = i and use the equations 2 =
~1,# = —i,i* = 1, etc.) A key formula to check is ¢*™™ = ¢*¢™. One proof involves
a manipulation of product series; a second merely uses analvticity. Another formula
is log(e®) = 1.

There are many natural results about real analytic functions that can be proved
by direct power series means: e.g. the sum, product, reciprocal, composite, and
inverse function of analytic functions are analytic. Direct proofs, like those for the
Analyticity Theorem above, involve major series manipulations. The use of complex
variables leads to greatly simplified proofs of these real variable theorems, thanks to
the following Fact.

Real analyticity propagates to compler analyticity and

eompler analylicity s equivalent to compler differentiabality.’

For it is relatively easy to check that the composition, ete,. of complex differentiable
functions is complex differentialile,

The analyticity concept extends even bevond C. You may already have seen such
an extension when you studied the vector linear QODE

in caleulus. A is a given m = m matrix and the unknown solution r = #(f) = a
vector funetion of ¢, on which an initial condition {0} = ry is usually imposed. A

A function @ [} = C = complex diferentiable or holomorphic il 1 = an open subset of O

wnd for vach = & £, the linsit of
af _ fiz+az)- iz
a3 e
exists as Sz — 0 in O, The lmit, if it exisis, is a8 complex number,
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vertor ODE is equivalent to m coupled, scalar, linear ODEs. The solution £(t) can
be exprossed as

Tt} = r:“.r,:.
where

® ok
A _ 3 l - R i ny L k
gl = nhilr:.:“ +td + 21“-4] 4 i nr{f-‘” )= E A‘!A ;

[ is the m = m identity matrix. View this series as a power series with &'® coefficient
t* (k! and variable A. (A is a matrix variable!) The limit exists in the space of all
m x m matrices, and its produet with the constant vector xp does indeed give a vector
function of ¢ that solves the original linear ODE.

The previous series defines the exponential of a matrix as ¢ = 5 A¥EL Yon
might ask yourself - is there such a thing as the logarithm of a matrix? A function thar
assigns to a matrix its matrix logarithm” A power series that expresses the matrix
lomarithm? What about other analytic functions? Is there such a thing as the sine
of a matrix? What about inverting a matrix? Is there a power series that expresses
matrix inversion? Are formmlas such as log A* = 2log A true? These questions are
explored in nonlinear functional analysis.

A terminological point on which to insist is that the word “analvtic” be defined as
“locally power series expressible.” In the complex case. some mathematicians define
complex analyticity as complex differentiability, and although complex differentiahbil-
ity turns out to be equivalent to local expressihility as a complex power series. this is
a very special feature of C. In fact it is responsible for every distinetion between real
and complex analvsis. For cross-theory consistency, then, one should use the word
“analytic” to mean local power series expressible, and use “differentiable”™ to mean
differentiable, Why confound the two ideas?

T* Nowhere Differentiable Continuous Functions

Although many continuous functions, such as [x|, §r, and xsin(l/r) fail to be dif-
ferentiable at a few points, it is quite surprising that there can exist a function which
is everywhere continuous hut nowhere differentiable.

31 Theorem There enists a continuous function f: R = R that has a derivative at
no point whatsoever.
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Proof The construction is due to Weierstrass. The letters k, m, n denote integers.
Start with a sawtooth function o : R — R defined as

e T =2n f2n<s<2n+1
] -2 f2n+l<r<In4 2

@q is periodic with period 2; if ¢ = r 4+ 2m then auft) = oul{x). The compressed
sawtooth function

PR
() = (1!) mald4°r)

has period m, = 2/4%. If t = = + m=; then o4 (1) = oe{z). See Figure 104.

] 3 d i}
o

0 1 2 3 4 b fi
o)

VYV VYV VYUYV

G:‘Il

Figure 104 The graphs of the sawtooth function and two compressed
sawtooth functions
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According to the M-test, the series 3 op(r) converges uniformly to a limit f, and

flx) =3 oule)

k=0

is contimuons. We claim that f is nowhere differentiable. Fix an arbitrary point r.

and set &, = 1/2-4". We will show that

Af _ flatba) - flr)
Ar iy

does not converge to a limit as 6, — 0, and thus that f'{x) does not exist, The
quotient is

Af = ap(x £ 8,) — Flz)
ﬂ..r i gﬂ' d'" -
There are three types of terms in the series, k > n, k=n, and & < n. If & > n then

aplx £ 6y} — ap(x) = 0. For 4, is an integer multiple of the period of &g,

Go= L o getnen 2 ey

2.4" ¥

* tt‘"

Thus the infinite series expression for Af /Ar reduces to a sum of n 4 1 terms

Af _ oalzby) —oulz) | Emri 5} = mufr)

Ar By B

k=il

The function oy, is monotone on either [x — &,, 7] or [r, r + 8], sinee it is monotone
on intervals of length 47" and the contiguous interval |r = . 2,7 + &,] at r is of
length 47", The slope of &, is £3". Thus, either

'r'rFI{"r +‘5rl]' _'UM'!.I}
A

Oy T — JHJ - Ol )

= 3"
'ill

= 3",

The terms with & < n are crudely estimated from the slope of #;, being £3%:

aplx £ 8p) — oplir)

G < 3.
i &afF n=1 1
el B IV, -1, S, B i = -{3" .
|&:‘_3 {3 + +1)=13 31 2‘” +1)

which tends to oc as &, — 0. so f'(r) does not exist. O
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By simply writing down a sawtooth series as above, Welerstrass showed that
there exists a nowhere differentiable continmons function, Yet more amazing is the
fact that mast continnous funetions (in a reasonable sense defined below) are nowhere
differentiable. If vou could pick a continnons funetion at random, it wonld be nowhere
differentiable.

Recall that the set £ C Af is dense in M if D) meets overy nonempty open sulset
Woof M, DWW # @ The intersection of two dense sets need not be dense: it can be
empty, as is the case with Q@ and Q° in R. On the other hand if U, V' are open-dense
sets in M then UMV ks open-dense in M. For ff W is any nonempty open subset of
M then Un W is a nonemnpty open subset of M, and by denseness of V. we see that
V omeets U W Le., UNV AW is nonempty and 70V meets W,

Moral Open dense sets do a good joby of being dense,

The countable intersection & = )G, of open-dense sets is called a thick (or
residual') subset of M. due to the following result, which we will apply in the
complete metric space O [a, b). B), Extending our vocabulary in a natural way we
say that the complement of a thick set is thin (or meager). A subset H of AL is thin
if amd only if it is a countable union of nowhere dense closed sets, H = |J H,,. Clearly,
thickness and thinness are topological properties, A thin set is the topological analog
of a zero set (A set whose outer measure is zero).

32 Baire's Theorem Every thick subse! of a complete metric space M is dense m
M. A nonempty. complete mefric space is not thin, That is, if M iz the union of

countably many closed sels then al least one has nonemply mierior.

If all points in a thick subset of M satisfv some condition then the condition is
said to be generic. We also say that “most”™ points of M obey the condition. As a
consequence of Baire's theoremn and the Welerstrass Approximation Theorem we will
prove

33 Theorem The generic f € O = O [a, b], R) is differentiable at no point of fa, b,
nor does it sven have a lefl or right derivative of any © € [a. 5], nor is it menotone
on any subinterval aof Ja, .

Using Lebesgue's monotone differentiation theorem from Chapter 6 {monotonicity
implie= differentiability almost everywhere), one can see that the second assertion
follows from the first, but below we give a direct proof,

" Residual” s an onfortunate choice of words, 1t connntes smallness. when it should connote just
the opposite,
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Before getting into the proofs of Baires theorem and Theorem 33, we further
discuss thickness, thinness, and genericity. The empty set is always thin and the full
apace M is always thick in itself. A single open-dense subset is thick and a single
closed nowhere dense subset is thin. RAE is a thick subset of B and the Cantor set is
a thin subset of B. Likewise B is a thin subset of B2, The generic point of B does not
lie in the Cantor set. The generic point of B? does not lie on the r-axis. Although
B Eis a thick subset of B it is not a thick subset of B2, The set @ is a thin subset
of B. It is the eountable union of its points, each of which is & closed nowhere dense
set. 0° 15 a thick subset of B. The genceric real numlbeer s ircational. In the same
veln:

(a} The generic square matrix has determinant # ().

{b) The generic linear transformation B™ — B™ is an isomorphism.

{€) The generic linear transformation B™ — B™ ¥ is onto.

(d) The generic linear transformation B — R™7F is one-to-one.

(e} The generic pair of lines in B are skew (nonparallel and disjoint).

(f} The generic plane in B? meets the three coordinate axes in three distinet points.

(g) The generic »'"-degree polynomial has n distinet roots,
In an incomplete metric space such as . thickness and thinness have no bite

every subset of . even the empty set, is thick in G.

Proof of Baire's Theorem If M = {. the proof is trivial, so we assume M #£ Q.
Let & = [}y be a thick subset of M. each Gy, being open-dense in M. Let gy e M
and £ > 00 be given, Choose a sequence of points p, € M and radii r, > () such that
rp = 1/n and

My (p1) © Me(po)
Mar,(pa) © My, (m) NG,

Mae, (pn) € My, (Pn-1) NGy NN Gp-y.
See Figure 106, Then
Mpo) 2 M ip) > Moylp) 2 ...

The diameters of these closed sets tend to (0 as n = o0, Thus (p,) is a Canchy
sequence and it converges to some p € M by completeness. The point p belongs to
each set M. (p,) and therefore it belongs to each G,. Thus p € G N M, (po) and G
is dense in M.
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Figure 105 The closed neighborhoods M, (p,) nest down to a point.

To check that M is not thin, we take complements, Suppose that M = |J K, and
K, is closed. If each K, has empty interior then each &, = K7, is open-dense and

GTnGn - {UHHJL-: o
a contradiction to density of (. O
34 Corollary No subset of a complete nonempty metric space is both thick and thin.

Proof If § is both a thick and thin subset of M then M % § is also both thick and
thin. The intersection of two thick subsets of M is thick, so = SN (M“5) is a
thick subset of M. By Baire's Theorem. this empty set is dense in M, so M is empty,
codtrary 1o the hypothesis, O

Proof of Theorem 33 For n £ [ define

Ry={feC":¥rela, b—1/n| Ik > 0 such that

|
f
_f| n)

Gn={f € Y f restricted to any interval of length 1/n is nonmonotone},

Lo={feC":¥rea+1/n, b] 3~ < 0 such that
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where Af = f(r+ h) = f(r). We claim that each of these sets is open-dense in €9,

To check denseness it is enough to prove that the closures of /,. L. and &,
contain the set P of polynomials. For by the Weierstrass Approximation Theorem P
is dense in OV, (A set whose closure contains a dense set is dense itself,)

Fix n. fix a P € P, and let ¢ > 0 be given. Consider a sawtooth function @ which
has period < 1/n, size < ¢, and

||1§:|:||_|Hin|;:e,[r:rj|} > n+m:|x{|!a]1}pDI[P]|}

Since the slopes of o are far greater than those of P. the slopes of f = P+ o alternate
in slgn with period < 1/2n. At any r € [a, b—1/n]. [ has a rightward slope of either
nor —n. Thus f € R,. Likewise f € L, and f € (7. s0 the three sets are dense in

.,

Next we prove Ry is open, Let f € Ry, be given. For each r € |a, b —1/n] there
it an i = h{r) > 0 such that

fiz+h) = f(x)
f

=

Sinee f is continuons. there is a neighborhood Ty of 7 in o, b} and a constant » =
pfx) = 0 such that this same b yields

LEDEICIIN

"+

for all ¢ € T;. Since [a, b= 1/n] is compact, finitely many of these neighborhoods T
cover it, say Ty,...., 1%, Continuity of f implies that for all t € T, we have

|_i|"{f + M) — ,l'[f}|
b

(25) > n+u,
where iy = hir;) and 1 = v(r;). These m inequalities for points t in the m sets T,
remain nearly valid if [ is replaced by a function g with d{ f. g) small enough. Then

(25) becomes

(26) |"":H"jf_9{”‘ >

which means that g € R, and Ry is open in OV, Similarly Ly, is open in €7,

Checking that 7, = open is casier. If (fi) is a sequence of functions in G and
fie = f then we must show that f € 7. Each fi i8 monotone on some interval fi
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of length 1/n. There is a subsequence of these intervals that converges to a limit
interval 1. Its length is 1/n and by uniform convergence. f is monotone on [. Henee
(s}, is closed and (7, is open, which completes the proof that cach set R,,. L,. &, is
apen-dense in O,

Finally, if f belongs to the thick set

a3
N R.NL,NG,

n=l
theu for ench r € [a, b] there are sequences AT # 0 such that b, < 0 < b} and

flz+ o) = flx) fla+hi) = fl)|
ha he

= Tl

The numerator of these fractions is at most 2)|f||. so A2 = 0 as n — oc. Thus f is
not differentinble at r. nor does it even have a left or right derivative at r. Also, [
i= nonmonetone on every interval of length 1/n. Sinee every interval J contains an
interval of length 1/n when n is large enough. [ is ponmonotone on J. O

Further generic properties of continuous functions have been studied, and vou
might read about them in the hooks A Primer of Real Functions by Ralph Boas,
Differentiation of Real Functions by Andrew Bruckner. or A Second Cowrse in Real
Functions by van Rooij and Schikhof.

8* Spaces of Unbounded Functions

When we contemplate equicontinuity, how important i= it that the functions we deal
with are bounded. or have domain [, b and target B? To some extent we can replace
la, b] with a metric space X and R with a complete metric space Y. Let F denote
the set of all functions f: X — ¥, Recall from Exercise 2,116 that the metric dy on
Y gives rise to a bounded metric

iy (5.1’
1 + l'.h'I:_J,l', .J.l'r:' :

where . ' € ¥, Note that p < L. Convergence and Cauchyness with respect to g and
dy are equivalent, Thus completeness of Y with respect to dy implies completeness
with respect to g In the same way we give F the metric

ply.y') =

f.l'-,-{j.r,g,r]
dl f.g) == —_—
Ueg) =R T Sl e a9)
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A function [ € F i bounded with respect to dy if and only if for any constant
function ¢ we have sup, dy{ f{z), ) < o¢; ie. d f,e) < L. Unbounded functions have

d{f.c)=1.
45 Theorem [n the space F equipped with the metric d,

fa}) Uniform convergence of (f,) t8 equivalent to d-convergence,
b} Completeness of ¥ implies completeness of F.

fel The set Fy of bounded functions is closed in F.

fd} The set CYNX.Y) of continuous functions is closed in F.

Proof (a) [ = ml}l_E.!'iL_m‘I’,, means that dy{f.(x), flxr)) = 0, which means that
I:-h: .iFn- l||II:| — (.

(b) I { fy) is Cauchy in F and ¥ is complete then, just as in Section 1, f(r) =
lim f{z) exists for each r € X. Canchyness with respect to the metric d implies
A—F

uniform convergence and thus d{ f,. £} = 0.

le) If fou € F and d(fn, f) = O then sup, dy(flx), flx)) = 0. Since f, is

bounded. so1s f.

{d) The proof that O is closed in F is the same as in Section 1. O

The Arzela-Ascoli theorem is trickier, A family £ © F is uniformly equicon-
tinuous if for each ¢ > 0 there is a & > 0 such that f € £ and dy{r.t) < & imply
dy(fiz), fit)) < ¢. If the 6§ depends on x but not on f € £ then £ is polntwise
equicontinuous.

36 Theorem Pointuise equicontinuity tmplies uniform equiconfinuity of X 18 com-
pact,

Proof Suppose not. Then there exists ¢ > 0 such that for each 4 = 1/n we have
points ry. ty € X and functions fi, € £ withdy{ra.ta) < /nand dy [ fulza), fulte)) =
£. By compactness of X we may assume that r, — ro. Then 8, — x5, which leads
to a contradiction of pointwise equicontinuity at xp. O

AT Theorem [f the sequence of funchions f, : X = Y 15 wmiformiy equicontinuous,
X is compact, and for cach r € X, the sequence (fy(x)) lies in a compact subset of
Y, then (fu) has a uniformly convergent subsequence.

Proof Being compact. X has a countable dense subset D, Then the proof of the
Arzeld Ascoli Theorem in Section 3 becomes a proof of Theorem 37. O
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The space X is o-compact if it is a countable union of compact sets, X = |J X,.
For example £. Q. B amd B™ are o-compact, while any uncountable set equipped with
the discrete metric is pot #-compact.

38 Theorem [f X is o-compact and if [ f,) i a sequence of pointunse equicontinuons
functions such that for each r € X, the sequence { fu(x)) lies in a compact subset of
Y, then (fy) hos a subsequence that converges uniformly to a limit on each compact
subset of X,

Proof Express X as |J X, with X; compact. By Theorem 36 {folx,) is uniformly
eouicontinuous, By Theorem 37 there is a subsequence [y, that converges uniforimly
an X;. and it has a sub-subsequence f:, that converges uniformly on Xs, and so
on. A diagonal subsequence (g, ) converges uniformly on each X;. Thus (g, ) con-
verges pointwise, If A © X is compact. then (gy,|.4) is uniformly equicontinuons and
pointwise convergent, By the proof of the Arzeld Ascoli propagation theorem, (guwla)
converges uniformly. O

39 Corollary If (f,) 5 a sequence of pomnbfwise equicontinuous functions B — H,
and for some rg € R, (fo(ra)) s bounded then (f,) has a subsequence that converges
uniformly on every compact subset of K.

Proof Let [a, b] be any interval containing rg. By Theorem 36, the restrictions of f,
to |, b are uniformly equicontinuous, and there is a 4 > 0 such that if .5 € |a, ]
then [f—s| < & implies that | f(t) = fu{s)] < 1. Each point x € [a, b} can be reached in
< N steps of length < 4, starting at rp. if N > (b—a)/8. Thus |fo(r)] < |[falze)|+ N.
mnndd [ flx)) is bounded for cach r € B, A bounded subset of B has compact closure
and Theorem 38 gives the corollary. O
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Exercises

In these exercises, " = C%[a.b,R) is the space of continuous real-valued fune-
tions defined on the closed interval Ja, b, It is equipped with the sup norm, || f|| =
sup{|fix)| : € |a, b}

1.

11ﬁ.

Let M. N be metric spaces.
(a) Formulate the concepts of pointwise convergence and uniform convergence
for sequences of functions f, : M = N.
{b) For which metric spaces are the concepts equivalent?
Suppose that f, = f where [ and f, are functions from the metric space
M to the metric space N. (Assume nothing about the metric spaces such
as compactness, completeness. ete.) If each f, is continuous prove that [ is

continuous. [Hint: Review the proof of Theorem 1.]

. Let fy : la,b] = R be a sequence of piecewise continnous functions, each of

which is continuous at the point rg € [0, 4. Assume that f, = f as n = oo
{a) Prove that f is comtinuous at xp. [Hint: Review the proof of Theorem 1.
(b) Prove or disprove that f is plecewise continuous.

{a) If fr : R = R s uniformly continuous for cach n € M and if f, = f as
n —+ oo, prove or disprove that f is uniformly continuous.

(b) What happens for functions from one metric space to another instead of
Rto R?

Suppose that [, : |a, 5 — R and f; = [ as n —+ oc. Which of the following

discontinuity properties (see Exercise 3.36) of the functions f, carries over 1o

the limit function? (Prove or give a counterexample. )

[a) No discontinuities.

(b} At most ten discontinuities.

{c) At least ten discontimuities,

{d) Finitely many discontinuities.

(¢} Countably many discontinuitics, all of jump tvpe.

{f) No jump discontinuities.

(g) No oscillating discontinuities.

{a) Prove that C" and R have equal cardinality. |Clearly there are at least
as many functions as there are real numbers, for © includes the constant
functions. The issue is to show that there are no more continuous functions
than there are real numbers.|

(b} Is the same true if we replace [a, b with B or a separable metric space”
i) In the shme vein, prove that the collection T of open subsets of K and R

itself have equal cardinality.

(d) What about more general metric spaces in place of &7
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=1

9.

141,

11.

12.
1

14.

15.

Consider a sequence of functions f,, in €Y. The graph €7, of f, is a compact

subset of B

{a) Prove that ([} converges uniformly as n — x if and only if the sequence
(Ga) in K(R?) converges to the graph of a function f € OV (The space
X was discussed in Exercise 2.147.)

(b) Formulate equicontinuity in terms of graphs.

Is the sequence of functions [, : B — B defined L

folz) = cos(n + ) + log(1 + sin-(n"r))

1
v+ 2

equicontinuons? Prove or disprove.

If f:R = & is continnons and the sequence f,(r) = finr) is equicontinuons,
what can be said about f7

Give an example to show that a sequence of functions may be uniformly contin-
nons, pointwise equicontinuons, bot pot uniformly ecquicontineons, when their
domain A is noncompact.

If every sequence of pointwise ecgquicontinuous functions Af = R is uniforinly
eopuicontinuous, does this imply that A s compact?

Prove that if £ C CY (M, N} is equicontinuous then so is its closure.

Suppaose that { f, ) is a sequence of functions B — B and for each compact subset
K < R. the restricted sequence (fy])) 5 pointwise bounded and pointwise
Ly T TLATTHT TR

(a) Does it follow that there is a subsequence of (£, ) that converges pointwise

to s continons limit function & = BT

(b} What about uniform convergence?

Recall from Exercise 2278 that a metric space Af i chain connected if for each
£ = 0 and each p.g € A there is a chain p= py. .. .. P =g in Al such that

dpp_1.pe) <€ for 1=k<n

A family F of hanctions £ : M — B is bounded at p € M if theset { fip): f € F)
is bounded in R.
Show that M is chain connected if and only if pointwise boundedness of an
equicontinnons family at one point of A implics poimwise boundedness at
every point of M.
A continuous. strictly increasing function je: (00 xc) = (L. o¢) is & modulus of
continuity if u(s) =l as 5 = 1. A function f : [0, b] = R has modulus of
continuity g if |f{s) — Fi1)] < p(|s — #]) for all &, ¢ € [a,b].
{a) Prove that a function is uniformly continuons if and only if it has a modulus
of countimuty.
(b) Prove that a family of functions is equicontineows if aod only if its members
bave a common moesdulus of cont ity
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16. Consider the modulus of continmity p{s) = Ls where L is a positive constant.
(a) What is the relation between M and the set of Lipschitz funetions with
Lipschitz constant < L7
(b} Replace ja, b with B and answer the same question.
(¢} Replace [a,b] with M and answer the saime question.
(d) Formulate and prove a generalization of (a).

17. Consider a modulus of continmity p(s) = Hs" where0 < o < 1and 0 < H < 2.
A fupetion with this modulus of continuity is said to be a-Hilder, with a-
Holder constant H. See also Exercise 3.2

{a) Prove that the set C%{H) of all continuons functions defined on [a, b which
are a-Hilder and have o-Holder constant < H s equicontinuos,

(b) Replace [a, b with {a,b). Is the same thing true?

(e) Replace [a, b] with R. Is it true?

{d] What about Q7

(e] What about M7

18, Suppose that (f,) is an equicontinuous sequence in CY and p € [a, b] is given.

(a) If {fulp)) is a bounded sequence of real numbers, prove that (f,) is uni-

formly bonmced.

ib) Reformulate the Arzela-Ascoli Theorem with the weaker boundedness hy-
pothesis in (a).
{¢) Can [a.b] be replaced with {a. )7, Q7, R?. N7
{d} What is the correct generalization?
19. If M is compact and A is dense in M, prove that for each 6§ > 0 there is a finite
subset {ay,.... i} A which is d-dense in M in the sense that each r € M
lies within distance § of at least one of the points ap, ... 0.
*20. Given constants a, 3 > () define

Jaslz) = 2 sin(?)

for x> 0.

in) For which pairs a. 3 is [, 3 uniformly continmous?

(b) For which sets of (o, 3) in (0, a0 12 is the family equicontinuous”

|Hint: Draw picture of the graphs when o« > 2 or 3 2 2. How about o > 1 or
g=17

21, Suppose that £ < C" is equicontinuous and bounded,

{a) Prove that sup{fiz): f € £} is a continuous function of .

(b) Show that (a) fails without equicontinuity.

(e) Show that this continuous-sup property does not imply equicontinuity.
(d) Assume that the continnons-sup property is true for each subset F C £,

[= £ equicontinuons? Give a proof or counterexample.
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22,

23,

24,

25,

26

a7,

28,

29,

Give an example of a sequence of smooth equicontinuous functions f, : o, b] —
R whose derivatives are not uniformly bounded.
Let Af be a compact metric space, and let {i,) be a sequence of isometries
ty + M = M,
(a) Prove that there exists a subsequence i, that converges to an isometry |
as k= oo,

(b} Infer that the space of self-isometries of M is compact.

(¢} Does the inverse isometry iy converge to i7'? (Proof or counterexample. )

(d) Infer that the group of orthogonal 3 » 3 matrices is compact. [Hint: Is

it true that each orthogonal 3 = 3 matrix defines an isometry of the unit
2-sphere to itself?]

(e} How about the group of m = m orthogonal matrices?

Suppose that a sequence of continnous functions f, : [a.b] = R converges
monotonically down to a limit function f. (That is. for all 7 € [a. b we have
fNi(x) 2 falz) 2 falz) = ... and fulz) = flz) as n = 2.

{8} Prove that the convergence is uniform and conclude that f is continous,

(b} What if the sequence is increasing instead of decreasing?

(€] What if you replace [a, 4] with R?

{(d} What if you replace [a, b with a compact metric space or R™?

Suppose that f: M — M is & contraction, but M is not necessarily complete.

(a) Prove that f is uniformly continuous,

(b) Why does (a) imply that f extends uniquely to a continuous map f: M-

M. where M is the completion of M7

{c] Is fa. contraction?

Give an example of a contraction of an incomplete metric space that has no
fixed-point.

Suppose that f: M — Mandforall z,y € M, ifr # ythen d{fr, fu) < d{zr, ¥).
Such an f i= a weak contraction.

[a) Is & weak contraction a contraction? (Proof or counterexample.,)

(b) If M is compact is a weak contraction a contraction” {Proof or counterex-

ample. )

(e] If M is compact, prove that a weak contraction has a unique fxed-point.
Suppose that f: R — R is differentiable and its derivative satisfies |f'(z]]| < 1
for all r £ B,

(a) Is f a comtraction?

(h) A weak one?

(2] Dows it have a fixed-point?

Give an example to show that the fixed-point in Brouwer's Theorem need not
be unique.
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30, Give an example of a continuous map of a compact, nonempty. path-connected
metric space into itself that has no fixed-point.

31. On page 233 it is shown that if by _fjl{l — 4" dt = 1 then for some constant e,
and for all n € M, by < cy/m. What is the best (i.e.. smallest) value of ¢ that
vou can prove works? (A caleulator might be useful here.)

342, Let M be a compact metric space, and let 4 be the set of continuous functions
f: M — R that ohey a Lipschitz condition: For some L and all p.g € M we
have

Ifp— fal = Ld(p,q).

*(a) Prove that CY is dense in C"(M, R). [Hint: Stone-Weierstrass.|

5 b) f M = [a.b] and R is replaced by some other complete, path-connected
metric space, is the result true or false?

***(c) If M is a general compact metric space and Y s a complete metric space,
is CHP(M.Y) dense in CYM.Y)? (Would M equal to the Cantor set
make a good test case?)

33. Consider the ODE #' = r on R, Show that its solution with initial condition
xy i ¢+ el Interpret ¢ = ¢'¢® in terms of the fow property.

4. Consider the ODE ' = Eg'm where v & R

[a] Show that there are many solutions to this ODE, all with the same initial
condition () = 0. Not only does y(¢) = () solve the ODE, but also
ylt) = 12 does for t = 0.

() Find and graph other solutions such as y(t) = 0 for ¢ < e and () = (t—c)*
fortze>0.

(¢) Does the existence of these nonunigue solutions to the ODE contradict
Picard’s Theorem? Explain,

*{d) Find all solutions with initial condition y{0) = (L.

35. Consider the ODE z' = r* on R. Find the solution of the ODE with initial
cotdition xy. Are the solutions to this ODE defined for all time or do they
cecape to infinity in Anite timoe?

36. Suppose that the ODE ' = f{z) on R Is bounded, |f{z)| < M for all .

(a) Prove that no solution of the ODE escapes to infinity in finite time.

{b) Prove the same thing if f satisfies a Lipschitz condition. or more generally.
if there are constants C, K such that |f(r)| < C|x| + K for all r.

(c) Repeat (a) and (b] with R™ in place of R.

(d) Prowve that if f : B™ — R™ is uniformly continuouns then the condition
stated in (b) is true. Infer that solutions of uniformly continuons ODEs
defined on B™ do not escape to infinity in finite time.

**37. (a) Prove Borel’'s Lemma. which states that given any sequence whatsoever
of real numbers {a;). there is a smooth function f : B — R such that
Fir0) = a,. [Hint: Try f =3 .3;,.{.1'}::,:,.:"';{:! where 4 15 a well-chosen
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bump function.|
(b} Infer that there are many Taylor series with radius of convergence & = 0,
(c) Construct a smooth function whose Taylor series at every r has radius of
convergence i = 0. [Hint: Try ¥ du(x)e(x + qi) where {g1.92....} = Q]
*38. Suppose that T C (a.b) clusters at some point of (e, b) and that f.q: (e, b) = R
are analytic. Assume that for all ¢ € T we have f{t) = git).
(a) Prove that f = g evervwhere in (a. b).
(b) What if f and g are only =7
(e} What if T is an infinite set but its only cluster points are a and &7
**{d} Find a necessary and sufficient condition for a subset 2 © (a.4) to he
the zero locus of an analytic function [ defined on (a.b), Z = {r &
(a.b) = flr) = 0} [Hint: Think Taylor. The result in (&) is known as
the Identity Theorem. It states that if an equality between analyvtic
functions is known to hold for points of T then it is an “identity.” an
equality that holds evervwhere, |
39. Let M be any metric space with metric o, Fix a point p € M and for each
q € M define the fanction fi(r) = d(g.x) — d{p, r).
{a) Prove that f; is a bounded, contimious function of r € M, and that the
map ¢ — fy sends M isometrically onto a subset My of C{ M, R).
(b) Since CJ{M,R) is complete. infer that an isometric copy of M is dense
in & complete metrie space, namely the closure of Wy, and henee that we
have a second proof of the Completion Theorem 2.80).
40. As explained in Section 8, 8 metrie space A is p-compact if it is the countable
union of compact subsets, M = |J AL
{a) Why is it equivalent to require that M is the monotone union of compact
sithbmets,

M = MM,

e, My cAMsc...T
(b) Prove that a a-compact metric space is separable,
(e} Prove that Z. Q. R.BE™ are o-compact
*(d) Prove that €V is not g-compact, [Hint: Think Baire.|
*le) IFM = III int{ Af;) and each M, is compact. M is e compact. Prove that
M is a®compact if and only if it is separable and locally compact. Infer
that Z, R, and B™ are o *compact but Q is not,
(F) Assume that M is e%compact, M = [ int(M,). with each M; compact.
Prove that this monotone union “engulfs” all compacts in M, in the sense
that if A € M is compact. then for some 1, A C M.
g} I = m.‘lf, and each M; is compact show by example that this engulfing
property may fail. even when Af itself is compact.,
**(h} Prove or disprove that a complete a-compact metric space is #%-compact,
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41. (a) Give an example of a function f : [0,1] = [0.1] = R such that for each
fixed x. the function y — flr.y) is a continwous function of y, and for
each fixed . the function & — flr, y) is a continuous fanction of r, but f
i= not coutinuons.
(b} Suppose in addition that the set of functions

E={zrw flz.y): p € [0, 1]}

is equicontinuous. Prove that f is continuous.
42. Prove that B cannot be expressed as the countable union of Cantor sets,
43. What is the joke in the following picture?
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More Prelim Problems

1.

10

Let f and f. n € M. be lunctions from R to R, Assume that fu(xry) = flr] as
n —+ o0 and ry, =+ r. Show that f is continuous. (Note: The functions f,, are
not assumed to be continuous.

Suppose that f, € C" and for each r € [a, 8]

filz) = falz) =2 ...,

and ﬂiil..];; Jalz) = 0. Is the sequence equicontimious? Give a proof or coun-

terexample. [Hint: Does f,{x) converge uniformly to 0, or does it not?)

Let E be the set of all functions « : [0, 1] — R such that 2(0} = 0 and u satisfies
a Lipschitz condition with Lipschitz constant 1. Define ¢ : E — R according to
the formula

olu) = Ll{tr{r}i — ulx))dz.

Prove that there exists a function u € E at which ¢(u) attains an absolute
maxinmim.

. Let (g} be a sequence of twice-differentiable functions defined on [0, 1], and

assume that for all n, g,(0) = g,{0). Suppose also that for all n € M and all
r € [0, 1], |ghlx)] < 1. Prove that there is a subsequence of (g,) converging
uniformly on [0, 1].

. Let {a,) be a sequence of nonzero real numbers. Prove that the sequence of

functions

Jalz] = L'[]"ﬁii[lllﬂnl'] + cos(T + ay, )

has a subsequence converging to a continuous function.
Suppose that f : R — R is differentiable, f(0) = 0. and f(x) > f(r) for all
r € K. Prove that f{r) > 0 for all > 0.

- Suppose that f: [a,b] — R and the lmits of f{r) from the left and the right

exist at all poluts of [a, b. Prove that f is Riemann integrable.

Let h : [0,1) = R be a uniformly continuous function where [0, 1} is the half-
open interval. Prove that there is a unique continuous map g : [0, 1] = R such
that gix) = h(r) for all z € [0,1).

Assume that f: R — R is uniformly continuous. Prove that there are constants
A, B such that |f(z)] < A + B|z] for all r € R,

Suppose that f(z) is defined on [—1,1] and that its third derivative exists and
is continuous, (That is, [ is of class C3.) Prove that the series

S (n(f(1/n) = f(-1/n)) — 2(0))

=il

CONVEeIEesS.
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11.

14,

14.

15.

16.

17,

18,

19.

Let A C R™ be compact, r € A. Let (r,) be a sequence in A such that every
convergent subsequence of (r,) converges to r.
(a) Prove that the sequence () converges.

(b} Give an example to show if A is not compact, the result in (a) is not
necessarily true.

. Let f:]0,1] = R be continuously differentiable, with f{0} = 0. Prove that

|
I < L (f ()

where ||f|| =sup{[f(t)|: 0=t =1}
Let f, : R = R be differentiable functions, n = 1.2,.... with f,(0) = 0 and
|fi{z}| < 2 for all n.x. Suppose that

Tim_fo(x) = glx]

tor all x. Prove that g is continuous.
Let X be a nonempty connected set of real numbers. If every element of X is
rational, prove that X has only one element.
Let & > 0 be an integer and define a sequence of maps f, : R — R as
*
4+n

J'rrl{I:' _—

n=12,.... For which values of k does the sequence converge uniformly on E?
O every bounded subset of BT

Let f : [0,1] = R be Riemann integrable over [b, 1] for every b such that
D<ch<l.
{a) If fis bounded, prove that f is Riemann integrable over [0, 1.
(b) What if f is not bounded?
{a) Let S and T be connected subsets of the plane E? having a point in
pommaon. Prove that 50T is connected,
(b) Let {8.} be a family of connected subsets of B? all containing the origin,
Prove that |J 5, is connected.
Let f: R — R be continuous. Suppose that B contains a countahly infinite set

5 such that .;
/ flrldr =10
p

if p and g are not in 5. Prove that f is identically zero.
Let f: & — R satisfy f(r) < f(y) for ¥ £ y. Prove that the set where f is not
continuous is finite or countably infinite.
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20.

21.
22,

4.

25,

26.

27,

Let {gy) be a sequence of Riemann integrable functions from [0.1] into B such
that |g,(x)| < 1 for all n.r. Define

Crylr) = f ault)dt.
1]

Prove that a subsequence of ((7,) converges uniformly.

Prove that every compact metric space has a conntable dense subset.

Show that for any continuous function f: [0,1] — R and for any ¢ > 0 there is
a function of the form

glx) = i Cyr*
k=0

for some n € M, and |g{x) — flz)| < ¢ for all ¢ in [0, 1].
Give an example of a function f : B = K having all three of the following
Properties:
(a) flr)=0forall r <Oand r> 2.
(b} f(1) =1.
(¢} f has derivatives of all orders,
(a) Give an example of a differemtinble function f : B — B whose derivative
is not continnonus,
ib) Let f be as in {a). If f(0) < 2 < (1) prove that f'{zx] = 2 for some
x € [0,1].
Let U7 € B™ be an open set, Suppose that the map A : €7 = R™ is a homeo-
morphism from U7 onte B™ which is uniformly continuous. Prove that 7 = B™,
Let (fy) be a sequence of continuous maps [0, 1] = B such that

1
L (fulu))Pdy <5

for all n. Define g, : [0, 1] =+ R by

1
Falr) =f wIr+y L|[H}dy
il

{a) Find a constant K = 0 such that |g,(x)| < K for all n.

(b) Prove that a subsequence of the sequence (g, ) converges uniformly.
Consider the following properties of a map f: R™ = R.

{a) [ is continuous,

(b) The graph of f is connected in R™ x K.

Prove or disprove the implications {a) = (b), (b) = (a).

. Let () be a sequence of real polypomials of degree < 10, Suppose that

lim Fix) =10
1 =

=
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29.

A0,

3.

32.
. Let f: R — R be continuous and

M.

&
Ji.

7.

for all = € [0.1]. Prove that Fp(x) = 0,0 < & £ 1. What can you say about
Polzrlford < x < &7
Give an example of a subset of B having uncountably many connected compo-
nents. Can such a subset be open? Closed? Does your answer change if R?
replaces B7
For each (a, b.e) € B? consider the series
==
2 Wogny

ng e

Determine the values of a. b, and e for which the series converges absolutely,
cotverges comditionally, diverges.,

Let X be a compact metric space and f ¢ X — X an isometry. (That is,
d{ fiz), fly)) = d(z,y) for all 2,y € X.) Prove that f{X) =

Prove or disprove:  is the countable intersection of open subsets of R.

f‘"— | flz)|dx < 0.

e

Show that there is a sequence (r,) in R such that r, — 20, =, f{z,) = 0. and
rofl=x,) =0 as n— 0.

Let f:[0. 1] = R be a continuous function. Evaluate the following limits (with
proof):

1
(a) Hlﬂ'll; : " flz)dr (b)  lim n [-‘ " f{x) dr.
Let K be an uncountable subset of R™. Prove that there is a sequence of
distinet points in K which converges to =ome point of K.

Prove or give a counterexample: Every connected locally pathwise-conmected
set in B™ b= pathwize-connected.

Let { fu) be a sequence of continuous functions [0, 1] = R such that f, () — 0
for each x € [0, 1]. Suppose that

<K

I
U filr)ds
S

for all n where K is a constant. Does _||'[,' fulx) dr converge to ) as n — 07
Prove or give a counterexample,

. Let E be a closed, bounded, and nonempty subset of B™ and let f: E — E he

a function satislying |f{z) = fly)| < |z — y| for all 2.y € E. £ # y. Prove that
there is one and only one point rg € E such that firg) = g
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34,

40.

41.

42,

43

44.

45,

46,

47.

Let f:[0.27] = R be a continuous function such that

2n
flz)sin(nx)dr =0

for all integers n = 1. Prove that f is identically constant.

Let fi, fa.... be contimous real-valued functions on [0, 1] such that for each
z € [0,1], filx) = falz) = .... Assume that for each r, fo(x) converges to () as
n —+ o0, Dows f, converge uniformly to 07 Give a proof or counterexample.
Let f:[0,0c) = [0, 5c) be a monotonically decreasing function with

f it T e
1]

Prove that lim = f(r) =0
—+
Suppose that F; R™ — R™ is continuous and satisfies

|Fix) = Fly)| = Mz -y

for all x.y € B™ and some constant A > (1. Prove that F is one-to-one, is onto,
and has a continuous iverses,

Show that [0, 1] cannot be written as a countably infinite union of digjoint closed
subintervals,

Prove that a continuous function f : B = R which sends open sets to open sets
miust be monotonic,

Let f:[0,oc) = R be uniformly continuous and assume that

l|||:| f flz)dr

exists (as a finite limit), Prove that lim f{r) =
I—+0

Prove or supply a counterexample: If f and g are continwously differentiable
functions defined on the interval 0 < r < 1 which satisfy the conditions

: s fiz)
Ilu!:n_f{.r} =fis 1]—13}1 glx) and ]:un e
and if g and g' never vanish, then ]Jm ;ET:]; {This is a converse of

L'Hopital's rule. }

Prove or provide a counterexample: If the function f from R to B has both a
left and a right limit at each point of K. then the set of discontinuities is at
most countable,
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48,

49.

o
.

.

Prove or supply a counterexample: If [ is a nondecreasing real-valued function
on [0, 1] then there is & sequence f,, n = 1.2,..., of continuous functions on
[0, 1] such that for each = in [0, 1], “Iim; Falz) = flz)

Show that if f is a homeomorphism of [0, 1] onto itself then there is a sequence
of polynomials Frir). n = 1,2, ..., such that F, = f uniformly on [ﬂ. I] and

each P, is a homeomorphism of [, 1] onto itself. [Hint: First assume that f is
4]

. Let f be a C? function on the real line. Assume that f is bounded with bounded

second derivative, Let A = sup, |f(x)| and B = sup, |f"(x}|. Prove that

sUp |_f"|:_.r}| < 2WvAH.
I

. Let f be continnous on R and let

fulz) = EJ’ (:+ j

Prove that f,,{x) converges uniformly to a limit on every finite interval |a, b].

. Let [ be a real-valued continuons funetion on the compact interval [a. b, Given

¢ > [), show that there is a polynomial p such that

pla) = fla).  #(a) =0, and |p(z) - f(z)| <e

for all = £ [a, b].

3. A function f: [0,1] = R is said to be upper semicontinuous if, given r €

[0,1] and ¢ > 0, there exists a &4 > 0 such that |y — x| < 4 implies that
fly) < flz) +¢. Prove that an upper semicontinuous function on [0, 1] is
bounded above and attains its maximum value at some point p € [0, 1],

Let flz), 0 < x < 1. be a continwous real function with continuous derivative
F'(x). Let M be the supremum of |f'{z}]|. 0 < < 1. Prove the following: For

n=12...,
L5(2) - e

{—.

. Let K be a compact subset of R™ and let (B;) be a sequence of open balls

which cover K. Prove that there is an ¢ > () such that each e-ball centered at
a point of K is contained in at least one of the balls B;.
Let f be a continuons real-valued function on [0, o) such that

s )+ [ rey)

exists (and is finite). Prove that lim, . f(x) = (.
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62

fid.

fid,

65,

fili.

A standard theorem asserts that a continuous real-valued fupction on & com-
pact set is bounded. Prove the converse: If K is a subset of B™ and if every
continuous real-valued function defined on K is bounded. then K s compaer.

. Let F be a uniformly bounded equicontinoons family of real-valued functions

defined on the metric space X, Prove that the function
glr) =sup{flx): f € F}

i= continme,

. Suppose that { f, ) is a sequence of nondecreasing functions which map the unit

interval into itself. Suppose that lim f;(r) = f{r) pointwise and that [ is a
o

contimous function. Prove that f(r] = fir) aniformly as n = oo, Note that
the Bunctions [, are oot necessarily continouos,

. Dows there exist a continuous real-valued function fir). 0 < r < 1. such that

L 1
[ rfiridr=1 arl " flx)dz =1)
T 0
for all n =0.2,3.4,5....7 Give a proof or counterexample.
Let f be a continnonus, strictly increasing fanction from [(), 2c) onto [}, »c) and
let g = F~' (the inverse, not the reciprocal). Prove that

it &
/ _H.r':lrf.r+f aly)dy = ahb
0 0

for all positive mombers @, b, and determine the condition for equality.

Let f be a function [0.1] — B whose graph {(r, f{x]) : = € [0, 1]} is a closed
siubset of the unit sguare. Prove that [ is continuons.

Let {ay) be a sequence of positive nmnbers such that % gy, converges. Prove
that there exists a sequence of munbers ¢, = > as n = x such that ¥ cqa,
CONVETERS.

Let flr y) e a continnons real-valwed function defined on the unit square
[0.1] = [0, 1}, Prove that glo) = max{f{z. y) : g € [0.1]]} is continuous.

Let the function f from [0,1] to [0, 1] have the following properties. It is of
class ', f{0) = 0= f(1), awd f° is nonincreasing (e, [ is concave), Prove
that the arclength of the graph of f does not exceed 3,

Let A be the set of all positive integers that do not contain the digit 9 in their
decimal expansions. Prove that

|
z E Ll =
e A

That is, A defines a convergent subseries of the harmonic series.



Multivariable Calculus

This chapter presents the natural geometric theory of caleulus in n dimensions.

1 Linear Algebra

It will be taken for granted that you are familinr with the basic concepts of linear
algebra — vector spaces. linear transformations. matrices, determinants, and dimen-
gion. In particular. vou should be aware of the fact that an om = » matrix A with
entrics ag; is more than just a static array of mn pumbers, It is dynamic. It can act.
It defines a linear transformation T, : B" — BE™ that sends n-space to mespace

acconding to the formula

m L]
Talw] = Z Zu”l'}e,

=1 =l

wherer =3 vje; € R and ey, . ., ¢y 15 the standard basis of R". (Equally, £, .. .. Et

is the standard basis of B™.)

The set M = Mim. n) of all v x # matrices with real entries a;; is a vector space.
Its vectors are matrices. You add two matrices by adding the corresponding entries,
A+ B = C where ay; + by = ¢;;. Similarly. if A € R is a scalar then A4 is the matrix
with entries Aa;;. The dimension of the vector space M is mn. as can be seen by
expressing each A as 3 oy B where Ej; is the matrix whose entries are (), except for
the (i)™ entry which is 1. Thus, as vector spaces, M = R™",

I3
=]
=]

;E springer Intermational Publishing Switzeclamd 2015
C.C, Pugh, Real Mathematical Analpsis, Undergraduate Texts
in Aathesnatics, DM L0007 /9783319 17771-7.5
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The set L = L(R".E™) of linear transforimations T : B — '™ is also a vector
space, You combine linear transformations as functions, 7 = T + 8§ being defined by
Ur) = T(v)4 8(v). and AT bheing defined by (AT ){v) = AT (v). The vectors in £ are
linear transformations. The mapping A — T4 is an isomorphism T : M — L. The
matrix A is said to represent the linear transformation Ty : B" = E™. As a rule of
thumb. think with linear transformations and compute with matrices.

Corresponding to composition of linear transformations is the product of matrices.
If Ais an m = k matrix and B is & & = n matrix then the product matrix P = AR is
the m x n matrix whose (171'® entry is

k
i = rJ||f.I|J. 2 gL, o ﬂhl'-‘bj.-} = zl'l':rbu-
r=l

1 Theorem T10Thp = Tan.

Proof For cach pair of basis vectors ¢, € BY and ¢, € B" we have

LIl

&
Talee) = er..r'. THI.*';] = Z'I’FJ"F'

yi= ] ra|

Thus for each basis vectar £ we have

k k k m
Ty (Z bl_ﬂ-r) = Elb'r-'T"“:Fr] = E.L_hrjz;ﬁw!'l

ol

(Ta0Tglles)

B i1 i

k
EZthhrEr = z Zr;"brﬁ.l

r=1] i=} =] rel

EI-’-’J“ = Taple;).

Two linear transformations that are equal on a basis are equal., O

Theorem | expresses the pleasing fact that matrix multiplication corresponds nat-
urally to composition of linear transformations. See also Exercise 6.

As explained in Chapter 1, a norm on & veetor space V isa fupction | [V = R
that satisfies three properties:
(a} For all v € V we have |¢| = (5 and |¢| = 0 if and only if v = 0.
(b} |Ae] = |Al el
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fe) |v+ w| < |v| + |w.

{Note the abuse of notation in (b); |A| is the magnitude of the scalar A and |v] is the
norm of the vector v.) Norms are used to make vector estimates, and vector estimates
underlie multivariable caleulus.

A vector space with a norm 15 & normed space. [ts norm gives rise (o A metric
A8
div, ') = v = ¢').

Thus a normed space is a special kind of metric space.
If V.W are normed spaces then the operator norm of a linear transformation
r:VoaWis
||T||:sup{m :'r';f'l']}.
vy
The operator norm of T is the maximum stretch that T imparts to vectors in V.

The subscript on the norm indicates the space in question, which for simplicity is
often suppressed.!

The composition of linear transformations obeys the norm inequality
|7 e 5| < 17 | 5]

where 5 : U = V oand T : V' — W. Thinking in terms of stretch. the inequality is
clear: & stretches a vector u € U7 by at most ||5]|. and T stretches S{u) by at most
ITH. The net effect on u is a stretch of at most ||T] ||.5]].

2 Theorem Let T : V — W be a linear transformation from one normed space to
another. The following are equivalent:

(a) |T] < =c.

{b) T is uniformly continuous.
fe) T is continuous,

{d) T 15 continuous at the orgin.

Proof Assume (a). ||T|| < o¢. For all v,v" € V', linearity of T implies that
[T - To'| < IT |=.' - r"'l |

which gives (b}, uniform continuity. Clearly (b) himplies (¢} implies (d).

YIF |77 is finite then 7' s said 10 be s bounded linear transformation. Unfortunately, this
terminology conflicts with T being bounded as & mapping from the metrie space V' to the metre space
W, The only linear transformation that & hounded in the lntter sense s the zoro transformation,
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Assume (d) and take ¢ = 1. There is a & > 0 such that if u € V and |u| < & then
|Tu| < 1.

For any nonzero ¢ € V., set u = A where X = 6/2v]. Then |u| = /2 < § and
H _ [T 1 2

o]~ Tul Sl 3
which implies ||T]| < 2/ and verifies {a). O

3 Theorem Every linear transformation T : R — W is continuous and every 1sa-
morphism T B = W 15 a homeomorphism.

Proof The norm on B" is the Euclidean norm. If v = (o, ..., ¢0,) € B" then

e ———

o] = \foF +... + 22,

Let | |y denote the norm on W oand let M = max{|T(e;)w.....|Tleadlw}- For
v=3 w;e; € R" we have |v;| < |v| and

ITolw € 3 IT(wesllw = Y IoliTles)lw < nmiv|df
=1 j=1

which implies that |T]| < nM < . Theorem 2 implies that T is continuous.

Assume that T : B" = W is an isomorphism. We have just shown that T is
continuous, but what about T-'? Continuity of T implies that the T-image of the
unit sphere is compact. Injectivity implies that € ¢ T(5"), Since O and T(5" ')
are disjoint compact sets in the metric space W, there is a constant © > 0 such that
for all u € 5™~ we have dy(Tu, ) = |Tu| = ¢. For each nonzero v € B® we write
¢ = Au where A = |¢| and w = v/ |v] is a unit vector. Linearity of T implies Te = AT«
which gives [Tv| = v, ie.

T

| = e
o < =

For each w & W ket v = T~ Yw). Then v = Te and

|1'_ '{u'}l = o] € E:-‘:-l = % [nr]

gives || 7| < 1/e < 20, and by Theorewm 2 we get continuity of -, A bicontinuous
bijection is a homeomorphisim. O
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T{s")

Figure 106 The minimum distance from T{5" ') to the origin is = r.

Geometrically speaking, the inequality |To| > ¢|v] means that T shrinks each
vector in B" by a factor no smaller than e, so it follows that T expands each vector
in W by a factor ne greater than 1/c. The largest ¢ with the property |[Te| = ey
for all v is the conorm of T. See Figure 106 and Exercize 4.

4 Corollary [n the world of finife-dimensional normed spaces, all lincar transforma-
tions are continuous and all isomorphisms are homeomorphisms. In particular, if a
Jfinife-dimensional vector space is equipped with two different norms then the identity
map is a homeomorphism between the two normed spaces. In particular T: M — L
15 a homeomorphism.

Proof Let V be an n-dimensional normed space and let T : V = W be a linear
transformation. As you know from linear algebra, there is an isomorphism H @
R" — V. Theorem3 implies that H is a homeomorphism. Therefore H~!' is o
homeomorphism. Since ToH is a linear transformation from B" to W it is continuous.
Thus

T=(ToH)oH'

is the composition of continuous maps so it 1s continuous,

Suppose that T : V' — W is an isomorphism and V is finite-dimensional. Then
W is finite-dimensional and T-! : W = V is a linear transformation. Since every
linear transformation from a Bnite-dimensional normed space to a normed space is
continuous, T and T—' are both continuous, so T is a homeomorphism.
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Let a finite-dimensional vector space V' be equipped with norms | || and | [,
Since the identity map is an somorphism Vy = V5 it is a homeomorphism. The same
applies to the =omorphism T that assigns to a matrix A the corresponding linear
transformation T 4. |

2 Derivatives

A Runction of a real variable y = f(r) has a derivative f'(r) at  when

(1) g L) = F{)

f—si} ]

= f'(z).

If. however, r is a vector variable, (1) makes no sense. For what does it mean to
divide by the vector increment &7 Equivalent to (1) is the condition
R(h)

flr+h) = flr)+ fh+RK) = Jm Tl =0,

which is easv to recast in vector terms,

Definition Let f: 7 = RB™ be given where [7 is an open subset of B". The function
[ is differentiable at p £ U with derivative (Df), =T if I': R" —+ R"™ is a lincar

transformation and

(2) flp+v) = flp)+ Tie)+ Rlv) = lim Rw) _ o

loj=+0 o]

We say that the Taylor remainder f is sublinear because it tends to 0 faster than
|-

When n = m = 1, the multidimensional definition reduces to the standard one.
This is because a linear transformation B <+ R is just multiplication by some real
number, in this case multiplication by f'(r).

Here is how to visnalize Df. Take m = n = 2. The mapping f : [ — R* distorts
shapes nonlinearly; its derivative describes the linear part of the distortion. Circles
are sent by f to wobbly ovals, but they become ellipses under (D f),. Lines are sent
by f to curves, but they become straight lines under (D f),. See Figure 107 and also
Appendix A.

This way of looking at differentiability is conceptually simple. Near p. f is the
sum of three terms: A constant term ¢ = fp. a linear term (D flpv, and a sublinear
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-

S

Figure 107 (Df), is the linear part of [ at p.

remainder term A{v). Keep in mind what kind of an object the derivative is. It is
not a number. It is not a vector. No. if it exists then (D f), is a linear transformation
from the domain space to the target space.

5 Theorem If [ is differentiable at p then it unambiguously determines (Df), ac-
cording to the limit formula, valid for all u € K",

IU" + tu) — fl:_{}:l
: -

(3) (Df Jplu) = lim

Proof Let T be a linear transformation that satisfies (2). Fix any v € B® and take
v = fu, Then

) s e 3 {tu
fip+ rxr_l flp) _ Titu) "r' Ritu) _ Tiu) + ‘Ijllr ljlﬂl
1]

The last term converges to zero as f = [0, which verifies (3). Limits, when they exist,
are unambiguous and therefore if T° is a second linear transformation that satisfies

(2} then T(u) =T'(u) 50 T =T". O
6 Theorem Oifferentiability implies contimuity.
Proof Differentiability at p implies that

|flp+v) = fip)l = [(Df)pr + Blv)| < [|(D2f)pll 0] + |B{v)| — O

BE P41 =+ D Cl
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.

Df i the total derivative or Fréchet derivative. [n contrast, the i;'" partial
derivative of [ at p is the limit, if it exists,

ifilp) s i f.l[.” + beg ) o=- ..rl':ﬂ'-':l

f}.r_r §=l] ]

T Corollary [f the total derivatioe erists then the partial derivatives enist and they
are the entries of the matrir that represents the total derivative.

Proof Substitute in (3) the vector u = ¢ and take the ' component of both sides
of the resulting equation. O

As i shown in Exercise 15, the mere existence of partial derivatives does not imply
differentiability. The simplest sufficient condition bevond the existence of the partials
and the simplest way to recognize differentiability - is given in the next theorem.

8 Theorem [f the partial dervatives of £ 207 = B™ enst and are confinuous then
f s differentiable.

Proof Let A be the matrix of partials at p. A = [@f;(p)/ir;]. and let T : B" - R™
be the linear transformation that A represents. We claim that (Df), = T. We must
show that the Tavlor remainder

Riv)= fip+ v) = fip) — Av

is sublinear. Draw a path & = [#,....a,] from p to 4 = p+ ¢ that consists of »
segments parallel to the components of v. Thus ¢ = % ve; and

|"F'_||‘|I'|=lﬂ.|_]_|+.fr'||'r-J h=<t=<1

is & segment from p;_ ) = p+ E-'r{; vgey to pp = piy + vje;. See Figure 108,

By the one-dimensional chain rule and mean value theorem applied to the differ-
entinble real-valued function g{t) = f; oo (t) of one varinble. there exists ¢;; € (0.1)
such that :

"-i'.fr'iFl_ll I :

ihr;

filpi) = filpj=1) = g(1} = g(0) = g'{4;;) = 5

where p,; = a;(t;; ). Telescoping fi(p+ ) — filp) along o gives
Rivl = filp+ )= filp) — (Av),

L]

E (LU’J'I oy f:':.ﬂ‘_l- 1) — ”-I:;ﬁr'_l)
i J_.I

J=1

i Adfilp) B il fil p) .
¢ | i ihry o

I|=
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mEprrEy
]

a,

P =y

=+ gl + Vary

P =pge

Figure 108 The semmented path & from pto g

Continuity of the partials implies that the terms inside the curly brackets tend to ()
as |v| = 0. Thus R is sublinear and f is differentiable at p. O

Mext we state and prove the basic rules of multivariable differentiation.

8 Theorem Let [ and g be differenbiabie, Then
fa) D(f+eg) = Df +cDy.
{&) D constant) = 0 and D(T(r)) = T.
fe) Dlge f} = Dge Df. [(Chain Rule)
fd) Dfwg) = Dfeg+ felg [Letbniz Rule)

There is a fifth rule that concerns the derivative of the nonlinear inversion operator
Inv: T~ T, It is a glorified version of the formula
-1
dr .2

F i

and is discussed in Exercises 32 - 36,

1

Proof (a) Write the Taylor estimates for f and g and combine them to get the Tavlior
estimate for F <4 g,

flp+v) S} + (Df)p(v) + Ry
glp+v) gip) + (Dglplr) + Ry
(f+egilp+v) = (F+eg)ip)+ ((Df)p+ c{Dglp){v) + Ry + cR,.

Since Ry + cRy is sublinear, (D f); + o[ Dyg)p is the derivative of f + cg at p.
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(b) If f: R" — R™ is constant. f(x) = ¢ for all r € R", and if O : R™ = R™
denotes the zero transformation then the Tayvlor remainder R(v) = f(p+ ¢} = f(p) =
) is identically zero. Hence Dfconstant), = 0.

T:E" = R™ is a linear transformation. If f{x} = T'(x) for all r then substituting
T itself in the Taylor expression gives the Taylor remainder R{v) = f(p+1v) - fip) -
T{v). which is identically zero, Hence (DT}, =T.

Note that when n = m = 1. a linear function is of the form f{r) = ar, and the
previous formula just states that (ar) = a.

{¢) Tacitly. we assume that the composite g e f{r) = g(f{z)) makes sense as r
varies in & neighborhood of p € U'. The notation Dg o Df refers to the composite of
linear transformations and 15 written out as

Dige flp = (Dglg e (Df]p

where ¢ = f(p). The Chain Rule states that the derivative of a composite is the
composite of the derivatives, Such a beautiful and natural formula must be true. See
also Appendix A. Here is a proof.

It is convenient to write the remainder R{v) = fip+v) = f(p)—T{v) in a different
form, defining the scalar function efv) by

|R{v)| .
= _la'["s ol
] if =10

Sublinearity is equivalent to IinEI e{v) = 0. Think of ¢ as an “error factor.”
v—

The Taylor expressions for f at p and g at g = f(p) are

flp+v)
glg + w)

Fip) + Av + Ry
glq) + Buw + R,

where A = (Df), and B = (Dyg), as matrices. The composite is expressed as
g0 flp+v) = glg+ Av+ Ry(v)) = glg) + BAv + BRy(v) + Ry(u)

where w = Av + Rp{r). It remains to show that the remainder terms are sublinear
with respect to v, First
|BRg(v)| < | B |Rpv)]
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is sublinear. Second,
lw] = [Av+ Rele)] < Al o] + eglv)lv].

Therefore,
|[Rglw)| = eglw)|w| < eglw){[iAfl + efiv))|v].

Since eg{w) —+ 0 as w — 0 and since v — 0 implies that « does tend to 0, we see that
Rglw) is sublinear with respect to v. It follows that {D{go f}), = BA as claimed.

(d) To prove the Leibniz Product Rule, we must explain the notation v e w. In
E there is only one product. the usual multiplication of real numbers. In higher-
dimensional vector spaces, however. there are many products and the general way to
discuss products is in terms of bilinear maps.

Amap 3: V x W — Z is bilinear if VW, £ are vector spaces and for each
fiwed v € V the map 3w, . ) : W = £ is lincar. while for each fixed w € W the map
A(..u): V = Z is linear. Examples are

{i} Ordinary real multiplication (r, y) — £y is a bilinear map K < B — R.
{ii) The dot product is a bilinear map R x R" = R.
{(iii) The matrix product is a bilinear map Mim = k) < Mk = n) = M{m = n).

The precise statement of {d) is that if 4 : R* x B* — R™ is bilinear while f :
7 — R* and g : U = R are differentiable at p then the map r — 3(f(z). glx)) is
differentiable at p and

(DA, g)lple) = S((Df)ple) glp)) + 3 f(p).(Dglplr)).

Just as a linear transformation between finite-dimensional vector spaces has a finite
operator norm, the same i true for bilinear maps:
|3l = mlp{% to 3 0} < oo,

To check this we view 4 as a linear map Tz : RF — L(RLR™). According to
Theorems 2 and 3. a linear transformation from one finite dimensional normed space
to another is continuous and has finite operator norm. Thus the operator norm Ty
is finite, That is,
I Tatelll |

Wl
But ||Taiv)|| = max{|3(v.w)|/|w| : w # 0}, which implies that | 3] < .

ITsl| = max{ .,-aeu} —
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Returning to the proof of the Leibniz Rule, we write out the Tayvlor estimates for
[ and g and plug them imto 3. If we use the notation A = (Df), and B = (Dy),.
then bilinearity implies

difip+v) glp+v)) = 3{f(p) + Av 4+ Ry, g(p) + Bv + Ry)
= A(f(p), glp)) + S Av, g(p)) + 3(f(p). Bv)
+ 3( fip). Ry)+ 3{Av, Bv+ Ry) + 3(Ry. g(p) + Bv + R,).

The last three terms are sublinear, For

AF R) < 131 F ()] 1Ry
|8(Av, Bu+ Ry)| < (14 1Al [e] |Be + Ryl
|B(Ry. 9(p) + Bu+ Ry)| < 18]l [Ry] lalp) + Bv + R,|

Therefore 3(f, g) is differentiable and D3(f. g) = 3{Df. g) + 3 f. Dg) as claimed. O

Here are some applications of these differentistion rules:

10 Theorem A function f : ' = R™ is differentiable at p € U if and only if
each of its components f; is differentiable at p. Furthermore, the derivative aof ifs jih
component is the i™ component of the derivative.

Proof Assume that f is differentinble at p and express the ' component of f as
fi = mif where m; : R™ — R is the projection that sends a vector w = {wy..... Wy )
to w;. Since m; is linear it is differentiable. By the Chain Rule. f; is differentinble at
p and

(Dfilp = (Dm)o(Df)y = mo(Df)p.

The proof of the converse is equally natural. O

Theorem 1) implies there is little loss of generality in assuming m = 1. i.e. that
our functions are real-valued. Multidimensionality of the domain, not the target. is
what distinguishes multivariabile calenlus from one-variable calenlus,

11 Mean Value Theorem If [ : [/ = B"™ s differentiable on U7 and the seqment
p.q] s contained in U then

|flg) = fip)l = Mlg—pl

where M = sup{[|[(Df).]| : xr e U}.
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Proof Fix anv unit vector u € B". The function

glt) = (u, fip+tg—plh

is differentiable and we can caleulate its derivative, By the one-dimensional Mean
Value Theorem this gives some # € (00, 1) such that g(1) = g(0) = g'(f#). That is,

(u, flg) — flp)} = g'(8) = (u. (Df)psajq-mla—pl) < Mg —pl.

A vector whose dot product with every unit vector is no larger than Mg — p| has
norm < Mg = p. O

Remark The one-dimensional Mean Value Theorem is an equality

flg) = Fip) = f{8)g=p)

and vou might expect the same to be true for & vector-valued function if we replace
F18) by (Df)g. Not so. See Exercise 17, The closest we can come to an equality
form of the multidimensional Mean Value Theorem is the following.

12 C! Mean Value Theorem If f: 7 = R™ is of class C' (its derivative exists
and is continucus) and if the segment [p, q] is contained in U then

(4) flgl = fip) = Tig-p)

where T is the average derivative of f on the segment,

1
T=./I‘I[D.ﬂprr|q'—;n_l‘hl'

Conversely, if there ts a contmuous family of linear maps Ty € L for whick () holds
then [ is of class C! and (Df)p = Tpp.

Proof The integrand takes values in the normed space L(R", B™) and is a continmons
function of t. The integral is the limit of Riemann sums

N (D prta gt B
5

which lie in L. Since the integral is an element of L it has a right to act on the vector
g = p. Alternativelv. if vou integeate each entrey of the matrix that represents D f
along the segment then the resulting matrix represents T. Fix an index @ and apply
the Fundamental Theorem of Caleulus to the @ real-valued function of one variable

git) = fioall)
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where a(t) = p+ t(g — p) parameterizes [p, g|. This gives

I
filg) = filp) = g(l)—gld) = j q'it) dt
1]
L]

' A f (et
= fuz%w,—m]dr

i=l
il
= Ef ””““d:{w—m.

which is the i** component of T'(g — p).

To check the converse, we assume that (4) holds for a continnous family of linear
maps Tpo. Take g = p4 v. The first-order Taylor remainder at p is

Riv) = flp+v) = fip) = Tplv) = (Tpg = Tpu)(v),
which i sublivear with respect to v, Therefore (Df), = Ty, O
13 Corollary Assume that U7 is connected, If f: U — R"™ is differentiable and for

each potnt x € Il we have (Df); = then f is constant.

Proof The enjovable open and closed argument is left to vou as Exercise 20 O

We conclude this section with another useful rule - differentiation past the
integral. See also Exercise 23.

14 Theorem Assume that f:|a. b} = (e, d) = R is continuous and that 8 f(z, y) /Oy
erists and s continwous. Then

b
Fy) = f fz y)d

is of class ' and

dF afix,yl
() Y —[Tn‘:

Proof By the ' Mean Value Theorem, if b is small then

Fly+h) - Fly) _ lf ([ HINTEY )M:.
h hJ, (7 dhy

The inner integral is the partial derivative of § with respect to § averaged along the
seginent from y to y+h. Continnity implies that this average converges to 8f(x, y) /Oy
as ki =+ (. which verifies (5). Continuity of dF/dy follows from continuity of 8f /iy,
See Exercise 22, O
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3 Higher Derivatives

I this section we define higher-order multivariable derivatives. We do so in the same
apirit as in the previous section — the second derivative will be the derivative of the
first derivative. viewed naturally. Assume that [ : U7 = B™ is differentiable on L7,
The derivative (L3 ), exists at each x € ' and the map r — (D f); defines a function

Df U= L(R", R™).

The derivative Df is the same sort of thing that [ is, namely a function from an
open subset of a vector space into another vector space. In the case of D f the target
vector space is not ™ hut rather the ma-dimensional space L. If D f is differentiable
at p € UV then by definition

(D))= {L‘Ef]l,. = the second derivative of [ at p

and [ is second-differentiable at p. The second derivative at p is a linear map
from E® into L. For each v € B", (Djf]lp[:.'} belongs to L and therefore is a linear
transformation B" — E™ so [.sz:lp[!’]l:_rl‘} % hlinear and we write it as

(D? f)plv. ).
{ Recall that bilinearity is inearity in each variable separately. )
Third and higher derivatives are defined in the same way, If [ is second-differen-
tiable on 7 then xr — [DEJFL defines & map
D"if o L

where L? is the vector space of bilinear maps R" x R™ — R™. If D*f is differentiable
at p then f is third-differentiable there. and its third derivative is the trilinear map

(D3 f)p = (D{D?f))p. And so on.

Just as for first derivatives, the relation between the second derivative and the
second partial derivatives calls for thought. Express f: U7 = R™ in component form
a flr)=(filz)..... fm{x)) where r varies in L.

15 Theorem [f (D°f), erists then (D? fi), exists, the second partials af p erist, and

& filp)
drfr;

(D2 fi)plei e;) =

Conversely, enistence of the second partials implies existence of (D* f),, provided that
the second partinls exist al all points & € U near p and are continuous af p.
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Proof Assume that {D?f), exists. Then ¢ — (Df); is differentiable at r = p and
the same s trae of the matrix

ilry (o 8
M= | 5

”,lrr.u e f’jf,"

ihry 5

that represents it; r ~ M, is differentiable at r = p. For according to Theorem 10. a
vector function is differcatialble if and ouly if its components are differentiable, and
then the derivative of the &' component is the A" component of the derivative, A
matrix is a special type of vector. [ts components are its entries. Thus the entries
of My are differentiable at o = p and the second partials exi=t, Furthermore, the £
row of M, is a differentiable vector function of r at r = p and

{.D[.D_.Fl,-:l]wl:_!']:l[f“l} i I:D."_ﬁ,- :'p{‘r-fJ] = Wit ':ﬂ.fl. ]Jlfll.[F'_;l:l - .|'Dfﬂ::|p[ﬂl:'.

{ il f

The first derivatives appearing in this fraction are the /" partials of fi at p+ te; and
at p. Thus &2 fi(p)/driie; = (D? fi)alei. e;) as claimed.

Converselv, assume that the second partials exist at all r pear poand are continnons
at p. Then the entries of A, have partials that exist at all points ¢ near p. and are
continuous at p. Theorem & implies that r— Af, is differentiable at 7 = g e, fis
sevond-differentiable at p. O

The most important and surprising property of second derivatives i= symmetry,

16 Theorem [f (D?f), exists then ot 1s symmetric: For all v,w € B we have
[Iﬁf}‘,{r. i) = (D'!J"j],( pr, .

Proof We will assume that [ ois real-valued (e, om0 = 1) because the svimmetry
assertion concerns the argnments of f rather than its values, For a variable ¢ € [IL, 1]
we draw the parallelogram I determined by the vectors te. fae and label the vertices
with £1 as in Figure 10049,

The quantity
A= Alte.aw) = fip+ite+tw) = flp+te) = fip+ twe)+ fip)

is the signed sum of f at the vertices of P, Clearly A is symmetric with respect to
1, 1,

Al v, w) = Slfoao, v,
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P+ o+ v+

P P

Figure 109 The parallelogram P has signed vertices.

W claim that
Alt, vow)

: 2 ot — 1
(] (D fhplv ) !ﬂ 3
from which symmetry of D% f follows.

Fix ¢, v, w and write A = g(1) — g{0) where
gis) = flp+ tv + stw) — f(p + stw).

Since f is differentiable, so is g. By the ope-dimensional Mean Value Theorem there
exists # € (0, 1) with A = g'(#). By the Chain Rule g'{#) can be written in terms of
Df and we get

'ﬁ' = grl:.ﬁl::l = [DI ]],F-F I':l+ﬂh|'.'l::r HI::I Lie {Df :l:..;.l]“.-{ f‘ir'_:l,
Taylor's estimate applied to the differentiable function a — (D), at @ = p gives

(Df)psz = (Df)p + (D*flplz,.) + Rlz,.)

where f{r,. ) € L[R". R™) is sublinear with respect to r. Writing out this estimate
for (Df)per first with © = te + 8lw and then with r = flw gives

% = % { [{.ijplfu'] + [ﬂ‘g‘,l"]lplfh' 4+ Btw. w) + Rite + fw, rJ",l}
= [(Df)plw) + (D? f)p(Btw, w) + R(Btw, w)]}
Ritv + ftw, w) - Riftw, w)

{ﬂ?f}F{:'. w) + 7 ;
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Bilinearity was used to combine the two second derivative terms. Sublinearity of
. w) with respect to r implies that the last two terms tend to 0 as § — 0, which
completes the proof of (6). Since (D?f), is the limit of a symmetric (although
nonlinear) function of v, w it too is symmetric. O

Remark The fact that D?f can he expressed directly as a limit of values of f is
itself interesting. It should remind you of its one-dimensional counterpart,

ey g LR+ 1= 1) ~210)

17 Corollary Corresponding mized second partials of o second-differentiable fune-
tion are egual,

#filp) _ Fhilp)
ﬁi‘,‘ﬂf-‘. a.r_rﬂI| I

Proof The coualities

#filp) o L P )
ﬂ-!'rﬂf_,l = (LF .Irl.',:'p[lv*-':]' - {-ﬂ ..rk}p{f_hﬂl:' - ﬂ.:_r--r'..l'.r,-
follow from Theorem 15 and the symmetry of D?f. O

The mere existence of the second-order partials does not imply second order
differentiability, nor does it imply equality of corresponding mixed second partials.
See Exercise 24,

18 Corollary The r'* derivative, if it exists, is symmetric: Permutation of the vee-
bors vy,..., ve does not affect the value of (D" fla(vy,.. .. vy). Corresponding mired
higher-order partials are equal,

Proof The induction argument is left to you as Exercise 2. a

In my opinion Theorem 16 is quite natural even though its proof is tricky. It
procesds from a pointwise hypothesis to & pointwise conclusion - whenever the second
derivative exists it is svmmetric. No assumption is made about continnity of partials,
It is possible that [ is second-differentiable at p and nowhere else. See Exercise 25.
All the same. it remains standard to prove equality of mixed partials under stronger
hypotheses, namely, that D? [ is continuous. See Exercise 27.

We conclude this section with a brief discussion of the rules of higher-order dif-
ferentiation. It is simple to check that the r'® derivative of f + eg is D' f + eD"g.
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Also. if 3 is k-linear and & < r then f(r) = 3(z,.... ) has D" f = (1. On the other
hand, if k = r then (D' f), = r!Symm(3) where Symm(7) is the symmetrization of
3. See Exercise 28,

The Chain Rule for r'® derivatives is a bit complicated. The difficulties arise from
the fact that & appears in two places in the expression for the first-order Chain Rule,
(Dige file = (Dg) gz 2 (Df)r, and so, differentiating this product produces

(D*9) g1y © (D) + (Dg)gie) 0 (D* e,

(The meaning of [D_fjl_f. needs clarification.] Differentiating again prodiuces four
terms, two of which combine, The general formula is

(D7 (go )z =3 % (D*q) iz o (D" fle

k=1 p

where the sum on g bs taken as g runs through all partitions of {1,...,r} into &
disjoint subsets, See Exercise 41.

The higher-order Leibniz rale is left for yvou as Exercise 42.

Smoothness Classes

Amap f: IV = B™ is of class C7 if it is r'"-order differentiable at each p € [/ and
its derivatives depend continuously on p. (Since differentiability implies continuity,
all the derivatives of order less than r are automatically continuous. Only the rth
derivative 15 in question.) If [ is of elass O7 for all r then it s smooth or of class
C™*, According to the differentiation rules, these samoot hness classes are closed under
the operations of linear combination, product, and composition. We discuss next how
they are closed under limits,

Let (fi) be a sequence of O functions fi : U = B™. The sequence is

(a) Uniformly C" convergent if for soane " function f: U7 — B™ we have
h=f Df = Df FhaDf

As k= oo,
{(b) Uniformly C" Cauchy if for cach ¢ > 0 there is an N such that for all
Ed >N and all x € U7 we have

|file) = felz)] < € [{Dfi)e = (Dfe)ell <€ oo (D" fi)e = (D" fi)ell < &
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18 Theorem Uniform C7 comvergence and Cauchyness are equivalent,

Proof Convergence always iinplies the Canchy condition. As for the converse, first
assume that v = 1. We know that fi converges uniformly to a continuous function f
and the derivative sequence converges uniformly to a continuous limit

Df, =G

We claim that Df = . Fix p € U and consider points g in a small convex neigh-
borbood of p. The ' Mean Value Theorem and uniform convergence imply that as
k — oo we have

1
Fula) = Julp) [u (D )sstte—si dE s = 1)
I I
1
flg) = fip L Gip 4+ tg— p))dt (g —p).

I}

This integral of (¢ is a continnons function of g that reduces to G(p) when p= g, By
the converse part of the €' Mean Value Theorem, f is differentiable and Df = 6.
Therefore f is ©' and f converges ' uniformly to f as & — 20, completing the
proof when r = 1.

Now suppose that r = 2. The maps Dfy : U — L form a uniformly €' Cauchy
sequence. The limit, by induction, is C™! uniform; ie. as k = 3 we have

DA Df) = DG

for all s < r — 1. Hence fi converges O uniformly to f as kb — oo, completing the
induction. O

The O norm of a O7 function F: 07— B™ i

[ fllr = max{sap | f(z]].....sup|[{D* fil}.
5 el

FE

The set of fanctions with || f|; < 2 is denoted C7(LL.R™).

20 Corollary || |, makes C7(L), &™) o Banach apace - a complete normed vector
spee,

Proof The norin properties are easv to check; completeness follows from Theo-

rem 1, ]
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21 C"M-test If 5 M; is a convergent series of constants and if || fi||r < My for all

k then the series of functions 3 fi converges in C"(U,R™) to a function f. Term-by-
term differentiation of erder < v is valid, ie.. for all 5 < v we have D' f = 5, D' f;..

Proof (Mwious from the preceding corollary, O

4 Implicit and Inverse Functions

Let f: 17 = B™ he given, where [ is an open subset of B" x R™. Fix attention on

a point {xrp.w) € U7 and write f{zp. ) = zp. Our goal is to solve the equation
(7) fle,y) =2

near (#p.y0). More precisely, we hope to show that the set of points (r,y) near
{xrp, o) at which fir. y) = zp. the so-called zg-locus of [, is the graph of a function
y=glx). If 20, g is the implicit function defined by (7). See Figure 110.

A

Figure 110 Near (rg. yp) the zp-locus of f is the graph of & function
y=glr).

Under various hypotheses we will show that g exists, is unigque, and is differen-
tinble. The main assuwmption, which we make throoghont this section, 1= that

dfilxo. wo)

the m = m matrix B = :
"}:'.I'_l

] is invertible,

Equivalently the linear transformation that [ represents is an isomorphism B™ —
ﬁ'lrl
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22 Implicit Function Theorem [f the function f above s C7, 1 < r < og, then
near (rg, yo), the zp-locus of [ is the graph of a unigue function y = glx). Besides,
qis CT,

Proof Without loss of generality we suppose that (rg, yn) is the origin in B® =« B™
and zp = 0 in R™. The Taylor expression for f is
fle.y) = Ar+ By+ R

where A is the m x n matrix

- [aﬁ%mm)]

and R is sublinear. Solving f{z.y) = 0 for y = gz is equivalent to solving
(8] y= =8 Az + R(z,y)).

In the unlikely event that R does not depend on y, (8) is an explicit formula for
gr and the implicit funetion is an explicit function. In general, the idea is that the
remainder B depends so weakly on y that we can switch it to the left-hand side of
(B). absorbing it in the y-term.

Solving (B) for y as a function of r is the same as finding a fixed-point of
K::y— —B YAzr + Rz, y)),

so we hope to show that K, contracts. The remainder B is a ¢! function. and
(PR)igny = 0. Therefore if » is small and |z|, [¥| < r then

=14 |E-'H{.r,y]| l
- |2 <

By the Mean Value Theorem this implies that
IK:(mn) — Kelw2)| < ||B7']| IR(z, w) — Rz, ya)l
AR\ 1
—1 s s o TP
13" ”du” i =l £ Sl —wl

15

for |x]. lyi]. ly2| < r. Due to continuity at the origin, if |2] € 7 < r then
- r
K0y < &

Thus, for each r € X, K; contracts ¥ into itself where X is the r-neighborhood of 0
in E" and ¥ is the closure of the r-neighborhood of 0 in B™. See Figure 111.
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Y

Figure 111 K; contracts ¥ into itself.

By the Contraction Mapping Principle. K; has a unique fixed point gir) in Y.
This implies that pear the origing, the z2ero locus of [ iz the graph of a ioction
y = glr).

It remains to check that g is C7. First we show that g obevs a Lipschitz condition
at (1 We have

|Kelgr) — Ke(0) + K (0)] < Lip{K.) gz — 0] + |K-(0)]

li‘:;l + |B=YAr + R{z.0))| = j-'%il + 2L|x|

|gr|

1/

where [ = ilﬂ'_lil | A|| and || is small. Thus g satisfies the Lipschitz condition
lgr| < 4L|x|.

In particular g is continnous at = (.

Note the trick here. The term |gr| appears on both sides of the inequality but
since its coefficient on the r.hs. is smaller than that on the Lh.s., they combine to
give a nontrivial inequality.

By the Chain Rule. the derivative of g st the origin. if it does exist, must satistfy
A+ B(Dgla =0, 50 we aim to show that (Dglo = —B~' A. Since gz is a fixed-point
of K; we have gr = —B~ ' A{r + R) and the Tayvlor estimate for g at the origin is

lg{x) — gl0) = (- B~ Ax)|

|B~'R{x.gx)| < ||B7| |R{x, gx)|

187 e{e. gz){|x] + lgx])
1B~ e(x. g)(1 + 4L)|]

1A 1A
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where e(x, y] — 0 as {x. y) = (0.0). Since gr = 0 as ¢ — 0. the error factor e{r. gr)
does tend to 0 as ¢ — ), the remainder is sublinear with respect to r. and g is

differentinble at 0 with (Dglg = -B-'A.

All facts proved at the origin hold equally at points (r, ) on the zero locus near
the origin. For the origin is nothing special. Thus, g i differentiable st > and
(Dy)y = —B;' o A, where

ifir.gr) i f{x.gr)
= et Ay = =
ihr dhy
Since gr is continuous {being differentiable) and f is O, A, and B, are continnons
funections of . According to Cramer’s Rule for finding the inverse of a matrix, the
entries of E;l are explicit, algebraic fanctions of the entries of B;. and therefore they
depend continuously on r. Therefore g is O

Ar

To complete the proof that g is O we apply induction. For 2 < ¢ < a0, assiine
the theorem is true for ¢ = 1. When f is O this implies that g is O, Because they
are composites of C7 ' functions, A, and B, are C"!. Beeause the entries of 3
depend algebraically on the entries of By, B! is also O ', Therefore (Dg) is £
and g is €. If f is O™, we have just shown that g is C7 for all Bnite r and thus g is
o=, O

Exercises 35 and 36 discuss the properties of matrix inversion avoiding Cranwr’s
Rule and finite dimensionality.

Next we are going to deduce the [nverse Function Theorem from the Implicit
Function Theorem. A fair question is: Since they turn out to be equivalent theorems,
why not do it the other way around” Well, in my own experience the Implicit Fanction
Theorem is more basic and fexible. 1 have at times needed forms of the Implicit
Function Theorem with weaker differentiability hvpotheses respecting r than g and
thev do not follow from the Inverse Function Theorem, For exmnple, if we merely
assume that B = df(rg, yo) /Dy is invertible, that df(r, y)/dr is a continuous function
of (r, y). and that f is comtinuous (or Lipschitz) then the local implicit function of f
is continuous (or Lipschitz). It is not necessary to asswme that f is of class O,

Just as a homeomorphizm is a continuons bijection whose fmverse is continuons.
so i C7 diffeomorphism is a " bijection whose inverse is C7, 1 < v < 20, The
inverse being O Is not antomatic. The example to remember is f(r) = . Itisa
™ bijection ® — R and is a homeomorphism but not a diffeomorphism because jts
inverse fails to be differentiable at the arigin. Since differentiability implies continnity,
every diffeomorphism is a homeomorphisim.
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Diffecinorphisms are to " things as isomorphisms are to algebraic things. The
aphere and ellipsoid are diffeomorphic under a diffeomorphism BY — R? but the
sphere and the surface of the cube are only homeomorphic, not diffeomorphic.

23 Inverse Function Theorem [f the derivative of [ s tnvertible then [ s a local
diffeomorphism.

Proof Invertibility of a matrix implies the matrix is aquare, so m = n. Then we
have f: U7 — R, where I/ is an open subset of B™, and at some p € U, (Df), is
assumed to be invertible, We assume fis C7. 1 < r < a0, and set

Firy)=fixl—w q=flp)

for (x,y) € U7 x R™. Clearly F is C7, Fip,q) = 0, and the derivative of F with
respect to x at (p,q) is (Df)s.

Since (D f )y is an isomorphism we can apply the Implicit Punetion Theorem {with
r and g interchanged!) to find neighborhoods Uy of p and V; of g and a €7 implicit
function h : V, = U uniquely defined by the equation

Fihy p) = flhy) -y =10

This means that b is a “local right inverse” for f in the sense that foh = id|y,.
Since F(p,q) = 0. uniqueness implies p = hg. and (D f), o (Dh)y = I implies {Dh),

is inwvertilale.

We claim that b is also a “local left inverse” for f. and hence that [ is a local
diffeomorphism. We can apply the same analysis with & in place of f since it is C7,
it sends g to p. and its derivative at g is invertible. Consequently & has a unique local
right inverse, say g. It satislies b o g = id locally and we get

f=folhog)=(fohlog=yg.

Thus ho f = heg = id shows that k is a local left inverse for f and we have h = f~!
on a neighborhood of g, O

5% The Rank Theorem

The rank of a linear transformation T : R" — R™ is the dimension of its range. In
terms of matrices. the rank 15 the size of the largest minor with totceero determinant,
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If T is onto then its rank is m. If it is one-to-one then its rank is n. A standard
formula in linear algebra states that

rank T+ nullity T = n

where nullity is the dimension of the kernel of T. A differentiable function f : 7 — RB™
has constaut rank & if for all p € [7 the rank of (Df), is k.

An important property of rank is that if T has rank k and | = T| is small then
5 has rank > k. The rank of T can increase under a small perturbation of T but it
cannot decrease, Thus, if f is C' and (D f), has rank & then automatically {Df);
has rank > k for all r near p. See Exercise 43.

The Rank Theorem describes maps of constant rank. It says that locally they
are just like linear projections. To formalize this we say that maps f: A = B and
g 1 C' =+ I} are equivalent {for want of a better word) if there are bijections n : 4 =
and #: B — D such that g = 3o fea™". An elegant way to express this equation
is a commutative diagram

2.

r

B
I;
0.

f
—l
&
el

n enmmn

Commutativity means that for each a € A we have 3( f{a)) = gla(a)). Following the
maps arcutd the rectangle clockwise from A to D gives the same result as following
them around it counterclockwise. The o, 3 are “changes of variable.” If f.g are
C7 and a, # are C7 diffeomorphisms, 1 < r < o, then f and g are said to be C7
equivalent, and we write f =, g. As C" maps, [ and g are indistinguishable.

24 Lemma C" equivalence is an equivalence relation and i has no effect on rank,

Proof Since diffeomorphisms form a group, = is an equivalence relation. Also, if
g= Ao foa ! then the chain rule implics

Dg=D3oDfoDa™l,

Sinee DF and Da ! are isomorphisms, Df and Dg have equal rank. O
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The linear projection P : R" —+ R™
Ploycnagm) =1lepansg Ze D)

has rank k. It projects B onto the k-dimensional subspace B* x 0 c B™. (We
assume that k < n,m.) The m x n matrix of P is

Tpwi 1]
] .

25 Rank Theorem Locally, a O constant-rank-k map is C7 egquivalent to o hinear

projection onfo a k-dimensional subspace.

As an example. think of the radial projection = : R {0} = 52, where ={v) =
e/ [v]. It has constant rank 2, and is locally indistinguishable from linear projection
of B* to the [z, y)-plane.

Proof Let f: U/ —+ R™ have constant rank k and let p € U be given. We will show
that on & neighborhood of p we have [ =, .

StﬂE 1. Define translations of B® and B™ by

T:R" =+ R" v : R™ 5 R™
Zt P £ 2= fp

The translations are diffeomorphisms of E" and B™ and they show that f is O
equivalent to 7' o f o7, a € map that sends 0 to 0 and has constant rank k. Thus,
it is no loss of generality to assume in the first place that p is the origin in B® and

fp is the origin in B™. We do so.

Step 2. Let T : B" — R" be an isomorphism that sends 0 = B"~* onto the kernel
of (D fg. Since the kernel has dimension n— k. there issuch a T, Let TV : B™ — B™
be an isomorphism that sends the image of (D f)g onto B* 0. Since (D f)p has rank
k. there is such a T'. Then f ==, T' o f o T. This map sends the origin in R" to the
origin in B™, while its derivative at the origin has kernel 0 x B"* and range R* = 0.
Thus it is no loss of generality to assume in the first place that f has these properties.
We do so.

Step 3. Write

(r.y) e R*xR""  flr.y) = (Fx(z.y), friz.y)) € R* x R™F,
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We are going to find a g = f such that

qlr. 0) = (x.0).

A D
g o

where A is k = k and invertible. By the Inverse Function Theorem the map

The matrix of (D f is

mixrs fylr0)

is a diffeomorphism & : X — X' where X and X' are small neighborhoods of the
origin in B* and fy denotes the first & components of f. For &' € X', set

h(") = fyle™'{2"), 0).
This makes b a C" map X' = B™ %, and
heiz)) = fy{z.0)

where fy denotes the final m = & components of f. The image of X = 0 under f is
the graph of h. For

J{X x 0)

{(flz,0):x€ X} ={({fx(r.0), fy{z.0)): x e X}
{{fx (e ()00 fy(e™ {2").0)) : &' € X)
{i=', hix'y: 2" € X'}

See Figure 112,

¥ I ¥
S, D= x, )
FiX = "1
= /ﬂ
x X a X

Figure 112 The f-image of X = (0 is the graph of h.
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If ('.3) € X' x R™F then we define
vl ') = (e~ (). & = h(z)).
Since ¢ is the composite of C7 diffeoimorphisims,
(', o) = (&, o = B{x")) = (07" ("), ¥ = B(2")),

it too is a C7 diffeomorphism. {Alternatively, vou could compute the derivative of ¢ at
the origin and apply the Inverse Function Theorem.) We observe that g = o f =, f
satisfies

glr.0) = vo(fx(z.0), fy(r.0))
= (oo fx(x.0). fyr(r.0) = h{fx(r,0))) = (2.0).

Thus it is no loss of generality to assume in the first place that f{z. 0} = (z,0). We do
so. (This means that f sends the k-plane B* = 0 C R” into the k-plane R¥x0c R™.)

Step 4. Finallv, we find a local diffeomorphism ¢ in the neighborhood of 0 in B®
s0 that f o is the projection map Plr, y) = (x.0).

Define F(E, x,p) = fx(E.y) = r. It is & map from R* x B* x B"* into R*, The
eepat o

Fl§.x.y)=0

defines £ = £, y) implicitly in a peighborhood of the origin. For at the origin the
derivative of F with respect to £ is the invertible matrix fr.p. Thus £ is a O map
from B" into B* and E(0.0) = 0. We claim that

Plr.y) = (& v).0)

is a local diffeomorphism of B" and & = fopis P.

The derivative of £, y) with respect to r at the origin can be caleulated from the
Chain Rule (thiz was done in general for implicit functions) and since F(£, x.y) =0
we have

_ dF{fz.y).r.y) _ OFBE  OF _ it
- dr - BEor or lixigy = Tk

That is. at the origin ¢ /dr is the identity matrix, Thus,

;i."uk *
(Do =
-T”D [ ﬂ II;rr—i.':lh'I_rl—#I ]
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which is invertible no matter what «is. Clearly 2(0) = (.. By the Inverse Function
Theorem. » is a local C7 diffeomorphism on a neighborhood of the origin and 7 is
C" equivalent to f. By Lemma 24, ¢ has constant rank k.

We have

Gz, y) Jogle.y)= flElx.y). v)

(fx(&.v), fri& y)) = (z, Gy(x,y)).

Therefore (Fx(r,y) = x and

Tz 0
pG=| Gy
ity

At lnst we use the constant-rank hypothesis. (Until now, it has been enough that
Df has rank > k) The only way that a matrix of this form can have rank k is that
iy

By

See Exercise d4. By Corollary 13 to the Mean Value Theorem this implies that in a
neighborhood of the origin, Gy is independent of y. Thus

= [}

Gy (r.y) = Gy(x,0) = fyr(£(z,0),0),

which is 0 because (by Step 3} fy = 0 on B* = 0. The upshot is that G =, f
and Glx,y) = (£0); ie. G = P. See also Exercise 31. By Lemma24, steps1-4
concatenate to give a O equivalence between the original constant-rank map f and
the linear projection . (]

In the following three corollaries [7 is an open subset of B".

26 Corollary If f : ' — R™ has rank & af p then it is locally C" equivalent to a
map of the form G(zx,y) = (r,9{z.y)) where g : B* = R™ % is " and r € RF,

Proof This was shown in the proof of the Rank Theorem before we used the as-
sumption that f has constant-rank k. O

27 Corollary [f f : U = R is C" and (D[}, has rank 1 then in o neighborhood of
p the level sets {xr € U : flx) = ¢} form a stack of C" nonlinear discs of dimension
n—1.
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Figure 113 Near a rank-one point, the level sets of f: L' — R are
diffeomorphic to a stack of (n — 1)-dimensional planes.

Proof Near p the rank can not decrease, so f has constant rank 1 near p. The level
sets of a projection B® — K form a stack of (n — 1)-dimensional planes and the level
sets of f are the images of these planes under the eguivalence diffeomaorplism in the

Rank Theorem. See Figure 113, O

28 Corollary If f: U — R™ has rank n af p then locally the image of U under [ is
a diffeomorphic copy of the n-dimensional dise.

Proof Near p the rank can not decrease. so f has constant rank n near p. The Rank
Theorem says that f is locally C7 equivalent to r = (r.0). (Since & = n. the y-
coordinates are absent.] Thus the local image of L7 is diffeomorphic to a neighborhood
of [t in B" = (0 which is an n-dimensional disc, O

The geometric meaning of the diffeomorphisms ¢ and @ is illustrated in the Fig-
ures 114 and 115,
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Figure 114 f has constant rank 1.
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Figure 115 J has constant rank 2.
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6* Lagrange Multipliers

In sophomore caleulus you learn how to maximize a function f{r,y, z) subject to
a “constraint” or “side condition” gir, g, z) = constant by the Lagrange multiplier
method, Namely, the maxinum can occur only at a point p where the gradient of f
is a scalar multiple of the gradient of g,

grad, f = A grad, g.

The factor A is the Lagrange multiplier. The goal of this section is a natural. math-
ematically complete explanation of the Lagrange multiplier method which amounts
to gazing at the right picture.

First, the natural hypotheses are

{a) fand g are O real-valued functions defined on some region U7 ¢ R
{b) For some constant c. the set § = gP"™(¢) is compact, nonempty, and grad, g # 0
for all g £ 5.

The conclusion is

{e) The restriction of f to the set 8, f|s. has & maximum, say M. and if p € § has
flpl = M then there is a A such that grad, f = A grad,, g.

The method is utilized as follows, You are given' f and g. and vou are asked to
find & point p € § at which f|g is maximum. Compactness implies that a maximum
point exists. Your job is to find it. You first locate all points g € § at which the
gradients of f and g are linearly dependent: i.e., one gradient is a scalar multiple of
the other. They are “candidates” for the maximum point. You then evaluate f at
each candidate and the one with the largest f-value is the maximum. Done.

Of course you can find the minimum the same way. It too will be among the
candidates, and it will have the smallest f-value. In fact, the candidates are exactly
the critical points of f|g. the points r € § such that

Ju—Jfx
iy = x|

— 1

ag i € 5 temds to r.

'Sometimes you are merely given [ and 8. Then you must think up an appropriate g such that
k) = Lrue.
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Now we explain why the Lagrange multiplier method works. Recall that the
gradient of a function A(r.y, z) at p € [V is the vector

- dhip) hip) :‘Hr{p:l) 3
Ermlph_ ( ar ity R €x.:

Assume hyvpotheses (a), (b) and that f|g attains its maximum value M at p € 5. We
must prove (¢) - the gradient of [ at p is a scalar multiple of the gradient of g at p.
If grad, f = 0 then grad, f = 0. grad, g, which verifies (c) degenerately. Thus it is
[air to assume that grad, [ # 0.

By the Rank Theorem, in the neighborhood of a point at which the gradient of
f is nomzern, the f-level surfaces are like a stack of pancakes. (The pancakes are
infinitely thin and may be somewhat curved. Alternatively, vou can picture the level
surfaces as layers of an onion skin or as a pile of transparency foils.)

Tor arrive at a contradiction, assume that g,rmip F iz not a scalar multiple of grad,, 9.
The angle between the gradients is nongero, Gaze at the f-level surfaces f = M £ ¢
for ¢ small. The way these f-level surfaces meet the g-level surface 5 15 shown in

Figure 116,

The surface 5 is a knife blade that slices through the f-pancakes., The knife
Made 5 perpendicular to grad g, while the pancakes are perpendicular to grad [
There is a positive angle between these gradient vectors, so the knife is not tangent
to the pancakes. Rather. § slices transversely through each f-level surface near p.
and SN {f = M + ¢} is a curve that passes near p. The value of f on this curve is
M 4 ¢. which contradicts the assumption that f|s attains a maximum at p. Therefore
grad, f is, after all. a scalar multiple of grad, g and the proof of {¢) is complete.

There iz a higher-dimensional version of the Lagrange multiplier method. A O
function f : I’ — R is defined on an open set ' © R", and it is constrained to a
compact “surface” § C U7 defined by & simultaneous equations

qlxy, ..., Iy) = 0

A J P ) = €.

We assume the functions g are C' and their gradients are linearly independent.
The higher-dimensional Lagrange multiplier method asserts that if f|s achieves a
maximum at p then grad, f is a linear combination of grad, g).... grad, ge. In
contrast to Protter and Morrey's presentation on pages 369-372 of their book. A
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grad f

Figure 116 5 cuts through all the f-level surfaces near p.

First Course in feal Analysts. the proof is utterly simple: It amounts to examining
the situation in the right coordinate svstem at p.

It is no loss of generality to assume that pis the origin in B® and that o, ..., Of.
flp) are zero. Also. we can assume that J_.,-THHJI_,I" 2 [ since otherwise it s already o
trivial linear combination of the gradients of the g, Then choose veetors e g, ..o,
w0 that

gradg gy, . ... grady g, Erady f, g, o0 Wy

iz a vector basis of BY, For &+ 2 < ¢ < 5 define
hle) = (wy, r).

The map r — Flr) = (i) ... qlx). FLe) hpes(z). . ... hoir)) is a local diffeo-
morphism of B® to itself since the derivative of F at the origin is the ® < n matrix of

linearly independent column vectors

(DF) = | grady gy ... gradgge grady f weeg .. wa).

Think of the fnctions g = Fiir) as new coordinates on A seighborhood of the

origin in B". With respect to these coordinates, the surface 5 is the coordinate plane
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0 = B"* on which the coordinates Ui« Wi are zevo and f is the (k410" coordinate
function yg. . This coordinate function obviously does not attain a maximum on the
coordinate plane 0 x B" %, so flg attains no maximum at p.

7 Multiple Integrals

In this section we generalize to n variables the one-variable Riemann integration the
ory appearing in Chapter 3. For simplicity, we assume throughout that the function
f we integrate is real-valued, as contrasted to vector-valued. and at first we assime
that f is a function of only two variables.

Consider a rectangle & = [a.b] x [¢, d] in B2, Partitions P and € of [a, b] and |, ]
Piamzpg<a) ... CTm=b Qic=m<mm<...<ipy=4d
give rise to a “grid” ¢ = P = @ of rectangles
Ry =1 =J;

where I; = [z;_y. x;] and J; = [yy_1. 9] Let &y = x5 — 2y, Ay = ¥y — Yy-1. and
denote the area of Ry as

|HIJ! = Ay "1"'#';-
Let § be a choice of sample points (s, 8;) € Ry;. See Figure 117.

Given f: i — K. the corresponding Riemann sum is

R f.G.5) = Ez_f{ﬁl.l"!‘j:'lﬁiil'

i=1 j=1

If there is a number to which the Riemann sums converge as the mesh of the grid
(the diameter of the largest rectangle) tends to zero then f is Riemann integrable
and that pnmber is the Riemann integral

fﬂf = _lim R(f.G.5)

The lower and upper sums of a bounded function f with respect to the grid &
are

L(f.G) =% "mylRyl Uf.G)=Y MylRyl
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(30 1)

Figure 117 A grid and a sample point

where m;; and M;; are the infimum and supremum of f{s, ) as (s.t) varies over J;;.
The lower integral is the supremum of the lower sums and the upper integral is the
infimum of the upper sums.

The proofs of the following facts are conceptually identical to the one-dimensional
versions explained in Chapter 3:

(a) If fis Riemann integrable then it is bounded.

(b} The set of Riemann integrable functions B — R is a vector space R = R(R)
and integration is a linear map X — R.

(] The constant function f = k is integrable and its integral is k|R].

id) If fgeRand [ < g then
fIEfm
R H

{e] Every lower sum is less than or equal to every upper sum, and consequently
the lower integral is no greater than the upper integral,

o ”,.I' . ff"'f.

(f) For a hounded function. Riemann integrability is equivalent to the equality of
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the lower and upper integrals, and integrability implies equality of the lower,
upper, and Riemann integrals.

The Riemann-Lebesgue Theorem is another result that generalizes naturally to
multiple integrals. It states that a bounded function is Riemann integrable if and
only if its discontinuities form a zero set,

First of all, Z € R? is a zero set if for each ¢ > 0 there is a countable covering
of Z by open rectangles 5; whose total area is less than e

E |S;| o,
i

By the ¢/2! construction. a countable union of zero sets is & sero set,

Az in dimension 1, we express the discontinuity set of our function f: B — R as
the union

D= U D
kEN
where [y is the set of points : € A at which the oscillation is = 1/k. [See Exer-
cise3.19.) That is,

ose, f = 1'1_151r diam (f{Ry(2))) =2 1/k
where Helz) is the r-neighborhood of 2 o B The set D 1= compact,

Assume that f: f — R is Riemann integrable, It is bounded and its upper and
lower integrals are equal. Fix & € M. Given ¢ > (), there exists 4 = (0 such that if &
is & grid with mesh < 4 then

UfG) - L{f.G) <«

Fix such a grid G. Each Rj; in the grid that contains in its interior a point of Dy has
My —myy; 2 1/k. where my; and My are the infimum and supremum of f on Ry;.
The other points of Dy lie in the zero set of gridlines x; x [c.d] and [a, b = y;. Since
[ = L < ¢, the total area of these rectangles with oscillation > 1/k does not execed
ke. Since k is fixed and e is arbitrary, Dy is a zero set. Taking & = 1,2,... shows
that the discontinuity set D = |J Dy is a zero set.

Conversely, assume that [ 15 bounded and IV is a zero set. Fix any k& € M. Each
x € R™ Dy has a neighborhood W = W, such that

sup{ flw):w e W} —inf{flw) :w e W} < 1/k.
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Since Dy is a zero set. it can be covered by countably many open rectangles 5 of

small total area. say
E | 5] < @

Let ¥V be the covering of & by the neighborhoods W with small oscillation, and the
rectangles 5. Since ff is compact, ¥V has a positive Lebesgue number A, Take a grid
with mesh < A, This breaks the sum

[F =T = E[-”u - r"u”'ﬁul

into two parts - the sum of those terns for which Ry s contained in a neighborhood
W with small oscillation, plus a sum of terms for which f; is contained in one of
the rectangles 5;. The latter sum is less than 20 e, while the former is less than
[f]/%. Thus. when & is large and o is small. {7 = L is small. which implies Riemann
integrability. To summarize,

The Riemann-Lebesgue Theorem remams valud

Jor functions of seveml varablis.

Now we come to the first place that multiple integration has something new to
say. Suppose that f: / — R is boundsd and define

I =h
Fly) = ffl-f-.lf]!f-r Flu) =jfl1'-ﬂ]‘f-r-

For each fixed y € [e.d]. these are the lower and upper integrals of the single-variabile
function f, : la.b] = R defined by fylx) = flz.y). They are the integrals of f(r, y)
o the slice y = const, See Figure 1158,

29 Fubini’s Theorem If f s Ricmann infegrable then so are F and F. Muoreover,

If
|r!1,I" = [E-r.fy £ f?r}y.

Since F < F and the integral of their difference is zero. it follows from the one-
dimeusional Riemann-Lebesgue Theorem that there exists a lnear zevo set ¥ 2 [, d]
such that if y & ¥ then Fily) = Fly). That is. the integral of fir, y) with respect

to o exists for almost all g and we get the more common way 1o write the Fubiu

formula *
_[j;frfﬂf# - I[" [jl: I[I-I.I:Id'.r] oy,
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.-"‘""H..

|

Figure 118 Fubini’s Theorem is like sliced bread,

There is. however, an ambiguity in this formula. What i2 the value of the integrasnd
i i - 7 - . i
_||JJ far.yydr when y € Y7 For such a p. Fly) < Fly) and the integral of fir, ) with
respect to r does not exist, The answer is that we can choose any value between Fiy)

aned Flyh, The integral with respect to g will be unaffected, See also Exercise 47,

Proof of Fubini's Theorem We claim that if P and @ are partitions of |e, 5 and
|4'. i.lll r|!||'1'|

(1) Lif.G) < LIE.Q)
where G is the grid P x Q. Fix any partition interval J; C [e.d]. If g € J; then

myy = inf{ fls. ) : {s.t) € Bij} < nf{f(s,0): 8 € L} = myl f).
Thus

7] e
Y mydrn £ 3 milf)An = Lify. P) < Elp),

LER =1

and it follows that

LT

Z mg A < omlE.

i=1
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Therefore
£l Lif) Fl

ZZIrl,-J.ﬂIj.ﬁ._glJ < Zm_,{E]ﬂyJ = LIF. Q)
i=l

Ji=1i=1

which gives (9), Analogously, U{F. Q) < U{ f,G). Thus
L(f.G) £ LIE.Q) £ U(F.Q) = U(F.Q) = U(/.G).

Since f is integrable, the outer terms of this inequality differ by arbitrarily little when
the mesh of (¢ is small. Taking infima and suprema over all grids ¢ = P = {Q gives

j;{f =supL{f.&G) € supL{F, Q) < inflU(F.Q)
inf U (f, G} = /Rj

1A

The resulting equality of these five quantities implies that F is integrable and its
integral on [e.d] equals that of f on R. The case of the upper integral is handled in
the same way. O

30 Corollary If [ is Riemann integrable then the order of integration - first r then

i oor vice versa - 5 irrelevant fo the value of the tfernfed miegml,

_[f U: flr. y) dr] dy = j: [./:i flr y) ;jy] A

Proof Both iterated integrals equal the integral of f over K. O

A geometric consequence of Fubini's Theorem concerns the caleulation of the area
of plane regions by a slice method. Corresponding slice methods are valid in 3-space
and in higher dimensions.

31 Cavalieri’s Principle The area of a region 5§ © R 15 the inlegral with respect fo
r of the length of its vertical slives,

b
areals) = f length( S, ) dr,
]
provided that the boundary of § 5 a zero set.

Proof Deriving Cavalieri’s Principle from Fubini’s Theorem is mainly a matter of
definition, For we define the length of a subset of B and the area of a subset of B 10
be the integrals of their characteristic functions. The requirement that 45 is a zero
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set is made so that X ¢ is Riemann integrable. 1t is met if § has a smooth, or piecewise
smooth, boundary. See Appendix B for a delightful discussion of the historical origin
of Cavalieri’s Principle. and see Chapter i for the more general geometric definition
of length and area in terms of outer measure, O

The second new aspect of multiple integration concerns the change of variables
formula, It is the higher-dimengional version of integration by substitution. We will
suppose that 2 : U = W is a ¢! diffeomorphism between open subsets of R?, that
R U. and that a Riemann integrable fanction [ W = R is given, The Jacoblan
of ¢ at 2 € UJ is the determinant of the derivative,

Jac; o = det o).,

32 Change of Variables Formula [Under the preceding assumphions we have

ffu,:-um-,:i:f I
" SR

Seer Figure 119,

- ™
P
i
W
\ G J

Figure 119 7 = a change of variables.

If § is a bounded subset of R?, its area (or Jordan content) is by definition the
integral of its characteristic function X, if the integral exists, When the integral does
exist we say that § is Riemann measurable. See also Appendix D of Chapter 6.
According to the Ricmann-Lebesgue Theorem, S s Riemann measurable if and only
if its boundary is a zero set. For X g i8 discontinuons at z if and only if £ is a boundary
point of 5. See Exercise 44, The characteristic function of a rectangle & 15 Riemann
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integrable and its integral is | ). =0 we are justifed in using the same notation for
area of a general set 8, namely,

|S| = area(§) = f Ks.

33 Proposition If T : R?* = R? is an isomorphism then for every Riemann mea-
surable set § C B*, T(5) is Riemann measurable and

|T(S)| = |det T|S].

Proposition 33 is a version of the Change of Variables Formula in which o = T,
R=8, and f = 1. It remains true for n-dimensional volume and leads to a definifion
of the determinant of a linear transformation as a “volume multiplier.”

Proof As is shown in linear algebra, the matrix A that represents T is a product of
elementary matriees

A=FE .- E.
Each elementary 2 x 2 matrix is one of the following types:

R I ERY N B

where A > (1. The first three matrices represent isomorphisms whose effect on [ is
obvious: 12 is converted to the rectangles A % . [ x Al and [, In each case the
arca agrees with the magnitude of the determinant, The fourth matrix is a shear
matrix. Its isomorphism converts 4 to the parallelogram

M= [(r.p)eR?:oy<sr<]l+oyand0<y<1).

I1 ia Riemann measurable ginee its boundary is a zero set. By Fubini’s Theorem, we

1 r=1say
|m.=]"l.|[=f [j 1dr]rﬁy=]=|inTE.
[1] r=ay

Exactly the same thinking shows that for any rectangle R, not merely the unit square.

et

we have
(1) |E{R)| = |det E||R].

We claim that (10) implies that for any Riemann measurable set 5. E{(S) is Riemann
measurable and

{11} |[E{S])| = | det E||5).
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Let ¢ > 0 be given. Choose a grid & on B = § with mesh so small that the
rectangles [ of G satisfy

(12) IS|l—¢ < Y IR < ) IRl £ |Sl+e
R & RS

The interiors of the inner rectangles - those with £ © § - are disjoint, and therefore
for each & € R? we have

z Xigt itl2) = Xslz).
RCS
The same is true after we apply E. namely

z Xim(gm(2) = Xes(2)-

RCS
Linearity and monotonicity of the integral. and Riemann measurability of the sets
ElRY imply tlhat

(1) IE{R)| = Xim(E(H)) = Xim(E = | Xgis)-
H% Z/ EiH) "%J k[ ETHY) J Ei 5]

HCs

Smmnilarly,

Apimls) = E Xeimis)
RS
which implies that

(14) f"b‘t:ﬁi Z f’imm= X f“-'-im‘—' Y |E(R).

RS £l RSl sl
By (10) and (12). (13} and (14) become

|det E|(|8] ~¢) < |detE| Y[R
RCS

f*a'w] < fh:m < |detE|l 3 |R|
i s m-%lq#
| det E[{]5] + €).

Since these upper and lower integrals do not depend on ¢ and e is arbitrarily =mall.
theyv equal the common value |det E||S). which completes the proof of (11).

1A

I

The determinant of a matrix product is the product of the determinants. Since
the matrix of T is the product of elementary matrices, E; -« Eg. (11) implies that if
S is Riemann measurable then so is T(8) and

|T(S} | Ey -~ EglS)]
Idet £y -+« | det Ei}|S] = | det T]|S). O

[}

fl
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We isolate two more facts in preparation for the proof of the Change of Variables
Formula.

34 Lemma Suppose that v : U =+ R? s C', 0 7, @{0) =0, and for all u € U7 we
have
(D) — ]| < e,
[fUA0) c U then
L (0)) € Ly pae(0).

Proof By U.ip) we denote the r-neighborhood of p in 7. The ¢! Mean Value

Theorem gives

|
ow = vl = o) = [ (Dvudt(u)
(1]
1
= f ((DV)ew — id) dt () + u.
i
If ju| < r this implies that [g@{u)| < (1 + e)r; e, @{U(0)) © Uy (0). O

Lemma 34 i valid for any choice of norm on R?, in particular for the maximum
coordinate norm. In that case the inclusion refers to squares: the square of radius r
is carried by o inside the square of radius (1 + €)r.

35 Lemma The Lipschitz image of a zero set is a zemo sef.
Proof Suppose that Z is a zero set and h : 7 — R? satisfies a Lipschitz condition
k(=) = h(=)| < Lz — ¥/,

Given ¢ > (), there is a countable covering of Z by squares Si such that

Y 1S <«
k

See Exercise45. Each set Sy 1 Z has diameter < diam Sg and therefore h{Z N S;)
has diameter < Ldiam S,. As such it is contained in a square §, of edge length
L diam 5. The squares 5 cover h{Z) and

315 = £y (diam 5, =202y |5, < 2L%.
E & k

Therefore h({Z) is a zero set. O
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Proof of the Change of Variables Formula Recall that ¢ : 7 = W is a !
difeomorphism, f : W — R is Riemann integrable, R is a rectangle in I, and it is
asserted that

(15) fﬂ.fu,.--uthmf-

Let [ be the set of discontinuity points of f. It is a zero set. Then
D=y (D)

is the set of discontinnity points of f oz The ' Mean Value Thearem implies that
w1 is Lipschitz, Lemma 35 implies that I is a zero set, and the Riemann-Lebesgue
Theorem implies that f o is Riemann integrable. Since |Jac 2] is continnons, it is
Riemann integrable and so is the product f o - |Jacp|. In short. the Lhs. of (15)
makes sense.

Since p is a diffeomorphism. it is a homeomorphism and it carries the boundary
of & to the boundary of o £). The former boundary is a zero set and by Lemma 35 so
is the latter, Thus X, is Riemann integrable. Choose a rectangle B’ that contains
wiit). Then the r.hes of (15) becomes

[:[H] G j;r FXeimy

which also makes sense. [t remains to show that the two sides of (15) oot only make
sense but are equal.

Equip B* with the maximum coordinate norm and equip L(R? B*) with the
associated operator norm

1Tl = max{{T(#}max : [#lmax = 1}

Let ¢ > 0 be given. Take any grid & that partitions i into squares B of radins
r. {The smallness of r will be specified below.) Let z; be the center point of R;; and
call

"4‘_? = {H'I:]Enl ‘F:I{E'IJ] == ':-IIIJ ;{HU] == .Hru-

The Taylor approximation to @ on fy; is

E::'|J{2:I = l[-'r_r + ."iu{z = 'tl_il}'

The composite ¢ = ¢|:|1 o @ sends z; to itself and its derivative at z; is the
identity transformation. Uniform continuity of (), on / implies that if » is small



324 ~ Multivariable Calculus Chapter 5

encugh then for all = € R;; and for all i§ we have ||[(Dv); = d || < ¢. By Lemma M

we have
(16 L'.alll" o 2 Ri;) € (1 + ) Ri;

where |:1+r'].|'-'|’_.‘, refers to the (14 )-dilation of I;; centered at Ziz- Similarly, Lemma 34
applies to the composite o' o gy and, taking the radins ¢ /(1 + ¢) instead of ro we
et

(17) s loey((1+ )" Ry) € Ry;-

See Figure 1200 Then (16) and {17) imply

Figure 120 How we magnify the picture and sandwich a nonlinear

parallelogram between two linear ones

oii((1+ )7 'Ry) € o(Ri)) = Wiy € ayl{l + e)Ryy).

By Proposition 33 this gives the area estimane

Jii| Rl 3
——l Ll o= b
(142 = (Wil = (1 +€)7Jij | Ry
where Ji; = | Jacy, ol Equivalently,
W
(18] : < ul . (14",

(14 = Jy|Ryl =
An estimate of the form

< = < (14}
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with 0 < ¢ < | and a,b > 0 implies that

o — bl < 16Geb
as yvou are left to check in Exercise 4. Thus [18) hnplies
(19) [ Wigl = Jij| il | = 16| Ry

where J = sup{|Jac, 2| : 2 € R}

Let my; and M;; be the infimum and supremum of f o o on K. Then, for all
w € o 1) we have

Y miiXimw, (w) £ fluw) <3 My, (w)

which integrates to

oWl < [ 1< 3 MWyl
wLR)

According to (19). replacing [Wy;| by Ji;| Ry canses an error of no more than 16eJ| /|
Thus

where M = sup|f|. These are lower and upper sums for the integrable function
fop | Jacy|. Thus

ffu:l.,:--|.]nr p|—]Fﬁ.’IIJ|R|E[ fEffﬂp-l.lHt‘ | + 16 ALT [ 1.
H <L R I
Since € is arbitrarily small the proof is complete. O

Finally, here is a sketch of the n-dimensional theory. Instead of a two-dimensional
rectangle we have a box

R=laj.by] = % |an by

Riemann sums of a function f: B —+ R are defined as before: Take a grid & of small
boxes iy in A, take a sample point s in each, and set

R(f.G.8)="Y_ fis¢)| Rl

where | A is the product of the edge lengths of the small box B and § is the set of
sample points. I the Riemann sums converge to a limit it is the integral, The general
theary, including the Riemann-Lebesgue Theorem, is the same as in dimension 2.
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Fubini's Theorem is proved by induction on n, and has the same mweaning: In-
tegration on a box can be done slice by slice, and the order in which the iterated
integration is performed has no effect on the answer.

The Change of Variables Formula has the same statement, only now the Jacobian
is the determinant of an n x n matrix. In place of area we have volume, the n-
dimensional volume of a set § C K" being the integral of its characteristic function.
The volume-multiplier formula, Proposition 33, has essentially the same proof but the
elementary matrix notation is messier. (It helps to realize that the following types of
elementary row operations suffice for row reduction: Transposition of two adjacent
rows. multiplication of the first row by A, and addition of the second row to the first.)
The proof of the Change of Variables Formula itself differs only in that 16 becomes
i

8 Differential Forms

The Riemann integral notation

n &
S ress ~ [ flade
=1 L

may lead one to imagine the integral as an “infinite sum of infinitely small quantities
flx)dr.” Although this idea itself seems to lead nowhere, it points to a good ques-
tion - how do you give an independent meaning to the svmbol fde? The answer:
differential forms. Not only does the theory of differential forms supply coherent.
independent meanings for fdr, dr, dy, df, drdy, and even for d and r separately.
bat it also unifies vector caleulus results. A single result, the General Stokes Formula

for differential forms
f d = ad,
M |

encapsulates all integral theorems about divergence. gradient. and curl.

The presentation of differential forms in this section appears in the natural gener-
ality of n dimensions, and as a consequence it is unavoidably fraught with complicated
index notation - armies of 1's, j's, double subscripts. multi-indices, and so on. Your
endurance may be tried.

First, consider a function y = F{z). Normally, vou think of F as the function.
r as the input variable, and y as the output variable. But yvou can also take a dual
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approach and think of r as the function, F as the input variable, and y as the output
variable. After all, why not? It's a kind of mathematical vin/yang.

Now consider a path integral the way it is defined in caleulus,

R j.ﬁ[rtf! o) 2l e 4 f gt(t) (1) 0 .

f and g are smooth real-valued functions of (r, y) and C is a smooth path param-
eterized by (x(t), y(t)) as £ varies on [0, 1]. Normally you think of the integral as a
number that depends on the functions f and g Taking the dual approach vou can
think of it as a number that depends on the path C. This will be our point of view.
It parallels that found in Rudin's Prnciples of Mathemaloal Analyss,

Definition A differential 1-form is & function that sends paths to real numbers
and which can be expressed as a path integral in the previous potation. The name
of this particular differential 1-form is fdr + gdy

In a wayv. this definition hegs the question. For it simply says that the standard
caleulus formuls for path integrals should be read in s new way — as a function of the
integration domain. Doing so0, however, is illuminating, for it leads vou to ask: Just
what property of C' does the differential 1-form f dr 4+ g dy measure?

First take the case that f(r,y) = 1 and g(r, y) = 0. Then the path integral is

fr.:n: f:i‘b-%dh S8 = (o)

which is the “pet r-variation™ of the path C. This can be written in functional
notation as
dz : C v+ z(b) — z(a).

It means that dr assigns to each path C its net r-variation. Similarly dy assigns to
ench path its net g-variation. The word *“net” is important. Negative r-variation
cancels positive r-variation, and negative g-variation cancels positive g-variation. In
the world of forms, onentation matters,

What about fdr? The function f “weights® z-variation. If the path O passes
through A region in which f is large. its r-variation is magnified accordingly, and the
integral _ft._fr.h‘ reflects the net f-weighted r-variation of €. In functional notation

fidr: C = pet feweighted r-variation of C.

Similarly. g dy assigns to a path its net g-weighted g-variation, and the 1-form fdr +
gdy assigns to O the sum of the two variations.



328 Multivariable Caleulus Chapter 5

Terminology A functional on a =et X is a function from X to R

Figure 121 suggests why f welr is positive and yrf.r is negative: The weight

factor is positive on C' and negative on ', On the -;J!.lur hand, if the weight factor is
the constant ¢ then both Integrals are e(g — p).

p
I-axis —

r_".l'

Figure 121 ' and ' are paths from p to g where p and g lie on the

r-axis. The 'ml:lp.:ml.r-f golxr and f ydr express the net g-weighted
[ £
r-variation along C and C°.

Ditferential 1-forms are functionals on the set of paths, Some functionals on the
set of paths are differential forms but others are not. For instance, assigning to each
path its arclength is a functional that is not a form, For if © is a path parameterized
by (x{t). w(t)) then (™t} y*t)) = (rla + b —t).yla + b — t)) parameterizes C in
the reverse direction. Arclength s unafected but the value of every 1-form on the
path changes sign. Hence, arclength is not a l-form. A more trivial example is the
funetional that assigns to each path the mumber 1. It too fails to have the right
symmetry property under parameter reversal and is not o 1-form,

Definition A k-cell in E" is a smooth map 2 : I* = B where [* is the unit k-cule.
If k=1 then o 15 & path. The set of k-cells 15 CL(R").

A k-cell & need pot be a diffromorphism to its image. @ can be noninjective
and its derivative can have zero determinant at many points. For this reason cells
are often called “singular cells.” Singularities are permitted. For example, if ¢ is
the smooth function that is eV for ¢ > 0 and identically zero for + < 0 then
tes (et = 12105, ellt — 1/2])) is n smooth l-cell in the plane, despite the fact that
its image has a cusp at the origin. See Figure 122,
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s

—— e

Q 1/2 1 (0,0}

Sl

Figure 122 This smooth l-cell is a path with a cusp. It is part of the
graph of y = /||

This fexibility is a good thing. It lets the closed disc and many other planar
regions be (the images of ) 2-cells. See page 354, Figure 130, and Exercise 70,

Integrating a k-form over a k-cell p with & > 2 requires Jacobian determinants.
To simplify notation we write I = (i7,....4) and J = {31,..., jg) for E-tuples of
integers, Then dpp/fhy is the k = k determinant

dhy, thy,
2#! = det | ; :
i .
o gy, iy,
| fhuy, dhy, |

T = (i) and J = (7] then oy /iy is just i (o, while i T = (1,2} and J = (5. 7)
then gy /fhuy is the 2 x 2 determinant

Ber _ Npvwal _ L | Ous Pu
-r'J‘u_; H{Hg.u:] : H.,ﬁ Eﬁ
iy ey

Motation The letters & ¢, and u = (u),..., u;) will denote, as often as possible,
dummy integration variahles. They label points in the domain of definition of a k-
cell, namely I*. For instance [? = {(s,8) : 0 < s, ¢ < 1}. The letters r = (x4,,..., 1, )
will be used to name forms in the target space B" of the cells. For example drjdry
is a 2-form in B" with n > 5. In B* we will name forms with z.y. z variables. For
example dedy is a 2-form in B, It is the same as drjdes but dedy is o more familiar
name for it. A planar path 2 is @(f) = (21 (t), wa(t)) = (2(L), g(t)).

Definition The zr-area of ¢ is the functional on Cg{R" ). the set of k-cells,

iy

iy o+ —— it
pe i
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where J = (i, ... 0], @1 = (5,001, ) and the integral notation is shorthand for

1 1 =
/ Mdm-..dm.
0 o Oluy, .o )

For 1-forms the definition is nothing new. The integral of dr on the path #{t) =
(x(t). y(t)) is the integral of the 1 = 1 Jacobian dr(t)/dt, namely

L,
fu “"i” dt = z(1) — 2(0)

which is the net r-variation of . In the xj-area terminology it is the r-area of 2.

Just as for paths, ry-area can be positive or negative, [t is the signed area of
the shadow of  on the r;-plane, ie.. the signed area of its projection mp(2(1%)).
After all, the Jacohian can be negative and it only involves the f-components of .
No components p; with j € I appear in 8 /0u. See Figure 123.

w(I*)

Z-AxlS

= :. Py o
1L WL Th -
'/ T-Axis —

Figure 123 A pseudopod emerging from a rectangle. It is a 2-cell o in B®
that casts a shadow in the ry-plane.

If fis a smooth function on B® then fdar; is the functional

fargzoms [ plptu) L du
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The function f “weights” x-area. The functional dir; is a basie k-form and [ dr;
is a simple k-form. while a sum of simple k-forms is & general &-form:

w = frdrppe Y (frdon(e).
! I

The careful reader will detect some abuse of notation. Here I is nsed to index
a collection of scalar coefficient functions { fi}. whereas I is also used to reduce an
m-vector {(F,.... Fi) to a k-vector Fy = (Fy,.,.... Fi, ). Besides this, I is the unit
interval. Please persevere.

To underline the fact that a form is an integral we write

wiz) = j:u.

-

Notation C,(R") is the set of all k-cells in R, C*(R") is the set of all functionals
on Ci(R"), and (¥*(R") is the set of k-forms on R",

Because a determinant changes sign under a row transposition. k-forms satisfy
the signed commutativity property: If = permutes [ to =f then

drey = sgu(w)dr;

where sgn{x) is the sign of the permutation m. In particalar, dr; 5 = —dreg g
signifies that ry-area is the negative of yr-area, that is drdy = —dydr. a formula
that is certainly familiar from Sophomore Caleulus, Because a determinant is zero if
it has a repeated row, dr; = (0 if | has a repeated entry. In particular drdr is the
zero functional on Cy(R?),

Upshot The integral of the basic 2-form drdy over a 2-cell p in B? is the net area of
its shadow on the ry-plane. [ "MNet” means negative arca cancels positive area. ) The
same holds for the other coordinate planes and in higher dimensions - nef shadow
area eguals the infegral of the basic form.

Example Consider a 2-cell 2 : [¥ = B'. What is its ry-area? By definition it is the
integral of the Jacobian &{y. 2] /0( s, ) over the unit square in (s, {)-space. Suppose
that  is given by the formula

o (5. 8{1 — ms), ) f0<s<1/2
8 t) =
(8, {1 —m+ms),t) fl1/2<s<],
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¢ is only piccewise smooth but never mind. If the slope m is 4 then the signed ry-area

of 4 is zero, If m > 4 it is negative.

I? has four edges. 2 sends the bottom edge to itself by the identity map, it sends
the top edge to the piecewise linear V-shaped path in the plane : = 1 from (0, 1,1)
to (1/2,1 —m/ 2,1} to {1.1,1). Finally 2 sends the left and right edges to lines of
slope 1 that join (0.0,0) to ((L1,1) and (1.0.0) to (1,1.1). Figure 124 shows the
projection of the cell on the ry-plane.

1

Figure 124 7 fixes all points of the sguare’s lower edge, left edge, and
right edge. It sends the npper edge to the V-shaped path from (0, 1) to
(1.1). For fixed s, mp(s.1) is affine in {. Positive shadow area is lightly
shaded and negative shadow area heavily shaded. The total signed ry-area
of p is negative when m > 4. When m > 2 the cell 2 resembles a ship's
prow.

Form Naturality

It is a common error to confuse a cell. which A smooth mapping. with its image.

which i= point set - but the error is fairly harmless.

36 Theorem Integrafing a k-form over k-cells that differ by a reparameterization
produces the same answer up to a factor of 1, and s factor of £1 is determined
by whether the repamameterization preserves or reverses orientation.
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Proof If T is an orientation-preserving diffeomorphism of I* to itself then the Jaco-
bian 4T /it is positive. The product determinant formula and the change of variables
formula for multiple integrals applied to w = fdr; give

f 2 ﬂ[# T“-h
sl

-

f floaT(u))

iy T
f fligoT(u)) ( ) 1-— mdu

j;..rr;{»n%duf;w.

Taking sums shows that the equation _{w_.r W= [u. continues to haold for all w e OF,
If T reverses orientation. its Jacobian is negative, In the change of variables formula
appears the absolute value of the Jacobian, which causes | o w to change sign. O

A particular case of the previous theorem concerns line integrals in the plane.
The imtegral of a 1-form over a curve € does not depend on how ' is parameterized,
If we first parameterize " using a paramneter ¢ € [{), 1| and then reparameterize it by
arclength s € [0, L] where L is the length of C and the orientation of € remnains the
same then integrals of 1-forms are unaffected.

d:m drfs] d

L
ff{ (). w(t)) fu Fte(s), yls))

] L
_Lr.ri (£, y[!!']—mdr = .[. glx(s). yla))—— }H

Form Names
A k-tuple I = (i}..... i) ascends if i) < .- < 0.

37 Proposition Each k-form w has a unigue erpression as a sum of simple k-forms
with azcending k-tuple indices,

Lr= E_,I’_qr!.r',.l,.

Mareover, the coefficient fq(xr) in this “ascending presentation” of w is determined
by the value of w on small k-cells at r.

Proof Every k-tuple of distinct indices has a unique ascending rearrangement. The
other k-tuples correspond to the zero k-form. Using the signed commutativity prop-
erty of forms, we regroup and combine a sum of simple forms into terms in which the
indices ascend. This gives the existence of an ascending presentation w = ¥ fadrs.
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Fix an ascending k-tuple A and fix & point € R", For r > 0 consider the
inclusion eell.
i =tpg i+ F+riiu)

where L is the linear inclusion map that sends R* to the z4-plane. 1 sends I* to a
cube in the ra-plane at x. As r — 0, the cube shrinks to . If I ascends then the
Jacobian of ¢ 15

Bu

ﬂi_ P O I=A
0 ifI#A

Thus, if I # A then frdrp{t) =0 and

(i) = fadzals) =* fr Fale(u)) du.
Coutinuity of f, implies that
(20) fala) = lim o),
which is how the value of w on small k-cells at r determines the coefficient fa(z). O
38 Corollary If k > n then 05(R") = 0.
Proof There are no ascending k-tuples of integers in {1,... n}. O

Moral A form may have many names, but it has a unique ascending name. Therefore
if definitions or properties of a form are to be discussed in terms of a form's name
then the use of ascending names avoids ambiguity,

Wedge Products

Let o be a k-form and 3 be an £-form. Write them in their ascending presentations.
n=3 ,apdr; and =%, bsdr,. Their wedge product is the (k + {)-form

ah = z aphdry
1.

where I = (iy,..., i)y J = {j1..--, Jeb IJ = (i, ..., O | e Je). and the sum
iz taken over all ascending [, J. The use of ascending presentations avoids name
amhiguity although Theorem 39 makes the ambiguity moot. A particular case of the
definition i

dry Adrg = dzg .
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30 Theorem The wedge product A : 0F x 0F — 0% satisfies four natural condi-
tioms!
fa} distribufivity: (a+ S AY=aaT7+3A7mdTA e+ F)=TAa+T7n .
{b) msensifity fo presentations: ah 3 = E.’.J apb ey for general presentations
a=73 apdey and 3 =73 bydx,.
{c} associativity: a A (FAT) = (oA F) AT
fd) signed commutativity: 3 A a = (—11a A 3 when o is ¢ k-form and 3 is an
f-form. In particular dr A dy = —dy A dr.

40 Lemma The wedge product of basie forms satisfics
dry pdxy =dry;.
Proof #1 Sce Exercise 55, O

Proof #2 If I and .J ascend then the lemma merely repeats the definition of the
woedge product. Otherwise. let 7 and g be permutations that make =f and pJ non-
descending. Call & the permutation of I.J that is 7 on the first k terms and p on the
last £. The sign of & is sgni«x ) sgnip) and

drp pdry = sgnln)sgn(p) deey A deyy = sgnlo)dey = dag . O

Proof of Theorem 39 (a) To check distributivity. suppose that o = % apdr; and
3 =3 bdey are k-forms, while ¥ = ¥ e pdr; is an f-form and all sums are ascending
presentations. Then

Zliﬂ.l + by )dx;

is the ascending presentation of o + 3 (this is the only trick in the proof) and

m+ g aT= Zl:ﬂf + bplegdry; = Zﬂfcuri.l‘u - Eb:r::f;r:_r.
fd I I

which is o A% 4+ 4 A%, and verifies distributivity on the lefi. Distributivity on the
right is checked in a similar way.

(b) Let 5~ apdry and 3 bydr; be general nonascending presentations of o and 3.

By distributivity and Lemma 40 we have

(Zﬂ;ﬂ:;) M, (E b;dl.’_,l) = ZHIhJJiTj Adey = zujb_,ldl”
I ¥

I.J I.d
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(c] By (h). to check associativity we need pot use ascending presentations, Ths
foao=3 apdr;. 3=3% bydry. and v =Y ey dry then

aA(BAT)= (E iy rF.r,l) A Eb_.lr'j.,- rF.r”.,') = ‘2: ayhrey drpig.
I I 1.k

which equals (n A 3) A 7.

(d) Associativity implies that it makes sense to write dry and dr; as products
iy, A-e-Adrg, and drg, A - Adary,. Thus.

drep Adry = dey A Adeg, Adey, A Aday,.
It takes &f pair-transpositions to push each dr; past each o which implies
drj hidry = | = ll'“rfr,u Aodr .

Distributivity completes the proof of signed commutativity for general o and 3. O

The Exterior Derivative

Differentiating a forn is subtle. The idea, as with all derivatives. s to imagine
how the form changes under small variations of the point at which it is evaluated.

A (Horm is a smooth function flr). Its exterior derivative is by definition the
lunectional on paths 2 : [0, 1] = R",

df ;e flpl1)) = f2(0)).

41 Proposition of s o 1-form: ahen n = 2 of 15 erpressed os

In particular, d{x) = dr.

Proof When no abuse of notation oecurs we use caleulus shorthand and write f, =
if fir, f, = df [ity. Applied to 2. the form w = fudr 4 fdy prodoces the numbser

D ; i dy(t)
""'"I.r:l —f“ (L’irl”]T + .fgr':.vl:r”‘T) ‘ﬂ'

By the Chain Rule the integrand i= the derivative of f o 2(t). so the Fundamental
Theorem of Calenlus implies that w(z) = f(2(1)) = fl2(0)). Therefore df = w as
elaind. L[]
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Remark Just as with the 1-form dr, the 1-form df measures the net f-variation of
a path from p to g. It is the difference fg - fp.

Definition Fix k& > 1. Let }_ fidr; be the ascending presentation of a k-form w.
The exterior derivative of w is the (& + 1)-form

dur = Ei’.!f_,l Mooy,
!

The sum is taken over all ascending b-tuples [, The derivative of w = fdr; amounts
to how the cogfficient f changes. If f is constant then dw = 0.

Use of the ascending presentation makes the definition unambignous although
Theorem 42 makes this moot. Since df; is a 1-form and dr; is k-form, dw is indeed a
{k + 1)-form. For example. we get

d{ fdr + gdy) = (g = f)dx A dy.

42 Theorem Erterior differentiation d ; ¥ — 05! satigfies four naturel cond-
tioms,

fa} It 15 linear: d{o + c3) = da + cd .

(b} It is insensitive to presentation: If Y fidr; is a general presentation of w then
du = E dfy Adxy.
fe) It obeys a product rule: [f o is a k-form and 3 is an {-form then

dian ) =dand+ (-1 ands.
{d} d* = 0. That is. d{dw) = 0 for all w € 0¥,
Proof () Linearity is easy and is left for the reader ss Exercise 57,
{b) Let = make nl ascending. Linearity of d and associativity of A give
d{ frdey) = sgn(w) d frdaes) = sunlz)d(fy) & deqg = difi) A dry.

Linearity of d promotes the result from simple forms to general ones.

¢} The ordinary Leitbniz product rule for differentiating functions of two variables
] P
Eivies

dfg, . g
Ax dx + By dy

Fegde + fuady + foede + fg, dy

d fa)
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which is gdf + fdy, and verifies (c) for O-forms in B*. The higher-dimensional case
is similar. Next we consider simple forms o = fdry and 3 = gdr;. Then

diand) = d(fgdrry) = (gdf + fdg) Adrpg

(df Ader) A (gdaey) + (=1)*(f dar) A (dg A day)
doc 3+ (=1)%a A dA.

Distributivity completes the proof for general o and 3.

The proof of {d) is fun. We check it first for the special O-form x. By Proposition 41
the exterior derivative r is dr and in turn the exterior derivative of dr is zero. For
dr = ldz, dl = 0, and by definition, d(1dx) = d{1) A dr = (). For the same reason.
didr;) = 0.

Next we consider a smooth function f: B* — R and prove that ¢f = 0. Since
d*r = d*y = ) we have
th = difede+ fydy) = d{f:)Adr 4+ d(fy) Ady
= fgjrf.r‘f‘- d:‘ -+ l:fh’-'l' — erh.]d.f l“\.dy o+ -lrﬁ‘ﬂ'd”'lﬂ' I'.{y = “

since dr A dr = dy A dy = 0 and smoothness of f implies Fi= b

The fact that d* = 0 for functions easily gives the same result for forms. The

higher-dimensional case is similar, O

Pushforward and Pullback

According to Theorem 36 forms behave naturally under compesition on the right.
What about composition on the left? Let T : R" — R™ be a smooth transformation.
It induces a natural transformation on k-cells, Ty : Cp(R") = Cu(R™), called the
pushforward of T. It is defined as

Te:p2Top.
A k-cell i in R" gets pushed forward to become a k-cell in R™. Dual to the pushfor-
ward is the pullback T*: E:'""I[R"‘} =} Ck{ﬁ"]. It is defined as

T": Y= YoT.

A functional ¥ that sends k-cells in R™ to R gets pulled back to become a functional

on k-cells in B,
TY : 9o Y{(paT)



Section B Differential Forms 139

The pushforward Ty goes the same direction as T, from B® to E™, while the pullback
T goes the opposite way. The pushforward /pullback duality i summarized by the
formula

(TY)(2) = ¥(Tup).

CHR™) and CH{R"™) are vector spaces according to the addition and scalar multipli-
cation rules

(Y + AW)pe) = Yo+ AW(),

and the pullback T* : CF(R™) = C*(R") is linear. For if Y. W € C*(R™), A € R,
and » € Ci(R") then

(THY 4+ AW))(g) = (¥ +AW)(T o) = ¥(To )+ AW(Toy)

= T*(p) + AT*'W ().

These functionals ¥, W nesd not be forms - linearity of the pallback has nothing to
do with forms. The same applies to composition. If T7: B — R™ and 5 B™ — Ef

are smooth then

[S'II T-J1-= T*'II St . Ci.l:EP} 23 {-HEI:'HII':I
Although this has nothing to do with forms, Figure 125 15 what to remember,

43 Theorem Pullbacks of forms obey the following three natural conditions,

{a) The pullback of a ferm 15 a form. In particular, T®dyp) = dT; and T fdyy) =
T*f dT;, where dTy = dTy, A -+ A dTy,.

{b) The pullback preserves wedge products, THa A 3) = T*n A T*5.

fe) The pullback commutes with the exterior derivative, d1™ = T,

Proof (a) We rely on a nontrivial result in linear algebra, the Cauchy-Binet For-
mula. which concerns the determinant of a product matrix A8 = €, where A is
Ewnaud B isn xk See Appendix E.

In terms of Jacobians, the Cauchy-Binet Formula asserts that if the maps ¢ :
R* = R" and ¢ : R" —+ R* are smooth then the composite ¢ = ¢ro o : R¥ = R®
satisfies

iy vy oy
Hu - dry i

where the Jacobian &y /8x; is evaluated at ¢ = @(u) and J ranges through all
ascending k-tuples in {1.....n}. Then the pullback of a simple k-form on B™ is the
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k-cells in B" ._J.I.“.‘_.. w
pushforward

|
®

-J-Hl
k-forms on ®B" TR k-forms on B™
pullback

Figure 125 b-cells in R® get pushed forward to B™ while &-forms on B™
get pulled back to B". The formula is T%w){#) = w(T,(»))

functional on C{R").

THfdyr): ¢ = fdy(Teoy)
ff:T S Lok

B [T Do
- f fiT e glu ]].(;r ,) TR — du.

{ The Cauchy-Binet Formula is used to go from the second to third lines.) This implies

HT
il r.'-,,}; il

(21) T fdyr) = Z{T ,.r]*mrr ¥

is a k-form. 2%(R™) and O¥(R™) are vector subspaces of CF{R™) and C*(R™). Lin-
earity of T promotes (21) to general forms, which completes the proof that the
pullback of a form is a form, Thus T*: Q%[R™) — 0%(R"). It remains to check that
Tdys) = dTy. T = (iy,....i¢) then distributivity of the wedge product and the
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definition of the exterior derivative of a function imply that

Ty < T, AT, = Zf”"-u ) E=: . )

n
i)
= Y Zu By peonds,

B conulip= ﬂ.r,, I?.i.fl,*
The indices i...., iy are fixed, All terms with repeated dummy indices sy,. ... 8
are xero, 5o the sum is really taken as [s),..., A ) waries in the set of b-tuples with

no repeated entry, and then we know that (s;....,s) can be expressed uniquely
as (8)....,8:) = wJ for an ascending J = (f;..... Ji) and a permutation T. Also.
dry, Ao Mdr,, = sgn(w)dry. This gives

8T a7, K Ty
dTy = g (gﬁmﬂu :I#J'mm “Im”) dry ="y ﬂ_!.Jffr.r

and hence T9dy;) = dT;. Here we nsed the description of the determinant from
Appendix E.

(b} For O-forms it is clear that the pullback of a product is the product of the
pullbacks, T™ fg) = T*f T"y. Suppaose that o is a simple k-form and 7 is a simple
{-form. Then o= fdyy. 3 = gdyy. and a A 3= fgdyps. By (a) we get

TSa a3 =T e)dTiy =T T dTy A dT; = T a A T3

Wedge distributivity and pullback linearity complete the proof of (b).

{e) If w is & form of degree 0, w = f € NY(R™), then
L .r_l_f'
o ——dy,
(5 )
RN |
= Y1(5%) )
g ity
5 Z("’-_”“) dT,
dhu y=T1lr}

- SR () (5

=] j=1

T™(df)(x)
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which is merely the Chain Rule expression for d( f ¢ T) = d(T™f).

difaT)= E (M) dr;.

il
i=1 ¥

Thus, TYw = dT" for O-forms.

Next consider a simple k-form w = fdy; with k > 1. Using (a), the degree-zero
case, and the wedge differentiation formula, we get

d(T") d(T*f dT7)

d(T*f) A dT; + (—=1)"T*f A d(dT})
= T*df) ndT;
= Tdf A dy)
= T*dw).

Linearity promaotes this to general &-forms and completes the proof of (c). O

9 The General Stokes Formula

In this section we establish the general Stokes formula as

fd.;u=/u.'.
@ ihg

where w € OF(R") and » € Oy (R™). Then. as special cases, we reel off the standard
formulas of vector caleulus. Finally, we discuss antidifferentiation of forms and briefly
introduce de Rham cohomology.

First we verify Stokes’ formula on a cube. and then get the general case by means

of the pullback.

Definition A k-chain is a formal linear combination' that of k-cells,

W
= Eu_,:,:':.
i=1

where ay. ..., ay are real constants. The integral of a k-form w over $ is
N
v=Yu[ w
'/;' J=1 ¥a

" T v previse, bul no more informative, we form an infinite=dimensional vector space
using an uncountable basis conslsting of all all k-cells in B™. Then & = 1‘_:" { By I8 & vector in V.
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Definition The boundary of a k-cell o is the k-chain

k+1
dy = E:{'—l}j*t{;ﬁ't'lj'l = *na.-'i'"}
=1
where
PR (7 PO ) = (wg,ooo oy, 00ng, . ug)
PRI (7T PR 1T BT T TN T PRI T 07T SO 119

are the " “rear inclusion” k-cell and " “front inclusion”™ k-cell of ¥+, See Fig-
ure 126. (Note that 8 is indeed s formal linear combination of (k = 1)-cells.] As

= r-axis ——

Figure 126 The rear inclusions +'* and +** are the r-rearface and the
y-rearface. The front inclusion ! is the z-frontface, the top of the cube.

shorthand we write dp as
k41

do = 3 (-1p*18
i=1
where & = ge ! — 200 s the 0 dipole of .

44 Stokes' Formula for a Cube Assume that k + 1 = n. If w € ((R") and
p: " = B" a5 the wdentity-mmclusion n-cell m R" Hen
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Proof Write w as
= i
L = Z filx)dey A todey Ao Addey,
p=]

where the hat above the term os; is standard notation to indicate that dr; iz deleted,
The exterior decivative of w 1s

L]

% i g Ao e

[T
"

- — z 1:|| I' Jr r“'] o o- ."\.HIJ'”

db‘:

= 21 ~1yi+ ‘”d g Mo iy

P |

fd...- E:[ l]I“,/;. :'i'{rl

Deleting the " component of the rear ™ face /% u) gives the k-tuple (o, .. ..oug ),
while deleting any other component gives a k-tuple with a component that remains

which implies that

constant as & varies. The same is troe of the j** front face. Thus the Jacobians are

du B (1 otherwise,

M, B r"-‘I:.'-""]: _{ I W= |l..... J ..... i)

and so the "™ dipole integral of w is zero except when ¢ = 7. and in that case

—Filvy ..o, UTHRT | T iy ) pefuey .. dlug.

By the Fundsmental Theorem of Caleulus we can substitute the integral of a deriva-
tive for the f; difference: and by Fubini's Theorem the order of integration in ordinary
intitiple integration is irrelevant. This gives

I 1
[.;J:j f Mr}n...!h’".
o il o i

so the alternating dipole sum 3 (=107 [}, w equals [ du. O
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45 Stokes' Formula for a General k-cell Assume that k+1=n. [fw € (*[R")
and if p € Cpiq(R™) then
fu'.u.' = f .
- il

Proof Using the pullback definition and applving (¢} of Theorem 43 when T = 2 ¢
5 BR® and o I¥ 5 B¥* s the identity-inclusion gives

s = dut = ["‘rl’u:fri“tw«—-j **;-.'=[ .
-[ VI;\'.II .|r. i L3 Lll-F o ] I:

-

Remark The assumption & = n — 1 in Theorem 44 and Corollary 45 makes the
notation simpler, but the same assertions and proofs are valid forall k. 0 < & < n -1,

Stokes’ Formula on Manifolds

If M c R" divides into (& + 1)-cells difeomorphic to JE+1 end its boundary
divides into k-cells diffeomorphic to I as shown in Figure 127, then there is a version
of Stokes” Formula for Af. Namely, if w is a k-form then

[ ﬂlu.' :f s
o AF il

It is required that the boundary k-cells which are interior to M cancel each other
onut. This prohibits Af being the Mibius band and other nonorientable sets. The
(& + 1}-cells “tile" Af.

Figure 127 Manifolds of 2-cells diffeomorphic to 12, The boundary of M,

drawn darker, may have several connected compoments,
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Vector Calculus

The Fundamental Theorem of Calculus can be viewed a special case of Stokes®

f _[' I
I‘r -ll.'iI

by taking M = [o.b] C R and w = f. The integral of w over the O-chain M =b-a
is fib) — fla), while the integral of dw over M s _I: Flz)dzr. Likewise, if f:R* =+ R
is smooth then the integral of the 1-form df = f; dr + f, dy is “path independent™ in
the sense that if 2. o are paths from p to g then

fo]

After all, paths are 1-cells and both integrals equal fig) — f{p). The same holds in
R? and R",

Second, Green's Formula in the plane,

[ (o= fuedy = [ sdz+ gd.

is also a special case when we take w = fdr + gdy. Here. the region D is bounded
by the curve O, It is a manifold of 2-cells in the plane.

Third. the Gauss Divergence Theorem

([ avr = [[nucr

is a consequence of Stokes” Formula, Here, F = (f.g. k) 5 a smooth vector field
defined on [ C B, (The notation indicates that f is the r-component of F, g is its
y-oomponent, and h is its z-component.) The divergence of F is the scalar function

dive = fr + gy + hes.

If pis n 2-cell in {7 then the integral
fjl"rfyf‘-d: + gd:adr + hdrandy
Ir

is the flux of F across ». Let § be a compact manifold of 2-cells. The total Aux
across 5 is the sum of the Aux across its 2-cells, If § bounds a region D < 7 then
the Ganss Divergence Theorem is just Stokes’ Formula with

w = fdynd: + gd:ndr + hdrady.
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For dw = div F dx A dy A dz.
Finally, the eurl of a vector field F = (f, g, h) is the vector field

I:'i|:|'|.| = iz .r.z - "".r- g = .|r-|;r:|

Applying Stokes” Formula to the form w = fdr + gdy + hdz gives
f':‘h]-' —g:hdyAd: + (f:—hg)d: Adr + (g = f)de Ady
-
=f fdr+ gdy + hdz
L3

where 5 15 a surface bounded by the closed curve O, The ficst integeal is the total curl
across . while the second is the circulation of F at the boundary. Their equality
is Stokes' Curl Theorem. See Corollaries 30 and 51 for further vector caleulus

results.

Closed Forms and Exact Forms

A form is closed if its exterior derivative is zero, It is exact if it is the exterior
derivative of some other form. Since d* = 0, every exact form is closed:

w=dn = dw=d{da) =10

When s the converse true? That 5. when can we antidifferentinte a closed form
w and find o such that w = da? If the forms are defined on B then the answer
“always" is the Poincaré Lemma. See below. But if the forms are defined on some
subset U7 of B, and if they do not extend to smooth forms defined on all of BE™, then
the answer depends on the topology of L7,

There 15 one case that should be familiar from caleulus: Every closed 1-form
w = fdr+gdyon B? is exact. See Exercise 58, With more work the result holds for
every [ C " that is simply connected in the sense that each closed curve in [f
can be contimiously shrunk to a point in U7 without leaving 7,

If I' c B* is not simply counected then there are I-forms on it that are closed
but not exact. The standard example is

G = r—zd.'.r -~ ;Edy

where r¥ = r? + y*. Its domain of definition is the “punctured plane” B? % {0}, See

Exercise G5,
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In B it is instructive to consider the 2-form

i =
—dy Adz + i.irF: hdr + —‘rrf.r Aoy,
x - r"

W=

-

w is defined on U7, which is BY minus the origin, L is o spherical shell with inner
radius (1 and outer radins oc. The form w is closed but not exact despite the fact
that {7 is simply connected. See Exercise 50,

46 Poincaré Lemma [fw is a closed k-form on B" then of 15 exact.

Proof In fact a better result is true. There are “integration operators”
Ly : 1 (R") = 0" (R™)

with the property that Ld + dL = identity, That is. for all w € {F(R") we have
(Lesgef +dlpdw) = w.

From the existence of these integration operators. the Poincaré Lenina is immediate.
For if die = 01 then we have

w= Lida) + dL{w) = dL{w).

which shows that w s exact with antiderivative o = Liw].

The construction of L is tricky. First we consider a &-form 4. pot on B*. but on
B" 1 It can be expressed uniquely as

(23 g = E frdey + Zﬂ Tdt Adry
{ g

where f; = file. t) g5 = gylr.t). and (r.8) € R"! = B" x B. The first sum is
taken over all ascending k-tuples [ in {1..... . and the second over all ascending
(k = 1)}-tuples J in {1,.... n}. The exterior derivative of 7 is

= iy i : dgr .
(23) di = E ——dry Adrp+ g FE’-r—rH Adrp + z ?d‘.u Mt Ay

i i
i ! A £

Then we define operators

N : OFR"Y = YR
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by setting

|
N(3) = z (j“ m;.;]:ﬂ) dx .

]
The operator N ouly looks at terms of the form in which df appears. It ignores the
others. We claim that for all 7 € Q*(R"*') we have

(24) (dN + Nd)(3) = 3 (fulr. 1) = folz.0)) day
i

where the coefficients f; take their meaning from (22). By Theorem 14 it is legal 1o
differentiate past the integral sign. From (23) and the definition of N we get

Ly ' g
Nida) = f,—n'r)d 2 (f ,—.:H)n'. Adz,
|: } Z( 1] I'H i JZ.!' 1 TJ'J",[ s ol
1
dNg) = ¥ 991 0\ dee A dzy,
7 o O

For the coefficients in N(3) are independent of ¢. Therefore

1
(AN + Nd)(3) =3 u 3 '”) dey =Y (fi(x.1) = filz,0))dey.
I !

as claimed in (24).
Then we define a cone map p: R"H = B" by
plr.t) =ix.
and set L = N o p® See Figure 128, Commutativity of pullback and o gives

{25) Ld +dL = Np®d + dNp® = (Nd + dN)p",

so it behooves us to work out p¥w). First suppose that w is simple, say w = hdx; €
O5R™). Since plz.t) = (txry, ... . to,) we have

pihdry) (") p®(de)) = hite)dpy
= h(t)(d{tzi) A - Adtn,))
= f(tr)((tdr;, + xg, dt) Ao A (Edry, + 3 dt))
= h{f':]fi‘kd’:;ﬁ =+ terms that inelude of

where [ = {i),....i¢}. From (24) we conclude that

(Nd + dN) e p*(hdip) = (h{1e)1% = h{02)0%)dx; = hdx;,
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P

(®, 4, 8) — (tx, by, t) (fz,ty. ) — (tx, ty)

Figure 128 When n + 1 = 3 the cone map sends vertical cvlinders to
vertical cones. which are then projected to the plane.

and from (26 we get

(26) (Ldd + dL){helx;) = hdz;.

The linearity of L and d promote (26) to general k-forms,
{Ld + dLjw = w,

and as remarked at the outset, the existence of such an L implies that closed forms
on B™ are exact. O

47 Corollary If U is diffeomorphic to R then all closed forms on U are exact.

Proof Let T : I/ = R" be a diffeomorphism and assume that w is a closed k-form
on L. Set o = (T~')*w. Since pullback commutes with d we see that a is a closed
k-form on R®. By the Poincaré Lemma there is a (k = 1)-form g on R® with o = dp.
Then

rf'.'l"";t = T*.r!';x =T%% =T% {T“I]';...l = (T} GT]*'.‘-' =id*w =w

which shows that w is exact with antiderivative T"u. O
48 Corollary Locally, closed forms defined on open subsets of R™ are exact.

Proof Locally an open subset of B” is diffeomorphic to B, O
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49 Corollary If U ¢ R" is open and starlike (in particular, if U is convex) then
closed forms on U7 are eract.

Proof A starlike set 7 © R" contains a point p such that the line segment from
each q € UV to p lies in /. Every starlike open set in R" is diffeomorphic to R". See
Exercise 52, |

50 Corollary A smooth vector field F on B? for on an open set diffeomorphic to
B} s the gradient of a scaler funcfion if and only of s curl 13 everyuwhere zero,

Proof If F = grad ¢ then
F = (¢r.0p¢:) = ourlF = (g — @pzy Opz — Pup. Gy — Ogy) = 1
O the other hand, f F = (f.g.h) then
cull F=0 = w=fdr+gdy+ hd:
is closed and therefore exact. A function ¢ with dé = w has gradient F. |

51 Corollary A smooth vector field on B* for on an open set diffeomorphic to B*)
has everywhere zero divergence if and only if it is the curl of some other vector field.

Proof If F=(f,g.h) and & = curl F then

o= “"y — g .f: — hg, g — f!.l]

s0 the divergence of (f is zero. (On the other hand, if the divergence of (¢ = (A, B.C7)
is zero then the form

w=Adyrd:r + BdzAdr 4+ Cdrady
is closed and therefore exact. If the form o = fdr + gdy + hdz has doe = w then
F=(f.g.h) has curl F = . O

Cohomology

The set of exact k-forms on U7 is usually denoted B¥(I7). while the set of closed
k-forms is denoted Z%(L7). (“B" is for boundary and “Z" is for cycle.) Both are
vector subspaces of £25(07) and

BY (L) < ZX(U).



J52 Multivariable Caleulus Chapter §

The quotient vector space
HY(U) = ZYU) BY )

is the k*" de Rham cohomology group of [7, Its members are the “cohomology
classes” of [/, As was discussed above. if 7 is simply connected then H'(U7) = 0.
Also. H*([7) # 0 when U is the three-dimensional spherical shell. If U is starlike
then H*(L') = 0 for all & > 0, and HYU) = R. Cohomology necessarily reflects the
global topology of U7, For loeally, closed formms are exact. The relation between the
cohomoelogy of U7 and its topology is the subject of algebraic topology, the basic idea
being that the more complicated the set U7 (think of Swiss cheese). the more compli-
cated is its cohomology, and viee versa. The book Frem Calenlus to Cohomology by
Madsen and Tomehave provides a beantiful exposition of the subject.

Differential Forms Viewed Pointwise

The preceding part of this section presents differential forms as “abstract inte
grands” - things which it makes sense to write after an integral sign. But they are
not defined as functions that have values point by point. Rather they are special
tunctionals on the space of cells. This is all well and good since it provides a elean
path to the mam result about forms, the Stokes Formula,

A different path to Stokes involves multilinear functionals, You have already seen
bilinear functionals like the dot product. It is a map 3 : R" = B" — K with various
properties. the first being that for each ¢ € B* the maps

wi— Fe,w) and  we— Fw, )

are linear. We say 4 is linear in each vector variable separately,. A map 3 : B =
coo BY = R which is linear in each vector variable separately is a k-multilinear
functional. (Its domain is the Cartesian product of k copies B".) [t is alternating
if for each permutation 7 of {1..... k} we have

] L T vg) = sgn(w )M vgiiye -0 Ve )

The set of alternating k-linear forms is a vector space A*, and one can view w €
OY(R") at a point p as a member wp € A% It is a cortain type of tensor that we
integrate over a cell as p varies in the cell; the vectors on which wy is evaluated are
tangent to the cell at p. You can read about this approsch to differential forms in
Michael Spivak's hook Caleufus on Manifolds,
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10* The Brouwer Fixed-Point Theorem

Let 2 = O™ he the closed unit n-hall,

B=[zrelR":|z| <1}
The following 15 one of the deep results in topoloey and analyveis:

52 Brouwer Fixed-Point Theorem [f F : B = B 15 confinuras then o has a
fired-point, a pomt p € B such that F(p) = p.

Proof The proof is relatively short and depends on Stokes” Theorem. Note that
Brouwer's Theorem is trivial when n = 0, for BY is a point and is the fixed-point of
F. Alzo, if n = 1 then. as observed on page 242, the result is o consequence of the
Intermediate Value Theorem on B' = [—1, 1], For the continuons function Fr) — r
is nonnegative at ¥ = —1 and nonpositive at = = +1, so at some p £ [—1,1] we have
Fip)=p=W;ie. F(p)= p.

The strategy of the proof in higher dimensions is to suppose that there does exist
a continuous F : f — B which fails to have a fixed-point, and from this supposition
to derive o contradiction. namely that the volome of B is zera. The first step in the
proof is standard.

Step 1. The existence of a continsous F : B — B without a hxed-point implies
the existence of a smooth retraction T of a neighborhood 7 of B to 88, The map
T sends [/ to @8 and fixes every point of a3,

If F has no fixed-point as & vares in B. then compactness of B implies there is
some > ) such that for all ¥ € B we have

|Flz) — x| > p.

The Stone-Weierstrass Theorem then produces a multivariable polynomial F:R" =
R" that p/2-approximates F on B. The map

Giz) = Fir)

| T

is smooth and sends B into the interior of B. It p-approximates F on 8. so it too

has no fixed-point, The restriction of G to a small neighborhood U7 of 8 also sends
L7 into & and has no Axed-point.

Figure 129 shows how to construct the retraction T from the map 7. Since & is
smoath, so is T



354 Multivariable Caleulus Chapter 5

Figure 129 T retracts [” onto #8. The point u € [ is sent by T to the
unicue point 4’ = T'{u) at which the segment [u. G{u)]. extended through «,
crosses the aphere 48,

Step 2. T* kills all n-forms. If there is a point p € U7 sueh that (DT, is invertible
then the Inverse Function Theorem hmplies T contains an open n-dimensional ball
at fp. Since no such ball is contained in @8 = TU, DT is nowhere invertible. its
Jacoblan determinant T/t is everywhere zero, and T* : 0"(R") — Q"(L') is the
FCFO MAp.

Step 3. There is a map ¢ : [" — B that exhibits B as an n-cell such that

{a) 4 is smooth.
(b) @{I") = B and (8™ = 48.
e

(o) s Edu = 0.

To construct », start with a smooth function o : B = R such that o{r) = 0 for
r<l1/2 o'(r)>00orl/2<r <], and a(r) =1 for r > 1, Then define ¢ : R™ — R"
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by
) (ﬁ = :r) ook

i if v =0,

Ply) =
See Figure 130 and Exercise 53. Sinee a(|v]) = 0 when |¢| < 1/2, ¢ is smooth.

\"—E J]: E—"/f_”"___i vE
oo /

e |
1

/1N

Figure 130 The map ¢ crushes all of B" onto the closed unit ball 8%, It is
a diffeomorphism of the interor of B" to itsell, and hxes each point of
a8" = 5", Its derivative has rank n — 1 at each point of B" * int B".
Restricted to each {n = 1}-dimensional face E of the cube [-1,1]" ¢ is a
diffeomorphism from the interior of £ to one of the 2n open cubical polar
caps on 87! See also Figure 131 and Exercise 52.

The map ¢ carries the sphere S, of radins ¢ to the sphere of radius
plrl=r+alri{l —r),

sending each radial line into itself, Set » = Yok where & scales I™ to [—1,1]" by the
affine map x tu v = (2 - 1. ..., 2u, = 1). Then

(i)  is smooth since ¢ and & are smooth.

(1) @ sends ™ to 3B snee ¢ sends 3{[-1,1]") to dB.

(iii) It is left as Exercise T0 to show that the Jacobian of v is g'(r)plr)® 1 /r"~1 when
r = |v|. Thus, the Jacobian digfitu is always nonnegative. and is identically
equal to 2" on the ball of radius 1/4 at the center of I, =0 its integral on /" is
positive.

Step 4. Consider an (n — 1)-form a. If 3: /"' — R" is an (n — 1)-cell whose
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P N
___-"""--?'-:ul'rl‘l Pale™,

L}
1!

Figure 131 There are six polar caps at the six poles of the 2-sphere,

image les i 083 then

/.'r—/ = [T‘n
1 O Tad a4

ginoe T is the identity map on 88, The (n — 1)-dimensional faces of 2 /" = B lie
in @8, Thus

(27) / o= / T
ol Sl

Step 5, Now we get the contradiction. Consider the speeific (n — 1)-form
o= rydra A--- Adrg,

Note that do = dey A Acdey, is n-dimensional volume and

1
[rl’rr:[ r_—"lﬂ'u = b,
. = h
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In fact the integral is the volume of B. However, we also have

f.‘f“ -

Ll

¥ by Stokes' Theorem on a cell
T*a by Equation (27)
dT"n by Btokes” Theorem on a cell

T by {d} in Theorem 43

—
—

by Step 2.

This i= a contradiction - an integral can not simultaneously be zero and positive. The
assumption that there exists a continnous F : § = B with no fixed-point has led to
a contradiction. Therefore it is untenable and every F does have a fixed-pointe. 0

Appendix A Perorations of Dieudonné

In his classic book. Foundations of Analysis. Jean Diendonne of the
French Bourbaki school writes

“The subject matter of this Chapter [Chapter VIIT on differential ealenlus]
i= nothing else but the elementary theorems of Caleulus, which however
are presented in a way which will probably be new to most students. That
presentation which throughout adheres strictly to our general *geometric’
onitlook on Analysis, aims at keeping as close as possible to the fundamen-
tal idea of Calculus, namely the local approximation of functions by linear
functions. In the classical teaching of Caleulus, this idea is immediately
olscured by the accidental fact that, on a one-dimensional vector space.
there is a one-to-one correspondence between linear forms and numbers.
and therefore the derdvative at o point is defined as a pumber instead of
a linear form. This slavish subservience to the shibboleth of numerical
miterpretation at any cost becomes moch worse when dealing with fuone-
tions of several variables: One thus arrives, for instance. at the classical
formula”... “giving the partial derivatives of & composite function. which
has lost any trace of intuitive meaning. whereas the natural statement of
the theorem is of course that the (total) derivative of a composite fanction
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is the composite of their derivatives™ ..., “a very sensible formulation when
one thinks in terms of linear approximation.”

“This “intrinsic’ formulation of Caleulus, due to its greater “abstraction’,
and in particular to the fact that again and again, one has to leave the
initial spaces and climb higher and higher to new “function spaces’ {es-
pecially when dealing with the theory of higher derivatives), certainly
requires some mental effort, contrasting with the comfortable routine of
the classical formmulas, But we believe the result is well worth the labor,
as it will prepare the student to the still more general idea of Caleulus on
a differentiable manifold: the reader who wants to have a glimpse of that
theory and of the gquestions to which it leads can look into the books of
Chevallev and de Rham. Of course, he will observe in these applications.
all the vector spaces which intervene have finite dimension; if that gives
him an additional feeling of security, he may of course add that assump-
tion to all the theorems of this chapter. But he will inevitably realize
that this does not make the proofs shorter or simpler by a single line; in
other words the hyvpothesis of finite dimension is entirely irrelevant to the
material developed below:; we have therefore thought it best to dispense
with it altogether, although the applications of Calenlus which deal with
the finite-dimensional case still by far exeeed the others in number and
importance.”

I share most of Diendonné’s opinions expressed here. And where else will vou
read the phrase “slavish subservience to the shibboleth of numerical interpretation
at any cost” 7

Appendix B The History of Cavalieri’s Principle

The following is from Marsden and Weinstein's Calculus,

The idea behind the slice method goes back., beyvond the invention of
calculus, to Francesco Bonaventura Cavalieri (1598-1647), a studemt of
Galilen and then professor at the University of Bologna. An accurate
repart of the events leading to Cavalieri's discovery is not available, so we
have taken the liberty of inventing one.

Cavalieri’s delicatessen usually produced bologna in eylindrical form. so
that the volume would be computed as 7. radius®, length. One day the
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cagings were a bit weak, and the bologna came out with odd bulges. The
scale was not working that day, either. so the only way to compute the

price of the bologna was in terms of its volume.

Cavalieri took his best knife and sliced the balogna into 2 very thin slices,
each of thickness r, and measured the radii, ry, ro. ... rp of the slices
[fortunately they were all round). He then estimated the volume to be

t g wriz, the sum of the volumes of the slices.

Cavalieri was mooulighting from his regular job as a professor at the Uni-
versity of Bologna. That afternoon he went back to his desk and began
the book Ceometra indivisibilium continuerum neva quandum ratione
promaota [Geometry shows the continuous indivisibility Detwesn new ma-
tions and getting promoted), in which he stated what is now known as
Cavalieri’s principle: If two solids are sliced by a family of parallel planes
in #uch a way that corresponding sections have equal areas, then the two
solids have the same volume,

The book was such a suceess that Cavalier: sold his delicatessen and re-
tired to a life of ocecasional teaching and eternal glory,

Appendix C A Short Excursion into the Com-
plex Field

The field C of complex numbers corresponds bijectively with B*, The complex number
z =z + iy € C corresponds to {(z,y) € BY. A function T : C = C is complex linear
if for all A, z, w € C we have

Tz +w)=T(z)+T{w) and T(Az)=AT(z).

Since C is a one-dimensional complex vector space the value g = T(1) determines T,
namely, T(z) = pz forall z. f z =2+ iy and u = a + i then pz = (o = 8y) +
i3z + ay). In B? terms T : (z,y) — ((ax — Fy). (3z + ay)) which shows that T is a
linear transformation B* — R? whose matrix is

£t =
¥, a |

The form of this matrix is special. For instance it could never be [ 21' } ]
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A complex function of a complex variable f{z) has a complex derivative f'(z)
if the complex ratio (f(z+ /) — f(2))/h tends to f{z) as the complex number i tends
to rero. Equivalently.

z4+h)= Flzi— Fiz
fz4+h) = f(:) - F2)h _
h
as h — 0. Write f{z) = u(r. y) + 1v(r, y) where z = r + iy, and u, v are real-valued
functions of two real variables. Define F : B? = R? by F(r.y) = (u{z.y). v(r, y)).
Then F iz BE-differentiable with derivative matrix

i {1

ibr E
DF =

o

itr iy

Since this derivative matrix is the B? expression for multiplication by the complex

. a = ¥ ;
pumber f'(z). it st have the ] form. This demonstrates a basic [act

A4 o
about complex differentiable functions - their real and imaginary parts. u and v,

satisfy the

53 Cauchy-Riemann Equations

i o il d il B iy
B oy T B bz

Appendix D Polar Form

The shape of the image of a unit ball under a linear transformation T is not an issoee
that is used directly in anvthing we do in Chapter 5 but #t certainly underlies the
geotnetric outlook on hnear algebra.

Question. What shape is the (n — 1)-sphere 5717
Answer, Round.

Question. What shape is T{5"")?

Answer. Ellipsoidal. See also Exercise 34,

Let = = x + iy be a nonzero complex number, Its polar form is 2 = re™ where
r>0and D < # < 2, and r = reosfl, y = rsinf. Aultiplication by z breaks up
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inte multiplication by r, which is just dilation, and nmltiplication by %, which is
rotation of the plane by angle #. As a matrix the rotation is

e —sin#
sin cos |

The polar coordinates of (r, y) are (r, #).

Analogously, consider an isomorphism T : B — BR". Its polar form is
T=0F

where () and P are isomorphisms BR" — R" such that
{a) €2 is like ¢'%; it is an orthogonal isomorphism,
(h) P is like r; it is positive definite svimmetric {PDS) isomorphism.

Orthogonality of O means that for all ¢, w0 € B we have
(Ov, Ow) = (v, w),
while P being PDS means that for all nonzern vectors v.w € B" we have
{Pv,v) > 0 and (Pv,w) = {v, Pw).

The notation (v, w) indicates the usual dot product on R,

The polar form T = (}P reveals everything geometric about T. The geometric
effect of () is nothing. It is an isometry and changes no distances or shapes, [t is
rigid. The effect of a PDS operator P is easy to describe. In linear algebra it is shown
that there exists a basis B = {uy, ..., tty } of orthonormal vectors (the vectors are of
unit length and are mutually perpendicular) and with respect to this basis we have

o -

M D
0 X @
D Ay A
i An

L =

The dingonal entries A; are positive, P stretches each w; by the factor A, Thus P
stretches the unit sphere to an n-dimensional ellipsoid. The w; are its axes. The
norm of P and henee of T is the largest A, while the conorm is the smallest A, The

ratio of the largest to the smallest, the condition number. is the eccentricity of the
ellipsoid.
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Upshot Except for the harmless orthogonal factor ¢, an isomorphism is no more
geometrically complicated than a diagonal matrix with positive entries.

54 Polar Form Theorem Eoch isomorphism T : R" — R" factors as T = OPF,
where () 5 orthogonal and P is PDS.

Proof Recall that the transpose of T : R" — R" is the unique isomorphism TV
sutisfying the equation

(Tv,w) = (v, T'w)

for all v, € R". Thus the condition {Pr,w) = {v. Pw) in the definition of PDS
means exactly that P* = P.

Let T be a given isomorphism T : R" — R". We must find its factors O and
P. We just write them down as follows. Consider the composite T o T. It is PDS
becaise

(T'T)! = (T)T") = T'T and (T*Tv. v} = (T, Tv) > 0.

Every PDS transformation has a unique PDS square root, just as does every positive
real number r. (To see this, take the diagonal matrix with entries /A, in place of
Ai) Thus T'T has a PDS square root and this is the factor P that we seck,

P=TT"

By P? we mean the composite Pe P, In order for the formula T = OF to hold with
this choice of P we must have (2 = TP~', To finish the proof we merely must check
that TP~ actually is orthogonal. Magically,

]

(O, Ch) (TP v, TP 'w) = (P 'o,T'TP 'u)
(P-ly, Puw) = (PP~ v, w) = (PP 0, u)

= o,

which implies that € is orthogonal, O
55 Corollary Under any invertible T : B — R" the unit ball is sent to an ellipsoid.

Proof Write T in polar form T = (P, The image of the unit ball under P is an
ellipsoid. The orthogonal factor O merely rotates the ellipsoid. O



Appendix E Determinants 363

Appendix E Determinants

A permutation of a set 5 is a bijection 7 : § — 5. That is, 7 is one-to-one and onto.
We assume the set S is finite, § = {1...., k}. The sign of = is

sgu(m) = (=1)"
where r is the munber of reversals - Le.. the number of pairs i, § such that
i < j and ={i) > w(j).

56 Proposition Every permutation is the compaosite of pair transpositions; the sign
of a composite permutabion is the product of the signs of its factors; and the sign of
a pair fransposition s =1,

The proof of this combinatorial proposition is left to the reader. Although the
factorization of a permutation 7 into pair transpositions is not unique, the number
of factors, say t, satisfies (—1)' = sgn(n).

Definition The determinant of a & = & matrix A is the sum

det A = Z SERLT I 11020 (2) - - - Bkemih)
T
where ¥ ranges through all permutations of {1.....k}.

Equivalent definitions appear in standard linear algebra courses. One of the key
facts about determinants is the product rube: For two & = & matrices we have

det AR = det Adet B,

It extends to nonsquare matrices as follows,

57 Cauchy-Binet Formula Assume that k < n. If A is a k x n matrir and B 15
an n ® k matrir, then the delermmant of Be product & = & omatroe AB = O s goeen
by the formula
det ' =Y det A" det By,
]

where J ranges through the set of ascendmg k-tuples i {1,... . n}, A is the k x k
minor of A whose column indices j belong to J, while B is the & x & minor of B
whose row indices 1 belong to J. See Figure 132,
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e

!y

1

Figure 132 The paircd 4 = 4 minors of A and B are determinesd by the
d-tuple J = (1. 92, 73. a1

Proof Note that special cases of the Cauchy-Binet Formula oceur when & = 1 or
b=n When b =1, €15 the 1 = 1 matrix that is the do product of an A-row vector
of length n times a B-column veetor of height n. The 1-tuples Jin {1,....n} are just
single integers. J = (1],..... { = (). and the product formula is inmediate. In the

secotd case, & = n. we have the usnal product determinant formula becanse there is

only one ascending k-tuple in {1.....k}. namely J = (1..... k.
T handle the A(-]]('I'nl case, define the ST

(A B) = E det A7 det B,

!

as above, Consider an elementary n % nomatrix B, We claim that
S(A.B)= S{AE.E'B).
Since there are only two types of elementary matrices, this is not too hard a calen-

lation, and is left to the reader. Then we perform a sequence of elementary colnmnn

operations on A to put it in lower triangular form

iyl 1] ‘”‘ fee I.] .

. ¥ frog LILEITE] LR L ] i
A'= AE, ... E, =

EFE L] B iFpi L1 1 b

About B' = E-' .. E7'B we observe only that
AB= A'B' = A B,
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where Jy = (1,..., k). Since elementary column operations do not affect S5 we have
S(A.B) = S(AE\,E{'B) = S(AE\Ea, E;'E{'B) = ... = S(A'. B').
All terms in the sum that defines §(A’, B') are zero except the JI®, and thus
det{AB) = det A" det B} = S(A'. B') = S(A. B)

as claimed. O
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Exercises

1. Let T': V = W be a linear transformation, and let p € V be given. Prove that

the following are equivalent.

(a] T is continuous at the orgn.

(b) T is continuous at p.

(c] T is continuous at at least one point of V',

2. Let L be the vector space of continuous linear transformations from a normed
space 1 to a normed space W, Show that the operator norm makes £ a normed
space,

d. Let T : ¥V = W be a linear transformation between normed spaces. Show that

IT| = sup{|Tv|:|v|<1}
= sup{|Tv|: |¢| <1}
= sup{|Tv: o] = 1)
= inf{M:veV = |Tu < M|v]}.

4. The conorm of a linear transformation T : B = B™ is

m(T) = i:ﬁ{% T ;‘-ﬂ} .
It is the minimum streteh that T imparts to vectors in B", Let [’ be the
unit ball in B".
ia) Show that the norm and conorm of T are the radii of the smallest ball
that contains TU and the largest ball contained in TU,
(b) Is the same true in normed spaces?
{c] If T is an isomorphism. prove that its conorm is positive.
(d) Is the converse to (c) true?
{e) HT :R" = R" has positive conorm, why is T is an isomorphism?
(£} If the nornn and conorm of T are equal, what can you say about T7
5. Formulate and prove the fact that function composition is associative. Why
can you infer that matrix multiplication is associative?
6. Let M, and £, be the vector spaces of n % n matrices and linear transformations
R" = R".
(a) Look up the definition of “ring” in your algebra hook.
(b) Show that M, and L, are rings with reapect to matrix multiplication and
composition.
{c) Show that T : M, — L, is a ring isomorphism.
7. Two norms | |} and | |2 on a vector space are comparable’ if there are

"From an analyst's point of view, the chaice between comparable norms has litthe importance, At
worsd it affecis a few constanis that tuen up in estimates,
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positive constants ¢ and C' such that for all nonzero vectors in V. owe have

(a) Prowve that comparability is an equivalence relation on norms.
(b) Prove that any two norms on a finite-dimensional vector space are come-
parable. [Hint: Use Theorem 3.

(o) Consider the norms

1
IFlg = L |f(t)|dt  and |flpo = max{|f(t)]: ¢ € [0, 1]}.

defined on the infinite-dimensional vector space €7 of continuous func-
tions f: [0,1] = B. Show that the norms are not comparable by finding
funetions f £ €% whose integral norm is small but whose C% norm is 1.
*8, Let | | =] |co be the supremum norm on CY as in the previous exercise.
Define an integral transformation T : €% — € by

T: frs j:rf{r]m.

(a) Show that T is linear. continnous, and find its norm.
(b) Let fo(t) = cos(nt), n=1,2, .... What is T(fs)?
{c} I8 the set of functions K = {f, : n € M} closed? Bounded? Compact?
(d) Is T{K") compact? How about its closure?
9. Give an example of two 2 x 2 matrices such that the operator norm of the
product is less than the product of the operator norms,
1{. In the proof of Theorem 3 we used the fact that with respect to the Euclidean
norm. the length of a vector is at least as large as the length of any of its

components, Show by example that this is false for some norms in R, [Hint:
Consider the matrix
B -2
A [ L= ] .

Use A to define an inner product (o, w)q = 3 vayw, on B, and use the inner
product to define a norm

[vla = Ve vha.
(What properties must A have for the s to define an inner product? Does

A have these properties?) With respect to this norm, what are the lengths of
€1, e2. and v = &) + eal)
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11.

12,

13,
14

146.

17.

Consider the shear matrix
g — 1 s
i 1

and the linear transformation 5 : B? — B? it represents. Caleulate the norm
and conorm of 8§, [Hint: Using polar form. it suffices to caleulate the norm
and conorin of the positive definite symmetric part of 5. Recall from linear
algebra that the eigenvalues of the square of a matrix A are the squares of the
eigenvalues of A.]
What is the one-line proof that if V' is a finite-dimensional normed space then
its unit sphere {v : |v| = 1} is compact?
The set of invertible n * n matrices is open in M. |5 it dense?
An n ¥ n matrix is diagonalizable if there is a change of basis in which it
becomes disgonal.

{a) Is the set of diagonalizable matrices open in M{n = n)?

(b)) Closed?

() Dense?

. Show that both partial derivatives of the function

.ry -
fley) = { P +y? if (x.y) # (0.0
0 if (. y) = (0,0)

exist at the origin but the function is not differentiable there,
Let f:R* = B and g: B* = R be defined by f = (r, g, 2) and g = w where

W= T2 = sy F gz 4 osr
re=g{st)=a y=ylat)=sco8t 3= z(st)=asinl

(a) Find the matrices that represent the linear transformations (Df), and
(Dqgly where p = (8g.85) = (0. 1) and g = f(p).

(b} Use the Chain Rule to caleulate the 1 x 2 matrix [fw/ds, the/it] that
represents (D{g o f)),.

{c) Plug the functions r = x{s.t). y = yls.t). and z = z(s, ¢} directly into
w o= w2 ). and recalenlate [t /s, tw /). verifving the answer given
i [ls).

() Examine the statements of the multivariable chain rules that appear in
vour old caloulus book and observe that they are nothing more than the
components of various product matrices,

Let f: L7 — R™ be differentiable, [p,q] € 7 ¢ R", and ask whether the direct

generalization of the one-dimensional Mean Yalue Theorem iz true: Does there
exist a point # € [p, g| such that

(28) Ha) = flp) = (Df )alg = p)?
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(a) Take n = 1. m = 2. and examine the function
fit) = [cost.sint)

for # <t < 2x. Take p = 7 and g = 2x. Show that there is no 8 € [p. g
which satishes (28],

(b) Assume that the set of derivatives
{(Df): € LR R™) : 7 € [p.q]}

is convex. Prove there exists 8 € [p, ] which satisfies (28).
(c) How does (b) imply the one-dimensional Mean Value Theorem?
18. The directional derivative of f : [’ — E™ at p& U’ in the direction u is the
limit, if it exists,
fip+ tu) - fip)
f :

Vo) =l

{Often one requires that Jul = 1.)
{a) If [ is differentiable at p, why is it obvious that the directional derivative

exists in each direction u?

(h) Show that the function f: B! = R defined by

K ]
flr.y) = f-lr—fye if (. y) # (0,0)
b if (z,) = (0,0)

has Vg0 f(u) = 0 for all u but is not differentiable at (0,0).

*19. Using the functions in Exercises 15 and 18, show that the composite of func-
tions whose partial derivatives exist may fail to have partial derivatives, and
the composite of functions whose directional derivatives exist may fail to have
directional derivatives. [That i=, the classes of these functions are oot closed
under composition, which is further reason to define nmltidimensional differ-
entiability in terms of Taylor approximation, and not in terms of partial or
directional derivatives,)

20, Assume that U i a connected open subset of R" and f : 7 = RB™ is differen-
tiable everywhere on U, If (D f), = 0 for all p € U, show that [ is constant.

21. For U as albwwve, assume that § iz second-differentiable evervahere and {Diﬂp =
() for all p. What can vou say about 7 Geoneralize to higher-ocder differentin-
hility.

22 If Y is a metric space and f : [a, b x ¥ — R is continnous, show that

[
Fly) = f fla.y)de

s continumis,
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23. Assume that f:[a.b] x ¥ = R™ Is continuous, ¥ is an open subset of R", the
partial derivatives df;(x. y)/dy; exist. and they are continuous. Let Dy, f be the
linear transformation B" — R™ which is represented by the m » n matrix of
partials,

{a) Show that

]
ﬂm=j:mmm
iz of clags ! and
{EF}u=ffDuﬂrir-
i

This generalizes Theorem 14 to higher dimensions,
(b) Generalize (a) to higher-order differentiability.
24, Show that all second partial derivatives of the function f : B? = R defined by

Ii+y2

- S |
flry) ={ DAL V) i (n,) # (0.0)
0 if (x,y) = (0, 0)

exist everywhere, but the mixed second partials are unequal at the origin,

A2 10,00/ driy £ 2 F(0,0)/ dyix.

*25. Construct an example of a €' function f : R — R that is second-differentiable
onlv at the origin. (Infer that this phenomenon oceurs also in higher dimen-
sions, )

26. Suppose that u v~ 3, is & continuous function from [F © R" into L({R™,R™).

(a} If for all « € I7. 4, is symmetric, prove that its average over each W C U
IS SYIIetric.

(b} Conversely. prove that if the average over all small two-dimensional paral-
lelograms in U is symmetric then 8, is symumetric for all w € U, {That is,
if for some p € [V, 4, is not symmetric. prove that its average over some
small two-dimensional parallelogram at p is also not symmetric.

{r) Generalize () and (b} by replacing L with a finite-dimensional space E,
and the subset of symmetric hilinear maps with a linear subspace of E:
The average values of a continuous function always lie in the subspace if
and only if the values do.

*27. Assume that f: I = R™ is of class C? and show that D?f is symmetric by
the following integral method. With reference to the signed sum A of f at the
vertices of the parallelogram P in Figure 109, use the €' Mean Value Theorem

to show that L
A= ( [] _/.;. (D% f g+t .-Imdrj (v, w).

Infer symmetry of (D7 f), from symmetry of & and Exercise 26.
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28, Let #:R" %+ x R® = R™ be r-linear. Define its “symmetrization” as

symm{J){vy, ... v} = %Zﬁ:ﬁ]["ﬂw v P b
where 7 ranges through the set of permutations of {1,....7].
[a] Prove that symimd3) is symmetric.
(b) If 4 is symmetric prove that symm(d) = 4.
(¢) Is the converse to (h) true?
id) Prove that o = 3 —symm(3) is antisymmetric in the sense that if = is any
permutation of {1,...,r} then

ﬂ':i"irll? """ T':rl;r:l}' = sgnlr)a(vy, ... v ).

Infer that L7 = L7 & LT where L and L] are the subspaces of symmetric
and antisvmmetric r-linear transformations.
(e} Let 3 € LR R) be defined by

Bllx,y) (2, 0)) = 2y,

Express 7 as the sum of a symmetric and an antisymmetric bilinear trans-
formation.

*29, Prove Corollary 18 that #*".order differentiability implies symmetry of D' f,
r 2 3 in one of two was,
{n) Use induction to show that {D7 f)glv,.... ) is svmmetric with respect
to permutations of vy, ..., Up—q and of va, ..o 0. Then take advantage of
the fact that » is strictly greater than 2.
(b) Define the signed sum & of [ at the vertices of the paralleletope P spanned
bwv w1y, ..., 0%, and show that it is the average of D" f. Then proceed as in

Exercise 27,
. Consider the equation

(29) re¥ 4 pe* = ().

{a) Observe that there is no way to write down an explicit solution y = y(x)
of (29) in a neighborhood of the point (rg. go) = (0, 0),

{b) Why. nevertheless, does there exist a O™ solution y = yir) of (20) near
{0, 0)?

(c) What is its derivative at r = 07

(d) What iz its second derivative at x = 07

{e) What does this tell yvou about the graph of the solution?

(£ Do you see the point of the Implicitt Function Theorem better?

*231. Counsider a function § : ' = B such that
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(i} 1" is a connected open subset of B2,
(ii} fisCL

(iii} For each [z, ) € L7 we have

dflr.u) _

0,
iy

(a) If {7 is & disc show that [ is independem aof g.

ib) Construct such an f of class € which does depend on .

{e] Show that the [ in (b) can not be analvtic.

(d) Why does your example in (b} not juvalidate the proof of the Rank The-
orem o1 page 067

32, Let f denote the set of invertible # = 0 ommatrioes,

(a) Prove that (¢ is an open subset of M(n = n).

i(h) Prove that ¢ is a group. (It is called the general linear group. )

{e) Prove that the inversion operator Inv - 4 = A7 s o homeomorphism of
O5 onito 5,

() Prove that Inv is a difeomorphism and show that its derivative at A4 is
the linear transformation M — M.

X==A"1eXoA™l

{e] Relate this formula to the ordinary derivative of 1/r at - = a.
43 Ubserve that ¥ = [ov X solves the implicit function prolilem

FIX.Y)-I=0

where FIX. Y] = X eV, Assmme it is known that Tov is smooth and use the
Chain Rule to derive from this equation the formula for the derivative of Inv.
34. Use Gaussian elimination to prove that the entries of the matrix A~ depend
smoothly (in fact analvtically) on the entries of A.
*35. Give a proof that the nversion operator Inv is analytic (i, is defined locally
by a convergent power series) as follows:
(a) If T € L(R".R") and ||T|| < 1 show that the series of linear transforma-
tiomns
I+T+T2+...+4T%+...

converges tooa linear trapsformation 5. and
SolJ=T)=I=(I=T)eb

where [ is the identity transformation.
i(b) Infer from (a) that inversion is analytic at 1.



Exercises Multivariable Calenlus ara

(¢} In general, if Ty € G and ||T|| < 1/||T;"| show that
IviTp=T) =Taw(I-T; ' eT)a Ty,

and infer that Inv s analytic at Tp.
iel} Infer from the general fact that analyticity implies stnoothness that inver-
sion is smooth.
i Note that this proof avoids Cramer’s Rule and makes no wse of finite-dimensionality. )
*36. Give a proof of smoothness of Inv by the following bootstrap met hod,
in) Using the identity

X1y l=x"1a(¥Y-X)e¥Y"!

give a simple proof that Inv is continuons,
{b) Infer that ¥ = Inv{ X} is a continuons solution of the C™ npliclt function
problem
FIX.Y)-I=0,

where F{X.Y) = X ¢ ¥ as in Exercise 33. Since the proof of the !
Implicit Function Theorem relies only continnity of Inv. it is not creular
reasoning to conclude that Inv is €.

(] Assume simultaneously that the O Implicit Function Theorem has been
proved and that Inv is known to be €', Prove that Inv is €7 and that
the ! Implicit Function Theorem is true,

(d) Conclude logically that Inv is smooth and the C* Implicit Function The-
oren s trie.

Note that this proof avoids Cramer’s Rule and makes no nse of finite dimen-
sionality.
*37. Use polar decomposition to give an alternate proof of the volume-multiplier
formmla,
**38. Consider the set § of all 2 x 2 matrices X & M that have rank 1.
[a)} Show that in a neighborhood of the matrix

1 0
Xo= [ 00 ]
5 s diffeomorphic to a two-dimensional disc.
(b} Is this true {locally) for all matrices X € §7
(¢} Describe § globallv. (How many connected components does it have? Is
it closed in M? If not, what are its limit points and how does 5 approach
them? What is the intersection of § with the unit sphers in M7, ote.)
39, Draw pictures of all the possible shapes of T(5%) where T : B* = B? is a linear

transformation and 52 is the 2-sphere. (Don't forget the cases in which T has
rank < 3.}
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0. Let 0 < ¢ < 1 and a, b > 0 be given.
[a} Prove that
L Y e Penygp bl < 16eb
(1—::) _E_{ +e)* = |a-—b < 16eh.
(I} Is the estimate in (a) sharp? (That is, can 16 be replaced by a smaller
constant?)

**41. Suppose that f and g are r'®-order differentiable and that the compesite h =
g o f makes sense. A partition divides a set into nonempty disjoint subsets.
Prove the Higher Order Chain Rule,

LS
(D=3 ¥ (D*a)go(D*f)y
k=1 pEPik.r]
where u partitions {1...., r} into k subsets, and g = f(p). In terms of r-linear
transformations, this notation means
(D h)plvy, ..o i)
L
=3 Y (Dradl{DY I )plvn,)s oo o (DM fhplvy, )
k=1 W
where [p;| = #py and v, is the |p;|-tuple of vectors v, with j € . (Symmetry
implies that the order of the vectors vy in the |p|-tuple v, and the order in
which the partition blocks p. . ... gg occur are irrelevant. )

**42, Suppose that J is bilinear and 4 f, ) makes sense. If f and g are r*-order
differentiable at p. find the Higher-Order Leibniz Formula for D7(3(f, g)).
[Hint: First derive the formula in dimension 1.]

43. Suppose that T : " — R™ has rank k.
(a) Show there exists a 4 > 0 such that if §: R" - R™ and ||§ - T < 4 then
& has rank > k.
(b) Give a specific example in which the rank of 5§ can be greater than the
rank of T, no matter how small § is.
(o) Give examples of linear transformations of rank & for each & where 0 <
k < min{n, m}.
44, Let § ¢ M be given.
ia) Define the characteristic function xg : M = R.
{h) If M is & metric space, show that Xg(r) is discontimions at r if and only
if r is a boundary point of S.
45. Ou page 315 there is a definition of Z C R? being a zero set that involves open

rectangles.
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(a) Show that the definition is unaffected if we require that the rectangles
Covering £ are open sguares,

ib) What if we permit the squares or rectangles to be nonopen?

(¢} What if we use discs or other shapes instead of squares and rectangles?

*36. Assume that § © R¥ is bounded,

{a) Prove that if ¥ is Riemann measurable then so are its interior and closure.

(b} Suppose that the nterior and closure of § are Riemann measurable and
| int( 8] = |5]| < oc. Prove that § is Riemann measurable,

(e} Show that some open bounded subsets of B? are not Riemann measurable,
See Appendix E in Chapter 6.

*47. In the derivation of Fubini’s Theorem on page 316, it is observed that for all
§ € le.d] Y, where ¥ is a zero set, the lower and upper integrals with respect
to x agree, Fly) = Fly). One might think that the values of F and F on ¥
have no effect on their integrals. Mot so. Consider the function defined on the
unit square [0, 1] = [0.1].

1 if y ts irrational
£ _ 31 if  is rational and r is irrational
5y = 1-1/q if i is rational and r = p/q is rational

and written in lowest terms.

[a) Show that f is Riemann integrable and its integral is 1.
(b} Observe that if ¥ is the zevo set QM [0, 1] then for each y € Y.

1
f Mz, y)dr
ik
exiata and equals 1.

(¢} Observe that if for each y € ¥ we choose in a completely arbitrary manner
SO

hy) € [Ely). Fly)]
i st .
_ | Ely) = F{y) ify @Y
Hl:'I]_{h{_u] ifyeyY
then the integral of H exists and equals 1. but if we take g(zr)=0forallye ¥
then the integral of

_ | Ew)=Fly) ifyeY
ﬂ{r}_{gfy}mﬂ ifyeyY

does not exist,
#*=44. Is there a criterion to decide which redefinitions of the Riemann integral on the
gero set ¥ oof Exercise 47 are harmbess and which are not?
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49. Using the Fundamental Theoremn of Caleulus, give a direct proof of Green’s
Formulas

..f[ Jydzdy = For  and fj grdrdy = [ gy
i et I SR

where R is a square in the plane and f.g : B? = B are smooth, {Assume that
the edges of the square are parallel to the coordinate axes.)
50. Draw a staircase curve S, that approximates the diagonal

A={lry)eR:0<sr=y<1}

to within a tolerance 1/n. See Figure 133, Suppose that f.g : B2 = R arc

/

Figure 133 The staircase curve approximating the diagonal consists of
both treads and risers,

smonth,
(a) Why does the length of 5, not converge to the length of A as n - =7
(b) Despite (a). prove that

j fdr -l-/ Jdr and f gy —» j gdy
. A Hy 4
a8 T — 50,

(e} Repeat (b) with & replaced by the graph of a smooth Rinction f : [o. b —
H.

(d) If €' is a smooth simple closed curve in the plane. show that it is the union
of finitely many arcs O, each of which is the graph of 8 smooth function
y = hir) or r=hiy), and the arcs Oy meet only at common endpoints,
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(@) Infer that if (5,) is a sequence of staircase curves that converges to C' then
f fdr+gdy — j fdr + gdy.
S c

() Use () and Exercise 49 to give a proof of Green's Formulas on a general
region D © B? bounded by a smooth simple closed curve . that relies
on approximating’ ', say from the inside, by staircase curves 5, which
bound regions A, composed of many small squares. (Yon may imagine
that By © Ay © ... and that R, = D.)

51. A region R in the plane is of type 1 if there are smooth functions g : [a. b] = R,
gz : |2, b] = B such that gy(z) < ge{x) and

R={lz.g):asr<b and ;miz) <y < glr)}.

f iz of type 2 if the roles of x and g can be reversed, and it is a simple region

if it is of both type 1 and type 2.

(a) Give an example of a region that is type 1 but not type 2.

{b) Give an example of a region that is neither type 1 nor type 2.

{c} I8 every simple region starlike? Convex?

{d} If a convex region is bounded by a smooth @imple closed curve, is it simple?

{e} Give an example of a region that divides into three simple subregions but
not into two.

*(f) If & region is hounded by A smooth simple closed curve C then it need not
divide into & finite number of simple subregions. Find an example.

ig) Infer that the standard proof of Green's Formoulas for simple regions (as,
for example. in J. Stewart's Calewlus) does not immediately carry over to
the geoeral plavar region & with smooth boundary: Le. cutting B ioto
simple regions can fail.

***(h) Is there a planar region bounded by a smooth simple closed curve such
that for every linear coordinate system (i.e., a new pair of axes), the region
does not divide into finitely many simple subregions? In other words, is
Stewart's proof of Green's Theorem doomed”

*(i) Show that if the curve C in (f) is analvtic. then no such example exists,
[Hint: ' is analytic if it is locally the graph of a function defined by a
convergent power series. A nonconstant analvtic function has the property
that for each x, there is some derivative of f which is nonzero, f1"'(x) # 0]

**52, Show that every starlike open subset of the plane is difeomorphic to the plane,

(The same is true in B".)

"This staircase approximation prool generalizes to regions that are bounded by fractal, nondifer-
eniiable curves such as the von Koch spowilake. As Jenny Harrson has shown. i akse generalizes ti
higher dimensions.
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=*53. The 2-cell ¢ : I" — B" constructed in Step 3 of the proof of Brouwer's Theorem
is smooth but not one-to-one. For it crushes the corpers of ™ into 48,

(a) Construct a homeomorphism h @ [* — B? where [? is the closed unit
square and B° is the closed unit disc,

(b) In addition make h in (a) be of class C' (on the closed square) and be
a diffeomorphism from the interior of I? onto the interior of B, (The
derivative of a diffeomorphism is everywhere nonsingular. |

{¢)] Why can b not be a diffeomorphism from [# onte B*?

(d) Improve class €' in {(b) to class O™,

**Hd. If K.L < R" and if there is a homeomorphism A ; K = L that extends to
H:U = V such that U,V € R" are open., H is a homeomorphism, and H, H~!
are of class C7 with 1 < r < oo then we say that K and L are ambiently -
diffecmorphic.

{a) In the plane. prove that the closed unit square is ambiently diffeomorphic
to a general rectangle and to a general parallelogram.

(b) If K, L are ambiently diffeomorphic polygons in the plane, prove that K
and L have the same number of vertices. (Do not count vertices at which
the interior angle is 180 degrees. )

() Prove that the closed square and closed disc are not ambiently diffecmior-
phic.

(d) If K is a convex polvgon that iz ambiently diffeomorphic to a polvgon L.
prove that L is convex.

(e} Is the converse to (b) true or false? What about in the convex case?

(£) The closed dise is tiled by five ambiently diffeomorphic copies of the unit
square as shown in Figure 134. Prove that it cannot be tiled by fewer,

(g) Generalize to dimension n > 3 and show that the n-ball can be tiled by
2n + 1 diffromorphs of the n-cube. Can it be done with fewer?

(h) Show that a triangle can be tiled by three diffeomorphs of the square.
Infer that any surface that can be tiled by diffeomorphs of the triangle
can also be tiled by diffecinorphs of the square. What happens in higher
dimens=ions?

35. Choose at random [I.J, two triples of integers between 1 and 9. Check that
dry A dzy = dxyj.

56, True or false? For every k-form a we have o Ao = 0.

57. Show that d : 0 = (%! is a linear vector space homomorphism.

8. Using Stokes' Formula (but not the Poincaré Lemma and its consequences),
prove that closed 1-forms are exact (i.e., dw = 0 = w = dh for some h) when
defined on B? or on any convex open subset of R? as follows.

(a) If @, ¢ : [0, 1] = U are paths from p to g, define

als,t) = (1 — s)2(t) + su(t)
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im_

* ).
Gil.

Figure 134 Five diffeomorphs of the aquare tile the disc.

for 0 < 5,¢ < 1 and observe it is a smooth 2-cell.

ib) If w = fdr 4+ gdy is a closed 1-form, how does Stokes’ Formula imply
[.w= [, w. and what does this mean about path independence?

{¢] Show that if p iz held fixed then

hig) = f...

L4

i= =mooth and dh = w,
{d) What if I is nonconvex but diffeomorphic to B*?
(@) What about higher dimensions?
For 0 < a < b the spherical shell is the set

U={iryzieR:a® <+ + 2 < V).

It iz the open region between sphercs of radius o and b I O s any closed
curve in [7 {i.e.. the image of & continuous map 7 : §' = 7). show that
can be shrunk to a point without leaving £7. That is. [7 is simply connected.
[Hint: Why is there a point of [7 not in €, and how does this help? Gazing at
Figure 135 may be a good idea. |

Prove that the closure of the spherical shell iz simply connected.

True or false? If w is a kform and & is odd, then w A w = 0. What if & is even
and > X7
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62.

G,

fid.
5. Show that the 1-form defined on B2 {(0,0)} by

il

T

Does there exist a continnous mapping from the circle to itself that has no
fixed-point” What about the 2-torus? The 2-sphere”

Show that a smooth map T : 7 = V induces a linear map of cohomology
groups HY(V) = H¥(17) defined by

T ] o [T%].

Here, [w] denotes the equivalence class of w € Z%(V) in H¥(V). The question
amounts to showing that the pullback of a closed form w iz closed and that s
cohomology class depends only on the cobomology eliss of w.

Prove that diffeomorphic open sets have isomorphic ecohomology groups.

W= ?—-:r dr + ;_{Ed'y

is closed but not exact. Why do vou think that this I-form is often referred to

as dff and why is the name problematic?

Let H C R* be the helicoid {{r, g, 2) : #? + y* # D and : = arctan y/x} and let

w: H = R {(0,0)} be the projection (x, y. z) = (1. y).

{a) For w = (rdy— ydr)/r? as in Excrcise 65, why is 7% a closed 1-form on
f?

{b) Iz it exact? That is. does there exist s smooth function f: H — R such
that df = &7

(¢) Is there more than one?

(d} Is there more than one such that f(1,0.0) = 0?7

Show that the 2-form defined on the spherical shell by

r i z
w=—<dyrd: + dsrd —drad
T_.!fg.r i 1"34' T + r‘“- iy

is closed but not exact,

68, True or false: If w is closed then for s closed.

True or false: If w is exact then fw is exact.

s the wedge product of clossd forms closed?  OF exact forms exact?  What

about the product of a closed form and an exact form? Does this give a ring
structure to the cohomology classes?

"A fancier way o present the prool of the Brovwer Figed Poant Theorem goes like this: As
always, the question reduces to showing that there is no smooth retraction T of the w-ball to its
boundary, Such a T would give a colomodogy map 7 : B0 = B8] where the cobomobgy
grongs of @8 are those of its spherical shell peighborhood, The map T'* is seen o be & cohomobogy
Erange E&ﬂl‘l‘ll:ll‘phiul'll becasise T o inclusiongg = inchsmongg and i.IH.'IIJHi-I:EII.“n. = il:l:-nlil_v. Hut when
k=n—121the cohomology groups are nonisemorphic; they are computed to be f7'(88) = R
and H""'(B) =0
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70. Prove that the n-cell ¢ : [-1.1]" = B" in the proof of the Brouwer Fixed-Point
Theorem has Jacobian ¢ (rip{r)" =1 /" for r = Jv| as claimed on page 355,
The Hairy Ball Theorem states that any continuwous vector field X in R
that is evervwhere tangent to the 2-sphere § is zero at some point of 5. Here
is an outline of a proof for vou to fill in. (If von imagine the vector field as hair
combedd on a sphere, there must be a cowlick somewhere. )

il B

()

(b)

(c)

()

Show that the Hairy Ball Theorem is equivalent to a fixed-point assertion:
Every continuous map of 8§ to itself that is sufficiently close to the iden-
tity map § — 5 has a fixed-point. (This is not needed below but it is
interesting. )

If & continous veetor field on 5 has no zero on or inside a small simple
closed curve © © &, show that the net angular turning of X along
as judged by an observer who takes a tour of O in the counterclockwise
direction s =27, [The observer walks along O in the counterclockwize
direction when 8 is viewed from the outside, and he messures the anglhe
that X makes with respect to his own tangent vector as he walks along
. By convention. clockwise angular variation is negative.) Show also
that the net turning is +27 if the observer walks along C in the clockwise
direction.

If Ty is a continuous family of simple closed curves on 8, 2 < ¢ < b, and
if X never equals zero at points of Cy, show that the net angular turning
of X along ) is independent of ¢. (Thiz i2 a case of a previous exercise
stating that a continuous integer-valued function of ¢ is constant. )
Imagine the following continnous family of simple closed curves . For
t = 0. Cp is the Arctic Circle. For 0 < ¢ < 1/2, the latitude of ¢
devreases while 1ts cireumference incresses as it ooees downward, becomes
the Equator, and then grows smaller until it becomes the Antarctic Circle
when t = 1/2. For 1/2 <t < 1, C; maintains its size and shape, but its new
center, the South Pole, slides up the Greenwich Meridian until at ¢ = 1,
'y regains its original arctic position. See Figure 135, Its orentation has
reversed. Orient the Arctic Circle Cy positively and choose an orientation
on each  that depends continnously on t. To reach a contradiction.
suppose that X has no zero on 8.

(1) Why is the total angular turning of X along Cp equal to —2x7.

(i) Why iz it +2r on 7
(11i) Why is thi= a contradiction to (c) unless X has a zero somewhere?
{iv] Conclude that you have proved the Hairy Ball Theorem.
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Figure 135 A deformation of the Arctic Circle that reverses its orientation.



Lebesgue Theory

This chapter presents a geometric theorv of Lebesgue measure and integration. In
caleulus yvou certainly learned that the integral is the area under the curve. With
a good definition of area that is the point of view | advance here. Deriving the
basic theory of Lebesgue integration then becomes a matter of inspecting the right
picture. See Appendix E for the geometric relation between Riemann integration and
Lebespue integration.

Throughout the chapter definitions and theorems are stated in B® but proved in
R?. Multidimensionality can complicate s proof’s notation but never its logic.

1 Outer Measure

How should you measure the length of a subset of the line? If the set to be measured
iz simple, so is the apswer, The length of the interval (o, b) = b —a. But what i=
the length of the set of rational numbers? of the Cantor set? As is often the case in
analysis we proceed by inequalities and hmits, In fsct one might distinguaish e Gelds
of algebra and analvsis solely according to their use of equalities versus inequalities.

Definition The length of an interval T = (a.b) is b= a. It is denoted |I|. The
Lebesgue outer measure of a set A C R is

mtd = inf {2 [fi] 2 {fe} is a covering of A by open inr11n'|-]]ﬁ}.
‘..
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Tacitly we assume that the covering is countable; the series 3, [I;] is its total
length. (Recall that “countable” means either finite or depumerable,) The outer
measure of A is the infimum of the total lengths of all possible coverings {f} of A
by open intervals. If every series 37, || diverges then by definition m*A = .

Outer measure is defined for every A C B It measures A from the ontside as do
calipers, A dual approach measures A from the inside. It is called inner measure.
is denoted m_A, and is diseussed in Section 4.

Three properties of outer measure (the “axioms of outer measure” ) are easy to
check.
1 Theorem (a) The outer measure of the empty set s 0, m™3 = 0,
fb) If Ac B then m™A < m*B
=
fe) If A=, An then m®A < 5 m*4,
n=]

Proof (b) and (¢) are called monotonicity and countable subadditivity.

{a) This is obvious. Every interval covers the empty set,

{b) This is obvious. Every covering of B is also a covering of A.

(£} This uses the /2" trick. Given ¢ > () there exists for each n a covering {f; ,, :
k € M} of A, such that

'k;‘
llh,.,l < m A, + E

The collection {f),, : &.n € M} covers A and

|flu - z z [iw| = Z{m An + 2" = im‘ﬂ.. + v

n=l k=l T [T |

Thus the infimum of the total lengths of coverings of A by open intervals is <
Y.m*A, + e, and since ¢ > 0 is arbitrary the infimum s < Y m*A,, which is
what () asserts. O

Next, suppose you have a set A in the plane and you want to measure its area.
Here is the natural way to do it,

Definition The area of a rectangle f = (0. b) = (e, d) is |R]| = (b—a) -« {d = ¢) and
the {planar) outer messure of 4 © B? is the infinnun of the total area of countable
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coverings of A by open rect angles Hy.
m'A = inf '5_‘ Ril| @ {Ri} covers A

See Frrre 136,

Figure 136 Rectangles that cover A

Because it 15 so natural, the preceding definition makes perfect sense in higher

diinensions too

Definition An open box B C KB i3 the Cartesian product noopen intervals A =

g Its n-dimensional vohoe | B is the product of their lengths, The r-dimensiona
L [ | 1 vial L) I Lieet oof £ | Il i |
citer measure of A C 2" i the infimum of the total volume of countable coverings

of 4 by open boxes B

m* = inf{ Yy [E| +  Hyp covers A
e

™

If mewsd] b, woe decorate and m” with subscripts “17. "2, or “n” to distinguizh
the linear, plapar, and n-dimensional guantities, A= in the linear case we write | i) and
B| ouly for open rectangles and boxes, The outer measure axioms - mopotonicity,
countable subadditivity, and the outer measure of the cmpty set being 2ero - afe (o

for planar outer measure too. See also Exercise 2
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Definition If £ C B® has outer measure zgero then it is a zero set.

2 Proposition Every subset af a zero sel is a zero sel. The countable umion of zero
sets is a zero sel. Each plane Pila) = {{xy,..., o) € B i 2y = a} is a zero sel in

R".

Proof Monotonicity implies m*%Z') < m*Z = () whenever Z' is a subset of a zero
set £ I m*Z,) =0for all ke N and 2 = |J Zi then by Theorem lie) we have

m'Z < E m*Z, = 0.
k
We assume n = 2. The “plane” Fi{a) is the line {r = a} when i = 1 or {y = a} when
i =2. Given ¢ > (1 we can cover the line Py{a) with rectangles B, = [, % Ji where

I = (a—e/k22, a4 e/k2*?) I = (=k k).

The total area of these rectangles is ¢ 20 Pj{a) is a zero set. O

The next theorem states a property of outer measure that seems obvious,

3 Theorem The linear outer measure of o closed inferval is its length; the planar
outer measure of a closed rectangle is its area; the n-dimensional outer mensure of a
closed bor is its velume.

Inductive Proof for the Closed Interval [a, b] For each ¢ > 0 the open interval
(@ — ¢, b+ €) covers [a,b]. Thus m*{[a.b]) < (b+¢) = (a —¢) = b—a + 2¢. By the
e-principle we get m®([a, b)) < b - a.

To get the reverse inequality we must show that if {1, } is a countable open covering
of la.b] then ¥ |I;| 2 b= a. Since [a.b] s compact it suffices to prove this for finite
open coverings {[y....,In}. Let I; = (a;, by). We reason inductively. If n = 1 then
{ep.bn) 2 [a.b] implies ay < 2 < b < by so b—a < |I}|. That's the base case of the
induction.

Assume that for each open covering of a compact interval [e, d] by n open intervals
{J;} we have d — e < 377, |J;]. and let {I;} be a covering of [a.b] by n + 1 open
intervals f; = (a;, by). We claim that E:‘:ﬂ [fi] = b= g. One of the intervals contains

a. say it is Iy = (). by ). If by = b then [y 2 [a.b) and again @y < a < b < by implies
that S04 |I| = |I| = b — a; > b—a. On the other hand. if by < b then

e, b] = [u.by)u[by, b
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and |I}| > & —a. The compact iuterval [by, b is covered by Ta. .. .. Iy By imduction

we have 10 |1] > b= by, Thus

r+l n+1
Y = |n|+) I > (h-a)+(b=-b) = b-a
i=] =1
which completes the induction and the proof. Ll

The preceding inductive proof does oot carry over 1o rectangles. bor a rectangle
has no left to right order. However, the following grid proof works for intervals.

rectangles, and boxes.

Grid proof for a closed rectangle Let B = [a b = |, d]  B®. It is simple to see
that m*R < (b=a) {d = ¢). To check the reverse inequality consider any countable
covering of i bw open rectangles B, We must show that ‘_'_:l: Bl ={b—a)-[d—rc)
Sinee R is compact the covering has a positive Lebesgue nomber A, Take s grid of
open rectangles §; © A of diameter < A such that 3 (5| = (b—a) - {d — ). See
Figure 137, Then

H

Figure 137 The rectangles 5,,..., 5 are contained in &;. The rectangles

Sz, ... 58y are contained in By The rectangles 5y and 5 ace contained in
T
both A and Az 2o their area will be counted twice in L Z [ &5
i S;ch,

218 = 3 % 151 £ 3 _|Rd

1 i 5CH,

illl.!'l]i!h (h—a):[d—-v¢) = E !H.!. Thus (b —a} - {d — ) = mTH as claimed, |
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4 Corollary The formulos m*T = b—a, m*R = (b—a) - (d = ¢}, and m"B =
[T, m*( 1) hold also for intervals, rectangles, and bozes that are open or partly open.
In particular, m*l = |I|, m*R = |R|, and m*B = |B| for open intervals, rectangles,
and bores.

Proof Let [ be any interval with endpoints a < band let ¢ > 0 be given, [ We assume
¢ < (b—a)/2 without loss of generality.) The closed intervals J = [a +¢, b — ¢ and
J' = [a=¢, b+ e sandwich I as J € I C J'. By Theorem 3 we have m*J = b—a - 2¢
and m*J' = b—a+ 2e. Thus

m*J < m'l < mr

b—a-2« = |I < b=a+ 2.

Then |m*T — |I|| < 4e for all ¢ > 0 which implies m*I = |{|. The sandwich methad
works equally well for rectangles and boxes. O

2 Measurability

If A and B are subsets of disjoint intervals in R it is easy to show that
m AU B) = m™A 4+ m*B.

But what if A and B are merely disjpint? Is the formula still true? The answer
is “wes” if the sets have an additional property called measurability, and “no” in
general as is shown in Appendix D. Measurability is the rule and nonmeasurability
the exception. The sets you meet in analysis - open sets, closed sets, their nnions,
differences, etc. — all are measurable. See Section 4.

Definition A =t E © R is {Lebesgue) measurable if the division F|E® of B is 0
“clean” that for each “test set™ X © B we have

(1) m'X = m™XNE)+ mXnNE).

The definition of measurability in higher dimensions is analogous, A set £ C R" is
measurable if E|E° divides each X' © R™ so cleanly that (1] is true for n-dimensional
OUEer measure,
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We denote by M = M{R") the collection of all Lelwsgue measurable subsets of
R". If E is measurable its Lebesgue measure is m*E, which we write as mFE,
dropping the asterisk to emphasize the measurahility of E.

Which sets are measurable? It is olwvious that the empty set is measurable, It
i= also obvious that if a set is measurable then so is its complement, since E|E® and
E°|E divide a test set X in the same way.

In the rest of this section we analyee measurability in the abstract, For the basic
facts about measurability have nothing to do with B or B". They hold for any
“abstract outer measure.”

Definition Let M be any set. The collection of all subsets of M is denoted as 2Y,
An abstract outer measure on M is a function w @ 2Y = [0, o] that satisfies
the three axioms of outer measure: w(B) = 0, w is monotone, and w is countahly
subadditive. A set E — M is measurable with respect to w if E|E" is so clean that
for each test set X O A we have

wX = w{XNE)+ wlXnEY.

Example Given any set M there are two trivial outer measures on M. Counting
onuter measure assigns to a finite set 5 C M its cardinality and assigns oo to every
infinite set, The zero/infinity measure assigns outer measire gero to the empty set and
a0 to every other set, All sets are measurable with respect to these outer measures.
See Exercise 10

Example A less trivial outer measure weights Lebesgue outer measure, One sets
wl = e [f]. where ¢ is the midpoint of the interval I, and then defines the outer
measure of A © R to be the infimnm of the total w-area of countable interval coverings
af A. Other weighting functions can be used.

5 Theorem The collection M of measurmble sets with respect bo any oufer measure
on any set M is a a-algebra and the outer measure restricted to this o-algebra 1s
countfably additive. All zero sets are measurable and have no effect on measurability,
In particular Lebesgue mensure has these properties.

A g-algebra is a collection of sets that includes the empty set. s closed under
complement, and is closed under conntable union, Countable additivity of w means
that if Ey, Eq, ... are measurable with respect to w then

E=L|E, = uE:Z;E,.



300 Lebesgue Theory Chapter 6

Proof Let M denote the collection of measurable sets with respect to the outer mea-
sure w on M. First we deal with zero sets, sets for which wZ = 0. By monotonieity,
if Zis a zero set and X is a test set then

wX € wlXNZ)+u{XNZ) = 0+w(XNZ%) < wX

implies Z is measurable. Likewise, if E|E° divides X cleanly then so do (EW Z)|[{E U
Z)° and (EN Z)|(EN Z)°. That is, Z has no effect on measurability.

To check that M is a e-algebra we must show that it contains the empty set, is
closed under complements. and is closed under countable union. By the definition of
outer measure the cmpty set is a zero set so it is measurable. @ € M. Also, since E)E°
divides a test set X in the same way that E°|E does. M is closed under complements,
To check that M is closed under countable union takes four preliminary steps:

(a) M iz closed under differences.

(b} M is closed under finite union.

(¢) w is finitely additive on M.

(d) w satisfies a special countable addition formula.

(a) For measurable sets E;, Fa, and a test set X, draw the Venn diagram in
Figure 138 where X is represented as a disc. To check measurability of E, % Ey we
must verify the equation

24134 = 1%

where 2 = w{X N {E; \ Ep)), 1M = w(X N (BN E2))F, 1234 = wX, ete. Since E,
divides any set cleanly, 134 = 1 + 34, and since E; divides any set cleanly, 34 = 3+ 4.
Thus
2413 = 2414344 = 142+344

For the same reason 1234 = 12434 = 1+ 2+ 3 + 4 which completes the proof of
ia).

(b) Suppose that Ey, E3 are measurable and E = E; U E3. Since E° = ET 5 Es,
{a) implies that E* € M and thus E € M. For more than two sets, Induction shows
that if Ey,.... Eg e Mthen EyU...UE, & M.

(c) If Ey, By € M are disjoint then Ey divides E = E; U E; cleanly, so

wE = w(E N E)+wlENEY) = wE +wks.

which 1= additivity for pairs of measurable sets. For more than two measurable sets,
induction implies that w is finitely additive on M: i.e.. if £y..... E, € M then

n fl
E=UE = wE=Y wE.

i=1 =]
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Figure 138 The picture that proves M is closed under differences,

id) Given a test set X © M and a countable disjoint union of measurable sets
E =l E of measurahle sets we claim that

(2) WX NE) =3 wXnE).
(When X = M this is countable additivity, but in general X nesd not be measurable.)
Consider the division

Xn(EiUE) = (XNE) u(XNnE;).

Measurability of £} implies that the two outer measures add. By induction the same
i5 true for any finite sum,

wXN(EU...UE)) = w(XNE)+... +w(X N Eg).
Monotonicity of w implies that

wWXNE] 2 wlXn(EU...uE).
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and so w(X N E) dominates each partial sum of the series 3 w{X N E;). Hence it
dominates the series too,

Y w(XNE) £ w(XNE).
i=]

The reverse inequality is always true by subadditivity and we get equality, verifving
(2).

Finally, we prove that E = |J E; is measurable when each E, is, Taking E] =
EnviE UL U EC). (a) tells us it is no loss of generality to assume the sets E; are
dispoint. E = |JE;. Given a test set X © M we know by (¢} (finite additivity) and
monotonicity of o that

W{XNE)+. ..+ XNE)+w(XNET

wlX N(E U...UE)) +w(X N E)

WX N(E U---1 Ep))+wl(X N (Ey U---1 Eg))
wX,

A N

Being true for all k, the inequality holds also for the full series

=5
W XNE)+wXNE) < wX.
o]

From (2) we get

WXNE+wXNE) = Zu-{xﬂf,-uu;{xn.i-:*'} < wX.

The reverse inequality is true by subadditivity of w. This gives equality and shows
that E is measurable. Hence M iz a ~-algebra and the restriction of w to M is
countably additive. O

From countahle additivity we deduce a very useful fact about measures, It applies
to any outer measure w. in particular to Lebesgue outer measure,

6 Measure Continuity Theorem [f {E,} and {F,} arc sequences of measurable
sets then

upurard measure condinuily ExTE = uwEk T wE

dounmward measure continuity Fi l F and wF} <2 = wF, | wF.
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Proof The notation E; 1+ E means that £y € Ey € .., and E = |JE,. Write E
disjointly as E = || E} where E}, = Eg\(E\U... U Ey_;). Countable additivity for

measurahle sets gives
o =

wE = 3 wE},

D |

Also. the ¥'" partial sum of the series equals wE. 0 wEy converges upward to wE,
The notation Fy | F means that F} 2 F; 5 ... and F = [} F.. Write Fy disjolntly
el

Fy = (ﬁ FL) uF
k=1

where F{ = Fi 5\ Fyip. Then Fy = |5 Fr, U F. The countable additivity formula
for measurable sets =
wF) =wF + E#F‘;
n=]
plus finiteness of wF) implies that the series converges to a finite limit, so its tails

converge to sero,. T hat is.
o

wh =) wky +wF
n=k

converges downward to wF as & — oc, O

3 Meseomorphism

An momorplhism preserves algebraic structure. A homeciorphism preserves topolog-
ical structure. A diffecimorphism preserves smooth structure. A “mesecmorphism”
preserves measure structure. More precisely, if M and M are sets with outer measures
w and &' then a meseomorphism iz a bijection T : M — A such that E — TE
is a bijection M — M'. where M and M' are the collections of measurahle subsets of
M oand M. If ' (TE) = mE for all measurable £ then T is a meseometry.

T Theorem [If a hjechion inercases outer mensure by of most o factor §oand ils
inverse increases outer measure by af most a factor 1/t then it is a meseomorphism,
Ift =1 then il 15 o mescomelry.

Proof Let T : M — M’ be the bijection where M and M are equipped with outer
measures o and &' For each X © M we have

wX = w(T'eT(X)) < 71 (TX) < FHwX = wX.
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Thus &'(TX) = twX, so T multiplies outer measure by ¢ and 7! multiplies outer
measiure by 1/t

If E < M is measurable then we claim TE iz measurable, Let X7 be a test set in
M'. Then X =T X'} is a test set in M. Since T multiplies outer measure by T
and E is measurable we have

WX =twX = tHw(XNE)+ w(X N EY)
=t{t™"W(T(X N E)) + ¢+ W{T(X nEY)
= (X' NTE) + (X' nT(E").

Since TE divides each test set X' © M’ cleanly, TE is measurable, Likewise for T,
so E — TE hijects M 1o M.

If t =1 then T preserves outer measure and therefore it preserves the measure of
measurable sets, It is a meseometry. O

8 Corollary [f D) 15 a nonsingular diagonal n x n matriz then the linear map D :
R" = R" sending v fo Dv 15 a meseomorphism of Lebesque measure. If E is mea-
surable then m{DE) = |det D mE.

Proof Diagonality implies D carries a box to a box and multiplies its volume by
d = |det D|. Every covering of A by boxes { B} is carried by D to a covering of DA
by boxes {D{HB;)} and their total volume gets multiplied by d. Thus D increases
outer measure by at most the factor d. Similarly, D~ increases outer measure by at
most the factor 1/d. Theorem 7 implies that D is a meseomorphism that multiplies
measire by o, O

Affine Motions

An affine motion of R" is an invertible linear transformation followed by a trans-
lation. Translation does not affect Lebesgue measure, while Corollary 8 deseribes how
a diagonal matrix affects it,

9 Theorem An affine motion T : R" — R" is a meseomorphism. It multiplies
measure by |det T,

10 Lemma The boundary of an n-dimensional ball is an n-dimensional zero set.

Proof We assume n = 2. If A is the closed unit disc in the plane then 0 < mA < o
since [-1/v2, 1/v2]* € A € [-1,1]% The unit circle C is the boundary of A, It
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is sandwiched between dises A_ of radius 1 = ¢ and Ay of radius | + . Corollary 8
implics

m{AL) = (1—¢'mA < mA < (1+6)PmA = m{A;).
Measurability implies m{A, VAL = m{AL) = m(A_) = demA. Since € > 0 s
arbitrary and mC < m{A L\ A_) we have mC = (. O

11 Lemma Every open cube is a eountable digjoint union of open balls plus a zero
sef.

Proof Let 5§ © B® be an open square. [t contains a compact disc A whose area is
greater than half the area of the square, m{A) > m(5)/2. The difference [/, = % A
is an open subset of § with mi{l}) < m(5)/2. It is therefore the disjoint countable
union of small open squares S, plus a zero set. Each 8§ contains a small compact
dize Ay whose area = greater than half the area of 5. The total area of Goitely many
of the discs A, i= greater than half the total area of the squares 5;. Thus, for some
k. Ug=8%(Aud, U0 A) is an open subset of [y and m{l3) < m(5)/4. See
Figure 139, Repetition gives countably many smaller and smaller digjoint compact

5 0000000000000 o
Or::mr::r:rr:: DDDDGO

Q00 o a0
oo a0
o0 o0
00 o0
o0 o0
o 8
Q £
o o0
Qo S 1e
oo o0
oo 00
Q00 000
O3 O
QO00 Q000
8 Q00000000000 o

Figure 139 Each disc occupies greater than half the area of its square.

dises with total measure equal to mS. Lemma 10 implies the measure of a closed disc
is the same as the measure of its interior. which completes the proof that § consists
of countably many disjoint open dises plus a zero set, O
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Proof of Theorem 9 We are assuming that Tv = AMe, where M is an invertible
n ® n matrix. We take n = 2,

We first claim that if Z is a zero set then so is TZ. Given ¢ = () there is a countable
covering of Z by rectangles [y, with total area < ¢, Each By can be covered by squares
with total area < m{ R +¢/2*. Hence Z can be covered by countably many squares
S; with total area < 2¢, The T-image of each square S; is contained in a square 5!
whose edgelength is ||T)| dinm 5;. Thus T2 is contained squares 57 whose total area
15 at most

(TN diam S = 3" 2|7 8] < 4)T) e

See Figure 140. Since ¢ > 0 is arbitrary we have m(TZ) = 0.

::'I'

3

Figure 140 The square § has edgelength ¢ and diameter s = (432, Its
T-image is a parallelogram contained in a square S' of edgelength
£ = |T|| 5. Hence m(S') < (#)? = (T} v2)? = 2| T m(S).

Next we claim that orthogonal transformations are meseometries. Let 2 : BY —
®* be orthogonal. It carries the dise B{r, p) to the disc B(r, Op). which is a translate
of Bir.p). Let § be a square. Lemma 1l implies § = |J B; U Z where the B; are
discs and £ is a zero set. The O-image of each B; is a dise of equal measure, and the
(rimage of £ 1% a zero set, Henee m((8) = m&. Given ¢ > 0 there is a countable
covering of A by squares 8; with 5[5 < m®A + ¢. Thus {O(5)} covers (34 and
has total area < m*A + ¢. This implies

m*((A) < m A
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Since ' is also orthogonal. it too does not increase outer measure. Theorem T
implies () is a meseometry.

Finallv we use Polar Form (Appendix I} in Chapter §) to write
M= 0,0,

where O and O are orthogonal and [ is diagonal, Since (4 and O are meseometries
and by Corollary 8 D is a meseamorphism which nultiplies measure by |det D| =
fdet T, the proof is complete, o

12 Corollary Rigid mations of B" preserve Lebesque measure. They are meseome-
fries.

Proof A rigid motion is a translation followed by an orthogonal transformation, The
determinant of an orthogonal transformation is £1. |

The concept of & meseomorphism makes natural sense in a more general context.
A measure space is a triple (M. M. p) where M is a set. M is a s-algebra of subsets
of M, and p : M — [0.] has the same basic properties as Lebesgue measure,
namely, (@) = 0, g is monotone, and p s countably additive. For example, the
triple (R, M(R").m) is a measure space, and so is the triple (57 M(5?), v) where
v is surface area on the 2-sphere 5% A meseomorphism from one measure space
(M. M. u) to another (N.N.v) is a bijection T : M — N that bijects M to N
according to E — TE. It is a meseometry if in addition we have 1{TE) = pE for all
EeM.

Meseometries are not sensitive to topology. See Exercises 19 and 20.

4 Regularity

In this section we discuss properties of Lebesgue measure related to the topology of

K and R"

13 Theorem Open sets and closed sets are measurable.

14 Proposition The half-spaces [, 2¢) * B*™! and (0, 2¢) = "' are measurable in
R". So are all open bores.
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Proof Without loss of generality we assume n = 2. Let H = [a, ) x R, We claim
that m*X = m*(X NH) + m*(X N H®) for all test sets X, Since a % R is a zero set in
R* and zero sets have no effect on outer measure {Theorem 5) we may assume that
XN{axR)=40. Set

X~ ={{z,y)E X :x <} Xt ={ir.y)EX:zx>a}]

Then X = X~ UX*. Given ¢ > 0 there is a countable covering R by rectangles R
with } ¢ |H| £ m"X + e Let R® be the collection of rectangles B* = {(z,y) € R :
Re®Rand +(r—a) >0} Then R* covers X* and

m'X m (X NH) + m (XN H

IR+ Y |- =Y IR < m*X +e

Rt b R

=
=

Since ¢ > 0 is arbitrary this gives measurability of H = [o, 2] = R. Since the line
r =ais a planar zero set (&, %) x R Is also measurable. The vertical strip (a.b) x R
i measurable since it is the intersection

fa,oc) xR N (-0 b)) xR

and (=20, b) x R = ([bx) = R)*. Interchanging the coordinates shows that the
horizontal strip R = (e.d)} is also measurable. The rectangle R = (a.b) = (e, d) is the
intersection of the strips and is therefore measurable. O

Proof of Theorem 13 Let [V be an open subset of B", It is the countable union
of open boxes, Sinee M{R") is a r-algebra and a #-algebra is closed with respect
to countable unions, U7 is measurable. Since a a-algebra is closed with respect to
complements. every closed set is also measurable, O

15 Corollary The Lebesgue measure of an inferval i3 its length, the Lebesgue mea-
sure of a reclangle is ils area, and the Lebesgue measure of a bor is its volume, The
houndary of a box is a zero set and so is the boundary of a bail.

Proof This is just Theoremd. Proposition 14. and measurability of the sets in-
volved, O

Sets that are slightly more general than open sets and closed sets arise naturally.
A countable intersection of open sets is called a G4-set and a countable union of
closed sets is an Fo-set. (4" stands for the German word durschnitt and “o” stands
for “sum.”) By DeMorgan's laws. the complement of a (g-set is an Fy-set and



Section 4 Regularity 3959

conversely, Clearly a homesmorphism sends Gy-sets to Gy-sets and Fo-sets to F,-
sets, Since the s-algebra of measurable sets contains the open sets and the closed
sets it also contains the Gs-sets and the Fi-sets,

16 Theorem Lebesgue measure is regular in the sense that each measurable set E
ean be sanduiched between an F-set and a Gg-set, F © E C G, such that m{G\F) =
). Conversely, if there is such an F C E C (7 then E is measurable.

Proof We take E © RB?. We assume first that £ is bounded and choose a large
rectangle i that containg E. We write B = B E. Measurability implies

mi = mE + m(E®).

There are decreasing sequences of open sets £, and vV, such that U'; 2 E. V, o
Ef. m(Uy) = mE. and m(¥,;) = m{E") as n = oo. Aeasurability of E implies
m{l’ly % E} — 0 and m(V, » E°) — 0. The complements K, = RV, form an
mereasing sequence of closed subsets of E and

mk, = mR-ml, = mR-m(E) = mE.

Thus F = |J K, is an Fo-set contained in E with mF = mE. Similarly, G = [,
is n (75-se1 that containg E and has mG = mE, Because all the measures are finite,
the equality mF = mE = m{ implies that m(G* F) =0,

Conversely, if F is an Fy-set, 7 is a Gyg-set, F C E C &, and m{G* F) = 0 then
E is measurable since E = FU Z, where Z = En (G F) is a zero set.

The unbounded case i5 left as Exercise 6, O

17 Corollary A bounded subset E C B" 18 measurable if and only if it has a regu-
larity sandwich F © E © & such that F s an F,-sel, G 5 a Gg-set., and mF = m(.

Proof If E is measurable, hounded or not, then Theorem 16 implies there is a regu-
larity sandwich with mF = mE = m{:. Conversely. if there is a regularity sandwich
with mF = m then boundedness of E implies mfF < 20, Measurability of F and &7
imply m(G 5 F) = mG = mF = 0 and Theorem 16 then implies E is measurable. O

18 Corollary Modulo zero sels, Lebesgue mensurable sets are Fo-sets and/or G-
sels,

Proof E=FUZ=G"Z' forthe zerosets Z=E " Fand Z'=G\ E. |
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Inner Measure, Hulls, and Kernels

Consider any bounded A © B". measurable or not. m®4 is the infimum of the
measure of open sets that contain A, The infimum i achieved by a Gy-set that
contains A, We call it & hull of A and denote it as Hy. It is unigue up to a 2ero
set, Dually, the inner measure of A is the supremum of the measure of closed sets
it contains. The supremum is achieved by an Fo-set contained in A, We call it a
kernel of A and denote it as K 4. It is unique up to a zero set.” We denote the inner
measure of A as m A, It equals m™[K4). Clearly m_ A < m®A and m, measures A
from the inside. Also. m is monotone: A © B implies m_A4 < m 1.

Remark Theorem 16 implies that a bounded subset of R" is measurable if and only
if its inner and outer measures are equal.  Lebesgue took this as his definition of
measurahility. He said a bounded st is messurable if its inner and outer measures
are equal. and an unbounded set is measurable if it is a conntable union of bounded
measurable sets. In contrast, the current definition which uses cleanness and test sets
is due to Carathéodory. It is easier to use (there are fewer complements to consider ),
unboundedness has no effect on it, and it generalizes more easily to abstract measure

B[S,

19 Theorem If A C B C R" and B is a bor then A is measurable if and only if if
dimides B cleandy.

Remark The theorem is also valid for a bounded measurable set & instead of a box,
but it's most useful for hoxes, It means vou don’t need to check clean division of all
test sets, just clean division of one big b,

20 Lemma If A i confamed in a boxr B then mf = u:-“.-l +m N AL

Proof If K C A is closed then 8% K is open and contains 8 A, Measurability
implies
mid=mh +m{B* K).

Maximizing mK minimizes m{ 2 % K) and vice versa. |
Proof of Theorem 19 Lemma 20 jimplies

m, A + mYBsA) = mB,

"If A is unbounded we peed to take a litibe more care, 10 s not enoagh to achieve the lnfimum or
supremum i Usey are so. Rather, we demund that 1 4 = minimal in the sense that il B 2 A and s
mepsurable then My M s a zero sed. Similardy. we demand maximality of K5 in the sense that if
Ko A and b= measurable then 1% Wy s 8 gero set, See Exercise 6,
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If A divides B cleanly then
m*A+m B\ A)=mB.

Finiteness of these four quantities permits subtraction, so m_A = m*A and A is
measurable. The converse is obvious because a measurable set divides every test set
cleanly. O

5 Products and Slices

Regularity of Lebesgue measure has a number of uses such as in Exercises 60, 21, 22,
23, and T3, Here are some more.

21 Measurable Product Theorem [f A © R" and B C B* are measurnble then
A = B is measurable and
mAx Bl =md -mB.

By convention 0 -2c =0 =20 - .
22 Lemma [f A and B are bores then Ax B is measwrable and m{A= B) = mA-mB.
Proof A x B is a box and the product formuls follows from Corollary 15, O

23 Lemma [f A or B s a zero set then A x B s measurable and m{A = B) =
mA-mB = 0.

Proof We assume A, B C Rand mAd =0. If ¢ > 0 and £ € M are given then we
cover A with open intervals I, whose total length is so amall that the total area of the
rectangles I; = [—£,{] is < ¢/2'. The union of all these rectangles covers A x K and
has measure < . The e-Principle implies m* (A xR} =0. Since A x BC A x R it
follows that A = B is a gero set, All 2ero sets are measurable so we have m{A = B) =
md-mB =10, |

24 Lemma FEvery open set in n-space is a countable union of disjoint open cubes
plius a zero sel,

Proof Take n = 2, accept all the open unit dyadic squares that lie in U7, and reject
the rest. Bisect every rejected square into four equal subsqguares, Accept the interiors
of all these subsguares that lie in [V, and reject the rest, Proceed inductively, bisecting
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Figure 141 An open set 1s & countable union of dyvadic cubes,

the rejected squares, accepting the interiors of the resulting subsquares that lie in 7.
and rejocting the rest. In this way 7 is shown to he the countable union of disjoint,
accepted, open dyadic squares, together with the points rejected at every step in the
cotistruction. See Figure 141, Rejected polnts aof 7 lie on horizontal or vertical dyvadic
limes.  here are countably many such lines, each is a 2ero set, and so the rejected

points i [7 form a zero set |

25 Lemma [fL and V are open then U=V s measurable and m{U7 < V) = mlU7 -mV'.

Proof We assume [,V € R. Since U7 = 1V i2 open it is measurable. Lemma 24 implies
that [f Ll LU Ey and Vo= LI gL Zy where [ and ..I'_. are open intervals while

Zir and £y are zero sets, Then

-"'=-'|.'=IJ_|'..-'.|'_I A
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where £ = (2 % V) UL x £y} is a zero set by Lemma 23, Since

(Z Irl{Lj) Z rn{.fj]) = E m{fiymiJ;) = E m [l % Jj)

I i i.J ]

we conclude that m(l7 = V) = ml’ - mV. 0

Proof of the Measurable Product Theorem We assume 4, B C T are measur-
able where T 15 the unit interval. We claim that the holl of & product is the produoct
of the hulls and the kernel of a product is the product of the kernels. Since hmlls are
{s5-sets their product is A (5-set and is therefore measurable. Similarly, the product
of kernels is measurable, Clearly

KixKg C AxB C Hyx Hp

and (Hy x Hg) s\ (Kax Kg) = (Ha N Ka) x (Hg ™ Kg). Measurability of 4 and B
implies mi{H4 %K) = m{Hg™ Kg) = 0 20 Lemma 23 gives

{4 % Kg) = mlHy = Hgl.

Sinee A ® B s sandwiched between two measurable sets of the sume Anite mensure,

it s measurable and its measure equals their commoen value. That is.

(3 miKyx Kg) = mlAx B) = m(Hy x Hg).

Let Uy and V,, be sequences of open sets in | converging down to Hy and Hpg.
Then [V, = ¥}, is a sequence of open sets in R converging down to i 4 = Hy. Downward
measiire continuity implies mily = V,) = mH 4 x Hg). Lemina 25 implics mil, =
Vi) = mily) - m(Vy). Sinee m(L7,) = mA and m(V,) - mB we conclude from (3)
that m(A x B) = mAd - mB, O

Recall from Chapter 5 that the slice of £ © B" x B at r € R" is the st
E; = {yeR*: (z,y) € E}.

Among other things the next theorem lets us generalize the Measurable Product
Theorem to nonmeasurable sets. See Exercise 73,

26 Zero Slice Theorem [f E © B" = RY is measurable then E is a zero set of and
only if almost every slice of E is5 a (slice) zemn sef.



404 Lebesgue Theory Chapter B

Proof As above. it is no great loss of generality to assume n = k = 1 and FE is
contained in the unit square. Suppose that E is messurable and m{E;) = 0 for
almost every r. We claim mE = 0.

Let Z = {x: E; is not a zero set}, Z is a zero set. The slices E; for which E,
is not a zero set are contained in & x B which, as proved above, is a zero set in B2,
Then EN (£ x B) is measurable, has the same messure as E, and so it is no loss of
generality to assume that ecvery slice £, is a zeto set.

It suffices to show that the inper measiere of E is zero. For measurability implies
m_E = m*E. Let K be any compact subset of E and let € > 0 be given. The slice
K is compact and it has slice measure zera. Therefore it has an open neighborhood
Viz) such that m(V{x)) < ¢, Compactness of K inplies that for all ©' near r we have
Ky C Virx). For otherwise there is a sequence (r,, g, ) in K with (#4000 = ()
and y & K. Closedness of K implics (r.y) € K. so y € K. a contradiction. Henee
if U'{x) is small then for all &' € Ux) we have ' x Ko © W(x) = Ulz) x V(z). See
Figure 142,

Vir)

Viz)

Ulx)

Figure 142 The open set V{xr) contains the slice K, and has small
measure, IF ' les in a small enough neighborhood U(r) of r then the set
' = Ky lies in Wir) = U{x) = V(x). These sets ' x K, are shown in the

enlarged picture as vertical segments in K.
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We can choose these small open sets U{r) from a countable base of the topol-
ogy of R, for instance the intervals with rational endpoints, This gives a countable
covering of K by thin product setgs W = U = V; such that m(V}} < ¢ for each i. We
disjointifv the covering by setting

Ui =i (Uhu, . ullhiag)

The sets U] are measurable, disjoint, and since E is contained in the unit square they
all lie in the unit interval. Henee their total one-dimensional measuare is < 1. The
sets W' = [} x V} are disjoint, are measurable, and cover K. Theorem 21 implies
m{W/} = m(U]} - m{V}) so their total planar measure is < Emlff.-’lr} ¢ % £, Henoe
mi = (), which implies m_E = 0 and completes the proof that E s a gero set,

Conversely, suppose that E is a zero set. Regularity implies there is a {75-set
¢ 2 F with m( = 0 and it suffices to show that almost every slice of (7 is a zero
get, The slices of a Gy-set are Gy-sets and in particular each slice 75 is measurable,
Let X{a) = {z: m({G;) > a}. We claim that m*[X{a)) = 0. Each &, contains a
compact set K{r) with m(K(x)) = m{G).

Let I7 be any open subset of I* that contains . If r € X(a) then r % K{r) is
a compact subset of 7 and there is a product neighborhood Wiz) = Uir) = V{z)
of r x K{x) with Wiz} C U. Snoe K{x) C V(r) we have m(V(r)) > a. Again we
can assume the neighborhoods U(x) belong to some countable base for the topology
of . This gives a countable family {U%;} that covers X{a). As above, set Ul =
sy el ). Disjointness and Theorem 21 imply

ml

i

err[b',r x V) = Z miL{) - m{V])
Z m(U) o > a-m{X(a)).

I

Since m{7 = 0 there are open sets {7 2 & 2 E with arbitrarily small measure. Thus
X(ov) s a pero set and so is UFEH X{(1/f). That is. m{E;) = 0 for abnost every x. O

Remark Aleasurability of E is a necessary condition in Theorem 26, See Exercize 25.
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6 Lebesgue Integrals

Following J.C. Burkill, we justify the maxim that the integral of a function is the

area under its graph. Let f: R — [0, 2¢) be given.'
Definition The undergraph of f is
Uf = {{z.y) e Rx [D.2):0< y < flr)).

The function f is (Lebesgue) measurable if Uf is measurable with respect to
planar Lebesgue measure, and if it is then the Lebesgue integral of f is the measure

of the undergraph

[_,I' = L.

Figure 143 The geometric definition of the integral is the measure of the
undergraph.

see Figure 143,

Burkill refers to the undergraph as the ordinate set of f. The notation for the
Lebesgue integral intentionally omits the useal “dr” and the limits of integration to
: L - : oy
remind vou that it i not merely the ordinary Riemann integral Jy flr)de or the

improper Riemann integral f><_ () dx.

Since a measurable set can have infinite measure we permit [ f = oc.

"In this section we deal with functions of one variable, The multivariable case in which [ B" — B

alfers no new ideas, only new notation.
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Definition The function f : K — [0. =) is Lebesgue integrable if (it is measurable
and) its integral is finite.! The set of integrable functions is denoted by L S . v

The three basic convergence theorems for Lebesgue integrals are the Monotone
Comvergence Theorem, the Dominated Convergence Theorem. and FPatou's Lemima,
Their proofs are easy if vou look at the right undergraph pictures, We write f,, — f
a.e. to ndicate that "Eil'.r;c fulx) = f(r) for almost every r. i.e.. for all r not belong-

ing to some zero set.t (See Chapter3 for previous use of the phrase “almost every”
in connection with Riemann integrahility.)] However, we often abuse the notation
by dropping the “a.e.” for clarity. This is rarely a problem since Lebesgue theory
svstematically neglects zero sets: as Theorem 5 states, zero sets have no effect on
measurability or measure, and thus no effect on integrals.’

27 Monotone Convergence Theorem Assume that | f,) is a sequence of measur-
able functions f : R = |[0.0¢) and fu 1 [ a.e. asn — 2c. Then

[nt]:

Proof (Mwious from Figure 144, |

Definition The completed undergraph of f: B — [0, ~) is
Uf = {(=y)eRx [0.20):0<p < flx)}.
It is the undergraph plus the graph.

28 Proposition 'ﬁf ix measuralle if and only of W[ s measarable, and if meesarable
then their measures are equal,

Proof For n € M let Ty, : B* — B* send (r, y) to (. (1 £ 1/n)y). The matrix that
represents Ty, is

10
0 1+1/n

"Thus the integral of & measurable sonnegative Tunclion exists even i the Tunction is ol in-
tegrable,  To avoid this abuse of langusge the word “summable” is sometimes used in place of
“Integrable” to indicate that [ f < so.

Wou moy also come scross the abbreviation “p.p.” e the French presque pariol.

¥ Ag informal notation one might try decorating the standard svmbols ==", =" %" ete, with
small zeros indicating “up to & zero set,” Thus f, = f would indicate a.e, convergence, A = B
woald bndicate set equality except [or 4 sero set, ':' would indicate for almest every, and =0 on, Bt

really, would vou benefit very much from formulas like f, — f ‘E g’
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Figure 144 f, T f implies Uf, T US. Upward measure continity

{ Theorem 6) then implies | fn = m{Ufe) Tm{Uf) = [ f

By Corollary8 Tiy, i5 & meseoimorplizm and m(TG (U = (1 4+ Linm{U ). The
it erEeet fon n TG F) 15 U f except for points (0] of the r-axis at which el =10
[he r-axis is a planar z2ero set and has vo effect on measurahbility. Therefore U S is
meazurable

Similarly. WS is the union of the sets T_,(Uf) except for points on the r-axis
and so measurability of ]-i_f nuplies measurability of W, Upward measure continmity
implies that

milUf) = hm{l=1/n)m(lUf} = .'.l.-|1.l_if'

—

which completes the proot

20 Corollary If(f,) is a sequerier of inbegmble functions thal converges monoton-

[l 7] 'III_'_I .'.J.'.l.l| TLAET lrll Ler @2 .'.l.'.'..llI _l|r|'|.'|r fH{ITi |I @irnaal miy rifi |||r re then

Proof Sinee m{l )} = J fo @2 finite, downward measure continuity is valicd PPropos-

sition 28 then mmplies
J(j. i) = milif.)) L m{f) = m{Uf) = J.f_r*

A5 1 —F o, [ |

Definition If f, : X < [(l.x) is a sequence of functions then the lower and uppes

envelope sequences are

," ) = iur{h_l Fl:k > .'.I- Foix) = ='||!-|_.'-.:."| A

L 1] - 5

We permit J_F.IZ.-':- = 00,
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30 Proposition U(F,) = U W(fi) and U(F ) = N Ufe).
E2n o B

Proofl We have

(x, ) € U(f,) == y < sup|{fulz) : k > n}
== 3{ > n such that gy < filx)
<= 3£ > n such that {z.y) € U(fy)
= (r.y) € U Ulfe).
k=n

The other equality 15 checked the same way. L]
31 Dominated Convergence Theorem [If f, : R — [} s a sequence of mea-
surable functions such that f, — f a.e. and if there erists a function g : R = |(), oc)

whose miegral is fintte and which 5 an wpper bwound for all the functions [, then
18 .l'r||'r-'_1||'r'r:|_f.'|'r mlﬂ'_llI Jn— ||_jr 0E 1 — o0,

Proof Obvious from Figure 145. O

Figure 145 Dominated convergence. Proposition 30 implies the envelope
functions are measurable. Due to the domioator g they are integrable, The
Monotone Convergence Theorem and Corollary 29 imply their integrals
converge to [ f. Since U:L.] CUl T ]_l-:_,_F“fl the integral of [, also
converges to | f.
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Remark If a dominator g with finite integral fails to exist then the assertion fails.
For example, the sequence of steeple functions shown in Figure 89 on page 214, have
integral n and converge at all r to the zero function a3 71 —= o, See Exercize 33

32 Corollary The pointunse limif of measurable functions is measurable.
Proof HILI] is measurable and converges upward to U f. O

33 Fatou’s Lemma If f, : B — [0.2¢) is a sequence of measurable functions then

fl'uninli'_ﬁ1 < iimjn!'ffﬁ.

Proof The assertion is really more about liminfs than integrals. The liminf of the
sequence [ f,) s f = nli:ﬂ: [ . where f_is the lower envelope function. Since _f_ﬂ t .
the Monotone Convergence Theorem implies _||'£rl t [ f. and since I = fn we have

[ F < liminf [ f,. 0

Remark The inequality in Fatou’s Lemma can be strict as is shown by the steeple
functions. See Exercise $3.

Having established the three basic convergence theorems for Lebesgue integrals
using mainly pictures of undergraphs, we collect some integration facts of a more
mundane character,

34 Theorem Let f,.q: R = [0, oc) be measurable funclions.

fo) If f<gthen [ f< [g
fb) IfR = LI, Xi and each X, is measurable then

]
jf==g;_nﬁ

fe) IFX C R is measumable then mX = f‘rr-

fd) If mX =0 then IH f=10

{e) If flx) = g{x) almost everyuhere then Lf = [ g.

(f}) fc=0then [ef=c[].

{g) The integral of [ 15 zero oif and ondy of flx] =0 for almost every o
) [ 745 £+ 4

Proof Assertions (a) - (g) are obvious from what we know about measure.
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(a) f=<gimplies Uf < Ug implies m{US) < m{lUg).

(b) The product X x R is measurable and its intersection with Wf is Uffx,. Thus
Uf = L2, Uf|x, and countable additivity of planar measure gives the result.

{e) The planar measure of the product U{xy) = X = [0.1) is mX.

(d) USf is contained in the product X = R of zero planar measure.

ie) Almost everywhere equality of f and g means there is a wro set £ C R such
that if r & Z then f{x) = g{x). Apply (b), (d)to R=ZU(R\ Z).

(f] According to Theorem 9 scaling the y-axis by the factor ¢ scales planar measure
correspondingly.

() The Zero Slice Theorem (Theorem 26) asserts that U f is a zero set if and only if
almost every vertical slice is a slice zero set. The vertical slices are the segments

[0, fr).
th) This requires a new concept and a corresponding picture.  See Theorem 35.
Corollary 36, and Figure 146, O

Definition If f : R — R then f-translation T; : B* — R? sends the point (z,y) to
the point (r, y + f(x)).
Ty slides points along the vertical lines = R and
TroTy = Tiiq = Tpoly
so Ty is a bijection whose inverse is T_ ;.

35 Theorem If f : B — [0.o¢) is infegrable then Ty preserves planar Lebesgue
measure; Le., i s g meseometry,

Proof We must show that Ty bijects the class M of Lebesgue measurable subsets of
R? to itself and m(TfE) = mE for all E € M.

Consider Figure 146, [t demonstrates that for any two nonnegative functions on
R we have two wavs to express W f + g}, namely

UfUTr(Ug) = U(f+g) = THUSf)UUg.

First we consider the function

0 otherwise

e {h ifrel

where [ is an interval in B and h is a positive constant. See Figure 147, The un-
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| |
ITEEANN L | T5(Uf)
| uf ¥ -,

Figure 146 The undergraph of a sum

dergraph of g 15 the rectangle B = T = ;-H. hY. The .I'_. itnagEe of A = the same as 1l
I fr-image, where filz) = flx) - xplr). Thus we can sssome that flao) =0 for r g 1.
The map T; s vertical translation by the constant  and since Lebesaue measane is
translation invariant we get measurability of T,(Uf). Then UfUT; R =T, (Uf 1L R

unplies Tr R s measurable and

el W)+ T A1) il TAUS) 4 mR.
Sinee millf) < oo, subtraction is legal and we got (T [ MYy = mM. I we translate H
vertically by & then we have a rectangle ToR = I x [k, h+ k) and T{{T\R) = Ty e Ty R
ieplies that Ty sends each rectangle [ :r i o a measurable set of e e peeasire

We claim that Ty never increases outer measure. If § © B® and ¢ > 0 is given

then we cover 5 with countably many rectangles 1y such that

Z.'.'sl.ﬁ".- < mS 4 E.

Then TrS & coversd by countably many measurable sets .l';n!l“,l with total measire
< m*S + ¢. From countable subadditivity and the e-Principle we deduce m™(T3.85) <

¥

ma, The same is true for T_ ¢ sinee
.|I. i ] .:.lr._".l'

e e : e
where ¢ : B® = E- 15 the meseometry sending (o, y) to (x, —g), Neither Tr nor its

inverse increase ouber messure, so Theorem ¥ implics Ty is & meseoet ey
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; f—ff :
:I' { ' U/ 'lIIJ'II'LJF'I_I'II ulul,u.'LML
F Wi

IIl_lII 'Ill'_.I (WINAELY, ll: . Tﬂiuf}
/ 'i

. i i |
uf | - z
R=1x[0h) |

Figure 147 T translates ! upward by f and T, translates Uf upward by
h.

36 Corollary If f : R — [0, o) and g: R — [0, 5c) are integrable then

[r+a=[1+[a

Proof Since U(f + g) = Wf UTy(llg) and Ty is a meseometry we see that f + g is
measurable and m{U[ f + g]) = m{lUf}) + m(Ug). That is. the integral of the sum is
the sum of the integrals. O

Remark The standard proof of linearity of the Lebesgue integral is outlined in Ex-
ercise 47, It 15 no essier than this undergraph proof, and undergraphs st least give
voul g picture as guidance,

37 Corollary If fi : R = [0, ) is a sequence of integrable functions then

gj.l'l = /gﬂ--

Proof Let Fo(r) = Y0, fulz) be the n'® partial sum and F(x) = 12, fulz).
Then F,(r) T F(z) as n = ac. The Monotone Convergence Theorem implies [ F, —
[ F. Corollary 36 implies 30 _, [ fo = [ 50_, fi and the assertion follows. O

Until now we have assumed the integrand [ is nonnegative, If [ rakes both
positive and negative values we define

folz) = {.ﬂ-f'} if flx)=0 £y {[?fl'tr} if flz) <0

0 if flr} <0 if flr) > 0.
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Then fi > Dand f = f, — f.. See Exercise 28, If [, are integrable we say that f is
integrable and define its integral as

1= fr- s

38 Proposition The set of measurable functions f : R — R is a vector space, the
set af inteqrable functions s a subspace, and the integral 15 a linear map from the
latter mito K.

The proof is left to the reader as Exercise 32.

7 Italian Measure Theory

In Chapter 5 the slice method is developed in terms of Riemann integrals. Here we
generalize to Lebesgue integrals. If E ¢ R* xR and r € B* then the z-slice through
a point r € R* is

E; = {ycR": (z.y) € E}.

The y=slice is E¥ = [r: (x.y) € E}. Similarly, the z-slice and y-slice of a function
f:E=Rare fo 1y~ flz,y) and f¥:x— flr y).

Remark In this section we frequently write dr and dy to indicate which variable is
the integration variable.

39 Cavalieri's Principle If E 15 measurable then almost every slice E; of E s
measurable, the function r — m(E;) i measurable, and its mtegral is

(4) mE = frrl{E:]dr-

{Note thot mE refers to (k + n)-dimensional measure while m{E;) refers to n-
dimensional measure, |

See Figure 148,

Proof We take k = | = n. The proof of the Zero Slice Theorem |Theoren 26)
contains the hard work; if E is a zero set then it asserts that almost every slice E,
is a gero set, and since the integral of a function that vanishes almost everyvwhere is
zero we get (4) for zero sets.
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Figure 148 Slicing a planar set

(4] is obvious for boxes, and hence it holds also for open =ets. After all, an open

et 15 the disjoint union of boxes and & 2ero 2et, and slicing preserves digjoint ness

The Dominated Convergence Theorem promotes (4) from open sets to bounded
A I 1

I"u'_.--|'|-

(4] holds for bounded messurable sets sinee each 15 8 bounded (Fs-set minus a
gero =0, The general measurable set £ is a digjoint union of bounded measurabls

sptg, [E = LI."'. s conntable additiviey mives (4] for . [
The proof of Cavalieri’s Principle in higher dimensions differs only notationally
from the proof in B*. See alao Appendix B ool Chapter b and BExercise 44

40 Corollary The y-slices of an undergraph decrease monotonically as y inereases,

nnd the followang formalaes fold:

T4l T At TEAY 3
wf)® = L) (Us (U™ = N (Uf

) T g

2 I I i ]
Every horizental slice of a mensurable und .'|.l--'|,--l'l 18 TreREranie

Proof Monotonicity snd the formmlas follow from

|'|-:ir e I.-' T < JI.II' —- '=.I 5 -:_I.' = i1 =104 I'I -IIIill o= r||
" = .'.|:- = {T: ¥y < awe have y = fr}
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We fix an arbitrary e and ask: Are the slices (W) and (Uf)" measurable? Cava-
lieri’s Principle immplies that almost every hortzontal slice of a measurable nndergraph
i= measurable, Thus, there exist g, | o such that (Uf)¥ is measurable. By mono-
tonicity. (Uf)* = U, (WS gives measurability of (). Similarly for the completed
undergraplh, O

41 Corollary Undergroph measurability is equivalent to the more commaon de finafion
USITHY Prefmages,

Proof We say that [ : R — [0, o) is preimage measurable if for each a € [I). x)
the preimage e, oc) = {x: fr > n} is a measurable subset of the line. (See also
Appendix A.) Sinee

e, x) = {r:a< fz} = (Uf)°

by Corollary 40, we see that undergraph measurability implies prelmage measurabil-
ity. The converse follows from the equation

wf = P, ac) w (0. a).
f |35I:!_';f [ 2¢) % [0 -

As a consequence of Cavalieri’'s Principle in J3-space we get the integral theorems
of Fubini and Tonelli. It is standard practice to refer to the integral of a function f
on B? as a double integral and to write it as

/_F= [ Slx, w) dedy.

It is al=o standard 1o write the ierated integral as

/Ufr[y:'ﬂ'y] di-= f[f;u-%y:fay] dr.

42 Fubini-Tonelli Theorem If j : B* — [0, ) is measarable then almost every
slice fo(y) s @ measumble function of y, the function r — ff;{_f,r] dy is measuralis,

and the douable mbegral cguals the sterated mtegral,

f[fl.r._r,l]d.n.l’_e,r = [[[ﬂ.r.y]dﬂ] dar.

Proof The result follows from the simple observation that the slice of the undergraph
is the undergraph of the slice,

(h) (Uf)e = Ufs.
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Figure 149 Slicing the undergraph

See Figure 149. For (5) implies that mz((WUf)) = ma(lUf;) = [ flr. y)dy. and then

Cavalieri gives
[[ramdety = mys) = [maien, )z

= f[fﬂ.;mdy] dr. O

43 Corollary When f: B* — [0.x) is measurable the order of infegration in the
iterated integrals s orrelevand,

f[ f[.r.yjd_r,l] dr == fff[r. i) drdy = f[ff{.r-y:lri:] .

{In particular if one of the three integrals s fimite then so are the other two and all
three are equal, )

Proof The difference between “r" and “y" is only notational. In contrast to the
integration of differential forms, the orientation of the plane or 3-space plays no role
in Lebespue integration so the Fubini-Tonelli Theorem applies equally to ac-slicing

and y-slicing, which implies that both iterated integrals equal the double integral, O
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The multidimensional version of Cavalieri’s Principle vields similar multi-integral
results, See Exercise 54.
When f takes on both signs a little care must be taken to avoid subtracting oc

from oo,

44 Theorem [f f : R* — R is integrable {the double integral of f erists and is finite)
then the iterated integrals enst and equal the double infegral,

Proof Split f into its positive and negative parts, f = f. — f_. and apply the
Fubini-Tonelli Theorem to each separately. Since the integrals are finite, subtraction
is legal and the theorem follows for f. O

See Exercise 53 for an example in which trouble arises if you forget to assume
that the double integral is finite,

& Vitali Coverings and Density Points

The fact that every open covering of a closed and bounded subset of Euclidean space
reduces to a finite subcovering is certainly an important component of basic analysis.
In this section we present another covering theorem. this time the accent being on
disjointness of the sets in the subeovering rather than on finiteness, The result is
used to differentiate Lobesgue integrals,

Definition A covering V of a set A in a metric space M is a Vitali covering if for
each point p € A and each r = 0 there is V' € V such that p € V' € M;p and V is not
merely the singleton set {p}.

For example, if A = [0, 8], M = R, and V consists of all intervals o, 3] witha < 3
and o, 3 € @ then V is a Vitali covering of A.

45 Vitali Covering Lemma A Vitali covering of a bounded set A © R" by closed
balls reduces to an effictent disjornt subcovering of almost all of A.

More precisely. given € > {1, V reduces to a countable subcollection { V) } such that

(a) The V} are disjoint.
(b} ml' < m*A + ¢, where U = L%, Vi

(e} ANL is a zero set.
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Condition (b) is what we mean by {V} being an “efficient” covering - the extra
points covered form an e-set. The sets Uy = ¥y U -+ U Vy “nearly” cover A in the
sense that given ¢ > 0, if N is large then Uy containg A except for an e-set, After
all, U' = YUy contains A except for a zero set. See also Appendix E.

Boundedness of A is an unnecessary hypothesis. Also, the assumption that the
sets V' € V oare closed balls can be weakened somewhat. We discuss these improve-
ments after the proof of the result as stated.

Proof of the Vitali Covering Lemma Given ¢ > (0, there is a bounded open set
W 2 A such that mW < m*A + ¢, Define

Vi={VeV:VCcW} and dy = sup{diamV :V €V}

Wy is still a Vitali covering of A. Sinee W bounded o) is finite. Choose V) € V) with
diam Vi = d, /2 and define

Vo= {VEV: VNV =0} and dy = sup{diamV :V € Vy}.
Choose V5 € Yy with diam Vy > oy /2. In general.
Ve = {(VEVi 1 :VNUy = B}
dp = sup{diamV : V € YV}
Vi € Vi has diam Vi >

where Uy = Vi U...UV¥e_;. This means that ¥y has roughly maximal diameeter
among the 1V € V that do not meet [7,_y. By construction, the balls V), are disjoint
and since they le in W we have mi|] Vi) < mW < m®A + £ verifying (a) and (b).
It remains to check (e).

If at any stage in the construction Vi = @ then we have covered A with fnitely
many seta V., so (¢) becomes trivial. We therefore assume that V), Ve, ... form an
infinite sequence.  Additivity implies that m( Vi) = Y mVi. Since each Vi is
contained in W the series converges. This implies that diam Vi, — 0 as & — o003 e,

(6) diy = Dask = oo
For each N € M we claim that

(7} Ui 2 ANUx,

where 5V denotes the ball Vi dilated from its center by the factor 5. (These dilated
balls need not belong to V.)
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Take any a € AN Uy_y. Since Uy is compact and V) is Vitali. there is a hall
BeVisuchthat a € Band Bnliy_| = ® That is. B £ V. Assume that (7) fails.
Then, for all &2 N we have

a & Bl

Therefore B ¢ 5Vy. Figure 150 shows that due to the choice of Vv with roughly
maximal diameter, the fact that 53Vy fails to contain B implies that Vy is disjoint
from B, so B € Vy,1. This continues for all & > N; namely for all & > N we have
BeV,.

Figure 150 The unchosen ball £

Ala!

B was available for choice as the pext Vi, & > N, but it was never chosen.
Therefore the chosen Vi has a dismeter at least half as large as that of B. The latter
diameter is fixed, but (6) states that the former diameter tends to 0 as & = >c, a

contradiction. Thus (T) 15 true.

It is easy to see that (T) implies (¢). For let 4 = 0 be given, Choose N so large

that
e

E m(Vy) < ﬁirr

k=%
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where n = dimR". Since the series Y m( V) converges this is possible, By (7) and
the scaling law m{tE) = t"mE for n-dimensional measure we have

x oz
mYA\Un_y) € Y m{5W) = "% m(l) <.
e A k=N
Since 4 is arbitrary, ASU = (AN Uy) 5 a zero set, |

Remark A similar strategy of covering reduction appears in the proof in Chapter
2 that sequential compactness implies covering compactness. Formally, the proof is
expressed in terms of the Lebesgue number of the covering but the intuition is this:
Given an open covering U of a sequentially compact set K, vou choose a subcovering
bw firat taking a Uy € U that covers about as much of K as possible, then taking
['s € U that covers about as much of the remainder of K as possible, and so on.
If finitely many of these sets 7, fail to cover K then you take a sequence r, €
K (Uhywe-uliy_y) and prove that it has no subsequence which converges in K.
{ The comtradiction shows that in fact finitely many of the 7, vou chose actually did
cover K.) In short. when reducing a covering it is a good idea to choose the biggest
sets first, This is exactly the Vitali outlook,

Removing the assumption that A is bounded presents no problem. Express R"
as ) D; U Z. where the D; are the open unit cubes defined by the integer lattice and
£ i the zero set of hyperplanes having at least one integer coordinate. If A C R" is
unbounded then A = A4, U (AN Z). where A, = AN D;. Given a Vitali covering V
of A Iy closed balls, we 26

Vi = {VeV:VCj

It is a Vitali covering of the bounded set A; and therefore reduces to a disjoint {€/2')-
efficient covering [V, : k € M} of almost all of A;. Thus V reduces to a disjoint
e-efficient covering {V, ¢ : i, & € M} of almost all of A.

A further generalization involves the shapes of the sets V € ¥, I | |, is any norm
on R" then its closed ball of radius r at p is

B,(r.p)={reR":|z|, =1}

The preceding proof of the Vitali Covering Lemma goes through word for word when
wie subetitute balls with respect to the nonn | |III for Euclidean balls. Even the factor

5 remains the same, [f | I'r is the taxicab norm then this gives the following result.
Ser also Exercise 61,
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46 Vitali Covering Lemma for Cubes A Vitali covering of A © R" by closed
cubes’ reduces to an efficient disjoint subcovering of almost all of A.

Density Points

Let E C R" be measurable, For p € R". define the density of E at p as

) I m{ENQ)

0.5 = "5,
if the limit exists, m being Lebwsgue measure on R™. The notation @ | p indicates
that ¢} is a cube which contains p and shrinks down to p. It need not be centered
at p, Clearly 0 € 4 < 1. Points with 4 = 1 are called density points of E. The
fraction that we're taking the limit of is the “relative measure” or concentration of
E in Q. I like to write the concentration of E in @ as in chemistry,

m(ENQ)
ity
Existence of 4(p. E) means that for each ¢ > () there exists an £ > 0 such that if ¢ is

any cube of edgelength < £ that contains p then the concentration of E in @ differs
froom &(p, E) by < €.

= [E: Q)

Remark Demanding that that the cubes be centered at p produces the concept of
balanced density. Balls or certain other shapes can be used instead of cubes. See
Exercise 58, Exercise 61, the end of the preceding section. and Figure 151.

47 Lebesgue Density Theorem [f E is measurable then almost every p € E is a
density point of E.

[nterior points of E are obviously density points of E, although sets like the
irrationals or a fat Cantor set have empty interior, while still having plenty of density
points.

Proof of the Lebesgue Density Theorem Without loss of generality we assume
E is bounded. Take any a, 0 < a < 1. and consider

E, = {pe E:4(E,p) < a}]

"I'he cubes are Cartestan producis f; = --- = 1o, where the [; are closed intervals, all of the same
lenggih,
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5 renddering of a density point

Figure 151 An artist

where 4 is the lower density, liminfE : €. We will show that E; has outer measur
g

TETO

there are arbitrarily small cubes in which (§ 1T

1 yitall covering of B, '||.| L T

hat the Oy are

By assumption. at every p € Ej
I'hese cubes form
i subocollection Gy, (e, ... such ¢
ure of E; in the sense

concentration of £ 15 -

Vitali Covering Lemma we can selpct
digjoint, cover almost all of £;, and pearly give the outer meas

that
:"‘_:-'-'.'lr-(ll." . "'-:|r.'.'-| LS

E, turns out to be measurable but the Vitali Covering Lemma does not require us
this in advance.) We get

to Enow

o J! }_:.‘.‘.. l|' rflr':
Y mENQ) < ay miQe) < alm™E,) + e

which implies that m™ E, e[ 1=a). Sinee {} 15 arbitrary we have m " E; ) = (0.
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The E, are monotone increasing zero sets as a T 1. Letting @ = 1 — 1/F with
E=12 .. wir see that the union of all the E, with o < 1 is also a zero set, sav £,
Points p € £ Z have the property that as @ | p. the liminf of the concentration
of Ein Qis = a for all a < 1. Since the concentration is always < 1 this means
the limit of the concentration exists and equals 1 for all p e £ Z; fe. almost every

point of E is a density point of E. O
48 Corollary If E s measurable then for almost every p we have

i) = lim{E : 6.
Velp) {'Ilml Q|

Proof For almost every p £ E we have I]:j]mili' : (0] = 1 and for almost every g € E°
w
we have Eu‘n}E" : @] = 1. Measurability of £ implies [E : @] + [£Y : @] = 1. which
i

counpletes the prool O

A consequence of the Lebesgue Density Theorem is that measurable sets are not
“diffuse” - a measurable subset of B can not meet every interval (a.b) in 8 set of
measure ¢ - (b — ) where ¢ s o constant, 0 < ¢ < 1. Instead. a measurable st mnst
be “copcentrated” or “clumpy.” See Exercise 56, Also. looking at the complemaent
E" of E, we see that almost every point ¢ € E° has 8( £, 2) = (. Thus, almost every
point of E is a density point of £ and almost every point of E© is not.

Think of the set of density points of E as the measure-theoretic interior of E.
the se1 of density points of E° as the measure-theoretic exterior of E. sl the
remaining set as the measure-theoretic boundary of E. We denote the last set as
eyt £l Regularity of Lelwsgee nwasure and the Lebesgue Density Theorean imply
that measurahility of E is equivalent mid,(E)) = 0.

As voun might expect, Cavalieris Principle meshes well with density points. Recall
that the slice of the undergraph is the nundergraph of the slice.

(Uf)e =USz (Uf)¥ =uUsv,
where fr(y) = flr.y) = fUir).
49 Theorem Density points slice well,

Proof We assume that f: B" — [0, 2¢) is measurable and (p, y) € US has y > (.
Figure 152 shows that (p. y) is a density point of 1 f if and only if p is a density point
of U(fY). O
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Figure 152 The undergraph Uf consists of segments x = [0, fx). In order
that the union of these segments has high concentration in (). the
segimnents must first cross the bottom face of Q4. namely @ = {g}, with
high concentration there. Similarly. if they reach @ = {y} with high
concentration then they first eross (- with high concentration.

50 Corollary (dp(Uf) NUFI¥ = dp(Uf¥) A USY,

Proof dp(llf) refers to the (n 4+ 1)-dimensional density points of U f while dp(llf¥)
refers to the n-dimensional density points of WY, The proof i left as Exercise 52, 0
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9 Calculus a la Lebesgue

In this section we write the integral of f over a set A as JA flxydm. In dimension 1
we write it as jﬂ flt) dt or as j: f(t)dt when A = {a. 7).

Definitlon The average of a locally integrable function f : B" — R over a mea-
surable set A © R" with finite positive measure is

1
){J’[;r]dnr ol L_,F[.r]drrr.

By “locally integrable” we mean “integrable on a small enough neighborhood of each
point in B"." One can also write the average of f over A as [f : Al. If xg is the
characteristic function of E then [Xg: A] = [E : A).

The following result is also called Lebesgue’s Fundamental Theorem of Cal-
culus.

51 Average Value Theorem [f f : R" — R is locally integrable then for almost
every p e B" we have

E‘ﬂ };fl,’:}lr!m = fip),

where ) | p means that § s a cube which contmins p and shrinks doum to p.

52 Lemma [f g : R" — [0, x) is inlegrable then for every o > 0 the set X{a,g) =

{p:limsup4 g > a} has outer measure
Qip

Tn"i,f{lq,n]':l < &fy

Proof The set X{a, g} is covered by arbitrarily small cubes on which the average
value of g exceeds o, By Vitali's Covering Lemma we have

U@ = X(g.a)

up to a zero set, where the average of g on €; is > o, Henee o - m{Q,;) < f i and

L}

mi(X(ga) < Ya-m@Q) < < [q
£ T [V Zﬂ mi} Z-/;.E q

Dividing the first and last terms by o gives the assertion. O
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Proof of the Average Value Theorem Since f is locally integrable. B" is cowv-
eted by open sets on which f is integrable. It follows that f is integrable on each
compact cube in B, Since R" is the monotone union of cubes of integer radins, it is
no loss of generality to assume f is integrable on some large cube X and identically
wero outside X,

Fix o = {I. Theorem 49 implies that almost every point p in every horizontal slice
of Uf is a density point of the slice. As @ | p the concentration of {z: fr > fp—a}

in @@ converges to 1. which implies ]irginfj[ f 2 fp— a. Since this is true for each
o J1g
a=1,1/21/3,... we have

lim inf f =
ol fzfp
almost evervwhere,

To handle the limsup we first assume f is bounded, say flz) < M for all 2 € X
Then M — f =0 is integrable on X and _fqiﬂf - fi=M- j-:,l JF. Thus

Iii&ipnf.éi“—f] = M- Jfp

for almost every p € B". The relation between minf and lhimsup gives

lim -‘ill.pf fi= Ii:11.-m]1J( if-M)+ M
Qip 4Q p g
- —liﬁf’lﬁli'{)[ﬁf—- fl+M < fp

which gives
lim f; f=fp
for almost every p when f is bounded.
For the general integrable f: X = [0, oc) we set
: i =
Eifa) fir) !l‘f{:‘a <n
n if flz) = n
Then f, is bounded and f, T f as n = 2. Accordingly for each n there is a zero
set Z, such that for all p ¢ Z,, we have ]6.]:1]11{ fo = falp). Let £ be the zero set
g

W& If p& £, then for all n € M we have

gﬂ]{? fa = falp).
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The function g, = f — fi & nonnegative, integrable, and g, | 0 as n — 2. We
fix o > () and apply Lemma 52 to g,. The Dominated Convergence Theorem implies
T gn — 0 and we get

rrr*[.‘l"{n.y,,:ll < l/_q'n — 0 a3 n—x
o

where X{a,gs) = {p € R" : lim .uu;:lfy,, = o). These sets nest downward as »
e
increases, so downward measure continuity implies that their intersection is a zero

set Zia) =}, X{o, g

Consider each p & Z{a) U Z5. Since p ¢ Z{a) there is ssne n such that p &
X, g ). Henoe

litn :-sl|.|:|]( O = {l.
Qe JGQ

Since p ¢ Zo the average of f, over @ converges to fup as Q@ L p. Thus

]imﬁup-?[ F= Iims-mp][ o + lim F-llpf [
Qip 49 Qe 4 Qp 41
< fap+o £ fp4+an.

The union of the sets Z{o) with o = 1,1/2,1/3.... s a zero st &y, Thus, if
PE £nU Zx then for all k€ M we have

o i 1
fp < bminf4 f < Inuﬂupf I = fp++
Qe Jg Qip JQ k

from which it follows that for almost every p € B* the average of [ over ) converges
to fpas QLp O

53 Corollary If [ : [a.l] = R 15 Lebesgue integrable and
Flz) = f ft) dt

is its mdefinite Lebesque mtegral then for almast every x € [a, b] the derivative F'(r)
exists and equals f(r).

Remark Here and below the domasin of our function is B and we make essential use
of its one-dimensionality.
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Proof In dimension 1, a cube is a segment. so Theorem 51 gives

|rx+h
almost evervwhere as h | ). The same holds for [z < h, z|. O

Corollary 53 does not characterize indefinite integrals. Mere knowledge that a
conptinuous fupction & has a derivative almost evervwhere and that its derivative is
an integrable function [ does not imply that & differs from the indefinite integral of
f by a constant, The Devil's staircase function i is a counterexample. Its derivative
exists almost everywhere. H'(r) is almost everywhere equal to the integrable function
flz) =0, and yet H does not differ from the indefinite integral of 0 by a constant.
The missing ingredient is a subtler form of continuity.

Definition A function & : [a,b] =+ R is absolutely continuous if for each « = 0
there exists 8 = ) such that whenever Iy, ..., I, are disjoint intervals in [n. Ii] we have

"l n
Y bi—m<d = Y |G() - Gla)| <«
i=1 i=l

54 Proposition Every absolufely contmuous function s uniformly continuous. [f

(1) 15 a sequence of disjont mtervals (a;, b)) © lo b then the follounng are equivalent

Jor a function G : [a. b] = R.

fa) %e>0 36> 0 such that 3 bi—a; <8 = Y |G(b) - Glai)| <.

Tl f=]

(==} = u
{b) ¥e >0 348 > 0 such HmtEh, —ay L § = Zh‘?[b,j - Glay)| < e

1=1 i=l
| n

fe) We =036 >0 such that ¥ m(l) <d = Y m(G(L)) <«

T=] =1
=} 0
{d) ¥e =0 38 > 0 such that Zm“,-} <d = Y miG{))<e
i=1 =1
Also, if 7 is absolutely continuous and Z ts a zero set then GZ i a zero sel. Finally.
if (& is abgolutely continuous and € > ) is given then there exists 4 > () such that of E
is mensurable then GE is measurable and mE < 8 = m|(GE) < e.

Proof Assume ¢ is absolutely continmous. For each € = () there exists 8 = ) such
that if 3 b —a; < 8 then 3 [Gil) = Gla;)| < . Apply this with just one interval
(t,x). Then [t — x| < § implies |G(t) — Glr}] < . which is uniform continuity.
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{a) = (b). (a) is the definition of absolute continuity. In the definition take ¢ /2 in

place of €. The resulting 4 depends on ¢ but not on n. Thus 37 b —a; < § implies

iy b = < 8 implies 37 |G(b) — Glag)| < ¢/2 implies 372 |G{b) - Gla;)| <
€2 < ¢. which is (b).

(b} = (e). m{G(L)) = |Gt} = Gis;)]. where G(t;) and G{s;) are the maximum
and minimum of G on a;, b;|. Let J; be the interval between s; and #;. Then J; C I
implies m(J;) < m{L} implies 30", m(J;) < & implies Y7, |G(t) — G(s)] < e

Thus 31, |Git) — Gis)| = iy mlG( i) < e, which is (c).

i=1
() == {d). This is just like (a) = (b).
(d) = {a). Since m(;) = bj—a; and |G(l) = Gla;)| < m{G{I;)) this is immediate.

Assume Z C |a,b] is a 2ero set and @ is absolutely continuous according to (d).
For each ¢ > 0 there exists 4 > 0 such that 3 m{l;) < & implies }_ m(G(1;)) < e.
There is an open U7 C [a, b] of measure < 4 that contains Z. Every [7 is a countable
disjoint union of open intervals ;. Their total length is ml’ < 4. Thus GZ < Y G(I;)
and by (d) we have m(GZ) <Y m(G(1)) < e so m(GZ] = 0.

Assume E C [ob] is measurable and G is absolutely continuous according to (d)
with ¢, § as above, Regularity of Lebesgue measure implies there are compact subsets
K, C E such that K, 1 F C E, where £ = E* F is a zero set. (F is an F,-set.)
Continuity implies G{K,,) is compact. Since G{K,) 1 GF, GF is measurable. Since
GZ is a zero set, GE = GF UGZ is measurable. If mE < & then there is an open
U= 2 E withml =% m{l) < 8 Then GE C |JG(I;) and by (d) we have
m(GE) < 3 m(G(])) < ¢ as desired. 0

55 Theorem Let [ : |a,b] = R be Lebesgue tntegrable and let F be s indefinite
integral Fr) = f flt)dt.

fa) For almost every x the derivative F'{z) erists and equals f({z).

(b)) F is absolutely continuwous,

{c) If G is an absolutely continuous function and G'(x) = f(x) for almost cvery
then & differs from F by a constant,

As we show in the next section [Corollary 62), the tacit assumption in (¢) that
') exists is redundant. Theorem 55 then gives the following characterization of
indefinite integrals. It is also called Lebesgue’s Main Theorem.
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56 Lebesgue’s Antiderivative Theorem Every indefinite integral is absolutely con-
tinnows and conversely, every absolulely conbmuous function has o derivative almost
everyutiere and up fo a constant # is Pe indefinite infegral of s derivative,
Proofl of Theorem 55 (a) This iz Corollary 53,

i(b) Without much loss of generality we assume f > 0. We first suppose that f is

bounded. say 0 < fir) < M for all . For each £ > 0 the cholee of 6 = ¢/ M gives

Zr.l.-l.l'-"[f_.:] ot Z.‘.!Jll{f.} L -

whenever I; are disjoint subintervals of o, b having total length < 4. Proposition 54

implies that F is absolutely continuous,
Mow assume {15 unbounded and ¢ > 0 15 given. Choose W so large that
m{{{z.y) e Uf: fr= M}) < /2

Define the functions
fr iffxr>=M

1] atherwise

gir)

and far = F—g. The integral of g is < /2 since it is the measure of U f outside
the rectangle [a. b x [0, M]. Let Fyy and & be the indefinite integrals of fyy and g.
Clearly f = fu + g implies F = Fyy + . See Figure 153,

W(far)

Figure 153 ||- g=mi{llg) and [ f = |I iq + |I far = m{Ug) + m(WU{ far)).

Sinee fip is bounded there exizta & = 0 such that

l:rr.lf,_l =4 = er.‘!f"““_.::- = g2

where the I; are disjoint intervals in |a,b]. Then ¥ mil;) < 4 implies

Zrn’n’”"l'!'.l: _}_:[Il_f'.r k) = Z [I Far + Zj;_l.l
= Zr:-.'lf"l,rl:.l'_.:_l - Z:H.'I:Ir_;l_.r_.:_l

&
< Ef2 4 [ [ =
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which completes the proal that F s absolutely contimumes,

[¢) The Lebesgue proof rescimbles the Riemann proof in Chapter 3 - the Vitali
Covering Lemma replaces the Lebesgue Number Lemma. We assume & is absolutely

continnous and G(x) = flr) almost evervwhere,. When F is the indefinite imtegral

of f we want to show that H = F — & is constant,

It is easy to see that sums and differences of absolutely continuons functions are
absolntely continuous, so A s absolutely comtineons and H'{r) = 0 almost every-
where. Fix any = € [o.b] and define

X = {re€fa,s%: Hz) exists and H'{z) = 0}.
By assumption mX = #*—a.
It 15 enough to show that for each ¢ = [ we have
|H{z™ = Hin)| < ¢

Absolute continuity implies there is a & > 0 such that if I = o b] © [0.b] are
disjoint intervals then

Y h—oyed = Z|H[b,] - Him;)| < /2.

Fix such a 4. Each x € X is contained in arbitrarily small intervals [r, 2+ h] C o, 2%
such that
Hir+ & - H(r)

h

2h=a)

These mtervals form a Vitali covering V of X and the Vitali Covering Lemma implies
that countably many of them. say V; = [y 0y + 5] dizjointly cover X up to a zero
set. Thus their total length is 3" b = 2" — @ and it follows that there is an N such

that
N
Zh_, > =-a-4
I=1

I
Since |Hir+ h) = H(r)| < J'.'t,.":é‘tz r.':'] on each V-interval we have

N

N
— & !'I:I!' - i) :
2 |Hzs+ hy) = Hiz))| < nf.!,—u Z S g =2

I=l
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The N + 1 intervals I, = [a;, by mm.p!?nmnran to the (interiors of the) intervals
Vi,.... Vy have total length < 4 so E _,,IH[b ) = Hiag)| < ¢/2 by absolute conti-
muity. Thus

" N
H{x") = H(a) = Hiz;+ hj) = H{z;) + ZH{!I ) — Hlaz)
=1 a=0
N
<Y |H(x, +Ju;—mm|+2|mb ) — Hiay)|
i=1 J=0
Lo
which completes the proof that ¢ differs from F by a constant. U
See Figure 154,
1 £+
ﬂ.]' h.'l' -I']}.'.l f,l'ji|
. . . - . —+— - —»
i Iy x4+ hy : r ]
| i+l

Figure 154 The complementary intervals V5 and [;

10 Lebesgue’s Last Theorem

The final theorem in Lebesgue's groundbreaking book, Legons sur intégration. is
extremelv concise and quite surprising.

5T Theorem A monotone function has a dertvative almost everyuwhere.

Note that no hypothesis is made about continnity of the monotone function.
Considering the fact that a monotone function [a, b] = R has only a countable number
of discontinuities, all of jump type. this may seem reasonable, but remember - the
discontinuities may be dense in o, . If the monotone function happens to be an
indefinite integral then differentiability was proved in Theorem 55,

We assume henceforth that F s nondecressing sinee the nonincreasing case can

be handled by looking at — f.
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Lebesgue's proof of Theorem 57 used the Rull power of the machinery he had
developed for his new integration theory. In contrast, the proof given below is more
direct and geometric. It relies on the Vitali Covering Lemma and the following form
of Chebyshev's inequality from probability theory.

The slope of [ over [0 b] is
fib) — fla)
bh—a

58 Chebyshev Lemma Assume that [ : [a,b] = R is nondecreasing and has slope
sover [ = [a b]. If I confains countably many disjoint subintervals Iy and the slope

af f over [y is > § > s then
>l < i
k

Proofl Write I} = [ag. bg). Since f is nondecreasing we have

f(B) = fla} = 3 flbe) = fla) = B Sbe —an),
k k

Thus s |I| = 8% |1} and the lemma follows. O

Remark Au extreme case of this situation oceurs when the slope is concentrated in
the three subintervals drawn in Figure 155,

Proof of Lebesgue's Last Theorem Not cnly will we show that f'{r) exists al-
most everywhere, but we will also show that f'(r) is a measurable function of =
and

(8) ff(:]d; = flb) = fla)-

T estimate differentiability one introduces upper and lower limits of slopes called
derivates. If k > 0 then [r, r + &) is a “right interval" at = and {(f{z + k) — f(z))/h
is a “right slope” at r. The limsup of the right slopes as & — 0 is called the
right maximum derivate of f at r. It is denoted as [D7&R m3% £} The |jm inf
of the right slopes i3 the right minimum derivate of f at r and is denoted as
prisht min g0y Similar definitions apply to the left of x. Think of D&M max £ip) 4o
the steepest slope at the right of £ and D7 ™8 £{ 1) ae the gentlest, See Figure 156,
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a I, I, 5 b

Figure 155 Chebvshev's Inequality for slopes

.I'I,'li'll b e b 3 e B S B B e e e e T

Finp

iz -hi

. x-k  leltimerval - X right interval . w+h

Figure 156 Left and right slopes
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There are four derivates. They exist at all points of [o. 4] but they can take the
value oc. We first show that two are equal almost everywhere, say the left min and
the right max. Fix any & < 8 and consider the set

E = Eip={releb:D""ns) ¢ s § ¢ D)
We claim that

{9) mE =0,

At cach x € E there are arbitrarily small left intervals [x — h, x| over which the
slope is < 5. These left intervals form a Vitali covering L of E. (Note that the point »
is not the center of its L-interval, but rather it is an endpoint. Also, we do not know
a priori that E is measurable. Luckily, Vitali permits this.] Let ¢ > 0 be given. By
the Vitali Covering Lemma there are conntably many disjoint left interwals L, € L
that cover E, modulo a zero set, and they do so e-efficiently. That is. if we write

L=L1intkL;

then EM L is a zero set and mL < m*E + .

Every y € LN E has arbitrarily small right intervals [y, y + 1] © L over which the
slope is = 8. (Here it is useful that L is open.) These right intervals form a Vitali
covering ® of L N E. and by the Vitali Covering Lemma we can find a countable
number of disjoint intervals B; € R that cover LN E module a zero set. Since
LNE = E modulo a zero set, B = | R; also covers E modulo a zero set. By the
Chelwshey Lemma we have

m'E < mR =3 3 IRl <Y Ll € S(m'E +e).

i H_..‘.'_LJ ]

Since the inequality holds for all ¢ = 0, it holds also with ¢ = 0 which implies that
m*E = (1 and completes the proof of (9). Then

L"- ; DEFI": ||:|i||ll||'|:;1_.:I < lL-Ilriﬁ:.'hl m“f{.ﬂ":l} — u E.s
{{s.81ef =3 s< 5}
is a zero set. Symmetrically, {r: D0 win fip) 5 priebt max g0 e g osero set. and
therefore DR @0 £} = pright max £ 0y almost everywhere, Mutual equality of the
other derivates, almost everyvwhere. is checked in the same way, See Exercise 64,

So far we have shown that for almost every r € [a, b] the derivative of [ at
exists although it may equal ~c. Infinite slope is not really acceptable and that is
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the purpose of (8) - for an integrable function takes on a finite value at almost every
point.

The proof of (8) uses a cute trick reminiscent of the traveling secant method from
Chapter 3. First extend [ from [a, 5] to R by sctting f(z) = fla) for x < a and
flx) = f(b) for £ > b. Then define g,(x) to be the slope of the secant from (z. f(r))
to (r+ 1/n, fizr+ 1/n)). That is,

S ﬁ"”f}ﬂ'”” = Wtz + 1fn) = F()).

See Figure 157. Since f is almost evervwhere continnous it is measurable and so is

1 | I
b x 43 X Ity v I4g b

Figure 157 g,(r) is the slope of the right secant at r.

gr- For almost every x. g, (z) converges to f'(r) as n — oo, Henee ' is measurable
and clearly f* > 0. Fatou's Lemma gives

ff[.r]d'r — fﬁlil:niufy.,[.r]d: < I:imluffg,,q.rjrf.r.

The integral of g, is

] fi+ 1/ a+1/'m
jugn[rjd'.r = rrj; frxydr - nfu J flzhdr.



438 Lebesgue Theary Chapter G

The first integral equals f{k) sinee we set f(x) = f(b) for r > b. The second integral
is at least fla) since f is nondecreasing. Thus

f galz)dr < f(B) - fla).

which completes the proof of (8). As remarked before, since the integral of [ is finite,
F'ir) < 2o for almost all x, and hence f is differentinble (with finite derivative) almost
everywhere, O

58 Corollary A Lipschitz function is almost everywhere differentiable.

Proof Suppose that f: [a.b] — R is Lipschitz with Lipschitz constant L. Then for
all x.y € [a, b] we have

|fly) — flx)| £ Lly— =
The function g(x) = fir) + Lr is nondecreasing. Thus g' exists almost evervwhere

and so does f'=4' - L. O

Remark Corollary 59 remains true for a Lipschitz function f : B" — R, it is
Rademacher’s Theorem. and the proof is much harder.

Definition The variation of a function f ; [a.b] = R over a partition X : a =
xp < o+ < Ty = b is the sum 30, [Apf|, where &, f = flzy) — flze-1). The
supremum of the variations over all partitions X is the total variation of f. If the
total variation of f is finite then f is said to be a function of bounded variation.

60 Theorem A function of bounded variation is almoest everywhere differentiable,

Proof Up to an additive constant. a function of bounded variation can be written
as the difference f(z) = Plr) — N(x), where

Plz)

su]:r{z.il.f:u=r"{...{r,, = ¢ and &g f = 0}
[

N(x)

_]uf{za#f:ﬂ=fn{...{I":IHﬂdﬂlkI{n}.
k

See Exercise 67. The functions P and N are monotone nondecreasing. so for almost
every & we have f'(x) = P'{x) = N'[x) exists and is finite. O

61 Theorem An absolutely continuous function is of bounded variation.
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Proof Assume that F : e, 4 — R s absolutely continuous and take ¢ = 1. There is
a 6 = 0 such that if (a;, b;) are disjoint intervals in [a, b with total length < § then

Sbh—a <d = Y |Fik)-Fla} <1

Fix a partition X of [a, b] with M subintervals of length < 4, For any partition ¥ : a =
o < --- < yp = bof [0 b] we claim that 3, |Agf| < M. where A f = f{ye)=flwn—1)-
We may assume that Y contains X since adding points to a partition increases the
sum ¥ |Agfl. Then

I = Y IAF] + ... + Y |AGF
¥ ¥ ¥

where ¥ refers to the subintervals of ¥ that lie in the j** subinterval of X. The
subintervals in ¥; have total length < 4, so the variation of F over them is < 1 and
the total variation of F is < M. O

62 Corollary An absolufely continuous function is almost everywhere differentioble.

Proof Absolute continuity implies bounded variation implies almost everywhere dif-
ferentiability. O

As mentioned in Section 9, Theorem 55 plus Corollary 62 express Lebesgue’s
Main Theorem.

Indefinite integrals are absolutely continuous and
every absolutely conbinuons function fkas a dervatioe

almost everywhere of which of 15 the indefimite infegral
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Appendix A Lebesgue integrals as limits

The Riemano iutegral is the limit of Riemann sums, There are analopous “Lelssage
aums” of which the Lebesgue integral is the lmit.

Let f:R = [0, o) be given, take a partition Y : 0= < < 2 < ... on the
y-axis, and set

Xi={reR: gy < flx) < w}

[ W pewpinire that g — 20 as 0 =+ o) If i measurable e define the lower Lebesgue
NI A

-
LILY) = 3 gy -mX,
d=1

L represents the measure of “Lebesgue rectangles™ X = [0, - ) in the undergraph
If f is measurable! then L1 | f ns the ¥Y-mesh tends to 0. It is natural (o define the
upper Lebesgne sum as 37 - m( X)) and to expect that it converges down to [ f as
the Y-mesh tends to 0. If m({r: fr > (}}) < 20 then this is true. However. if fir)
is a function like e~ then there's a profudem. The first term in the upper Lebewsgoe
sum is always ac even though the integral is finite. The simplest solution i to split
the domain into cubwes ¢ work on each separatelv. and add the results. Then

Lifg.¥) = LI:JEE-"UQ-}']-

where Lifg. Y =Y 5 pici-m( XN Ulfg.Y) =55, wi - m(X;nQ), and fiy is
the restriction of f to €). As the Y-mesh tends to 0 the lower and upper Lebesgue

sums converge to the ntegral, just as in the Ricmann case,

Upshot Lebesgue sums are like Riemann sums and Lebesgue integration is like Rie-
tann itegration, except that Lebesgue partitions the value axis and takes loats
while Riemann does the same on the domain axis,

Appendix B Nonmeasurable sets

Ift € B is fixed then f-translation is the mapping r o~ r 4+ {. It is a homeomorphism
R — R, Think of the circle 8" as B modulo £, That is. vou identify any r with
r+n for n € L. Equivalently, vou take the unit interval [0, 1] and vou identify 1

"We are using the andergraph definition of ineasurability. Corollary 41 implies that the sete X,
are mensnrabde so the lower I.Fhmgur = ninkes sense,
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with (0. Then t-translation becomes rotation by the angle 2xt, and is denoted as
Ry : 8% — 5'. If £ is rational then this rotation is periodic. ie., for some n > 1, the
n'™ iterate of B, B" = Ko---of, is the identity map §' — 51, In fact the smallest
such n is the denominator when t = m/n is expressed in lowest terms. On the other
hand. if t is irrational then B = R is nonperiodic; every orbit O(z) = {R*(z) : k € E}
is demumerable and dense in 57,

63 Theorem Let ¢ be irrational and set B = Ry, If P € 5" contains exactly one
point of each R-orbit themn P is nonmeasurable with respect to near Lebesgue measure
on 5!,

Proof The R-orbits are disjoint sets, there are uncountably many of them, and they
divide the circle as §' = Ll.cz B"(P). Translation is a meseometry. It preserves
outer measure, measurability, and measure. So does rotation. Can P be measurable?
No. because if it is measurable with positive measure then we would get
=l
m{s') = E m{A"P) = o,
R=—a
a contradiction, while if mP = 0 then m{5') = Ef‘w mi{ ") = 0. which contradicts
the fact that m|i),1) = 1. O

But does P exist? The Axiom of Choice states that given any family of nonempty
disjoint sets there exists a set that containg exactly one element from each set. So
if you accept the Axiom of Choice then you apply it to the [amily of R-orbits and
yoil get an example of a ponmeasurable set P, while if you don't accept the Axiom
of Choice then vou're out of luck.

To increase the pathology of P we next discuss translations in more depth.
64 Steinhaus’ Theorem [f £ C B s measurable and hos positive measure then
there exrists a § > 0 such that for all t € (=4, 8), the t-translate of E meets E,
See also Exercise 57,
65 Lemma [If F C (a.b) s measurable and disjoint from ifs t-translafe then
2mF < (b—a)+|t.

Proof F and its t-translate have equal measure, so if they do not intersect then their
total measure is 2mF, and any interval that containg them must have length > 2mF.
If t = 0 then (a, b+ t) contains F and its t-translate. while if # < 0 then {(a + ¢, b)
contains them. The length of the interval in either case is (b= a) + [t]. O
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Proof of Steinhaus’ Theorem By the Lebesgue Density Theorem (Theorem 47)
E has lots of density points 20 we can find an interval (a,b) in which E has con-
centration > 1/2. Call F = En(a,b). Then mF > (b—a)/2. By Lemma65 if
|| < 2mF — (b= a) then the {-translate of F meets F. so the t-translate of E meets
E. which is what the theorem asserts. O

Now we return to the nonmeasurable set P discussed in Theorem 63, It contains
exactly ome point from each R-orbit, £ being rotation by an irrational £, Set

A= u Hikp B = u RH‘+]P_
kel kL

The sets A, B are disjoint, their union is the circle, and R interchanges them. Since
R preserves onter measure we have m*A = m*0.

The composite 8% = R o R is rotation by 2¢, also an irrational number. Let € > 0
be given. Since the orbit of () under B* is dense there is a large integer & with

|R*(0) = (=) < .

For % is the &*" iterate of B*. Thus |R*+1(0)| < ¢ so AZ+! is a rotation by < €.
Odd powers of R interchange A and B, so odd powers of R translate A and B off
themselves, It follows from Steinhaus’ Theorem that A and B contain no subsets of
positive measure. Their inner measures are zero.

The general formula mC = m_A + m*B in Lemma 20 implies that m*B = 1.
Thus we get an extreme type of nonmeasurability expressed in the next theorem.

66 Theorem The circle, or equivalently [0, 1), splits into fwo nonmeasurable disjoint
subsets that each has inner measure zero and outer measure one.

687 Corollary Every mensumble seft £ C R" of positive measure contains a dop-
pelgdnger - a nonmeasurable subset N such that m*N = mE, m, N =0, and N
“spreads itself evenly”™ throughout E in the sense that of E' C E is measurable then
m*(N N E") = m(E").

The proof is left to vou as Exercise 50.
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Appendix C Borel versus Lebesgue

A wvalid eriticism of Lebesgne theory as described in this chapter is that it conflicts a
bit with topology, and problems arise if vou try to think of Lebesgue measure theory
in category terms, For example. not all homeomorphisms are meseomorphisms and
compaosition of Lebesgue measurable functions can fail to be Lebesgue measurable.
See Exercise T4,

To repair these defects Armand Borel proposed replacing the o-algebra M of
Lebesgue measurable sets with a smaller one, B © M, and restricting Lebesgue
measure to it. B is simply the intersection of all #-algebras that include the open
sots. There is one such m-algebra, namely M. so B exists and is contained in M.
It includes all Gg-sets (countable intersections of open sets), all (5,-sets (countable
unions of Gg-sets). ete, Thus dg © S © Baes © - © B, where by is the collection
of all (7-sets, by, is the collection of all Gy,-sets, ete, Likewise F, CFy - CB
for Fy-sets, Fas-sets, ste. See Exercise 8.

A st is Borel measurable if it belongs to B, and a nonnegative function is
Baorel measurable if its undergraph is a Borel measurable set. Equivalently a function
iz Borel messurable if the preimage of a Borel set is always Borel. The messure of
E £ B is its Lebesgue measure and the integral of a Borel measurable function is its
Lebesgue integral. All continuous functions are Borel measurable and the composition
of Borel measurable functions is Borel measurable, That's good.

However, B has its own defects. the main one being that it is oot complete. That
is, not all subsets of a zero set are Borel measurable. (Recall that every subset of
a zero set is Lebesgue measurable.] In the same vein, the limit of a sequence of
Borel measurable functions that converge almost everywhere can [ail to be Borel
measurable, See Exercise 80,

I chose not to use the Borel approach in this chapter because it adds an extra
layer of complication to the basic Lebesgne theory, Yon could not state the Monotone
Convergence Theorem as “if f, is (Borel) measurable and f, ¢ fthen [ f + [ F.7
No. You would also need to assume f is Borel measurable.

But the real reason I chose M over B is that [ like pathology. The fact that there
are ugly zero sets - zero sets carried by homeomorphisms to nonmeasurable sets - is
eye-opening. 1 want vou to see them as part of the Lebesgue picture.

Here are a couple of relevant remarks from mathoverflow in answer to the ques-
tion “Why do probabilists take raodom varables to be Borel (and not Lebesgue)
measurable™
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Yuval Peres: One reason is that probabilists often consider more than
one measire on the same space. and then a negligible set for one measure
(aclded in a completion) might be not neglizible for the other, The situa-
tion becomes more acute when vou consider uncountably many different
mensures (such as the distributions of & Markov process with different

starting points, )

Terry Tao: This is also a reason why the Borel sigma algebra on the
domain is often preferred in ergodic theorv. (A closely related reason is
becanse of the connection betwoen ergodic theory and topologieal dynam-
irs: a topological dynamical system has a eanonical Borel sigma algebra
bougt oot A canonical Lelwsgue sigma alzebra.} On the other hand. a signif-
icant portion of ergodic theory is also concerned with alimost everywhere
convergence {wrt scane reference invariant measure, of course). and then
it becomes nseful for the domain =igma algebra to be complete..,

Appendix D The Banach-Tarski Paradox

If the nonmeasurable examples in Appendix B do nor disturh vou enough., here is a
much worse one. You can remd about it in Stan Wagon's book, The Banach- Tarska

Parador, Many other paradoxes are discussed there too,

The solid unit ball in 3-space can be divided into five digjoint sets, Ay, ..., 45,
and the A; can be moved by rigid motions to new disjoint sets A) whose union is two
disjoint unit balls. The Axion of Clhadee is fundaimental in the construction, as is
dimensionality greater than two, The sets A; are nonmeasurable,

Think of this from an alchemist's pomnt of view., A one inch gold ball can be et
into five disjoint pieces and the pieces fgidly re assembled to make two one inch gold
halls. Repeating the process would make vou verv rich.
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Appendix E Riemann integrals as undergraphs

The geometric deseription of the Lebesgue integral as the measure of the undergraph
has a counterpart for Riemann integrals.

68 Theorem A function [ : [a.b] = [0, M] iz Riemann integrable if and only if the
topological boundary of its undergraph is a zero sef, m{d(1Lf))} = 0.

Remark Recall fromn page 424 that the measure-theoretic boundary of a set £ is
dn(E) = {p: p is a density point of neither E nor E7)}

and measurability of E is equivalent to d,( E) being a zero set. A function f : [a.b] =
[0, Af] is Lebesgue integrable if and only it U f is measurable, i.e., if and only if 8, (U f)
15 a zere set. Combined with Theorem 68 this gives a nice geometric parallel etween
Riemann and Lebesgue integrability:

f is Riemann integrable <= m({Uf)}) = (L
f is Lebesgue integrable < m(dy,(Uf)) = 0.

Remark Since d(Uf) = U * int{Uf). equivalent to m{HUS)) = 0 is m(im(Uf)) =
milf).

69 Lemma If X is a metric space, f: X = [0}, o), and
l[J":I = ]1'|‘n inf f(t) F{.T".I = |imsup Fit)
kI =T
then Uf = int(Uf) and Uy = uy.

Proof Take any (r.y) € Lli- Then y < f(r) and for all (§ s) near {r,y) we have
s < f(t). Thus (t.s) € Uf. (r.y) € nt(Wf), and USf C int{Uf). The proof of the
reverse inclusion is similar, so Uf = int(Uf). See Figure 155.

The proof that “I]_T" = 1Uf is slightly different. If (r.y) € 'i?lT then y < flr) so there
exists t, — = such that f{t,) = f(z). Choose Un < f(ty) such that y, — y. Thus
(tn, ) € UL, (fa.vn) = (2. 9). (z.y) € US, and UJ c Uf. Conversely, if (z,y) € Uf
then there exists (tq.y,) € WS such that (¢, pe) — (x.p). Then yo < f(ts) and
limsup f(t,) = Hl.im; yn = ¥ Thus, y < flz), {z.y) € 'J._IT and Uf ¢ ﬂ} giving

=i

erpuality, ﬁ,_f' = Uf. See Figure 158, |
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Figure 158 The shaded region is contained in the interior of Uf.

Proof of Theorem 88 Applying Lemma 69 to f : [a, b — [0, M] gives
Uf =int(Uf) and UF=T7.

Since open sets and closed sets are measurable, this implies [ and f are measurable
functions, Thus

m(@(Uf)) = m(Uf vint(Uf)) = m{UF) - muf) = /MIT—L

The integral is zero if and only if f = f almost everywhere. ie., if and only if f is
continuous almost everywhere, ie.. by the Riemann-Lebesgue Theorem | Theorem 23

in Chapter 3) if and ouly if f is Riemann integrable. O
T0 Corollary If f is Riemann itegrable then if is Lebesgue integrmble and the tuo
inteqrals are equal.

Proof Since

interior Uf  Uf C closurellf,

equality of the measures of its interior and closure implies that U f is measurable. and
it shares their common measure. Since the Lebesgue integral of f is equals m(1f)
the proof is complere, O

Remark The undergraph definition of integrals has a further expression in terms of
Jordan content: The Riemann integral of a function f: [a, b — [0, M] is the Jordan
content of its undergraph, J(Uf), provided that J(Uf) exists, Sec Exercises 11 - 14.
In brief. Undergraphs lead to natural pictorial ways of dealing with integrals, both
Riemann and Lebesque,
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Appendix F Littlewood’s Three Principles

In the following excerpt from his book on complex analysis, Lectures on the Theory
of Functions, 1E. Littlewood seeks to demystify Lebesgue theorv. It owes some of
its popularity to its prominence in Rovden's classic text. Real Analysis,

The extent of knowledge [of real analysis| required is nothing like as great
as is sommetimes supposed. There are three principles, ronghly expressible
in the following terms: Every (measurable) set is nearly a finite sum of
intervals; every function (of class L*) is nearly continuous; and every
convergent sequence of functions is nearly uniformly convergent. Most of
the results of the present section are fairlv intuitive applications of these
idess. and the student armed with them shonld be egual to most eecasions
when real variable theory is called for. If one of the principles would be
the obvious means to settle a problem if it were “guite” trae, it = nataral
to ask if the “nearly” is near enough, and for a problem that is actually
soluble it generally is.f

Littlewood's First Principle expresses the regularity of Lebesgue measure
(Theorem 16). Given ¢ > (), a measurable E © [a, 8] contains a compact subset
covered by finitely many intervals whose union differs from E by a set of measure
less than ¢. In that sense, E is nearly a finite union of intervals. I like very much
Littlewood's choice of the terin “nearly,” meaning “except for an eset,” to contrast
with “almcst,” meaning “except for a zero set.”

Littlewood's Second Principle refers to “functions of class L*." although
he might better have said “measurable functions.” He means that if you have a
measurable function and vou are given ¢ > 0 then vou can discard an e-set from
its domain of definition and the result is a contivnous function, This is Lusin's
Theorem: a measurable function 15 nearly continuous.

Proof of Lusin’s Theorem We assume that f: B — R is measurable and ¢ > 0 is
given. We use the fact that R has a countable base Y = {¥]. Y. ...} for its topology.
{This means every open subset of B can be expressed as a union of some of the
members of Y. For instance. we could take Y to be the collection of all open intervals
with rational eodpoings,

Using the preimage definition of measurahility we know that fP™(¥;) is measur-
able 20 there exists & sandwich Ky © fP™(¥e) © U where K bs closed, [, is

"Reprinted from Leclures on the Theory of Functions by JE, Litthewood { 1994) by permission of
Orcford University Press.
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open. and m{Up s K ) < ¢/25. Thus § = Wi s Ky ) is an open set with mS < ¢ We
claim that g = f|x is continuous, where K is the closed set B" % S, By De Morgan's

Lo v hwve
w

A =5 = nl:flfg-_lf.-'-j:..]
kel

and therefore
) =M™ N)INnK c UynkK

U 0 QKLU © Upn(Keulf)
i=1

= NKy = K C g"™(Ys).
Hence g™*(¥) = Uy N K is open in K.
Now if V' is an arbitrary open subset of E then it is the union of some members

of ¥, say V = Uy p v Yoo where L{V) € N, Then ¢7°(V) = U,c 0 ¢7™(Y0) is open

in K which gives continuity of g. O

Littlewood’s Third Principle concerns a sequence of measurable funetions
fn  [a.b] = R that converges almost everywhere to a limit. Except for an e-set the
cotvergenoe is actually uniform. which is Egoroff’s Theorem: Almost everywhers
ronvergence implies nearly uniform convergence.

Proof of Egorofl’s Theorem Set

Xk )= {r € |ab]:¥n =&k we have | fu{x) = flz)| < 1/1}.
Fix £ € M. Since fo(x) = fir) for almost every - we have U Xk f) U Z(F) = |a, l]
where Z(f) is a zero set,

Let ¢ = O be given. By measure comtinuity m{X(k. £)) = b—a as & — 2.
This implies we can choose by < ky < ... such that for X; = X{k,{) we have
m{X7) < ¢/2, Thus m{X®) < ¢ where X = [, X,

We claim that [, converges uniformly on X, Given & = ) we chooss and fix §
such that 1/f < «. For all n > k; we have

rEX = reX;=X(k.t) = |falx)-flz)| <1/l < o

Hence f, converges uniformly to f off the eset X% [We usdd o to avoid writing «
with two different meanings. (]

See glan Exercise 5.
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Appendix G Roundness

The density of a set E at p is the limit, if it exists, of the concentration of E in a ball
or cube that shrinks down to p. What if vou used another shape such an ellipsoid or
solid torus? Would it matter? The apswer is “somewhat.”

Let us say that a neighborhood U7 of r = K-quasi-round if it can be sandwiched
between balls B © U ¢ B with diam B’ < K diam B. A hall is l-quasi-round while
a square is ' 2-quasi-round.

It is not hard to check that if r is a density point with respect to balls then it also
a density point with respect to K -quasi-romud neighborhoods of . provided that
K is fixed as the neighborhoods shrink to r. See Exercisesf) and 6G1. When the
neighborhoods are not guasi-ronnd, the density point analvsis becomes marvelously
complicated, See Faleoner's book, The Geometry of Fractal Sets,

Appendix H Money

Riemann and Lebesgue walk into a room and Aod a table covered with hundneds of
U.S. coins, (Well. ...) How much money is there?

Riemann solves the problem by taking the coins one at a time and adding their
values as he goes, As he picks up a penny, a nickel, a quarter, a dime, a penny, etc.,
he counts: “1 cent, 6 cents, 31 cents, 41 cents, 42 cents, ete.” The final number is
Rismann's answer.

In contrast, Lebesgue first sorts the coins into piles of the same value (partitioning
the value axis and taking preimages): he then counts each pile (applying counting
measire]: and be sums the six terms, “value ¢ times number of coins with value "
and that is his answer.

Lebesgue’s answer and Riemann’s answer are of course the same number. It is
their methods of caleulating that number which differ.

Now imagine that gou walk into the room amd behold this coin-laden table. Which
method would you actually use to find out how much money there is - Riemann's or
Lebesgue's? This amounts to the guestion: Which is the “hetter” integration theory?
As an added twist suppose vou have only sixty seconds to make a good guess, What
would vou do then?
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Exercises

I_'..."|

8.

10,

11,

{a) Show that the definition of linear outer measure is unaffected if we demand
that the intervals It in the coverings be closed instead of open.

{b) Why does this immediately imply that the middle-thirds Cantor set has
linear outer measare zero?

(¢} Show that the definition of linear outer measure is unaffected if we drop
all openness /closedness requirements on the intervals £ in the coverings.

{d} What about planar outer measure? Specifically, what if we demand that
the rectangles be squares?

- The volume of an n-dimensional box is the product of the lengths of its edges

and the outer measure of A C B" is the infimum of the total volume of countable
coverings of A by open boxes.
(a) Write out the proof of the outer measure axioms for subsets of R".
(b) Write out the proof that the outer measure of a box equals its volume.
A line in the plane that is parallel to one of the coordinate axes is a planar zero
set because it is the Cartesian product of a point (it's a linear zero set) and R,
{#) What about a line that is not parallel to a coordinate axis?
(b) What is the situation in higher dimensions?

. The proof of Lemma 11 was done in the plane. The kev insight was that a

square § contains a disc A such that mA/mS > 1/2, Find a corresponding
inequality in n-space and write out the n-dimensional proofs of the lemma and
Theorem 9 carefully.

Prove that every closed set in B or B" is a (Gz-set. Does it follow at once that
every open set is an F-set? Why?

Complete the proofs of Theorems 16 and 21 in the unbounded, n-dimensional
case. [Hint: How can you break an unbounded set into countably many disjoint
bounded pieces?|

Show that inner measure is translation invariant. How does it behave under
dilation? Under affine motions?

Prove that R% Q is an Fys-set but not an F,-set. [Hint: Baire.] Infer that
T & Fas. You can google “Descriptive Set Theory” for further inequalities like
this.

Theorem 16 implies that if £ is measurable then its inper and outer measures
are equal. Is the converse true? [Proof or counterexample.|

For an arbitrary set M define w : 24 — [0,2¢] as w(5) = #(5), where 2M
is the power set of M (the collection of all subsets of M) and #(5) is the
cardinality of 5. Prove that w is an abstract outer measure and all sets § C M
are measurahle. [This is counting measure. It makes frequent appearances
in counterexamples in abstract measure theory.|

The outer Jordan content of a bounded set A © R is the infimum of the
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total lengths of finite coverings of A by open intervals,

J*A = inf {Z [Ig| : each Iy is an open interval and A C I:I fk} ;
k=1 k=]

The corresponding definitions of outer Jordan content in the plane and n-space
substitute rectangles and hoxes for intervals,
{a) Show that outer Jordan content satisfies
(i) J5@) = 0.
(ii) If A C B then J*A < J*B.
(ifi) If A = YP., Ax then J*A < i J¥A;.
k=1
(b (iii) is called finite subadditivity. Find an example of a set A C [0, 1] such
that A = Uie, Ag. J*Ar = 0 for all k, and J*A = 1, which shows that
finite subadditivity does not imply countable subadditivity and that J*is
not an outer measure.
{¢] Why is it clear that m*A < J®A, and that if A is compact then mA = .J%A?
What about the converse?
(d) Show that the requirement that the intervals in the covering of A be open
is irrelevant.
12. Prove that

J'A = JA = mA

where A is the closure of A.
13. If A. B are compact prove that

JYAUB) + JYAnB) = J'A + J'B.

[Hint: Is the formula true for Lebesgue measure? Use Exercise 12.]
14. The inner Jordan content of a subset A of an interval T is

Jed = |I| = JNI N A).

{a) Show that
JeAd = miinterior A).

(h) A bounded set A with equal inner and outer Jordan content is said to have
content or to be Jordan measurable. and we write J A = JA = J"A,
even though J is not a measure. (Is this any worse than functions with
infinite integrals being nonintegrableT)

i) Infer from Theorem 68 and the Riemann-Lebesgue Theorem that f o
|, | — [0, M) is Riemann integrable if and only if its undergraph is Jordan
measurable, and in that case its Riemann integral equals J{Uf).
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*15.

L.
17.

1tlﬂ-

**19.

wal.

22.

Construct & Jordan curve (homeomorphic copy of the circle) in B* that has
positive planar measure. [Hint: Given a Cantor set in the plane, is there a
Jordan curve that contains it? Is there a Cantor set in the plane with positive
planar measure? {Take ancther look at Section ¥ in Chapter 2.)]
Write out the proofs of Lemmas 23, 24, and 25 in the n-dimensional case,
Write out the proofs of the Measurable Product Theorem (Theorem 21} and
the Zero Slice Theorem [ Theorem 26) in the unbounded. n-dimensional case.
Suppose that E is measurable,

{a) f E € R and ¢ > 0 is given. prove there exists a fat Cantor set F C E

such that mE < m({F) + ¢ [Hint: Review Exercise 2,151,
(b} Do the same i B,
(¢} Do the same in B and B" if E is nonmeasurable but m E > (1. [Hint:
Kg.|

Consider linear Lebesgue measure my on the interval [ and planar Lebesgue
measiure my on the square 12, Construet a meseometry [ — 7, Thus meseome-
try disrespects topology: (1, M([F), my ) is meseometric to (14, M{1%), my). [Hint:
You might use the following outline. The inclusion f % Q = I is injective and
preserves m. You can convert it to a bijection o : % Q = [ by choosing a
countable set L C I Q and then choosing any bijection ag : L = LU (@0 1.
Then you can set afr) = aglr) when r € L and olz) = r otherwise. Why
i# & is a meseonetry? (Already this shows that nonhomeomorphic spaces can
have meseometric measnre spaces.) In the same way there is a mescometry
F:1°5Q° = I, Then let A= 1%Q. Express r € A as a base-2 expansion

E = |0y LG - < . )

nsing the digits 0 and 1. It is unigue since r is irrational. Then consider the
corresponding base-4 expansion

a{r) = ({oaz)lasaq{asag) ...}

using the digits (00), (01), (10), and (11). Prove that a(Ad) = IS Q% and #
preserves measure, Conclude that T = Foaoa~! is a meseometry [ — J2]
Generalize Exercise 1D with R in place of I and then with R" in place of R,
Suppose that U,V € R" are open. If a homeomorphism T : 7 — V' and
its inverse send Lebesgue zero sets to Lebesgue zero sets prove that it is a
Lebesgue meseomorphism (LU MU ), mlp) = (VIM(V), m|y ). [Note that the
homeomorphism T : B — R which sends the fat Cantor set to the standard
Cantor set sends gero sets 1o zero sets but T does not |

UV CR" are open and T : I7 — V is a Lipeomorphism (i.e., a Lipschitz
homeomorphism with Lipschitz inverse) wse Exercise 21 to show that T is a
meseamorphism with respect to Lebesgue measure,
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23. Use Exercise 22 and the n-dimensional Mean Value Theorem to prove that a
diffecmorphism T : U7 = V' is a meseomorphism. [Pay attention to the fact
that [7 and V' are noneompact.]

2. (a) HT:R = R is a continuous meseometry prove that T ks rigid.

(b What if T 15 discontinuous?

(¢} Find a continuons nonrigid meseometry T : B* — R*. [Hint: Divergence.]

25. Let f: R — [0, =) be given.

{a) If J is measurable why is the graph of [ a zero set?

(b) If the graph of f is a zero set does it [ollow that [ is measurable”

**(c] Read about transfinite induction and go to stackecchange to see that there
exists a nonmeasurable function f : [a.b] = [0, 2¢) whose graph is non-
measurable.

i(d) Infer that the measurahility hypothesis in the Zero Slice Theorem (T heo-
remn 26) is necessary sinee every vertical slice graph of the function in ()
is a #ero set (it s just o single point) and vet the graph has positive outer
IHEASTE.

{#) Why can a graph never have positive inner measure?

(f) How does (¢) vield an example of uncountably many disjoint subsets of
the plane, each with infinite outer measure?

(g} What assertion can vou make from (f) and Exercise 197

26. Theorem 35 states that Ty is a meseometry when [ R — [0, 2c) is integrable.
Prove the same thing when f : B = [0,oc) is measurable. What about s
measurable function R" — R? [Hint: Express f as 3, ; fi 3. where the support
of fixis [i — 1,d) 0 Pk — 1,k)). Why is f, 4 integrable and how does this
imply that Ty is a meseometry?]

27. Using the undergraph definition. check linearity of the integral directly for the
two measurable characteristic lunctions, [ = Xp and g = X¢.

28. The total undergraph of f : R = R is Uf = {(x.y) : y < flz)}.

{a) Using undergraph pictures, show that the total undergraph is measurable
if and only if the positive and negative parts of f are measurable,

(b) Suppose that f: R — (0. 2¢) is measurable. Prove that 1/ f is measurable,
[Hint: The diffecmorphism T : (. y) = (2, 1/p) sends US to UL/ f).]

c) Suppose that f.g : K = (0,00} are measurable. Prove that f - g is mea-
surable. [Hint: T : (z.y) = (r,logy) sends Uf and Uy to Ullog f) and
U(logg). How does this imply log fg is measurable. and how does use of
T-':(r,y) — (r,e¥) complete the proof?]

(d) Remove the hypotheses in (a)-(c) that the domain of f, g9 is R,

i(v) Generalize (¢) to the case that [, g have both signs.
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2.

35.

a6,

45,
34,

A function f: M — B is upper semicontinuous if

lim zp =r = limsupflz,) < fir).
- f—s o

(M can be any metric space.) Equivalently. limsup fy < fz.

u—+z

{a) Draw a graph of an upper semicontinuous function that is not continuous.

(b] Show that upper semicontinuity is equivalent to the requirement that for
every open ray (—o2o0,a), the preimage fM"™(—o0, a) is an open set.

(e) Lower semicomtinuity is defined similarly. Work backward from the fact
that the negative of a lower semicontinuous function ks upper semicontin-
uous to give the definition in terms of lim infs.

Given a compact set K C R x [0, o) define

gla)'= {nm{y‘- (4] € K iI'EHF; « R)#0
0 ot herwise,

Prove that g is upper semicontinuous.

. Prove that a measurable function f is sandwiched as u < f < », where u is

upper semicontinuous. ¢ is lower semicontinuous, and @ — u has small integral.
(Hint: Exercise 30 and regularity.]

. Prove Proposition 8.

Suppose that fi @ [a.b] = R" converges almost everywhere to [ as k — oc.
(a) Verify that the Dominated Convergence Theorem fails if there is no inte-
grable dominating function g.

(b} Verify that the inequality in Fatou's Lemma can be strict,

If fr : R = [0, 2c) is a sequence of integrable functions, f, | f a.e. as n — x,
and [ f, | 0. Prove that f = 0 almost everywhere.

Find a sequence of integrable functions fj : Ja, 8 = [0. 1] such that _||'uh fe =0
as k — oo but it is not true that fi{z) converges to 0 a.e.
Show that the converse to the Dominated Convergence Theorem fails in the
following sense: There exists a sequence of functions fi : [a, b = [0, 20) such
that fi — 0 almost evervwhere and [:_,ﬁ, —+ [ as k& — =c. but there is no
integrable dominator g. [Hint: Stare at the graph of f(r) =1/1.]

. Suppose that a sequence of integrable functions fy converges almost everywhere

to f as k — oc and f takes on both positive and negative values. If there exists
an integrable function g such that for almost every r we have |fi{x)| < glz).
prove that [ fp — [ f as k = 2.

If [ and g are integrable prove that their maximum and minimum are integrable,
Suppose that f and g are measurable and their squares are integrable. Prove



Exercises Lebesgue Theory 455

40.

41.

*43.

that fg is measurable, integrable, and

[Hint: Exercise 28 helps.]

Find an example where Exercise 39 fails if “square integrable” is replaced with
“integrahle.”

Suppose that fi is a sequence of integrable functions and ¥, [ |fi| < 0o, Prove
that 3 fe is integrable and

f M ho=) f Te
k=1 k=1
Prowe that

= 1 2 3 41 #
juﬂalmﬁ:]_i-r-i_ﬁ-kﬁ_m*h-"

Prove that gly) = [;* e ® sin{x + y) dr is differentiable.

. Write out the proof of the multidimensional Cavalieri's Principle { Theorem 349).
. As in Corollary 41 we say that a function f : R — R is preimage measurable

if for each a2 € R the set fP™®{[a,)) = {r € R : a £ f(r])} i& Lebesgue
mensurable. This is the standard definition for measurabilily of o function.
Prowve that the following are equivalent conditions for preimage measurahility
of f:R—+R.

{a) The preimage of every closed ray [a, 2¢) is measurable.

(b) The preimage of every open ray (o, o0) 1s measurable,

{¢) The preimage of every closed ray (—2c, 4 s measurable.

(d) The preimage of every open ray (—20,a) is measurahle.

{¢] The preimage of every half-open interval |a, b) is measurable.

(f} The preimage of every open interval (a, b) is measurahle.

(g) The preimage of every half-open interval (e, b] is measurable.

(h} The preimage of every closed interval [a, b] is measurable,

(i} The preimage of every open set s measurable,

(j] The preimage of every closed set is measurable.

{k} The preimage of every (55-set is measurable.

{1} The preimage of every Fy-set is measurable.
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*46. Here is a trick question: “Are there any functions for which the Riemann in-

=47,

*d8.

tegral converges but the Lebesgue integral diverges™ Corollary 70 wounld sug-
gest the answer is “no.” Show. however, that the improper Riemann integral

_||'|._|1 flx)dr of

Teinl. im0
Jm=¢ " F
{} il = = ()

exists [and is finite) while the Lebesgue integral is nfinite. [Hint: Integration
bw parts gives

i I o
- cos = i,
a h r

Why does this converge to a limit as a — "7 To check divergence of the
Lebesgue integral, consider intervals [1/(& 4 1), 1/k]. On such an interval the
sine of 7/r is everywhere positive or evervwhere negative. The cosine is +1 at
one endpoint and —1 at the other. Now use the integration by parts formula
again and the fact that the harmonic series rliﬂl-rgﬁ.]

A nonnegative linear combination of measurable characteristic functions is a
simple function. That is.

L S T
— sin—dr = 1 cos —
w

I F i U o

PT) = Z ci - XE,{x)
i=1
where £y, ..., E,, are measurable sets and ¢, ..., 'y Are NONRegative constants.

W say that 3 eix g, “expresses” ¢. If the sets E; are disjoint and the coefficients
e are distinct and positive then the expression for & is called canonieal.
{a) Show that a canonical expression for a simple function exists and is unique.
(b) It is obvious that the integral of ¢ = Y ¢;Xg, (the measure of its un-
dergraph) equals % cym( E;) if the expression is the canonical one, Prove
carefully that this remains true for every expression of a simple function.
() Infer from (b) that [o+ ¢ = [o+ [ ¢ for simple functions.
[d) Given measurable f. g : B — [0, 2¢). show that there exist sequences of
simple functions ¢, T f and ¢, T g as n = oo,
(e} Combine (¢} and {d) to revalidate linearity of the integral.
In fact this is often how the Lebesgue integral is developed. A “preintegral”
is constructed for simple functions. and the integral of a general nonnegative
measurable function is defined to be the suprenmm of the preintegrals of lesser
simple functions.
The Devil’s ski slope. Recall from Chapter 3 that the Devil's staircase funetion
H : [0,1] = [0, 1] iz continuous, nondecreasing, constant on each interval com-
plementary to the standard Cantor set. and yet is surjective. For n € & and
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*49.

*50.

Ba.
il

r € [0,1] we define H{zr + n) = H{r) + n. This extends H to a continuous
surjection & = R. Then we set

Hy(r) = H(3*z) and J{z)= E HZEI]_
k=il

Prove that J is continuous. strictly increasing, and vt J' = 0 almost every-
where. [Hint: Fix a > () and let

8, = {z: J(z) exists. J'(x) > a, and

r belongs to the constancy intervals of every Hy ).

Use the Vitali Covering Lemima to prove that m*(S,) = 0.

Prove that f : B = E 5 Lebesgue measurable if and only if the preimage of

every Borel set is a Lebesgue measurable. What about f: R" — R?

(a) Prove Corollary 67: Each measurable £ C R with mE > () contains a

nonmeasurable set N with m*N = mE, m N = 0, and for each measurable
E' ¢ E we have m{E') = m¥{NNE"). (N is a “doppelgnger” of E.) [Hiut:
Tey N = PN E when £ < [0.1) and P is the nonmeasurable set from
Theorem 66.]

(b} Is N uniquely determined (modulo a zero set) by E7?

. Generalize Theorem it and Exercise 50 to B". [Hint: Think about P = P and

its complement in 1]

Remark There are even worse situations. R" is the disjoint union of #R sets
like . This fact involves “Bernstein sets” and transfinite induction, See also
Exercise 25.

Prove Corollary 50 from Theorem 44,
Consider the function f : B? = R defined by

1 .
- fd<zgy<l
)

fla.y) = _—: fhcy<r<l
H .5
1] otherwise,

{a) Show that the fterated integrals exist and are finite (calculate them) but
the double integral does not exist.
(b) Explain why (a) does not contradict Corollary 43.
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6d. Do (A) or (B). but not both.
(A) (a) State and prove Cavalieri's Principle in dimension 4.
(b) Formulate the Fubini-Tonelli theorem for triple integrals and use (a)
to prove it.
(B) {(a) State Cavalieri’s Principle in dimension n + 1.
(b) State the Fubini-Tonelli Theorem for multiple integrals and use (a) to
prove it
How short can you make vour answers?
B5. (a) What are the densities (upper, lower, balanced, and general) of the disc
in the plane and at which points do they occur?
{b) What about the densities of the square?
***(c) What about the densities of the fat Cantor set?
6. Suppose that P < R has the property that for every interval (a,b) C B we have

mA{Piab)) 1
b=a =3

(a) Prove that P is nonmeasurable. [Hint: This is a one-liner.|
(b} Is there anvthing special about 1/27
87. Formulate and prove Steinhans’ Theorem (Theorem 64) in n-space.
58, The balanced density of a measurable set E at r is the limit. if exists, of the
concentration of E in B where B is a ball centered at r that shrinks down to
Z. Write Spafanced (7, E) to indicate the balanced density, and if it is 1, refer to
r as a balanced density point,
{a) Why is it immediate from the Lebesgue Density Theorem that almost
every point of E is a balanced density point?
(b) Given o € [0,1]. construct an example of a measurable set £ C R that
contains a point r with dpgaseed(z. E) = a.
{e) Given o € [0,1]. construct an example of & measurable set E C R that
contains a point r with 4(x, E) = a.
**(d) Is there a single set that contains points of both types of density for all
a £ [0,1]7
59, Prove that the density points of a measurable set are the same as its halanced
density points. [Hint: Exercise 62 is relevant.]

*fi). Density is defined using cubes € that shrink down to p. What if p need not
belong to @@, but its distance to ) is on the order of the edgelength § of Q7
That is, d{p, Q) < K{ for some constant K as § — 0. () is a satellite of p.)
Da we get the same set of density points”

*61. As indicated in Appendix F. I' € R" is K-quasi-round if it can be sandwiched
between balls B < (7 © B such that diam B' < K diam 8.

(a) Prove that in the plane, squares and equilateral triangles are {uniformly)
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guasi-round. [The same K works for all of them. )
(b) What about isosceles trianglesT
{e] What about annuli of inner radius r and outer radius R such that B/r <
10, and what about balanced density for such annuli? [Hint: Draw a
picture. |
(d) Formulate a Vitali Covering Lemma for a Vitali covering V of A © B? by
uniformly guasi-round sets instead of discs.
{e) Prove it.
if) Generalize to R".
[Hint: Review the proof of the Vitali Covering Lemma, |
*62. Consider a measure-theoretic definition of K-quasi-roundness of a measurable
WCR" as
diam( )"
mW
(a) What is the relation between the two definitions of quasi-ronndness”
{h) Fix a point p € R" and let Wy be the familv of measurable sets containing
p which are K-quasi-round in the measure-theoretic sense, Prove that p
is a density point of a measurable set E if and only if the concentration of
E in W tends to 1 as W € Wy shrinks to p. [Hint: Each W could be a
fat Cantor set, but take heart from the realization that if 90% of a set is
red then 10% of it is quite pink.|
fid. Let E C R" be measurable and let r be a point of #E, the topological boundary
of E. (That is. x lies in both the closure of E and the closure of E*.)
{a) Is it true that if the density & = 8(r, E) exists then 0 < 4 < 17 Proof or
counterexample,
(b) Is it true that if & = &({x. E) exists and 00 < 6 < 1 then r lies in dET Proof
ar I!l'.lll]'ITF'H'IH.l!IP]E.
{r] What about balanced densitv?
fid. Choose a pair of derivates other than the right max and left min. If f is
monotone write out a proof that these derivates are equal almeost everywhere,
5. Exercise 3.34 asks vou to prove that the set of critical values of a €' function
f:R = Ris a zero set. (A critical point of f is & point p such that f'(p) =0
and a critical value of f is a g € R such that fp = q for some critical point p.)
Give it another try.
(a) What are the critical points and critical values of the function sin x?
(b) If f : [a,b] — R is O why are the sets of critical points and critical values,
cpl f) and ep( f), compact”
(¢} How can you cover cv( f) with finitely many intervals of small total length?
[Hint: Mean Value Theorem as an inequality.]
{d} How can you go from [a, b 1o R?

< K.
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66. Construet a monotone function f @ [0, 1] = B whose discontinuity set is exactly
the set 1[0 1]. or prove that such a function does not exist,

#67. In Section 10 the total variation of a function f : [a. b = R is defined as the
supremum of all sums 30 |Af|. where P partitions [, b into subintervals
[#i-1, =) and A f = fiz,) = flri—1). Assume that the total variation of f is
finite (ie. [ is of bounded variation) and define

T =g i

: -I.p{gm. .FI}
P{:ﬁ?g}{gﬁifiﬁi.réﬂ}
J‘u’f:—i]{:}'{g a.,f::a.f::ﬂ}

where P ranges through all partitions of [a, ). Prove that

(a) fis bounded.

(b} T, Py, NI are monotowe nondecressing functions of r.

(c) T3 = P; + N.

{d) flz) = fla) + PF = NZ.

*G8. Asswmne that f: e, b = B has bounded variation. The Banach indicatrix is
the function
¥ = Ny = #7(w).

Ny is the number of roots of f = y. The horizontal line [a.b] x y meets the
graph of f in N, points.

(a) Prove that Ny < oc for almost every .

(b} Prove that y — N, is measurable.

{¢]) Prove that
T = jd.\’l_,dg
.

where ¢ < inin § and max [ < o

*68. (a) Assume that A, T A as n — oc but do not assume that 4, is measurable.
Prove that m*4, — m*A as » — 2. (This is upward measure continuity
for outer measure, [Hint: Regularity gives Gg-sets Gy, 2 Ay, with m(Gy,) =
m*Aq), Can you make sure that 7, increases as n = 2? If so. what can
you say about &= JG,7)

(b) Is upward measire continnity true for inner measure? [Proof or counterex-
ample.|

() What about downward measure continuity of nner measure?  OF outer
measure?
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*70. Let A C R™ be arbitrary, measurable or nonmeasurable,
{a}) Prove that the hull and kernel of A are unique up to zero sets,
(b} Prove that A “spreads itself evenly” through its hull in the sense that for
each measurable E we have m*(ANE) = m(HsN E).
() Prove the following version of the Lebesgue Density Theorem. For almost
every p e My we have

e BAROREL o

Qlp mi}

[Hint: Review the proof of the Lebesgue Density Theorem. Taking E = @
in (b) is useful in proving (¢).]

T1. True or false: If H 4 is o measurable hull of A then 4% A is a zero set.

T2, If N is a doppelgnger of o measurable set E {Corollary 67 and Exercise 50} prove
that E is a measurable hull of N. (Thus N is ssanething like a “nommeasurable
kernel of E.")

*73. Prove that the outer measure of the Cartesian product of sets which are not
necessarily measurable is the product of their outer measures. [Hint: If H 4 and
Hy are hulls of A and 8 use the Zero Slice Theorem to show that their product
Isahullof A x B

*T4. What about the inper measure of a product”

5. Ohserve that under Cartesian products, measurable and nonmmeasurable sets
act like odd and even integers respectively.

(a) Which theorem asserts that the product of measurable sets is measurahle”
(Odd times odd iz odd.)

(b} Is the product of nonmeasurable sets nonmeasurable? (Even times even js
eVerL.

(¢} Is the product of a nonmeasurable set amd a measurable set having nonzero
messure always nonmeasurable? (Even times odd is even.)

(d) Zero sets are special. They correspond to the number zero, an odd number
in this imperfect analogy. (Zero times anvthing is zero.)

*76. Exercise3.18 asks you to prove that given a closed set L © R. there is a
function 3 : B = [0, 0c) whose zero locus {r : J(x) = 0} equals L. Give it
another try. Can you also do it in B"?

77. Suppose that F < [0, 2] is a fat Cantor set of measure 1. Prove that there is
a O™ homeomorphism b : B =+ R that carries [0, 2] to [0, 1] and sends F to a
Cantor set AF of measure zero. [Hint: Use a 3 from Exercise T6 and a constant
¢ to define hr as r_j'rf A(t)dt. How does Exercise 3.34 help?]

TH. Suppose that f: R — [0, o¢) is Lebesgue measurable and g : [0, 2} = [0, 2¢) is
manotone or continuous. Prove that g o f is Lebesgue measurable. [Hint: Use
the preimage definition of measarability and Exercise 45.]
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T9. (a) For a bijection h verify that X4 = Xpq0 b

(b) Let & : B =+ R be the smooth homeomorphism supplied by Exercise 77.
Why does F contain a nonmeasurable set P and why is AP measurahble?

(e} Why is the nonmeasurable function Xp the composition Xpp e h.

(d) Infer that a continuous function following a Lebesgque measurable function
is Lebesgue measurable {Erercise 78) but a Lebesgue measurable function
fellowing a comtinuous (or even smooth) function may fail to be Lebesque
tneasurable,

B0 Let k: [0,2] = [0,1] be the smooth homeomorphism supplied by Exercise 77

and let P C F be nonmeasurable. Set f,(x) = 0 for all n, r.

(a) Is it true that the functions f, are Borel measurable and converge almost
everywhere to X,p?

ib) Is xpp Lebesgue measurable?

(] Is Xpp Borel measurable?

(d) Infer that if a sequence of Borel measurable functions converges almost
everywhere to a limit function then that limil function may fail to be Borel
meensurahie,

81. Improve the Average Value Theorem to assert that not only is it true that for
almost every p the average qudm = f(p) as @ | p. but actually for almost
every powe haove

gﬂﬁu—mm e

[Hint: Apply the Average Value Theorem to each of the countably many fune-
tions |f — r| where r € Q]

**82. Use the Improved Average Value Theorem from Exercise Bl to give a second
proof of Lusin's Theorem that does not use countable bases or preimage mea-
surability.

B3, Suppose that (f) is a sequence of measurable functions that converge almost
everywhere to f as & — o,
{a) Formulate and prove Egoroff's Theorem if the functions are defined on a
hox in n-space,
(b} Iz Egoroff’s Theorem true or false for a sequence of functions defined on
an an unbounded set having finite measure?
(¢} Give an example of a sequence of functions defined on ® for which Egoroff's
Theorem fails.
{d) Prove that if the functions are defined on R" and ¢ > 0 is given then there
i# an ¢-2t 5 C R" such that for each compact K C R", the sequence of
functions restricted to K M S5° converges nniformly.
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B4, Why does Lusin's Theorem imply that if f: I —= R is measurable and & © B"
is bounded then f is nearly uniformiy continnons? What if 1 is unbounded
bt has finite measure?”

*85. Show that nearly uniform convergence is transitive in the following sense, As-
sume that f, converges nearly uniformly to f as m = oo, and that for each fixed
n there is a sequence f, ¢ which converges nearly uniformly to f, as & = oo
(All the functions are measurable and defined on [ab].)
(a) Show that there = a sequence k(n) — oo as n — oo such that f, o,
converges nearly uniformly to [ ag n o= o0 In svmbols

mlim nulim = = pulim =,
el e fﬁ-k Jf ey .rrl.kl:n] Jr

{b) Why does (a) remain true when almost evervwhere convergence replaces
nearly uniform convergence? [Hint: The answer is one word |
(e} Is {a) true when R replaces [a, b7
{d) Iz (b} true when R replaces |a, b]?
Bi. Consider the continmnous lunetions

fuplx) = (cos{mnle))*

for kome M and r e R
{a) Show that for each r € R,

o, i Jra(x) =afz)

the characteristic function of the rationals,
(b) Infer froon Exercise 24 in Chapter 3 that there can not exist a sequence
Jokin) converging everywhere as n — oo.
{¢] Interpret (b) to say that evervwhere convergence can not replace almost
evervwhere convergence or nearly uniform convergence in Exercize 85,
B7. (a) Prove that the measure-theoretic boundary of a measurable set E is con-
tained in its topological boundary, &, (E) © JE.
(k) Construct an example of a continuous function f @ la, 8 = [0, M] such
that @(USf) £ d,(Uf). [Hint: A picture is worth a thousand formulas.]
88. Generalize Theorem 68 to functions of several variables, That is. prove that a
bounded nonnegative function defined on a box in n-space is Riemann integrable
if and only if the topological boundary of its undergraph is a zero set.
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**89. The L'-norm of the integrable function f @ [a, 6] — Ris || [l = [|f]. This gives
a metric on the set L of integrable functions |o.b] = R oas dp(f. ) = ||f - g]-
We say that f, — g L'-converges 1o g if ||f, - gl =+ 0.

{a) Prove that L is & complete metric space.

(b) Prove that K is dense in L where R is the set of Riemann integrable
functions,

{c} Infer that L is the completion of R with respect to the Ll-metric. (This
constructs Lebesgue integrals with minimal reference to Lebesgue mea-
snre. )

{d) What happens if we replace [o. b with a box in B"?

**00. A theory of integration more general than Lebesgue's is due to Arnand Den-
jov. Rediscovered by Ralph Henstock and Jaroslay Kurzweil, it is described
in Hobert McLeod's book, The Genemlized Riemann Integral. The definition
is deceptively simple. Let f: [a.b] = K be given, The Denjoy integral of
f, b it exists, is a real number [ such that for each e > 0 there is a fanction
& : [a,b] = (0,00} and

S ft)An—1 <«
k=1
for all Riemann sims with Az, < #8(tg), k= 1,....n. (McLeod refers to the
function 4 as a “gange” and to the intermediate points f; as “tags".)
(a) Verifv that if we require the gange 4(1) to be contimons then the Denjoy
integral reduces to the Riemann integral.

(h) Verifv that the function

1

— ifl < 1
fly=gvE UE

10 =10

has Denjoy integral 2. [Hint: Construct gauges 8(t) such that 4(0) > 0
but lim &(t) = 0.]

£=s{l4
() Generalize (b) to include all functions defined on o, & for which the im-

proper Riemann integral is finite.

() Infer from (¢) and Exercise 46 that some functions are Denjoy imtegrable
but not Lebesgue integrable,

(@) Read McLeod's book to verify that every nonnegative Denjoy integrable
function is Lebesgue integrable and the integrals are equal; and every
Lebwsgue integrable function is Denjov integrable and the integrals are
equal. Infer that the difference between Lebesgue and Denjov corresponds
to the difference between absolutely and conditionally convergent series

if f is Lebesgue integrable, so is [f]. but this is not true for Denjoy
integrals,
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**01. Four types of convergence of a sequence of measurable functions (f,,) are: Al-
most everywhere convergence, L' convergence. nearly uniform convergenoe, and
convergence in measure, This last type of convergence requires that for each
€ = (1 we have

m({z : | fulz) = glz)| > €}) = 0

as n — 20. Consulting the tetrahedron in Figure 159, decide which oriented
edges represent implications for sequences of functions defined on [a, b, on R,
or represent implications on neither [a, b nor R.

LI

1.,

in measure

Figure 159 You might label an edge that represents implication only for
functions defined on [o, b with a single arrow, but use a double arrow if the
implication holds for functions defined on B, For example, how should vou

label the edge froan aee, to oo

**02. Assume that the (unbalanced) density of E exists at every point of R, not merely
at almost all of them. Prove that up to a zero set, E=R.or E={. (Thisis a
kind of measure-theoretic connectedness, Topological connectedness of
is useful in the proof.) 1= this also true in B"?

5403, [Speculative] Density seems to be a first-order concept. To say that the density
of £ at ris 1 means that the concentration of E in a ball B containing r© tends
tolas B | r. That is,

m(B) - m(E N B)
mi

But how fast can we hope it tends to 07 We could call © a double density
point if the ratio still tends to 0 when we square the denominator, Interior
points of E are double density points. Are such points comion of searce o 8
messurable set? What about balanced density point=s? What about fractional
powers of the denominator?

=+ .






Suggested Reading

There are many books on more advanced analysis and topology, Among my favorites
in the “not too advanced” category are these.

L.

Kenneth Falconer, The Geometry of Fractal Seis.

Here vou should read about the Kakeva problem: How much area is needed
to reverse the position of a unit needle in the plane by a continnous motion?
Falconer also has a couple of later books on fractals that are good.

. Thomas Hawkins, Lebesque's Theory of Integrafion.

You will learn a great deal about the history of Lebesgue integration and anal-
vais arodnd the turn of the last century rom this book. including the fact that
many standard attributions are meorrect. For instance, the Cantor set shonld
be called the Smith set: Vitali had many of the ideas credited solely to Lebesgue,
ete, Hawkins' book is a real gem.

John Milnor, Topology from the Differentiable Viewpoint.

Milnor s one of the clearest mathematios writers and thinkers of the teentieth
century. This is his most elementary book. and it is only seventy-six pages long.

. James Munkres. Topology. a First Course.

This is a first-vear graduate text that deals with some of the same material vou
have been studying.

Robert Devaney, An Mmtroduction to Chaotic Dynamical Systems,

This iz the book you should read to begin studyving mathematical dynamics, It
is first rate

One thing vou will observe about all these books - they use pictures to convey
the mathematical ideas. Beware of books that don't.

(€) Springer International Publishing Switzerland 2015 46T
C.C. Pugh, Real Mathernabical Analysis, Undergraduate Texts
in Mathematics, DO 10,1007 /978-3-3149-17771-7
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' Mean Value Theorem, 289
O A-test, 207

C" equivalence, 302
C" norm, 296
Fa-sov, 201, 308
Crg-set. 2001, 308
L'-convergence, 464
L'-norm. 464
m-Holder, 205
feddense, 265
e-chain. 131
e-principle, 21
a-algebra., 3809
q-rompact. 262
acompact, 268
f-translation. 411
k-chain, 342

padic metric, 136
peseries. 194
r-nedghborhood, G8
t-advance map. 246
Iyp-area, 320

(e, d-condition, 65

absolute continnity, 429
absolute convergence, 192, 217
absolute property. 85

abstract outer measure, 389
abuse of notation. 7
aceumulation point, 92
acldress string, 107

acdheres, 65

aleph null, 31

algebraic munber, 51
almost every, 407

almost everywhere, 175
alternating harmonic series. 196G

alternating mmltilinear functional. 352

alternating series, 195
ambicntly diffeomorphic, 378
ambiently homeomorphic, 115
analytic. 158, 248

Analvticity Theorem, 250)

Antiderivative Theorem. 185, 4351

Antoine's Necklace, 117

arc. 131

area of A rectangle, 384
argument by contradiction, 8

Arzeli-Ascoli Propagation Theorem. 227

Arzela-Ascoli Theorem, 224
ascending k-tuple, 333
associativity, 14, 335
average derivative, 280

Average Integral Theorem. 426
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Baire class 1. 201 cell, 328

Baire's Theorem, 256 center of a starlike set. 130
balanced density, 422, 458 chain connected, 131
Banach Contraction Principle, 240 Chain Rule, 150, 285
Banach indicatrix, 464 Change of Variables Formula. 319
Banuch space, 206 characteristic fanction, 171
basic form. 341 Chebyshev Lemma, 434
Bernstein polvnomial, 229 class C7. 158, 205
hijection, 31 class O™, 205

bilinear, 287 clopen, 67

block test. 208 closed form. 347
Bolzano-YWeierstrass Theorem, S0 closed neighborhood, 94
Borel measurability. 443 closed set. 86

Borel's Lemma, 267 closed set condition, 72
boundary, 92, 141 closure, 70, 92

boundary of a k-cell, 343 cluster point. 92, 140

hounded above, 13

bounded function, 98, 261

bounded linear transformation. 279
bounded metric, 138

bomndied set. 97

co-Canchy, 119

codomain. 30

coberent labeling. 110
common refinement, 168
cominitative disgram, 302
compact. 79

comparable norms, 366
Comparison Test, 192
complement., 45

bounded variation, 438

box, 26

Brouwer Fixed-Point Theorem. 240, 353
bump function, 200

Cantor function, 186 complete, 14, T8

Cantor Partition Lemma, 113 completed undergraph. 407
Cantor piece, 112 Completion Theorem, 119
Cantor set, 105 complex analytic, 251
Cantor space, 112 complex derivative, 360
Cantor Surjection Theorem, 108 composite, 41

cardinality, 31 cotcentration. 422

Cauchy completion, 122 condensation point, 92, 140
Cauchy condition. 18, 77 cotdition mumbaer, 361
Canchy Convergence Criterion, 19, 191 conditional convergence, 192, 464
Canchy product, 210 cone map, 349

Canchy sequence, 77 cone on & metric space, 135
Cauchy-Binet Formula, 3349, 363 connected, B6
Cauchy-Riemann Equations, 360 connected component. 147
Canchy-Schwarz Inequality, 23 conorm, 281, 366

Cavalieri’s Principle, 318, 414 continuity in a metric space, 61
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continuonsly differentiable, 157 differentiable function, 149, 151
Coutimonm Hypothesiz, 31, 137, 145 differential 1-form, 327
contraction, weak contraction, 240, 266 differential quotient, 149
convergence, 18, 60, 191 differentiation past the integral, 290
convex, 20 dipole, 343
convex combinations, 27, 49 directional derivative, 364
convex function, 49 disconnected, 86
convex hull, 115 discontinmity of the first, second kind, 204
countable, 31 discrete metric, 58
countable additivity, conmable subaddi- disjoint, 2
tivity, 384 distanee from a polnt to a set, 130

cotntable additivity, subadditivity, 380 distance function, 58
countable base, 141, 406, 447 divergence of a series, 191
counting measure, 450 divergenee of a vector field, 346
covering, s division of & metric space, 100
COVETInG compact, B8 dorain, )
critical point, critical value. 204, 459 Dominated Convergence Theorem. 409
cube, 26 domination of one series by another, 192
Cupeake Theorem. 145 doppelginger, 442
curl, 347 dot product, 22

. donble density point, 465
Darboux continuous, 154 dyadic, 47

Darboux integrable. Darboux integral, 167 dvadic ruler function. 204
de Rham cohomology, 352 '

De Morgan's Law, 45 Egoroff's Theorem. 448
Dedekind cut, 12 embedding, 55

Denjoy integral, 464 empty set, 2

dense, 107 envelope sequences, 408
density point, 422 equicontinuity, 224
denumerable, 31 couivalence relation, equivalence class, 3
dertvate. 434 Euler characteristic, 5
derivative, 149 Euler's Product Formula, 210
derivative (multivariable), 282 exact form. 347

derivative growth rate, 248 expouential growth rate, 194
determinant, 363 extension of a fanction, 129
Dievil's ski ﬁklpf‘. 185, 406 exterior derivative, 337
Devil’s staircase function. 186

diagonalizable matrix, 368 fat Cantor set. 108, 200G
diameter in a metric space, ¥2 Fatou's Lemma. 410
diffecanorphisim. 163, 300 field, 16

differentinbility of order v, 157 Hnite, 31

differentiable (multivariable), 282 finite additivity, 301
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finite intersection property. 134

fixed-point, 47, 240

fHow, 246

Hux, 346

Fréchet derivative, 284

Fubini's Theorem, 316

Fubini-Tonelli Theorem. 416

hanection, 29

function algebra, 234

functional, 328

Fundamental Theorem of Caleulus, 183,
426

Fundamental Theorem of Continuons Fune-

tions, 41

gap interval, 108, 112

Craiss Divergence Theorem. 346
Generalized Heine-Borel Theorem, 103
generic, 250

EeMnetric series, 191

gradient, 311

grand intersection, 134

greatest lower bound, 47

Green's Formula, 346

growing steeple, 214

Halder condition, 195

Hahn-Mazurkiewicz Theorem. 143

Hairv Ball Theorem, 381

harmonic series. 192

Hausdorfl metric. 144

Haweadian earring, 132

Hedne-Borel Theorem, 8, 81

Heine-Borel Theorem in a Function Space.
path]

Higher Order Chain Rule, 374

Higher Order Leibaiz Bule, 194

Hilbert cube, 143

homeomorphism, G2

hull, 400

hvperspace, 144

idempotent, 70

identity map, 31

Identity Theorem for analytic functions.
268

image, 30

implicit function, 297

Implicit Function Theorem. 298

improper Riemann integral, 191

inclusion cell, 334

indicator function, 171

infirnum, 17

infinite, 31

inhnite address string. 107

infinite product, 209

infinitely differentiable, 157

Inheritance Principle, T3, 74

inherited metric, 58

inherited topology, T4

initial condition for an ODE, 242

imjection, 3

inner measure, 3584

inner product. inner product space, 28

integer lattice, 24

Integral Test, 193

integrally equivalent. 205

integration by parts, 189

integration by substitution, 189

interior. 92, 140

Intermediate Value Theorem. 40

Intermediate Value Theorem for ', 154

intrinsic property. 85

Inverse Function Theorem, 162, 301

inverse image, T1

isometry, isometric. 126

iterate, 138

Jacobian, 319

Jordan content. 319, 450, 451
Jordan Curve Theorem, 144
Jordan measurable, 451

jump, jump discontinuity, 449, 204

kernel, 400
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L'Hopital's Rule, 153 meager subset, 256
Lagrange form of the Tavlor remainder. mean value property, 151
16 Mean Value Theorem, 151, 288
Lagrange multiplier, 310 messurability, measure. 389
least upper bound, 13 measurable function, 406
Least Upper Bound Property, 14 Measurable Product Theorem. 401
Lebwsgue Density Theorem, 422 measurable with respect to an outer mes-
Lebesgue Dominated Convergence Theo- sure. J80
rem, 408 Measure Continuity Theorem, 392
Lebesgue integrability. Lebesgue integral, measure space, 3497
406 neasure-theoretic connectedness, 465
Lebesgue measurability, Lebesgue measure, measure-theoretic interior, exterior, and
KA boundary. 424
Lebesgue Monotone Comvergence Theo-  Mertens” Theorem, 210
rem. 407 meseometry, 303, 397
Lebesgue number, 100 meseomorphism, 393, 397
Lebesgue outer measure, 383 mesh of a partition, 164

Lebesgue’s Antiderivative Theorem. 431 metric space, metric subspace. 57, 58
Lebesgue's Fundamental Theorem of Cal- - middle-gquarters Cantor set, 203

culus, 426 middle-thirds Cantor set, 105
Lebesgue's Main Theorem, 430, 439 minimnn streteh, 366
Leibniz Rule, 149, 285 maodulus of continuity, 264
length of a vector, 23 Monotone Convergence Theorem, 407
length of an interval, 383 monotonicity, 125
limnit, G5 Moore-Kline Theorem. 112
limit point, G5 Morse-Sard Theorem, 204
limit set, G8 multilinear functional, 352
linear transformation, 277
Lipeomorphism, 452 name of a form, 327
Lipschitz condition, 244 natural mumbers, 1
locally path connected, 143 nearly continuous, 447
locally path-connected, 132 nearly uniform convergence. 448
logarithm function. 186 neighborhoaod. 70
lower Lebesgue sum, 440 nested sequence, 81
lower sum, lower integral, 166 porim, norimwed space, 28, 270
Lusin's Theorem, 447 nowhere dense. 107

magnitude of a number. of a vector, 16, ODE. 242

23 one=to-one, Ml
Manhattan metric. 76 onto, 3
nap, mapping. 29 open covering, 98

maximum stretch, 279 open mapping. 127
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oprenn st GG

open set condition, 72
operator norim, 279

orbit. 138, 441

ordersd beld, 16

orthant, 24

oscillating discontinuity, 206
oscillation, 177

outer measure, $H3

parallelogram law, 53

partial derivative, 284

partial product, 21

pertial sum. 191

[rartition, 113

partition pair. 164

patches. 99

path, path-connected, 90

Peano curve, 112

Peano space. 143

perfect, 14

Picard's Theorem, 244

pieee of A compact metric space, 104
pievewise continuous function, 172
Poinearéd Lemma, 348

pointwise convergence, pointwise limit, 211
pointwise equicontinmity, 224, 261
Polar Form Theorem, 362

positive definitepess, 58

predrage, 71

preimage measurability, 416
proper subset, i

pullback. pushforward. 338

quasi-ronnd. 449

Rademacher's Theorem, 206, 438
Radins of Convergenee Theorem. 197
ramnge, S

rank. Hank Theorem, 301, 303

Ratio Mean Value Theorem. 152
Ratio Test, 195

rational cut, 13

rationial numbers, 2

rational ruler function, 173

real pumber, 12

rearrangement of a sequence, 126

rearrangenent of a series, 29

reduction of a covering, 98

Refinement Principle. 168

regnlarity hierarchy, 158

regularity of Lebesgue measure, 3949

regularity sandwich, 3099

retraction, 353

Riemann C-function, 210

Riemann integrability, Riemann integral,
164

Hivmann measurable, 319

Hivmann sum, 164

Riemann's Integrability Criterion. 171

Riemann-Lebesgne Theorem, 175

Root Test, 194

sample points, 164
Sandwich Principle, 173
Sard’s Theorem, 204
satellite, 458

sawtooth function, 254
Schroeder-Bernstein Theorem, 36
seraps, 99

sevond derivative, 291
separable metric space, 141
separates points {fanction algebra), 2044
separation, s

shadow, 330

shear matrix, 320, 368
sign of a permutation. 363
sigmedd ares, S0

signed commutativity, 331
simple closed curve, 144
simple form, 331

simple function. 456
simple region, 377

simply connected, 347
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singleton set, 2

slice, 316, 403, 414

sliding sevamt method. 155
slope over an interval. 434
smooth, 157, 205

solution of an ODE. 242
soinewhere dense, 107
space-filling, 112

spherical shell. 379

staircase curve, 376

starlike, 130, 351

steeple functions, 214
Steinhaus’ Theorem, 441

step function. 172

Stokes' Curl Theorem, 347
Stokes’ Formula for a Cube, 343
Stokes’ Formula for a general cell, 345
Stone-Weterstrass Theorem, 234
subrcovering, 98

subfield. 16

sublinear, 282

sibseqguence, G

sip nocm, 214

support of a function. 200
supremum, 17

surjection, 30

tail of a series, 192

tame, 1106

target, S0

taxicaly metric, TH

Taylor Approximation Theorem, 160
Taylor polynomial, 159

Tavlor series, 161, 248

Tavlor's Theorem, 251

Term by Term Integration Theorem, 219
thick and thin subsets. 256
topological equivalence, 73
tapological property, T1

topological space, 67

topologist's sine circle, 132
topologist's sie cucve, 91

total derivative, 284

total length of a covering. 108, 175, 384
total undergraph, 45

total variation of A function, 438
totally bounded, 106

totally disconnected, 105
trajectory of a vector field. 243
transcendental number, 51
transformation, 20

Triangle Inequality, 16

Triangle Inequality for distance, 24
Triangle Inequality for vectors, 24
trichotomy. 16

trigonoiwtric polyoomial, 238
truncation of an address, 107

ultrametric, 136

unbounded set, 97

uncountable, 31

undergraph. 164, 406

uniform € convergence, 205
uniform continuity, 52, B

uniform convergence, 211, 217
nniform eqguicontinuity, 261

it ball, sphere, 26

nnit eube, 26

universal compact metric space, 108
upper semicontinuity, 147, 275, 454
upprer sum, upper integral. 166
utility problem. 144

vanishing at a point (function algebra).
234

viector feld, 243, 346

vector ODE, 242

Vitali covering, 418

Vitali Covering Lemma, 418, 422

wedge product, 34

Weierstrass Approximation Theorem, 228
Weierstrass M-test, 217

wild, 117
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Zeno's staircase function, 174
zero locus, 268, 461

gero set, 108, 175, 315, 386
Zero Slice Theorem, 403

zeroth derivative, 157
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