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Preface to the First Edition. 

This text grew out of my lecturing the Graduate Probability sequence 
STA 211 IF / 221 IS at the University of Toronto over a period of several 
years. During this time, it became clear to me that there are a large number 
of graduate students from a variety of departments (mathematics, statistics, 
economics, management, finance, computer science, engineering, etc.) who 
require a working knowledge of rigorous probability, but whose mathemat
ical background may be insufficient to dive straight into advanced texts on 
the subject. 

This text is intended to answer that need. It provides an introduction 
to rigorous (i.e., mathematically precise) probability theory using measure 
theory. At the same time, I have tried to make it brief and to the point, and 
as accessible as possible. In particular, probabilistic language and perspec
tive are used throughout, with necessary measure theory introduced only 
as needed. 

I have tried to strike an appropriate balance between rigorously covering 
the subject, and avoiding unnecessary detail. The text provides mathemat
ically complete proofs of all of the essential introductory results of proba
bility theory and measure theory. However, more advanced and specialised 
areas are ignored entirely or only briefly hinted at. For example, the text 
includes a complete proof of the classical Central Limit Theorem, including 
the necessary Continuity Theorem for characteristic functions. However, 
the Lindeberg Central Limit Theorem and Martingale Central Limit The
orem are only briefly sketched and are not proved. Similarly, all necessary 
facts from measure theory are proved before they are used. However, more 
abstract and advanced measure theory results are not included. Further
more, the measure theory is almost always discussed purely in terms of 
probability, as opposed to being treated as a separate subject which must 
be mastered before probability theory can be studied. 

I hesitated to bring these notes to publication. There are many other 
books available which treat probability theory with measure theory, and 
some of them are excellent. For a partial list see Subsection B.3 on page 
210. (Indeed, the book by Billingsley was the textbook from which I taught 
before I started writing these notes. While much has changed since then, the 
knowledgeable reader will still notice Billingsley's influence in the treatment 
of many topics herein. The Billingsley book remains one of the best sources 
for a complete, advanced, and technically precise treatment of probability 
theory with measure theory.) In terms of content, therefore, the current 
text adds very little indeed to what has already been written. It was only 
the reaction of certain students, who found the subject easier to learn from 
my notes than from longer, more advanced, and more all-inclusive books, 
that convinced me to go ahead and publish. The reader is urged to consult 
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other books for further study and additional detail. 
There are also many books available (see Subsection B.2) which treat 

probability theory at the undergraduate, less rigorous level, without the use 
of general measure theory. Such texts provide intuitive notions of probabil
ities, random variables, etc., but without mathematical precision. In this 
text it will generally be assumed, for purposes of intuition, that the stu
dent has at least a passing familiarity with probability theory at this level. 
Indeed, Section 1 of the text attempts to link such intuition with the math
ematical precision to come. However, mathematically speaking we will not 
require many results from undergraduate-level probability theory. 

Structure. The first six sections of this book could be considered to 
form a "core" of essential material. After learning them, the student will 
have a precise mathematical understanding of probabilities and cr-algebras; 
random variables, distributions, and expected values; and inequalities and 
laws of large numbers. Sections 7 and 8 then diverge into the theory of 
gambling games and Markov chain theory. Section 9 provides a bridge 
to the more advanced topics of Sections 10 through 14, including weak 
convergence, characteristic functions, the Central Limit Theorem, Lebesgue 
Decomposition, conditioning, and martingales. 

The final section, Section 15, provides a wide-ranging and somewhat 
less rigorous introduction to the subject of general stochastic processes. It 
leads up to diffusions, Ito's Lemma, and finally a brief look at the famous 
Black-Scholes equation from mathematical finance. It is hoped that this 
final section will inspire readers to learn more about various aspects of 
stochastic processes. 

Appendix A contains basic facts from elementary mathematics. This 
appendix can be used for review and to gauge the book's level. In addition, 
the text makes frequent reference to Appendix A, especially in the earlier 
sections, to ease the transition to the required mathematical level for the 
subject. It is hoped that readers can use familiar topics from Appendix A 
as a springboard to less familiar topics in the text. 

Finally, Appendix B lists a variety of references, for background and for 
further reading. 

Exercises. The text contains a number of exercises. Those very closely 
related to textual material are inserted at the appropriate place. Additional 
exercises are found at the end of each section, in a separate subsection. 
I have tried to make the exercises thought provoking without being too 
difficult. Hints are provided where appropriate. Rather than always asking 
for computations or proofs, the exercises sometimes ask for explanations 
and/or examples, to hopefully clarify the subject matter in the student's 
mind. 

Prerequisites. As a prerequisite to reading this text, the student should 
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have a solid background in basic undergraduate-level real analysis (not in
cluding measure theory). In particular, the mathematical background sum
marised in Appendix A should be very familiar. If it is not, then books 
such as those in Subsection B.l should be studied first. It is also helpful, 
but not essential, to have seen some undergraduate-level probability theory 
at the level of the books in Subsection B.2. 

Further reading. For further reading beyond this text, the reader should 
examine the similar but more advanced books of Subsection B.3. To learn 
additional topics, the reader should consult the books on pure measure 
theory of Subsection B.4, and/or the advanced books on stochastic processes 
of Subsection B.5, and/or the books on mathematical finance of Subsection 
B.6. I would be content to learn only that this text has inspired students 
to look at more advanced treatments of the subject. 

Acknowledgements. I would like to thank several colleagues for encour
aging me in this direction, in particular Mike Evans, Andrey Feuerverger, 
Keith Knight, Omiros Papaspiliopoulos, Jeremy Quastel, Nancy Reid, and 
Gareth Roberts. Most importantly, I would like to thank the many stu
dents who have studied these topics with me; their questions, insights, and 
difficulties have been my main source of inspiration. 

Jeffrey S. Rosenthal 
Toronto, Canada, 2000 
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Preface to the Second Edition. 

I am pleased to have the opportunity to publish a second edition of this 
book. The book's basic structure and content are unchanged; in particular, 
the emphasis on establishing probability theory's rigorous mathematical 
foundations, while minimising technicalities as much as possible, remains 
paramount. However, having taught from this book for several years, I 
have made considerable revisions and improvements. For example: 

• Many small additional topics have been added, and existing topics ex
panded. As a result, the second edition is over forty pages longer than 
the first. 

• Many new exercises have been added, and some of the existing exercises 
have been improved or "cleaned up". There are now about 275 exercises 
in total (as compared with 150 in the first edition), ranging in difficulty 
from quite easy to fairly challenging, many with hints provided. 

• Further details and explanations have been added in steps of proofs 
which previously caused confusion. 

• Several of the longer proofs are now broken up into a number of lemmas, 
to more easily keep track of the different steps involved, and to allow 
for the possibility of skipping the most technical bits while retaining the 
proof's overall structure. 

• A few proofs, which are required for mathematical completeness but 
which require advanced mathematics background and/or add little un
derstanding, are now marked as "optional". 

• Various interesting, but technical and inessential, results are presented 
as remarks or footnotes, to add information and context without inter
rupting the text's flow. 

• The Extension Theorem now allows the original set function to be de
fined on a semialgebra rather than an algebra, thus simplifying its ap
plication and increasing understanding. 

• Many minor edits and rewrites were made throughout the book to im
prove the clarity, accuracy, and readability. 

I thank Ying Oi Chiew and Lai Fun Kwong of World Scientific for facilitating 
this edition, and thank Richard Dudley, Eung Jun Lee, Neal Madras, Peter 
Rosenthal, Hermann Thorisson, and Balint Virag for helpful comments. 
Also, I again thank the many students who have studied and discussed 
these topics with me over many years. 

Jeffrey S. Rosenthal 
Toronto, Canada, 2006 
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1. T H E NEED FOR MEASURE THEORY. 1 

1. The need for measure theory. 

This introductory section is directed primarily to those readers who have 
some familiarity with undergraduate-level probability theory, and who may 
be unclear as to why it is necessary to introduce measure theory and other 
mathematical difficulties in order to study probability theory in a rigorous 
manner. 

We attempt to illustrate the limitations of undergraduate-level proba
bility theory in two ways: the restrictions on the kinds of random variables 
it allows, and the question of what sets can have probabilities denned on 
them. 

1.1. Various kinds of random variables. 

The reader familiar with undergraduate-level probability will be com
fortable with a statement like, "Let X be a random variable which has the 
Poisson(5) distribution." The reader will know that this means that X 
takes as its value a "random" non-negative integer, such that the integer 
k > 0 is chosen with probability P ( X = k) = e~55k/kl. The expected value 
of, say, X2, can then be computed as E(X2) = Yl'kLo k2e~55k/kl. X is an 
example of a discrete random variable. 

Similarly, the reader will be familiar with a statement like, "Let Y be 
a random variable which has the Normal(0,1) distribution." This means 
that the probability that Y lies between two real numbers a < b is given 
by the integral P(a < Y < b) = J^ -^e'^^dy. (On the other hand, 
P ( y = y) = 0 for any particular real number y.) The expected value of, 
say, Y2, can then be computed as E(F 2 ) = f™ooy

2-7=e~v ^2dy. Y is an 
example of an absolutely continuous random variable. 

But now suppose we introduce a new random variable Z, as follows. 
We let X and Y be as above, and then flip an (independent) fair coin. 
If the coin comes up heads we set Z = X, while if it comes up tails we 
set Z = Y. In symbols, P{Z = X) = V{Z = Y) = 1/2. Then what 
sort of random variable is Z? It is not discrete, since it can take on an 
uncountable number of different values. But it is not absolutely continuous, 
since for certain values z (specifically, when z is a non-negative integer) we 
have P(Z = z) > 0. So how can we study the random variable Zl How 
could we compute, say, the expected value of Z21 

The correct response to this question, of course, is that the division 
of random variables into discrete versus absolutely continuous is artificial. 
Instead, measure theory allows us to give a common definition of expected 
value, which applies equally well to discrete random variables (like X above), 
to continuous random variables (like Y above), to combinations of them (like 
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Z above), and to other kinds of random variables not yet imagined. These 
issues are considered in Sections 4, 6, and 12. 

1.2. The uniform distribution and non-measurable sets. 

In undergraduate-level probability, continuous random variables are of
ten studied in detail. However, a closer examination suggests that perhaps 
such random variables are not completely understood after all. 

To take the simplest case, suppose that X is a random variable which 
has the uniform distribution on the unit interval [0,1]. In symbols, X ~ 
Uniform[0,1]. What precisely does this mean? 

Well, certainly this means that P(0 < X < 1) = 1 It also means that 
P(0 < X < 1/2) = 1/2, that P(3/4 < X < 7/8) = 1/8, etc., and in general 
that P(a<X<b) = b — a whenever 0 < a < b < 1, with the same formula 
holding if < is replaced by <. We can write this as 

P([a,b}) = P((a,b}) = P([a,b)) = P ( ( a , b ) ) = b - a , 0 < a < 6 < 1. 
(1.2.1) 

In words, the probability that X lies in any interval contained in [0,1] is 
simply the length of the interval. (We include in this the degenerate case 
when a = b, so that P({a}) = 0 for the singleton set {a}; in words, the 
probability that X is equal to any particular number a is zero.) 

Similarly, this means that 

P ( l / 4 < X < 1/2 or 2/3 < X < 5/6) 

= P ( l / 4 < X < l / 2 ) + P(2/3 < X < 5/6) = 1 /4+1/6 = 5/12, 

and in general that if A and B are disjoint subsets of [0,1] (for example, if 
A = [1/4, 1/2] and B = [2/3, 5/6]), then 

P(AUB) = P(A) + P(B). (1.2.2) 

Equation (1.2.2) is called finite additivity. 
Indeed, to allow for countable operations (such as limits, which are ex

tremely important in probability theory), we would like to extend (1-2.2) to 
the case of a countably infinite number of disjoint subsets: if Ai, A2, A3,... 
are disjoint subsets of [0,1], then 

P(A1UA2UA3U...) = P(Ai) + P(A2) + P{A3) + ... . (1.2.3) 

Equation (1.2.3) is called countable additivity. 
Note that we do not extend equation (1.2.3) to uncountable additivity. 

Indeed, if we did, then we would expect that P([0,1]) = X^gfo ii ^({x})> 
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which is clearly false since the left-hand side equals 1 while the right-hand 
side equals 0. (There is no contradiction to (1.2.3) since the interval [0,1] is 
not countable.) It is for this reason that we restrict attention to countable 
operations. (For a review of countable and uncountable sets, see Subsec
tion A.2. Also, recall that for non-negative uncountable collections {ra}a^j, 
^2a<zj ra is defined to be the supremum of ^2aSJ ra over finite J C I.) 

Similarly, to reflect the fact that X is "uniform" on the interval [0,1], 
the probability that X lies in some subset should be unaffected by "shifting" 
(with wrap-around) the subset by a fixed amount. That is, if for each subset 
A C [0,1] we define the r-shift of A by 

A®r = {a + r; a G A, a + r < 1} U {a + r-1; a £ A, a + r > 1}, (1.2.4) 

then we should have 

P(A®r)=P(A), 0 < r < l . (1.2.5) 

So far so good. But now suppose we ask, what is the probability that X 
is rational? What is the probability that Xn is rational for some positive 
integer n? What is the probability that X is algebraic, i.e. the solution to 
some polynomial equation with integer coefficients? Can we compute these 
things? More fundamentally, are all probabilities such as these necessarily 
even defined? That is, does P{A) (i.e., the probability that X lies in the 
subset A) even make sense for every possible subset A C [0,1]? 

It turns out that the answer to this last question is no, as the following 
proposition shows. The proof requires equivalence relations, but can be 
skipped if desired since the result is not used elsewhere in this book. 

Proposi t ion 1.2.6. There does not exist a definition ofP(A), defined 
for all subsets A C [0,1], satisfying (1.2.1) and (1.2.3) and (1.2.5). 

Proof (optional) . Suppose, to the contrary, that P(A) could be so 
defined for each subset A C [0,1]. We will derive a contradiction to this. 

Define an equivalence relation (see Subsection A.5) on [0,1] by: x ~ y 
if and only if the difference y — x is rational. This relation partitions the 
interval [0,1] into a disjoint union of equivalence classes. Let H be a subset 
of [0,1] consisting of precisely one element from each equivalence class (such 
H must exist by the Axiom of Choice, see page 200). For definiteness, 
assume that 0 ^ H (say, if 0 G if, then replace it by 1/2). 

Now, since H contains an element of each equivalence class, we see that 
each point in (0,1] is contained in the union U (if © r) of shifts of if. 

r-€[0,l) 
T- rational 

Furthermore, since if contains just one point from each equivalence class, 
we see that these sets if © r, for rational r G [0,1), are all disjoint. 
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But then, by countable additivity (1.2.3), we have 

P((0 ,1])= £ P(H®r). 
r e [ 0 , l ) 

r rat ional 

Shift-invariance (1.2.5) implies that P(H © r) = P(H), whence 

I = P((O,ID= Yl p(^)-
r-e[o,i) 

r rational 

This leads to the desired contradiction: A countably infinite sum of the same 
quantity repeated can only equal 0, or oo, or - co , but it can never equal 1. I 

This proposition says that if we want our probabilities to satisfy rea
sonable properties, then we cannot define them for all possible subsets of 
[0,1]. Rather, we must restrict their definition to certain "measurable" sets. 
This is the motivation for the next section. 

Remark. The existence of problematic sets like H above turns out to be 
equivalent to the Axiom of Choice. In particular, we can never define such 
sets explicitly - only implicitly via the Axiom of Choice as in the above 
proof. 

1.3. Exercises. 

Exercise 1.3.1. Suppose that ft = {1, 2}, with P(0) = 0 and P{1,2} = 1. 
Suppose P{1} = \. Prove that P is countably additive if and only if 
P{2} = | . 

Exercise 1.3.2. Suppose ft = {1,2,3} and T is the collection of all sub
sets of ft. Find (with proof) necessary and sufficient conditions on the real 
numbers x, y, and z, such that there exists a countably additive probability 
measure P on T, with x — P{1,2}, y = P{2,3}, and z = P{1,3}. 

Exercise 1.3.3. Suppose that ft — N is the set of positive integers, and 
P is defined for all A C ft by P(A) = 0 if A is finite, and P(A) = 1 if A is 
infinite. Is P finitely additive? 

Exercise 1.3.4. Suppose that ft — N, and P is defined for all A C 
ft by P(A) = \A\ if A is finite (where \A\ is the number of elements in 

In fact, assuming the Continuum Hypothesis, Proposition 1.2.6 continues to hold if 
we require only (1.2.3) and that 0 < P([0,1]) < oo and P{x} = 0 for all x; see e.g. 
Billingsley (1995, p. 46). 
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the subset A), and P(A) = oo if A is infinite. This P is of course not a 
probability measure (in fact it is counting measure), however we can still 
ask the following. (By convention, oo + oo = oo.) 
(a) Is P finitely additive? 
(b) Is P countably additive? 

Exercise 1.3.5. (a) In what step of the proof of Proposition 1.2.6 
was (1.2.1) used? 
(b) Give an example of a countably additive set function P , defined on all 
subsets of [0,1], which satisfies (1.2.3) and (1.2.5), but not (1.2.1). 

1.4. Section summary. 

In this section, we have discussed why measure theory is necessary to 
develop a mathematical rigorous theory of probability. We have discussed 
basic properties of probability measures such as additivity. We have consid
ered the possibility of random variables which are neither absolutely con
tinuous nor discrete, and therefore do not fit easily into undergraduate-level 
understanding of probability. Finally, we have proved that, for the uniform 
distribution on [0,1], it will not be possible to define a probability on every 
single subset. 
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2. Probability triples. 

In this section we consider probability triples and how to construct them. 
In light of the previous section, we see that to study probability theory prop
erly, it will be necessary to keep track of which subsets A have a probability 
P(A) defined for them. 

2.1. Basic definition. 

We define a probability triple or (probability) measure space or probability 
space to be a triple (Q,T, P) , where: 
• the sample space ti is any non-empty set (e.g. f2 = [0,1] for the uniform 

distribution considered above); 
• the a-algebra (read "sigma-algebra") or a-field (read "sigma-field") T 

is a collection of subsets of fl, containing f2 itself and the empty set 0, 
and closed under the formation of complements and countable unions 
and countable intersections (e.g. for the uniform distribution considered 
above, T would certainly contain all the intervals [a, b], but would con
tain many more subsets besides); 

• the probability measure P is a mapping from T to [0,1], with P(0) = 0 
and P(f2) = 1, such that P is countably additive as in (1.2.3). 

This definition will be in constant use throughout the text. Further
more it contains a number of subtle points. Thus, we pause to make a few 
additional observations. 

The a-algebra T is the collection of all events or measurable sets. These 
are the subsets A C f2 for which P(A) is well-defined. We know from Propo
sition 1.2.6 that in general T might not contain all subsets of f2, though we 
still expect it to contain most of the subsets that come up naturally. 

To say that T is closed under the formation of complements and count
able unions and countable intersections means, more precisely, that 
(i) For any subset A C f i , i f A e J , then Ac G T\ 

(ii) For any countable (or finite) collection of subsets A±, A2, A3,... C $7, if 
Ai G T for each i, then the union A\ U A2 U A3 U . . . G T; 

(iii) For any countable (or finite) collection of subsets Ai,A2,A3,... C i}, if 
Ai G T for each i, then the intersection A\ n A2 PI A3 f l . . . G T. 

Like for countable additivity, the reason we require T to be closed under 
countable operations is to allow for taking limits, etc., when studying prob
ability theory. Also like for additivity, we cannot extend the definition to 

For the definitions of complements, unions, intersections, etc., see Subsection A.l on 
page 199. 
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require that T be closed under uncountable unions; in this case, for the ex
ample of Subsection 1.2 above, T would contain every subset A, since every 
subset can be written as A = {JXEA{X} and since the singleton sets {x} are 
all in T. 

There is some redundancy in the definition above. For example, it fol
lows from de Morgan's Laws (see Subsection A.l) that if T is closed under 
complement and countable unions, then it is automatically closed under 
countable intersections. Similarly, it follows from countable additivity that 
we must have P(0) = 0, and that (once we know that P(f2) = 1 and 
P(A) > 0 for all A e F) we must have P(A) < 1. 

More generally, from additivity we have P(A) + P(AC) = P(A U AG) = 
P(f2) = 1, whence 

P(AC) = l-P(A), (2.1.1) 

a fact that will be used often. Similarly, if A C B, then since B = A U {B\A) 
(where U means disjoint union), we have that P(B) = P(A) + P(B \ A) > 
P(A), i.e. 

P(A) < P(B) whenever A C B, (2-1.2) 

which is the monotonicity property of probability measures. 
Also, if A, B e F, then 

P{AUB) = P[{A\B)\J{B\A)\J{Ar\B)] 
= P(A\B) + P(B\A)+P{Af]B) 
= P{A) - P{A C\B) + P{B) - P{A C\B)+ P{A n B) 
= P{A) + P{B)-P(AnB), 

the principle of inclusion-exclusion. For a generalisation see Exercise 4.5.7. 
Finally, for any sequence Ai,A2,-.. S T (whether disjoint or not), we 

have by countable additivity and monotonicity that 

P ( i ! U A 2 U i 3 U . . . ) = P[A1U(A2\A1)i)(A3\A2\A1)U ...] 
= P (A0 + P(A2\ Ay) + P(A3\A2\A1) + ... 
< P(A1) + P( J 4 2 )+P( J 4 3 ) + . . . 

which is the countable subadditivity property of probability measures. 

2.2. Constructing probability triples. 

We clarify the definition of Subsection 2.1 with a simple example. Let us 
again consider the Poisson(5) distribution considered in Subsection 1.1. In 
this case, the sample space fl would consist of all the non-negative integers: 
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fl = {0,1 ,2 , . . .} . Also, the cr-algebra J- would consist of all subsets of Q. 
Finally, the probability measure P would be defined, for any A S T, by 

P(A) = ]re-
55Vfc!-

keA 

It is straightforward to check that T is indeed a cr-algebra (it contains 
all subsets of 0, so it's closed under any set operations), and that P is a 
probability measure defined on T (the additivity following since if A and B 

are disjoint, then Y,keAuB i s t h e s a m e a s EfceA + E/c es)-
So in the case of Poisson(5), we see that it is entirely straightforward 

to construct an appropriate probability triple. The construction is similarly 
straightforward for any discrete probability space, i.e. any space for which 
the sample space ft is finite or countable. We record this as follows. 

Theorem 2.2.1. Let ft be a finite or countable non-empty set. Let 
p : fl —> [0,1] be any function satisfying YlwenPi.^) = 1. Then there is a 
valid probability triple {Q,,T, P) where T is the collection of all subsets of 
n, and for AeT,P(A) = E ^ p M -

Example 2.2.2. Let fl be any finite non-empty set, T be the collection 
of all subsets of fl, and V{A) = \A\ j \fl\ for all A e T (where \A\ is the 
cardinality of the set A). Then (Q, J7, P) is a valid probability triple, called 
the uniform distribution on fi, written Uniform(fi). 

However, if the sample space is not countable, then the situation is 
considerably more complex, as seen in Subsection 1.2. How can we for
mally define a probability triple ($1,.F, P) which corresponds to, say, the 
Uniform[0,1] distribution? 

It seems clear that we should choose fl = [0,1]. But what about Tl We 
know from Proposition 1.2.6 that T cannot contain all intervals of Q, but it 
should certainly contain all the intervals [a,b], [a,b), etc. That is, we must 
have F D J, where 

J = {all intervals contained in [0,1]} 

and where "intervals" is understood to include all the open / closed / half-
open / singleton / empty intervals. 

Exercise 2.2.3. Prove that the above collection J is a semialgebra of 
subsets of fi, meaning that it contains 0 and fl, it is closed under finite 
intersection, and the complement of any element of J is equal to a finite 
disjoint union of elements of J. 
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Since J is only a semialgebra, how can we create a cr-algebra? As a first 
try, we might consider 

Bo = {all finite unions of elements of J} . (2.2.4) 

(After all, by additivity we already know how to define P on So.) However, 
Bo is not a cr-algebra: 

Exercise 2.2.5. (a) Prove that Bo is an algebra (or, field) of subsets 
of f2, meaning that it contains Q, and 0, and is closed under the formation 
of complements and of finite unions and intersections. 
(b) Prove that Bo is not a cr-algebra. 

As a second try, we might consider 

B\ = {all finite or countable unions of elements of J} . (2.2.6) 

Unfortunately, B\ is still not a cr-algebra (Exercise 2.4.7). 
Thus, the construction of T, and of P , presents serious challenges. To 

deal with them, we next prove a very general theorem about constructing 
probability triples. 

2.3. The Extension Theorem. 

The following theorem is of fundamental importance in constructing 
complicated probability triples. Recall the definition of semialgebra from 
Exercise 2.2.3. 

Theorem 2.3.1. (The Extension Theorem.) Let J be a semialgebra of 
subsets ofQ. Let P : J -> [0,1] with P(0) = 0 and P(fi) = 1, satisfying 
the finite super additivity property that 

( k \ k k 

V}Ai) - Yl P(Ai"> whenever Ai,...,AkeJ, and (J At <S J, 
i= i / t= i i= i 

and the {Ai} are disjoint, (2.3.2) 
and also the countabie monotonicity property that 

P{A) < Y,P{An) for A,AltA2,...e J with AC ( J An. (2.3.3) 
n n 

Then there is a a-algebra M D J, and a countably additive probability 
measure P* on M, such that P*(A) = P(A) for all A E J. (That is, 
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(17,.M,P*) is a valid probability triple, which agrees with our previous 
probabilities on J.) 

Remark. Of course, the conclusions of Theorem 2.3.1 imply that (2.3.2) 
must actually hold with equality. However, (2.3.2) need only be verified as 
an inequality to apply Theorem 2.3.1. 

Theorem 2.3.1 provides precisely what we need: a way to construct 
complicated probability triples on a full u-algebra, using only probabilities 
defined on the much simpler subsets (e.g., intervals) in J. 

However, it is not clear how to even start proving this theorem. Indeed, 
how could we begin to define P(A) for all A in a cr-algebra? The key is 
given by outer measure P*, defined by 

P*(A) = inf VPfA), A cn. (2.3.4) 

That is, we define P*(A), for any subset A C 17, to be the infimum of 
sums of P(Aj), where {A{\ is any countable collection of elements of the 
original semialgebra J whose union contains A. In other words, we use 
the values of P(A) for A £ J, to help us define P*(^4) for any A C 17. 
Of course, we know that P* will not necessarily be a proper probability 
measure for all A C 17; for example, this is not possible for Uniform[0,1] 
by Proposition 1.2.6. However, it is still useful that P*(A) is at least defined 
for all A C 17. We shall eventually show that P* is indeed a probability 
measure on some a-algebra M, and that P* is an extension of P . 

To continue, we note a few simple properties of P*. Firstly, we clearly 
have P*(0) = 0; indeed, we can simply take At = 0 for each i in the 
definition (2.3.4). Secondly, P* is clearly monotone; indeed, if A C B then 
the infimum (2.3.4) for P*(A) includes all choices of {Ai} which work for 
P*(B) plus many more besides, so that P*(A) < P*(B). We also have: 

Lemma 2.3.5. P* is an extension ofP, i.e. P*(A) = P{A) for all Ae J. 

Proof. Let Ae J. It follows from (2.3.3) that P*(A) > P(A). On the 
other hand, choosing A\= A and Ai = 0 for i > 1 in the definition (2.3.4) 
shows by (A.4.1) that P*{A) < P(A). I 

Lemma 2.3.6. P* is countably subadditive, i.e. 

( oo \ oo 

[JBn < J2F*(B^ {orany BuB2,...cn. 
71=1 / 71=1 
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Proof. Let B\,B2,... C f2. From the definition (2.3.4), we see that for 
any e > 0, we can find (cf. Proposition A.4.2) a collection {Cnk}'^=1 for each 
n e N , with Cnk e J, such that Bn C \Jk Cnk and £ f e P(Cnfc) < P*(Bn) + 
e2~n. But then the overall collection {Cnfc}^°fc=1 contains IJ^Li Bn- It fol
lows that P* {\Jn=iBn) < En,kp(cnk) < £ „ P*(Bn) + e. Since this is 
true for any e > 0, we must have (cf. Proposition A.3.1) that P* (U^Li Bn) < 
J2nP*(Bn), as claimed. I 

We now set 

M = {A<zn; P*(A (1E)+ P*{AC DE)= P*(E) V£ C ft}. (2.3.7) 

That is, M. is the set of all subsets A with the property that P* is additive 
on the union of A fl E with Ac fl E, for all subsets E. Note that by 
subadditivity we always have P*(,4 HE) + P*(AC CiE)> P*{E), so (2.3.7) 
is equivalent to 

M = {AC£l- P*(AnE) + P*{AC f l £ ) < P*{E) V £ C S ] } , (2.3.8) 

which is sometimes helpful. Furthermore, P* is countably additive on M.: 

Lemma 2.3.9. If AX,A2, • • • € M are disjoint, then P * ( U n ^ n ) = 

£„P*(A0. 

Proof. If A\ and A2 are disjoint, with A\ E Ai, then 

P*(A1UA2) 
= P* (i4i n {Ax U A2)) + P* (Af n (Ax U A2)) since Ax e M 
= P*(Ai) + P*(A2) since Ai, A2 disjoint. 

Hence, by induction, the lemma holds for any finite collection of Ai. 
Then, with countably many disjoint Ai € Ai, we see that for any m G N, 

£P*(A„) = P*( |J An\ < P*(|jA,). 
ri<m ^ ra<m ' ^ n ' 

where the inequality follows from monotonicity. Since this is true for any 
m G N, we have (cf. Proposition A.3.6) that E n

p * ( ^ n ) < P* (U„^«)-
On the other hand, by subadditivity we have ~52nP*{An) > P* {\JnAn). 
Hence, the lemma holds for countably many Ai as well. | 

The plan now is to show that M is a a-algebra which contains J. We 
break up the proof into a number of lemmas. 
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Lemma 2.3.10. M. is an algebra, i.e. £1 £ M and M is closed under 
complement and finite intersection (and hence also finite union). 

Proof. It is immediate from (2.3.7) that M contains f2 and is closed 
under complement. For the statement about finite intersections, suppose 
A,B G M. Then, for any E C Q, using subadditivity, 

P* {{A nB)nE) + P* ({A n B)c n E) 
= p*(AnBn£) 

+P* ((Ac n B n E) u (A n Bc n E) u {Ac n Bc n E)) 
<P*{AnBnE) + P* (ACnBnE) 

+P* (AnBc nE)+ P* (Ac nBcnE)) 
= P*(BnE)+P*{BcnE) since A eM 
= P*(E) since Be M. 

Hence, by (2.3.8), AnB eM. I 

Lemma 2.3.11. Let Ai,A2, • •. £ M. be disjoint. For each TO e N, let 
Bm = Un<m An- Then for all m G N, and for aii £ C (1, we have 

P ' ( £ n B m ) = ^ F ( £ n A n ) . (2.3.12) 
n<m 

Proof. We use induction on m. Indeed, the statement is trivially true 
when TO = 1. Assuming it true for some particular value of m, and noting 
that Bm n Bm+\ = Bm and 13% PI B m + i = Am+i, we have (noting that 
Bme Mby Proposition 2.3.10) that 

P*{Ef]Bm+1) 
= P*(BmDEn Bm+1) + P*(Bg C\En Bm+1) since Bm e M 
= p*(EnBm) + p*(EnAm+1) 

= J2n<m+i P* ( ^ n i „ ) by the induction hypothesis , 

thus completing the induction proof. I 

Lemma 2.3.13. Let Ai,A2,...eM be disjoint. Then {Jn An G M. 

Proof. For each TO G N, let Bm = \Jn<m An. Then for any TO G N and 
any E C fl, 

P*(E) = P*(EDBm) + P*(EnBg) smceBmeM 
= E n < m

p , ( £ n A . ) + P * ( £ n B S ) by (2.3.12) 
> j:n<mP*(EnAn) + P*(En([JAn)

c), 
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where the inequality follows by monotonicity since ({JAn)
c C B^. This is 

true for any TO € N, so it implies (cf. Proposition A.3.6) that 

P*(£) > J2P*(EnAn) + P*(En(\jAnf) 
n \ n / 

> P*(En(\jAnU+P*(En(\jAn)
c) , 

where the final inequality follows by subadditivity. Hence, by (2.3.8) we 
have {jnAn G M. I 

Lemma 2.3.14. M is a a-algebra. 

Proof. In light of Lemma 2.3.10, it suffices to show that l j n An G M 
whenever A1,A2,... G M. Let A = Ai, and A = At n Af n . . . n Af_x 

for i > 2. Then { A } are disjoint, with [ji Di = \Jt Ai, and with Di G M. 
by Lemma 2.3.10. Hence, by Lemma 2.3.13, (J» A € M, i.e. (Jf A8 G M. I 

Lemma 2.3.15. J C M. 

Proof. Let A G J7". Then since JT is a semialgebra, we can write Ac = 
J\U . . . U Jk for some disjoint J\,..., Jk & J• Also, for any E C{) and e > 
0, by the definition (2.3.4) we can find (cf. Proposition A.4.2) Ai,A2,... & J 
with E C U n An and E „ P(A n ) < P*(J5) + e. Then 

P'tfin^ + P t B n ^ ) 
< P* ((U„ An) n A) + P* ((U„ A0 n Ac) by monotonicity 
= p * ( U „ ( > l n n A ) ) + P * ( U n U t i ( A , n J j ) ) 

< E n P * ( ^ n A ) + E n E t i P * ( ^ n J 0 by subadditivity 
= E „ P(An nA) + J2n E L i P ( A fl Js) since P* = P on J 

= J2n ( P ( A , n A) + E- = 1 P(A„ n J,)) 

< E „ P ( ^ ) by (2.3.2) 
< P*(E) + e by assumption. 

This is true for any e > 0, hence (cf. Proposition A.3.1) we have P*(E n 
A) + P*(E n A c ) < P*(E), for any £ C Cl. Hence, from (2.3.8), we have 
AeM. This holds for any AG J, hence J C M. I 

With all those lemmas behind us, we are now, finally, able to complete 
the proof of the Extension Theorem. 
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Proof of Theorem 2.3.1. Lemmas 2.3.5, 2.3.9, 2.3.14, and 2.3.15 to
gether show that .M is a a-algebra containing J, that P* is a probability 
measure on M., and that P* is an extension of P . I 

Exercise 2.3.16. Prove that the extension (Sl,M,P*) constructed in 
the proof of Theorem 2.3.1 must be complete, meaning that if A G M with 
P*(A) = 0, and if B C A, then B G M. (It then follows from monotonicity 
that P*(B)=0.) 

2.4. Construct ing the Uniform[0,1] distribution. 

Theorem 2.3.1 allows us to automatically construct valid probability 
triples which take particular values on particular sets. We now use this to 
construct the Uniform[0,1] distribution. We begin by letting Q. = [0,1], 
and again setting 

J = {all intervals contained in [0,1]} , (2-4.1) 

where again "intervals" is understood to include all the open, closed, half-
open, and singleton intervals contained in [0,1], and also the empty set 0. 
Then J is a semialgebra by Exercise 2.2.3. 

For I ej,we let P(J) be the length of I. Thus P(0) = 0 and P(fi) = 1. 
We now proceed to verify (2.3.2) and (2.3.3). 

Proposi t ion 2.4.2. The above definition of J and P satisfies (2.3.2), 
with equality. 

Proof. Let I\,..., Ik be disjoint intervals contained in [0,1], whose union 
is some interval IQ. For 0 < j < k, write dj for the left end-point of Ij, and 
bj for the right end-point of Ij. The assumptions imply that by re-ordering, 
we can ensure that ao = a\ < b\ = a,2 < 62 = 03 < • • • < &fc = &o- Then 

5 ^ P ( / j ) = ^(bj-aj) = h-a! = b0 - a 0 = P ( / 0 ) . I 
3 3 

The verification of (2.3.3) for this J and P is a bit more involved: 

Exercise 2.4.3. (a) Prove that if h,h, • • • ,In is a finite collection of 
intervals, and if U™=i ^ 2 ^ for some interval / , then YTj=i P(^i) ^ P(-0-
[Hint: Imitate the proof of Proposition 2.4.2.] 
(b) Prove that if I j , J 2 , . . . is a countable collection of open intervals, and 
if tj£Li li ^ J f o r s o m e c l o s e d interval / , then J27=i p ( ^ ' ) > P ( J ) - [Hint : 
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You may use the Heine-Borel Theorem, which says that if a collection of 
open intervals contain a closed interval, then some finite sub-collection of 
the open intervals also contains the closed interval.] 
(c) Verify (2.3.3), i.e. prove that if h,l2, • • • is any countable collection of 
intervals, and if \J"L1Ij 2 I f° r anV interval / , then Y^TLi^ilj) ^ P(-0-
[Hint: Extend the interval Ij by e2~J at each end, and decrease / by e at 
each end, while making Ij open and / closed. Then use part (b).] 

In light of Proposition 2.4.2 and Exercise 2.4.3, we can apply Theo
rem 2.3.1 to conclude the following: 

Theorem 2.4.4. There exists a probability triple (f2,.M,P*) such that 
f2 = [0,1], M contains all intervals in [0,1], and for any interval I C [0,1], 
P*(7) is the length of I. 

This probability triple is called either the uniform distribution on [0,1], or 
Lebesgue measure on [0,1]. Depending on the context, we sometimes write 
the probability measure P* as P or as A. 

Remark. Let B = a{J) be the c-algebra generated by J, i.e. the smallest 
a-algebra containing J. (The collection B is called the Borel a-algebra of 
subsets of [0,1], and the elements of B are called Borel sets.) Clearly, we 
must have M. D B. In this case, it can be shown that Ai is in fact much 
bigger than B; it even has larger cardinality. Furthermore, it turns out that 
Lebesgue measure restricted to B is not complete, though on M. it is (by 
Exercise 2.3.16). In addition to the Borel subsets of [0,1], we shall also have 
occasion to refer to the Borel a-algebra of subsets of R, defined to be the 
smallest cr-algebra of subsets of R which includes all intervals. 

Exercise 2.4.5. Let A = {(—oo, x]; x G R } . Prove that a(A) = B, i.e. 
that the smallest cr-algebra of subsets of R which contains A is equal to the 
Borel CT-algebra of subsets of R. [Hint: Does a (A) include all intervals?] 

Writing A for Lebesgue measure on [0,1], we know that \{x} — 0 for 
any singleton set {x}. It follows by countable additivity that X(A) = 0 
for any set A which is countable. This includes (cf. Subsection A.2) the 
rational numbers, the integer roots of the rational numbers, the algebraic 
numbers, etc. That is, if X is uniformly distributed on [0,1], then ~P(X 
is rational) = 0, and P(X™ is rational for some n G N) = 0, and P ( X is 
algebraic) = 0, and so on. 

There also exist uncountable sets which have Lebesgue measure 0. The 
simplest example is the Cantor set K, defined as follows (see Figure 2.4.6). 
We begin with the interval [0,1]. We then remove the open interval con-
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"[ ] < >C 3" 
1 2 1. 2 7 8 
9 9 3 3 9 9 

Figure 2.4.6. Constructing the Cantor set K. 

sisting of the middle third (1/3, 2/3). We then remove the open middle 
thirds of each of the two pieces, i.e. we remove (1/9, 2/9) and (7/9, 8/9). 
We then remove the four open middle thirds (1/27, 2/27), (7/27, 8/27), 
(19/27, 20/27), and (25/27, 26/27) of the remaining pieces. We continue 
inductively, at the n t h stage removing the 2 r a _ 1 middle thirds of all remain
ing sub-intervals, each of length 1/3™. The Cantor set K is denned to be 
everything that is left over, after we have removed all these middle thirds. 

Now, the complement of the Cantor set has Lebesgue measure given 
by \{KC) = 1/3 + 2(1/9) + 4(1/27) + . . . = J27=i 2™_ 1 /3n = 1- Hence, 
by (2.1.1), X(K) = 1 - 1 = 0. 

On the other hand, K is uncountable. Indeed, for each point x G K, let 
dn(x) = 0 or 1 depending on whether, at the n t h stage of the construction 
of K, x was to the left or the right of the nearest open interval removed. 
Then define the function / : K -> [0,1] by f{x) = Y^=l dn{x) 2~n. It is 
easily checked that f(K) = [0,1], i.e. that / maps K onto [0,1]. Since [0,1] 
is uncountable, this means that K must also be uncountable. 

Remark. The Cantor set is also equal to the set of all numbers in [0,1] 
which have a base-3 expansion that does not contain the digit 1. That is, 
K = { E~=i c n 3 " n : each cn e {0,2}}. 

Exercise 2.4.7. (a) Prove that K, Kc e B, where B are the Borel 
subsets of [0,1]. 
(b) Prove that K, KG e M, where M is the rj-algebra of Theorem 2.4.4. 
(c) Prove that Kc e Blt where Bx is defined by (2.2.6). 
(d) Prove that K <£BX. 
(e) Prove that B\ is not a cr-algebra. 

On the other hand, from Proposition 1.2.6 we know that: 
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Proposi t ion 2.4.8. For the probability triple (il,M,P*) of Theo
rem 2.4.4 corresponding to Lebesgue measure on [0,1], there exists at least 
one subset H C Q with H 0 M. 

2.5. Extensions of the Extension Theorem. 

The Extension Theorem (Theorem 2.3.1) will be our main tool for prov
ing the existence of complicated probability triples. While (2.3.2) is gener
ally easy to verify, (2.3.3) can be more challenging. Thus, we present some 
alternative formulations here. 

Corollary 2.5.1. Let J be a semialgebra of subsets ofQ,. Let P : J —> 
[0,1] with P(0) = 0 and P{fl) = 1, satisfying (2.3.2), and the "monotonicity 
on J" property that 

P(A) < P(B) whenever A,B ej with ACB, (2.5.2) 

and also the "countable subadditivity on J" property that 

p(\jBn\ < 5 3 P ( B „ ) forB1,B2,...eJ with[JBneJ. (2.5.3) 
\ n / n n 

Then there is a a-algebra M D J, and a countably additive probability 
measure P* on M, such that P*(A) = P(A) for all A e J. 

Proof. In light of Theorem 2.3.1, we need only verify (2.3.3). To that 
end, let A, Ai,A2,... € J with A C |J„ An. Set Bn = An An. Then since 
A C \JnAn, we have A = \Jn{AnAn) = \JnBn, whence (2.5.3) and (2.5.2) 
give that 

P(A)=p(\jBn)<^(Bn)<J2P(An). | 
\ n / n n 

Another version assumes countable additivity of P on J: 

Corollary 2.5.4. Let J be a semialgebra of subsets offl. Let P : J —> 
[0,1] with P(fi) = 1, satisfying the countable additivity property that 

P ( U Dn ) = H P ( j D «) f o r D1:D2,...eJ disjoint with | J Dn G J. 
\ n / n n 

(2.5.5) 
Then there is a cr-algebra M. D J, and a countably additive probability 
measure P* on M, such that P*(A) = P{A) for all AG J. 
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Proof. Note that (2.5.5) immediately implies (2.3.2) (with equality), and 
that P(0) = 0. Hence, in light of Corollary 2.5.1, we need only verify (2.5.2) 
and (2.5.3). 

For (2.5.2), let A, B e J with AC B. Since J is a semialgebra, we 
can write AG = Ji U . . . UJfc, for some disjoint J i , . . . , J^ G J. Then 
using (2.5.5), 

P(B) = P{A)+P(BnJ1) + ...+P(BnJk) > P(A). 

For (2.5.3), let B1,B2,... 6 J with [}nBn e J. Set Dx = Bu and 
Dn = BnnBfn.. . nB^_! for n > 2. Then {£>„} are disjoint, with \Jn Dn = 
U„ Bn. Furthermore, since J is & semialgebra, each Dn can be written as 
a finite disjoint union of elements of J', say Dn = Jn\ U . . . U Jnkn • It then 
follows from (2.5.5) and (2.5.2) that 

p(u*«) = p(o») = pfuu^) 
\ n / \ n J \ n i=l / 

k 

= EE p ( J ^) = Ep(D«) ^ Ep(B»)- • 
n i = l n n 

Exercise 2.5.6. Suppose P satisfies (2.5.5) for finite collections {Dn}. 
Suppose further that, whenever A\,A2,... € J such that An+\ C An 

and Pl^Li An = 0, we have \\ra.n^00P(An) = 0. Prove that P also sat
isfies (2.5.5) for countable collections {Dn}. [Hint: Set An = ([jJL1Dj) \ 

The extension of Theorem 2.3.1 also has a uniqueness property: 

Proposition 2.5.7. Let J, P, P*, and M. be as in Theorem 2.3.1 (or as 
in Corollary 2.5.1 or 2.5.4). Let T be any a-algebra with J C T C M (e.g. 
T = M, or T = CJ(J)). Let Q be any probability measure on T, such that 
Q(A) = P(A) for all AeJ. Then Q(A) = P*(A) for all AcT. 

Proof. For A 6 T, we compute 

P*(A) = infA1,A2,...ej-^ iP(A i) from (2.3.4) 

= inf A1,A2,...€J Ysi Q(-^i) s i n c e Q = P on J 
X £ U X * 

> inf A1,A2,...ej Q(U-^i) by countable subadditivity 

> inf A1?A2,...ej Q(A) by monotonicity 

= Q(A), 
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i.e. P*(A) > Q(A). Similarly, P*(AC) > Q(AC), and then (2.1.1) implies 
1 - P*(A) > 1 - Q(A), i.e. P*{A) < Q{A). Hence, P*{A) = Q(A). I 

Proposition 2.5.7 immediately implies the following: 

Proposi t ion 2.5.8. Let J be a semialgebra of subsets of ft, and let 
T = G{J) be the generated a-algebra. Let P and Q be two probability 
distributions defined on T. Suppose that P{A) = Q(A) for all A G J. 
Then P = Q, i.e. P{A) = Q(A) for all AeF. 

Proof. Since P and Q are probability measures, they both satisfy (2.3.2) 
and (2.3.3). Hence, by Proposition 2.5.7, each of P and Q is equal to the 
P* of Theorem 2.3.1. I 

One useful special case of Proposition 2.5.8 is: 

Corollary 2.5.9. Let P and Q be two probability distributions defined on 
the collection B of Borel subsets of R. Suppose P((—oo,x]) = Q((—oo,x]) 
for all i e R . Then P(A) = Q(A) for all AeB. 

Proof. Since P((y,oo)) = 1 - P(( -oo ,y]) , and P((x,y]) = 1 -
P((—oo,a;]) — P((y, oo)), and similarly for Q, it follows that P and Q 
agree on 

J = j(oo,:r] : a ; e R } u j(y,oo) : y eR,}u{(a ; ,y ] : x,y G R } U J 0 , R | . 

(2.5.10) 
But J is a semialgebra (Exercise 2.7.10), and it follows from Exercise 2.4.5 
that o{J) = B. Hence, the result follows from Proposition 2.5.8. I 

2.6. Coin tossing and other measures. 

Now that we have Theorem 2.3.1 to help us, we can easily construct 
other probability triples as well. 

For example, of frequent mention in probability theory is (independent, 
fair) coin tossing. To model the nipping of n coins, we can simply take 

,?"2,... ,7"n); Ti — 0 or 1} (where 0 stands for tails and 1 stands 
for heads), let T = 2n be the collection of all subsets of Q, and define P 
by P(A) = \A\/2n for ACT. This is another example of a discrete proba
bility space; and we know from Theorem 2.2.1 that these spaces present no 
difficulties. 
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But suppose now that we wish to model the flipping of a (countably) 
infinite number of coins. In this case we can let 

^ = {(ri,r2,r3,...); rt = 0 or 1} 

be the collection of all binary sequences. But what about T and P? 
Well, for each n G N and each a\,a2, • • • ,an G {0,1}, let us define 

subsets Aaia2...an C fl by 

Aaia2...an = { ( r 1 , r 2 , . . . ) G fi; rt = a* for 1 < i < n} . 

(Thus, AQ is the event that the first coin comes up tails; An is the event 
that the first two coins both come up heads; and A\Q\ is the event that 
the first and third coins are heads while the second coin is tails.) Then we 
clearly want P(j4aia2...a„) = 1/2" for each set -Aaia2...a„- Hence, if we set 

J = {Axia2...a„ ; n G N , a i , a 2 l . . . , a „ e { O , l } } u { 0 , f 2 } , 

then we already know how to define P(.A) for each A G J. To apply the 
Extension Theorem (in this case, Corollary 2.5.4), we need to verify that 
certain conditions are satisfied. 

Exercise 2.6.1. (a) Verify that the above J" is a semialgebra. 
(b) Verify that the above J and P satisfy (2.5.5) for finite collections {Dn}. 
[Hint: For a, finite collection {Dn} C J, there is k G N such that the results 
of only coins 1 through k are specified by any Dn. Partition Q into the 
corresponding 2fc subsets.] 

Verifying (2.5.5) for countable collections unfortunately requires a bit of 
topology; the proof of this next lemma may be skipped. 

Lemma 2.6.2. The above J and P (for infinite coin tossing) sat
isfy (2.5.5). 

Proof (optional). In light of Exercises 2.6.1 and 2.5.6, it suffices 
to show that for Ai,A2,... G J with An+\ C An and H^Li Ai = 0, 
l im^oo P(A„) = 0. 

Give {0,1} the discrete topology, and give fl = {0,1} x {0,1} x . . . 
the corresponding product topology. Then fl is a product of compact sets 
{0,1}, and hence is itself compact by Tychonov's Theorem. Furthermore 
each element of J is a closed subset of fl, since its complement is open in 
the product topology. Hence, each An is a closed subset of a compact space, 
and is therefore compact. 
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The finite intersection property of compact sets then implies that there 
is N £ N with An — 0 for all n > N. In particular, P(An) —> 0. I 

Now that these conditions have been verified, it then follows from Corol
lary 2.5.4 that the probabilities for the special sets Aaia2...an £ J can au
tomatically be extended to a cr-algebra Ai containing J. (Once again, this 
cr-algebra will be quite complicated, and we will never understand it com
pletely. But it is still essential mathematically that we know it exists.) This 
will be our probability triple for infinite fair coin tossing. 

As a sample calculation, let Hn — {(J"I,r%,.. .) £ il;rn = 1} be the event 
that the n t h coin comes up heads. We certainly would hope that Hn £ Ai, 
with P(Hn) = \. Happily, this is indeed the case. We note that 

r i , r 2 , . . . , r „ _ i e { 0 , l } 

the union being disjoint. Hence, since A\ is closed under countable (includ
ing finite) unions, we have Hn £ A\. Then, by countable additivity, 

P(Hn) = ] T P^r^ . - . r ^x l ) 
r i ^ a . - . - . r ^ ^ i g j O , ! } 

J2 1/2™ = 2n-V2n = 1/2. 
r i , r 2 , . . . , T - „ _ i 6 { 0 , l } 

Remark. In fact, if we identify an element x £ [0,1] by its binary 
expansion (r\, r^, • • •), i.e. so that x = X^fcli rfc/2fc, then we see that in fact 
infinite fair coin tossing may be viewed as being "essentially" the same thing 
as Lebesgue measure on [0,1]. 

Next, given any two probability triples (fti,.Fi,Pi) and (^2,^2, P2), we 
can define their product measure P on the Cartesian product set f̂ i x $72 = 
{(LUI,U>2) • u>i £ &i (i = 1,2)}. We set 

J = {AxB; A£ Fu B£ .F2}, (2.6.3) 

and define P(,4 x B) = V\{A) P2(B) for A x B £ J. (The elements of J 
are called measurable rectangles.) 

Exercise 2.6.4. Verify that the above J is a semialgebra, and that 
0, ft G J7 with P(0) = 0 and P(0) = 1. 

We will show later (Exercise 4.5.15) that these J and P satisfy (2.5.5). 
Hence, by Corollary 2.5.4, we can extend P to a cr-algebra containing J. 
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The resulting probability triple is called the product measure of (f2i, T\, P\) 
and (02)^2,Pi)-

An important special case of product measure is Lebesgue measure in 
higher dimensions. For example, in dimension two, we define 2-dimensional 
Lebesgue measure on [0,1] x [0,1] to be the product of Lebesgue measure 
on [0,1] with itself. This is a probability measure on Q, = [0,1] x [0,1] with 
the property that 

p([a,b]x[c,d]\ = (b-a)(d-c), 0 < a < 6 < 1, 0 < c < d < l . 

It is thus a measure of area in two dimensions. 
More generally, we can inductively define d-dimensional Lebesgue mea

sure on [0, l]d for any d £ N, by taking the product of Lebesgue measure on 
[0,1] with (d— l)-dimensional Lebesgue measure on [0, l ] d _ 1 . When d = 3, 
Lebesgue measure on [0,1] x [0,1] x [0,1] is a measure of volume. 

2.7. Exercises. 

Exercise 2.7.1. Let Q, — {1,2,3,4}. Determine whether or not each of 
the following is a a-algebra. 

(a) J \ = {0, {1,2}, {3,4}, {1,2,3,4}}. 

(b) ^ 2 = {0, {3}, {4}, {1,2}, {3,4}, {1,2,3}, {1,2,4}, {1,2,3,4}}. 

(c) ^ 3 = {0, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3,4}}. 

Exercise 2.7.2. Let ft = {1,2,3,4}, and let J = {{1}, {2}}. Describe 
explicitly the cr-algebra a{J) generated by J. 

Exercise 2.7.3. Suppose T is a collection of subsets of ft, such that 
fteJF. 
(a) Suppose that whenever A,B £ J7, then also A\B = AnBc£jr. 
Prove that T is an algebra. 
(b) Suppose T is a semialgebra. Prove that T is an algebra. 
(c) Suppose that T is closed under complement, and also closed under 
finite disjoint unions (i.e. whenever A,B £ F are disjoint, then AUB £ J7). 
Give a counter-example to show that T might not be an algebra. 

Exercise 2.7.4. Let T\,T<2.,... be a sequence of collections of subsets of 
fl, such that Tn C J-n+i for each n. 
(a) Suppose that each Ti is an algebra. Prove that USa -^ ^s a^so a n 

algebra. 
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(b) Suppose that each Ti is a cr-algebra. Show (by counter-example) that 
L E i ?i might not be a cr-algebra. 

Exercise 2.7.5. Suppose that Q. = N is the set of positive integers, and 
T is the set of all subsets A such that either A or Ac is finite, and P is 
defined by P(A) = 0 if A is finite, and P(A) = 1 if Ac is finite. 
(a) Is T an algebra? 
(b) Is T a cr-algebra? 
(c) Is P finitely additive? 
(d) Is P countably additive on J7, meaning that if Ai,A2,... € T are 
disjoint, and if it happens that \Jn An £ T, then P ( U n Ai) — J2n P(-^n)? 

Exercise 2.7.6. Suppose that $7 = [0,1] is the unit interval, and JF is the 
set of all subsets A such that either A or Ac is finite, and P is defined by 
P(A) = 0 if A is finite, and P(A) = 1 if A c is finite. 
(a) Is J1" an algebra? 
(b) Is T a cr-algebra? 
(c) Is P finitely additive? 
(d) Is P countably additive on T (as in the previous exercise)? 

Exercise 2.7.7. Suppose that fl = [0,1] is the unit interval, and T is 
the set of all subsets A such that either A or AG is countable (i.e., finite 
or countably infinite), and P is denned by P(A) = 0 if A is countable, and 
P(A) = 1 if AG is countable. 
(a) Is T an algebra? 
(b) Is J7 a cr-algebra? 
(c) Is P finitely additive? 
(d) Is P countably additive on J7? 

Exercise 2.7.8. For the example of Exercise 2.7.7, is P uncountably 
additive (cf. page 2)? 

Exercise 2.7.9. Let J7 be a cr-algebra, and write \T\ for the total number 
of subsets in J-'. Prove that if \T\ < oo (i.e., if T consists of just a finite 
number of subsets), then \T\ = 2m for some m G N. [Hint: Consider those 
non-empty subsets in T which do not contain any other non-empty setset in 
T. How can all subsets in T be "built up" from these particular subsets?] 

Exercise 2.7.10. Prove that the collection J of (2.5.10) is a semialgebra. 

Exercise 2.7.11. Let £1 = [0,1]. Let J' be the set of all half-open 
intervals of the form (a, b], for 0 < a < b < 1, together with the sets 0, fi, 
and {0}. 
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(a) Prove that J' is a semialgebra. 
(b) Prove that G{J') = B, i.e. that the a-algebra generated by this J' is 
equal to the cr-algebra generated by the J of (2.4.1). 
(c) Let B'0 be the collection of all finite disjoint unions of elements of J'. 
Prove that B'0 is an algebra. Is B'0 the same as the algebra BQ defined 
in (2.2.4)? 
[Remark: Some treatments of Lebesgue measure use J' instead of J.} 

Exercise 2.7.12. Let K be the Cantor set as defined in Subsection 2.4. 
Let Dn = K © i where if © M s defined as in (1.2.4). Let B = \J^=l Dn. 
(a) Draw a rough sketch of D3. 
(b) What is A(L>3)

? 

(c) Draw a rough sketch of B. 
(d) What is A(B)? 

Exercise 2.7.13. Give an example of a sample space fl, a semialgebra 
J', and a non-negative function P : J —> R with P(0) = 0 and P(f2) = 1, 
such that (2.5.5) is not satisfied. 

Exercise 2.7.14. Let f2 = {1,2,3,4}, with T the collection of all subsets 
of fl. Let P and Q be two probability measures on J7, such that P{1} = 
P{2} = P{3} = P{4} = 1/4, and Q{2} = Q{4} = 1/2, extended to T by 
linearity. Finally, let J = {0, Vl, {1,2}, {2,3}, {3,4}, {1,4}}. 
(a) Prove that P(A) = Q(A) for all A G J. 
(b) Prove that there is A G a{J) with P(A) ^Q(A). 
(c) Why does this not contradict Proposition 2.5.8? 

Exercise 2.7Ah. Let (fl,M,X) be Lebesgue measure on the interval 
[0,1]. Let 

Q' = {(x,y) G R 2 ; 0 < x < l , 0 < y < l } . 

Let T be the collection of all subsets of fl' of the form 

{ ( x , y ) G R 2 ; xeA, 0 < y < 1} 

for some A G A4. Finally, define a probability P on T by 

P ( { ( x , y ) G R 2 ; I £ A 0 < ! / < 1 } ) = \{A). 

(a) Prove that (fi',.F, P) is a probability triple. 
(b) Let P* be the outer measure corresponding to P and T. Define the 
subset S C Q' by 

S={(x,y)e-R2; 0 < x < 1, y = 1/2} . 
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(Note that S & T.) Prove that P*(5) = 1 and P*(SC) = 1. 

Exercise 2.7.16. (a) Where in the proof of Theorem 2.3.1 was assump
tion (2.3.3) used? 
(b) How would the conclusion of Theorem 2.3.1 by modified if assump
tion (2.3.3) were dropped (but all other assumptions remained the same)? 

Exercise 2.7.17. Let ft = {1, 2}, and let J be the collection of all subsets 
of ft, with P(0) = 0, P(ft) = 1, and P{1} = P{2} = 1/3. 
(a) Verify that all assumptions of Theorem 2.3.1 other than (2.3.3) are 
satisfied. 
(b) Verify that assumption (2.3.3) is not satisfied. 
(c) Describe precisely the M and P* that would result in this example 
from the modified version of Theorem 2.3.1 in Exercise 2.7.16(b). 

Exercise 2.7.18. Let ft = {1, 2}, J = {0, ft, {1}}, P(0) = 0, P(ft) = 1, 
and P({1}) = 1/3. 
(a) Can Theorem 2.3.1, Corollary 2.5.1, or Corollary 2.5.4 be applied in 
this case? Why or why not? 
(b) Can this P be extended to a valid probability measure? Explain. 

Exercise 2.7.19. Let ft be a finite non-empty set, and let J consist 
of all singletons in ft, together with 0 and ft. Let p : ft —> [0,1] with 

E^enPH = !> and define pW = °. p(°) = !. and P M = P(w) for a11 

weft. 
(a) Prove that J is a semialgebra. 
(b) Prove that (2.3.2) and (2.3.3) are satisfied. 
(c) Describe precisely the Ai and P* that result from applying Theo
rem 2.3.1. 
(d) Are these M and P* the same as those described in Theorem 2.2.1? 

Exercise 2.7.20. Let P and Q be two probability measures defined on 
the same sample space ft and cr-algebra T. 
(a) Suppose that P(A) = Q(A) for all A G T with P(A) < \. Prove that 
P = Q, i.e. that P(A) = Q(A) for all AeT. 
(b) Give an example where P(A) = Q(A) for all A G T with P(A) < ±, 
but such that P ^ Q, i.e. that P(A) ^ Q(A) for some A e T. 

Exercise 2.7.21. Let A be Lebesgue measure in dimension two, i.e. 
Lebesgue measure on [0,1] x [0,1]. Let A be the triangle {(x,y) G [0,1] x 
[0,1]; y < x}. Prove that A is measurable with respect to A, and compute 
X(A). 
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Exercise 2.7.22. Let (fii , .Fi,Pi) be Lebesgue measure on [0,1]. Con
sider a second probability triple, (fi2,-7r2,P2)> defined as follows: f22 = 
{1,2}, Ti consists of all subsets of £22> and P2 is defined by P2J1} = 3, 
P2{2} = | , and additivity. Let (fJ,JF,P) be the product measure of 
(£2 1 ) .F 1 ,P 1 )and(n 2 , .F 2 ) P 2 ) . 
(a) Express each of 17, J-, and P as explicitly as possible. 
(b) Find a set A e T such that P(A) = §. 

2.8. Section summary. 

The section gave a formal definition of a probability triple (fl,!F, P) , 
consisting of a sample space $7, a cr-algebra J7, and a probability measure 
P , and derived certain basic properties of them. It then considered the 
question of how to construct such probability triples. Discrete spaces (with 
countable fl) were straightforward, but other spaces were more challenging. 
The key tool was the Extension Theorem, which said that once a probability 
measure has been constructed on a semialgebra, it can then automatically 
be extended to a cr-algebra. 

The Extension Theorem allowed us to construct Lebesgue measure on 
[0,1], and to consider some of its basic properties. It also allowed us to 
construct other probability triples such as infinite coin tossing, product 
measures, and multi-dimensional Lebesgue measure. 
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3. Further probabilistic foundations. 

Now that we understand probability triples well, we discuss some ad
ditional essential ingredients of probability theory. Throughout Section 3 
(and, indeed, throughout most of this text and most of probability theory 
in general), we shall assume that there is an underlying probability triple 
(Q,JF, P) with respect to which all further probability objects are defined. 
This assumption shall be so universal that we will often not even mention 
it. 

3.1. Random variables. 

If we think of a sample space fl as the set of all possible random outcomes 
of some experiment, then a random variable assigns a numerical value to 
each of these outcomes. More formally, we have 

Definition 3.1.1. Given a probability triple (f2, T, P ) , a random variable 
is a function X from fl to the real numbers R, such that 

{UJ G fl; X{w) < x} G T, I G R . (3.1.2) 

Equation (3.1.2) is a technical requirement, and states that the func
tion X must be measurable. It can also be written as {X < x} £ JF, or 
X~l ((-oo,x]) G T, for all x G R. Since complements and unions and 
intersections are preserved under inverse images (see Subsection A.l), it 
follows from Exercise 2.4.5 that equation (3.1.2) is equivalent to saying that 
X~1{B) G T for every Borel set B. That is, the set X~l(B), also written 
{X G B}, is indeed an event. So, for any Borel set B, it makes sense to 
talk about P(X G B), the probability that X lies in B. 

Example 3.1.3. Suppose that (fi, JF, P) is Lebesgue measure on [0,1], 
then we might define some random variables X, Y, and Z by X(LJ) = UJ, 
Y(OJ) = 2w, and Z(uS) — 3w + 4. We then have, for example, that Y = 2X, 
and Z = 3X + 4 = \Y + 4. Also, P(Y < 1/3) = P{w; Y(w) < 1/3} = 
P{w ; 2w < 1/3} = P([0,1/6]) = 1/6. 

Exercise 3.1.4. For Example 3.1.3, compute P(Z > a) and P(X < 
a and Y < b) as functions of a, b G R. 

Now, not all functions from fi to R are random variables. For example, 
let (fi,^1", P) be Lebesgue measure on [0,1], and let H C fl be the non-
measurable set of Proposition 2.4.8. Define X : fl —> R by X = l # c , so 
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X(u) = 0 for u e H, and X(LU) = 1 for to <£ H. Then {u £ Q : X(cu) < 
1/2} = H <£ J7, so X is not a random variable. 

On the other hand, the following proposition shows that condition (3.1.2) 
is preserved under usual arithmetic and limits. In practice, this means that 
if functions from ft to R are constructed in "usual" ways, then (3.1.2) will 
be satisfied, so the functions will indeed be random variables. 

Proposition 3.1.5. (i) If X = 1 A is the indicator of some event A G T, 
then X is a random variable. 
(ii) IfX and Y are random variables and c S R, then X + c, cX, X2, X + Y, 
and XY are all random variables. 
(Hi) If Z\, Z2, • • • are random variables such that limn^^ Zn(us) exists for 
each w e f i , and Z(u>) = hin^^oo Zn(u>), then Z is also a random variable. 

Proof, (i) If X = 1A for A e T, then X~l(B) must be one of A, Ac, 0, 
or fi, soX-^B) eT. 
(ii) The first two of these assertions are immediate. The third follows since 
for y > 0, {X2 < y} = {X 6 [~y/y, ^/y]} € T. For the fourth, note (by 
finding a rational number r G (X, x — Y)) that 

{X + Y<x}= ( J ({X <r}n{Y <x-r}) G T. 
r rational 

The fifth assertion then follows since XY = \ [(X + Y)2 - X2 - Y2]. 
(iii) For x G R, 

OO OO OO y- 1 N 

{z<X} = n u n\z^x+-\- (3-1-6) 
771—1 n=\ k—n 

But Zk is a random variable, so {Zk < x + ^ } G T. Then, since T is a 
cr-algebra, we must have {X < x} G T. I 

Exercise 3.1.7. Prove (3.1.6). [Hint: remember the definition of X(uS) = 
limn^oo Xn(uj), cf. Subsection A.3.] 

Suppose now that X is a random variable, and / : R —> R is a function 
from R to R which is Borel-measurable, meaning that f~l(A) € B for any 
A e B (where B is the collection of Borel sets of R) . (Equivalently, / is a 
random variable corresponding to fi = R and J7 = B.) We can define a new 
random variable f(X), the composition of X with / , by f(X)(uj) = f (X(ui)) 
for each u) G 9,. Then (3.1.2) is satisfied since for B e B, \f(X) G B) = 
{X&f-l{B)}&T. 
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Proposition 3.1.8. If f is a continuous function, or a piecewise-
continuous function, then f is Borel-measurable. 

Proof. A basic result of point-set topology says that if / is continu
ous, then / ~ 1 ( 0 ) is an open subset of R whenever O is. In particular, 
/_ 1((a;,oo)) is open, so f~l((x, oo)) G B, so / - 1((oo,:r]) G B. 

If / is piecewise-continuous, then we can write / = fili1 + j"21-^2 + • • • + 
/ n l / „ where the fj are continuous and the {Ij} are disjoint intervals. It 
follows from the above and Proposition 3.1.5 that / is Borel-measurable. I 

For example, if f(x) = xk for fc G N, then / is Borel-measurable. Hence, if 
X is a random variable, then so is Xk for all fc G N. 

Remark 3.1.9. In probability theory, the underlying probability triple 
(f2, .F, P) is usually complete (cf. Exercise 2.3.16; for example this is always 
true for discrete probability spaces, or for those such as Lebesgue measure 
constructed using the Extension Theorem). In that case, if X is a random 
variable, and Y : fl —> R such that P(X = Y) = 1, then Y must also be a 
random variable. 

Remark 3.1.10. In Definition 3.1.1, we assume that X is a real-valued 
random variable, i.e. that it maps fi into the set of real numbers equipped 
with the Borel er-algebra. More generally, one could consider a random 
variable which mapped Q to an arbitrary second measurable space, i.e. to 
some second non-empty set f2' with its own collection T' of measurable 
subsets. We would then have X : fi —> Q', with condition (3.1.2) replaced 
by the condition that X~1(A') G T whenever A1 G T'. 

3.2. Independence. 

Informally, events or random variables are independent if they do not 
affect each other's probabilities. Thus, two events A and B are independent 
if P(A n B) = P(A)P(B). Intuitively, the probabilistic proportion of the 
event B which also includes A (i.e., P (Af lB) /P(B) ) is equal to the overall 
probability of A (i.e., P(A)) - the definition uses products to avoid division 
by zero. 

Three events A, B, and C are said to be independent if all of the follow
ing equations are satisfied: P{AnB) = P(A)P(S) ; P ( A n C ) = P(A)P(C); 
P(B n C) = P(B)P(C); and P(A nBnC) = P(A)P{B)P{C). It is not 
sufficient (see Exercise 3.6.3) to check just the final - or just the first three 
- of these equations. More generally, a possibly-infinite collection {Aa}aei 
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of events is said to be independent if for each j G N and each distinct finite 
choice cti,a2,... ,a>j E I, we have 

P(AainAa2n...r\Aaj) = P(Aai)P(Aa2)...P(Aaj). (3.2.1) 

Exercise 3.2.2. Suppose (3.2.1) is satisfied. 
(a) Show that (3.2.1) is still satisfied if Aai is replaced by A% . 
(b) Show that (3.2.1) is still satisfied if each Aai is replaced by the corre
sponding A%.. 
(c) Prove that if {Aa}aej is independent, then so is {A^}aeI. 

We shall on occasion also talk about independence of collections of 
events. Collections of events {Aa;a G 1} are independent if for all j G N, 
for all distinct a\,..., ctj G / , and for all A\ G Aai,... ,Aj G Aaj, equation 
(3.2.1) holds. 

We shall also talk about independence of random variables. Random 
variables X and Y are independent if for all Borel sets S\ and S2, the 
events X-1(S1) and Y~1(S2) are independent, i.e. P(X G Si, Y G S2) = 
P(X G Si) P(Y G 5*2). More generally, a collection {Xa;a G / } of random 
variables are independent if for all j G N, for all distinct ai,...,ctj G / , 
and for all Borel sets Si,... ,Sj, we have 

P (-XQI G SI, Xa2 G S2, • • •, Xaj G Sj) 

= P(XQ 1 G 5i) P (X a 2 eS2) ... P(XQ i G Sj). 

Independence is preserved under deterministic transformations: 

Proposition 3.2.3. Let X and Y be independent random variables. Let 
f, g : R —• R be Borel-measurable functions. Then the random variables 
f(X) and g(Y) are independent. 

Proof. For Borel Si, S2 C R, we compute that 

P (f(X) G Si, g(Y) eS2) = P(Xe r\Si), Y G g-1(S2)) 

= Pixer'iSi)) P(ye5-1(52)) 
= P(f(X)eSi) P(g(Y)&S2). I 

We also have the following. 

Proposition 3.2.4. Let X and Y be two random variables, defined jointly 
on some probability triple (fi, T, P). Then X and Y are independent if and 
only ifP(X <x, Y < y) = P(X < x) P(Y < y) for all x, y G R. 
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Proof. The "only if" part is immediate from the definition. 
For the "if" part, fix x G R with P(X < x) > 0, and define the measure 

Q on the Borel subsets of R by Q(5) = P(X < x, Y G S)/P(X < x). 
Then by assumption, Q((—oo,y]) — P(Y < y) for all y G R. It follows 
from Corollary 2.5.9 that Q(S) = P(Y G S) for all Borel S C R , i.e. that 
P(-X" <x, Y eS) = P{X < x) P{Y G S). 

Then, for fixed Borel S C R , let R(T) = P(X G T, Y G S) / P(X G T). 
By the above, it follows that R((—oo,a;]) = P(X < x) for each x G R. 
It then follows from Corollary 2.5.9 that R(T) = P(X G T) for all Borel 
T C R, i.e. that P(X G T, Y G S) = P{X e T)P(Y G S) for all Borel 
S , T C R . Hence, X and Y are independent. I 

Independence will come up often in this text, and its significance will 
become more clear as we proceed. 

3.3. Continuity of probabilities. 

Given a probability triple (51,J7,P), and events A,Ai,A2,... G J", we 
write {An} / A to mean that A\ C A2 C A3 C .. . , and \JnAn = A. 
In words, the events An increase to A. Similarly, we write {An} \ A to 
mean that {A^} /* A c , or equivalently that A\ 3 A2 D A3 D • • -, and 
Pi™ ^ " = ^- I n w o r ds , the events An decrease to A. We then have 

Proposition 3.3.1. (Continuity of probabilities.) If {An} y A or 
{An} \ A, then l i m r w o o P{An) = P(A). 

Proof. Suppose {An} / A. Let Bn = An n A%_v Then the {Bn} are 
disjoint, with [j Bn = \J An = A. Hence, 

P(A) = P (\jBm) = £ ) P ( B n 

lim V P(B m ) = lim P M Bm\ = lim P(An 

m = l \ T n < n 

(where the last equality is the only time we use that the {Am} are a nested 
sequence). 

If instead {An} \ A, then {A%} / Ac, so 

P{A) = l-P(Ac) = l - l i m P ( A ^ ) 

= l i m ( l - P ( ^ ) ) = \imP(An). I 



34 3. FURTHER PROBABILISTIC FOUNDATIONS. 

If the {An} are not nested, then we may not have l im„P(An) = P(-A). 
For example, suppose that An = f2 for n odd, but An = 0 for n even. Then 
P(An) alternates between 0 and 1, so that l im n P(A n ) does not exist. 

3.4. Limit events. 

Given events A\, A2,... G T, we define 

oo oo 

limsup,4n = {An i.o.} = Q ( J Ak 

n=lk=n 

and 

liminf An = {An a.a.} = [J (~) A k • 

n=lk—n 

The event limsup„An is referred to as "An infinitely often"; it stands for 
those UJ £ fl which are in infinitely many of the An. Intuitively, it is the 
event that infinitely many of the events An occur. Similarly, the event 
lim infn An is referred to as uAn almost always"; intuitively, it is the event 
that all but a finite number of the events An occur. 

Since J7 is a, cr-algebra, we see that lim supn An £ T and lim inf n An £ J-'. 
Also, by de Morgan's laws, (limsupn An)

G = liminfn(A^), so P(An i.o.) = 
1-P(.A£ a.a.). 

For example, suppose (17,^",?) is infinite fair coin tossing, and Hn is 
the event that the n t h coin is heads. Then limsupnifn is the event that 
there are infinitely many heads. Also, lim inf „ Hn is the event that all but 
a finite number of the coins were heads, i.e. that there were only finitely 
many tails. 

Proposi t ion 3.4.1. We always have 

P ( lim inf An ) < lim inf P(An) < lim sup P(An) < P ( lim sup An 
\ n I n n \ n 

Proof. The middle inequality holds by definition, and the last inequality 
follows similarly to the first, so we prove only the first inequality. We 

oo 

note that as n —> oo, the events { p| Ak] are increasing (cf. page 33) to 
fc—n 

liminf An. Hence, by continuity of probabilities, 
n 

P (liminf An) . P ( u f l 4 ) = J i r n P ( f\ Ak) 
\ n k=n / \k=n J 
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liminf P ( f] Ak) < liminf P(An). 
n—>oo \ ' ' / n—voo 

\k=n 

where the final equality follows by definition (if a limit exists, then it is equal 
to the liminf), and the final inequality follows from monotonicity (2.1.2). | 

For example, again considering infinite fair coin tossing, with Hn the 
event that the n t h coin is heads. Proposition 3.4.1 says that P(Hn i.o.) > | , 
which is interesting but vague. To improve this result, we require a more 
powerful theorem. 

Theorem 3.4.2. (The Borel-Cantelli Lemma.) Let Ai,A2,... £ J7. 
(0 ffE„P(4) < oo, then P(limsupn An) = 0. 
(ii) If^2n P(An) = oo, and {An} are independent, then P(limsupra An) = 1. 

Proof. For (i), we note that for any TO £ N, we have by countable 
subadditivity that 

)
/ oo \ oo 

< P I (J Ak J < J2 p(Ak), 
\k=m / k—m 

which goes to 0 as m —> oo if the sum is convergent. 
For (ii), since (limsupn An) = \Jn°=1 Hfcln f̂c'> ^ suffices (by countable 

subadditivity) to show that P (DfcLn A%) = 0 for each n G N. Well, for 
n, TO £ N, we have by independence and Exercise 3.2.2 (and since 1 — x < 
e~x for any real number x) that 

p(nr=n^) < p(n^r^) 
= n£?(i-p(Afc)) 

= e-E:::p(^), 

which goes to 0 as TO —> oo if the sum is divergent. I 

This theorem is striking since it asserts that if {An} are independent, 
then P(limsup„ An) is always either 0 or 1 - it is never | or | or any other 
value. In the next section we shall see that this statement is true even more 
generally. 

We note that the independence assumption for part (ii) of Theorem 3.4.2 
cannot simply be omitted. For example, consider infinite fair coin tossing, 
and let A\ = Ai = A3 = ... = {r\ = 1}, i.e. let all the events be the 
event that the first coin comes up heads. Then the {An} are clearly not 
independent. And, we clearly have P(limsupn An) = P(r i = 1) = \. 
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Theorem 3.4.2 provides very precise information about P(limsupn An) 
in many cases. Consider again infinite fair coin tossing, with Hn the event 
that the n t h coin is heads. This theorem shows that P{Hn i.o.) = 1, i.e. 
there is probability 1 that an infinite sequence of coins will contain infinitely 
many heads. Furthermore, P(i?„ a.a.) = 1 — P(H£ i.o.) = 1 — 1 = 0, so 
the infinite sequence will never contain all but finitely many heads. 

Similarly, we have that 

p {H2n+i n H2n+2 n . . . n Jf2»+[iog2n] *-o.} = 1, 

since the events {iy2n+1rW2™+2n.. .niJ2«+[iog2 n] a r e s e e n to be independent 
for different values of n, and since their probabilities are approximately 1/n 
which sums to infinity. On the other hand, 

p{#2,+1nff2n+2n...ntf2«+[2l0g2n] i.o.} = o, 

since in this case the probabilities are approximately 1/n2 which have finite 
sum. 

An event like P(-Bn i.o.), where Bn = {Hn n Hn+\\, is more difficult. 
In this case ^2P(Bn) = ]Cn(V4) = oo. However, the {Bn} are not inde
pendent, since Bn and Bn+i both involve the same event Hn+\ (i.e., the 
(n + l ) s t coin). Hence, Theorem 3.4.2 does not immediately apply. On 
the other hand, by considering the subsequence n = 2k of indices, we see 
that {B2k}kLi are independent, and Sfc l iP^zfc) = Yl'kLi^i^k) = oo. 
Hence, P(B2k i-o.) = 1, so that P(£?„ i.o.) = 1 also. 

For a similar but more complicated example, let Bn = {Hn+\ n Hn+2 D 
• • • H Hn+[iog2 iog2 n]}. Again, J2 p (Bn) = oo, but the {Bn} are not indepen
dent. But by considering the subsequence n = 2fc of indices, we compute 
that {B2k} are independent, and X^fc-f(-^2fc) = °°- Hence, P(-B2

fc i-o.) = 1, 
so that P ( B n i.o.) = 1 also. 

3.5. Tail fields. 

Given a sequence of events Ai,A2,..., we define their tail field by 

oo 

T = f](T(An,An+i,An+2,...). 
n=\ 

In words, an event A G r must have the property that for any n, it depends 
only on the events An, An+\,...; in particular, it does not care about any 
finite number of the events An. 

One might think that very few events could possibly be in the tail field, 
but in fact it sometimes contains many events. For example, if we are 
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considering infinite fair coin tossing (Subsection 2.6), and Hn is the event 
that the n t h coin comes up heads, then r includes the event l imsup n i l„ 
that we obtain infinitely many heads; the event lim inf„ Hn that we obtain 
only finitely many tails; the event limsupnH2™ that we obtain infinitely 
many heads on tosses 2 ,4 ,8 , . . . ; the event {limn_>00 i X^=i ri — l i t n a t 

the limiting fraction of heads is < j ; the event {r„ = rn+i — rn+2 i-O.} 
that we infinitely often obtain the same result on three consecutive coin 
flips; etc. So we see that r contains many interesting events. 

A surprising theorem is 

Theorem 3.5.1. (Kolmogorov Zero-One Law.) If events Ai,A2,... are 
independent, with tail-Held T, and if A G r, then P(A) = 0 or 1. 

To prove this theorem, we need a technical result about independence. 

Lemma 3.5.2. Let B,Bi,B2, • • • be independent. Then {B} and 
<J{BX, B2, • • •) are independent classes, i.e. if S G cr(Bi, B2, • • • )> then P(S fl 
B) = P ( 5 ) P ( B ) . 

Proof. Assume that P(B) > 0, otherwise the statement is trivial. 
Let J be the collection of all sets of the form Di1 C\Di2 f l . . . C\Din, where 

n G N and where D;. is either B; or B?, together with 0 and fl. Then for 
"3 3 l3 

AeJ,we have by independence that P(A) = P(B n A)fP(B). 
Now define a new probability measure Q on a(B\,B2, • • •) by Q(5) = 

P ( B n S ) / P ( B ) , for S e a(B1,B2,...)- Then Q(0) = 0, Q(fi) = 1, and 
Q is countably additive since P is, so Q is indeed a probability measure. 
Furthermore, Q and P agree on J. Hence, by Proposition 2.5.8, Q and P 
agree on a{J) = a(B1,B2,...). That is, P(5) = Q(5) = P ( B n S)/P(B) 
for all S G cr(Bi, B2, • • •), as required. I 

Applying this lemma twice, we obtain: 

Corollary 3.5.3. Let Ai,A2,... ,B\, B2,... be independent. Then if 
Si G cr(Ai, A2,...), then Si, Bi, B2,... are independent. Furthermore, the 
a-algebras cr(Ai, A2,...) and a(Bi,B2, • • •) are independent classes, i.e. if 
Si G a(Ai,A2,...), andS2 G a(Bx,B2,...), thenP{Sif\S2) = P (5 i )P(5 2 ) . 

Proof. For any distinct ii,i2,... ,in, let A = Bi1 fl . . . fl Bin. Then 
it follows immediately that A,Ai,A2,... are independent. Hence, from 
Lemma 3.5.2, if S"i G a(Ai,A2,...), then P ( A n S i ) = P (A)P(5 i ) . Since 
this is true for all distinct i\,..., in, it follows that S±, Bi, B2,... are inde
pendent. Lemma 3.5.2 then implies that if S2 e a(Bi,B2,...), then Si and 



38 3. FURTHER PROBABILISTIC FOUNDATIONS. 

S2 are independent. I 

Proof of Theorem 3.5.1. We can now easily prove the Kolmogorov 
Zero-One Law. The proof is rather remarkable! 

Indeed, A G cr(An, An+i,...), so by Corollary 3.5.3, A,A±,A2,. • •, An-\ 
are independent. Since this is true for all n G N, and since independence is 
defined in terms of finite subcollections only, it is also true that A, A\, A2, • • • 
are independent. Hence, from Lemma 3.5.2, A and S are independent for 
all S G a(A1,A2,...). 

On the other hand, A G r C a(Ai,A2,.. •). It follows that A is inde
pendent of itself (!). This implies that P(A n A) = ~P(A) P{A). That is, 
P ( A ) = P ( A ) 2 , s o P ( A ) = 0 o r 1. | 

3.6. Exercises. 

Exercise 3.6.1. Let X be a real-valued random variable defined on a 
probability triple (f2, J7, P ) . Fill in the following blanks: 
(a) JF is a collection of subsets of . 
(b) P(A) is a well-defined element of provided that A is an ele
ment of . 
(c) {X < 5} is shorthand notation for the particular subset of 
which is defined by: . 
(d) If S is a subset of , then {X G S} is a subset of . 
(e) If 5 is a subset of , then {X G S} must be an 
element of . 

Exercise 3.6.2. Let (O,^7, P) be Lebesgue measure on [0,1]. Let A = 
(1/2, 3/4) and B = (0, 2/3). Are A and B independent events? 

Exercise 3.6.3. Give an example of events A, B, and C, each of proba
bility strictly between 0 and 1, such that 
(a) P(A n B) = P{A)P{B), P{A n C) = P(A)P(C), and P(B n C) = 
P(B)P(C); but it is not the case that P(A f l B f l C ) = P{A)P{B)P(C). 
[Hint: You can let f2 be a set of four equally likely points.] 
(b) P(A n B) = P(A)P{B), P(A H C) = P{A)P(C), and P{A n B D C) = 
P{A)P(B)P(C); but it is not the case that P(B n C) = P(B)P(C). [Hint: 
You can let f2 be a set of eight equally likely points.] 

Exercise 3.6.4. Suppose {An} / A. Let / : f2 —> R be any function. 
Prove that l im^oo infw6A„ f(u) = iniuieA f(u>). 
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Exercise 3.6.5. Let (fi, T, P) be a probability triple such that Q is count
able. Prove that it is impossible for there to exist a sequence Ai,A2,... € T 
which is independent, such that P(-Aj) = \ for each i. [Hint: First prove 
that for each to e f2, and each n e N, we have P ({w}) < l / 2 n . Then derive 
a contradiction.] 

Exercise 3.6.6. Let X, Y, and Z be three independent random variables, 
and set W = X + Y. Let Bk,n = {(n - l)2"fe < X < n2"fc} and let 
Cfc,m = {(m - l)2"fc < y < m2Lk}. Let 

» , m £ Z 
( n + m ) 2 - f c < x 

Fix x, ^ G R, and let A = {X + Y < x} = {W < x) and D = {Z < z). 
(a) Prove that {Ak} / A. 
(b) Prove that Ak and D are independent. 
(c) By continuity of probabilities, prove that A and D are independent. 
(d) Use this to prove that W and Z are independent. 

Exercise 3.6.7. Let (f2,J-", P) be the uniform distribution on Q, = 
{1, 2, 3}, as in Example 2.2.2. Give an example of a sequence A\,A2, • • • € T 
such that 

P( liminf An) < liminf P (An) < l imsupP(A n ) < P( limsupA„) , 
V n J n n \ n J 

i.e. such that all three inequalities are strict. 

Exercise 3.6.8. Let A be Lebesgue measure on [0,1], and let 0 < a < b < 
c < d < 1 be arbitrary real numbers with d < b + c — a. Give an example 
of a sequence A\,A2,... of intervals in [0,1], such that A(lim infn An) = a, 
liminfn \{An) = b, limsupnA(An) = c, and A(limsup„ An) = d. For bonus 
points, solve the question when d > b + c — a, with each An a finite union 
of intervals. 

Exercise 3.6.9. Let Ai,A2,... ,Bi,B2, • • • be events. 
(a) Prove that 

f lim sup An J n (lim sup Bn J D limsup (An H Bn) . 

(b) Give an example where the above inclusion is strict, and another ex
ample where it holds with equality. 
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Exercise 3.6.10. Let A\, A2, • • • be a sequence of events, and let N G N. 
Suppose there are events B and C such that B C An C C for all n> N, and 
such that P(B) = P(C). Prove that P(liminfnA„) = P(limsupn .An) = 
P(B) = P(C). 

Exercise 3.6.11. Let {Xn}^L1 be independent random variables, with 
Xn ~ Uni form({l ,2 , . . . ,n}) (cf. Example 2.2.2). Compute P(X„ = 
5 i.o.), the probability that an infinite number of the Xn are equal to 5. 

Exercise 3.6.12. Let X be a random variable with P{X > 0) > 0. Prove 
that there is 5 > 0 such that P(X > 5) > 0. [Hint: Don't forget continuity 
of probabilities.] 

Exercise 3.6.13. Let Xi, X2, • • • be defined jointly on some probability 
space (Q,F,P), with E[Xi] = 0 and E[{Xi)2} = 1 for all i. Prove that 
P[Xn > n i.o.} = 0. 

Exercise 3.6.14. Let S, e > 0, and let X\,Xi,... be a sequence of non-
negative random variables such that ~P(Xi > 5) > e for all i. Prove that 
with probability one, X ^ i -%-i = 00. 

Exercise 3.6.15. Let Ai, A2, • • • be a sequence of events, such that (i) 
Ai1, Ai2,.. •, Aik are independent whenever ij+1 > i3• + 2 for 1 < j < k — 1, 
and (ii) J^„ P(-^n) = 00. Then the Borel-Cantelli Lemma does not directly 
apply. Still, prove that P(limsupn An) = 1. 

Exercise 3.6.16. Consider infinite, independent, fair coin tossing as 
in Subsection 2.6, and let Hn be the event that the n t h coin is heads. 
Determine the following probabilities. 
(a) P{Hn+1nHn+2n...nHn+9i.o.). 
(b) P(Hn+1 n H n + 2 n . . . n H 2 n i.o.). 
(c) P(fl„+1nJJ„+2n...n5„+|2 

log2 n] I.O.). 

(d) Prove that P(Hn+i n Hn+2 PI... Pi -ffn+[iog2 n] *-°0 must equal either 0 
or 1. 
(e) Determine P(Hn+i P\ Hn+2 Pi . . . Pi Hn+[\og n] i.o.). [Hint: Find the 
right subsequence of indices.] 
Exercise 3.6.17. Show that Lemma 3.5.2 is false if we require only that 
P(BnBn) = P(B) P(Bn) for each n G N, but do not require that the {Bn} 
be independent of each other. [Hint: Don't forget Exercise 3.6.3(a).] 

Exercise 3.6.18. Let Ai,A2,... be any independent sequence of events, 
and let Sx = {limn^oo ^ 5Z"=1 1A4 < x}- Prove that for each x G R we 
have P(SX) = 0 or 1. 



3.7. SECTION SUMMARY. 41 

Exercise 3.6.19. Let Ai,A2,... be independent events. Let Y be a 
random variable which is measurable with respect to a(An, An+i,...) for 
each n £ N. Prove that there is a real number a such that P(Y = a) = 1. 
[Hint: Consider P(Y < x) for a; G R; what values can it take?] 

3.7. Section summary. 

In this section, we defined random variables, which are functions on 
the state space. We also defined independence of events and of random 
variables. We derived the continuity property of probability measures. We 
defined limit events and proved the important Borel-Cantelli Lemma. We 
defined tail fields and proved the remarkable Kolmogorov Zero-One Law. 
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4. Expected values. 

There is one more notion that is fundamental to all of probability theory, 
that of expected values. The general definition of expected value will be 
developed in this section. 

4.1. Simple random variables. 

Let (ft, J7, P) be a probability triple, and let X be a random variable 
defined on this triple. We begin with a definition. 

Definition 4.1.1. A random variable X is simple if vange(X) is finite, 
where range(X) = {X(w);u> € ft}. 

That is, a random variable is simple if it takes on only a finite number of 
different values. If X is a simple random variable, then listing the distinct 
elements of its range as x\, xi, • • •, xn, we can then write X = £™=1

 Xi^-At 

where A; = {w g ft;X[uj) = x,} = X~l({xi}), and where the lAi are 
indicator functions. We note that the sets Ai form a finite partition of ft. 

For such a simple random variable X = Y^i=ixi^-Ai, we define its ex
pected value or expectation or mean by E(X) = £™=1 ^iP(Ai). That is, 

( n \ n 

^2xilAi\ =^2xiP(Ai), {Ai} a finite partition of ft. (4.1.2) 
t= i / i= i 

We sometimes write \ix for E(X). 
Exercise 4.1.3. Prove that (4.1.2) is well-defined, in the sense that if {Ai} 
and {Bj} are two different finite partitions of ft, such that £™=1

 Xi^-At = 
£ £ = I 2 / J 1 B , >

 t h e n E ? = i ^ P ( ^ i ) = ££=iS/jP(Sj) . [Hint: collect together 
those Ai and Bj corresponding to the same values of x» and yj] 

For a quick example, let (ft,^, P) be Lebesgue measure on [0,1], and 
define simple random variables X and Y by 

*<">-< £ : < $ , y< 
2, w rational 
4, u> = 1/V2 
6, other w < 1/4 
8, otherwise. 

Then it is easily seen that E(X) = 13/3, and E(y) = 15/2. 
From equation (4.1.2), we see immediately that E ( l ^ ) = P(A), and 

that E(c) = c. We now claim that E(-) is linear. Indeed, if -X" = £ j XilAi 
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and Y = 52 Vj^-Bi, where {Ai} and {Bj} are finite partitions of Q, and if 
a, b, G R, then {Ai fl -Bj} is again a finite partition of fi, and we have 

E(aX + bY) = vfejiaXi + byAlAtnB,) 
= Et,j(axi + byj)P(AiDB,) 
= aZiXiPiAJ + bZjVjViBj) 
= aE(X) + bE(Y), 

as claimed. It follows that E (^" = 1 x, l J 4 i ) = ^ " = 1 £ i P ( A j ) for any finite 
collection of subsets Ai C fi, even if they do not form a partition. 

It also follows that E(-) is order-preserving, i.e. if X < Y (meaning that 
X(u>) < Y(LU) for all w e Q), then E(X) < E(Y). Indeed, in that case 
Y — X > 0, so from (4.1.2) we have E(Y - X) > 0; by linearity this implies 
that E(Y) - E(X) > 0. 

In particular, since -\X\ < X < \X\, we have |E(X)| < E( |X|) , which 
is sometimes referred to as the (generalised) triangle inequality. If X takes 
on the two values a and b, each with probability | , then this inequality 
reduces to the usual \a + b\ < \a\ + \b\. 

Finally, if X and Y are independent simple random variables, then 
E ( I F ) = E(X)E(Y). Indeed, again writing X = £ ^ 1 ^ and Y = 
527- Vj^-Bi, where {Ai} and {Bj} are finite partitions of fl and where {xi} 
are distinct and {yj} are distinct, we see that X and Y are independent 
if and only if P(^4j n Bj) = P(Ai)P(Bj) for all i and j . In that case, 
E(XF) = ^ j ^ - P ^ n B , - ) = ^jXiyjPiA^PiB,) = E(X)E(Y), as 
claimed. Note that this may be false if X and Y are not independent; 
for example, if X takes on the values ±1 , each with probability | , and if 
Y = X, then E(X) = E(Y) = 0 but E(XY) = 1. Also, we may have 
E(XY) = E(X)E(Y) even if X and Y are noi independent; for example, 
this occurs if X takes on the three values 0, 1, and 2 each with probability 
| , and if Y is defined by Y(u>) = 1 whenever X(cu) = 0 or 2, and Y(w) = 5 
whenever X(u>) = 1. 

If X = Yl7=i xi^-Ai, with {Ai} a finite partition of f2, and if / : R —> R is 
any function, then / (X) = 52"=1 / ( a^ ) ] . ^ is also a simple random variable, 
with E (/(*)) = £?=i/Ori)P04i)-

In particular, if f(x) = (x — £*x)2, we get the variance of X, defined 
by Var(X) = E ({X - fix)2)- Clearly Var(X) > 0. Expanding the square 
and using linearity, we see that Var(X) = E(X2) - fix = E(X2) - E(X)2. 
In particular, we always have 

Var(X) < E{X2). (4.1.4) 

It also follows immediately that 

Var(aX + /3) = a 2 Var (X) . (4.1.5) 
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We also see that Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y), where 
Cov(X, Y) = E ((X - Mx)(y - HY)) = E(XY) - E(X)E(Y) is the covari-
ance; in particular, if X and Y are independent then Cov(X, Y) = 0 so 
that Var(X + Y) = Var(X) + Var(Y). More generally, VarQTV^i) = 
£V Var(Xi) + 2 X ^ Cov(X;, Xj), so we see that 

Var(Xi + . . . + Xn) = Var(Xi) + . . . + Var (X n ) , {Xn} independent. 
(4.1.6) 

Finally, if Var(X) > 0 and Var(Y) > 0, then the correlation between 
X and Y is defined by Corr(X,Y) = Cov(X, Y)/y/Vax{X) Var(Y); see 
Exercises 4.5.11 and 5.5.6. 

This concludes our discussion of the basic properties of expectation for 
simple random variables. (Indeed, it is possible to read Section 5 immedi
ately at this point, provided that one restricts attention to simple random 
variables only.) We now note a fact that will help us to define E(X) for 
random variables X which are not simple. It follows immediately from the 
order-preserving property of E(-). 

Proposition 4.1.7. If X is a simple random variable, then 

E(X) = sup{E(Y); Y simple, Y < X} . 

4.2. General non-negative random variables. 

If X is not simple, then it is not clear how to define its expected value 
E(X). However, Proposition 4.1.7 provides a suggestion of how to pro
ceed. Indeed, for a general non-negative random variable X, we define the 
expected value E(X) by 

E(X) = sup{E(Y); Y simple, Y < X} . 

By Proposition 4.1.7, if X happens to be a simple random variable then 
this definition agrees with the previous one, so there is no confusion in re
using the same symbol E(-). Indeed, this one single definition (with a minor 
modification for negative values in Subsection 4.3 below) will apply to all 
random variables, be they discrete, absolutely continuous, or neither (cf. 
Section 6). 

We note that it is indeed possible that E(X) will be infinite. For ex
ample, suppose (fi,.F, P) is Lebesgue measure on [0,1], and define X by 
X(LO) = 2n for 2~n < u < 2^n~l\ (See Figure 4.2.1.) Then E(X) > 

Y^k=i 2k2~k = N f o r a n y N e N - Hence, E(X) = oo. 
Recall that for k G N, the kth moment of a non-negative random vari

able X is defined to be E(Xk), finite if E(|X|fc) < oo. Since Ix^"1 < 
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X{u>) 
. 

8 -

7 -

6 -

5 -

4 -

3 -

2 -

1 -

0 H 
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i 

1 1 1 1 1 1 1 

Figure 4.2.1. A random variable X having E(X) = oo. 

max(|a;|fe, 1) < \x\k + 1 for any x G R, we see that if E(|X|fc) is finite, then 
soisECIXI*1-1). 

It is immediately apparent that our general definition of E(-) is still 
order-preserving. However, proving linearity is less clear. To assist, we 
have the following result. We say that {Xn} /* X if Xx < X% < . . . , and 
also linin^oo Xn(uj) = X(u>) for each u> G f2. (That is, the sequence {Xn} 
converges monotonically to X.) 

Theorem 4.2.2. (The monotone convergence theorem.) Suppose 
X\,X<z, • • • are random variables with E(Xi) > —oo, and {Xn} /* X. Then 
X is a random variable, and linin^^ E(Xn) = E(X). 

Proof. We know from (3.1.6) that X is a random variable (alternatively, 
simply note that in this case, {X < x} = f]n{Xn < x} € T for all x G R). 
Furthermore, by monotonicity we have E(Xi) < E(X2) < . . . < E(X), so 
that lim„E(XTl) exists (though it may be infinite if E(X) = +oo), and is 
< E(X). 

To finish, it suffices to show that lim„ E(X„) > E(X). If E(X1) = +oo 
this is trivial, so assume E(Xi) is finite. Then, by replacing Xn by Xn — X\ 
and X by X — Xi, it suffices to assume the Xn and X are non-negative. 
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By the definition of E(X) for non-negative X, it suffices to show that 
lim„ E(X„) > E(y ) for any simple random variable Y < X. Writing Y = 
^Zi^jlAi! w e s e e that it suffices to prove that l im„E(Xn) > ^2iViP(Ai), 
where {A{\ is any finite partition of Q, with Vi < X(ui) for all UJ £ Ai. 

To that end, choose e > 0, and set Ain = {LU G Ai; Xn(u>) > Vi — e}. 
Then {Ain} / Ai as n —* oo. Furthermore, E(Xn) > Si(w«~ e)P( J4m)- As 
n —• oo, by continuity of probabilities this converges to ^2t(vi ~~ e )P(^ i ) = 

Xli^P(^i) - e- Hence, limE(Xn) > X^VJP(J4J) ~ e> Since this is true for 
any e > 0, we must (cf. Proposition A.3.1) have limE(Xn) > X)iu*P(-^»)> 
as required. I 

Remark 4.2.3. Since expected values are unchanged if we modify the ran
dom variable values on sets of probability 0, we still have liniyj^oo E(X n ) = 
E(X) provided {Xn} / X almost surely (a.s.), i.e. on a subset of ft having 
probability 1. (Compare Remark 3.1.9.) 

We note that the monotonicity assumption of Theorem 4.2.2 is indeed 
necessary. For example, if ( f i ,^ , P ) is Lebesgue measure on [0,1], and if 
Xn = nlr0 x\, then Xn —> 0 (since for each u G [0,1] we have Xn(w) = 0 
for all n > 1/w), but E(X n ) = 1 for all n. 

To make use of Theorem 4.2.2, set $n(x) = min(n, 2"n\_2nx\) for x > 
0, where [r\ is the floor of r, or greatest integer not exceeding r. (See 
Figure 4.2.4.) Then ^ ra(x) is a slightly rounded-down version of x, truncated 
at n. Indeed, for fixed x > 0 we have that ^{x) > 0, and {^n(x)} / x as 
n —• oo. Furthermore, the range of \J/n is finite (of size n2n + 1). Hence, 
this shows: 

Proposi t ion 4.2.5. Let X be a general non-negative random variable. 
Set Xn = *„(.X") with * „ as above. Then Xn > 0 and {Xn} / X, and 
each Xn is a simple random variable. In particular, there exists a sequence 
of simple random variables increasing to X. 

Using Theorem 4.2.2 and Proposition 4.2.5, it is straightforward to prove 
the linearity of expected values for general non-negative random variables. 
Indeed, with Xn = $>n{X) and Yn = ^n(Y), we have (using linearity of 
expectation for simple random variables) that for X, Y > 0 and a, b > 0, 

E(aX + bY) = limE(aX„ + bYn) = lim (oE(Xn) + &E(Y„)) 
n n 

= aE(X) + 6E(y) . (4.2.6) 
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y = x, 
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Figure 4.2.4. A graph of y = ^2{x). 

Similarly, if X and Y are independent, then by Proposition 3.2.3, Xn 

and F n are also independent. Hence, if E(X) and E(Y) are finite, 

E ( X 7 ) = limE(X„yn) = l imE(X n )E ( r n ) = E ( X ) E ( F ) ; (4.2.7) 

as was the case for simple random variables. It then follows that Var(X + 
Y) = Var(X) + Var(F) exactly as in the previous case. 

We also have countable linearity. Indeed, if X\, X2, • • • > 0, then by the 
monotone convergence theorem, 

E(X1+X2 + ...) = E (limXi + X2 + . . . + Xn) = l imE(X 1 +X 2 + .. .+Xn) 
\ n / n 

= lim [E(Xi) + E{X2) + ... + E(Xn)j = E(XX) + E(X2) + . . . . (4.2.8) 
n 

If the Xi are non non-negative, then (4.2.8) may fail, though it still holds 
under certain conditions; see Exercise 4.5.14 (and Corollary 9.4.4). 

We also have the following. 

Proposition 4.2.9. If X is a non-negative random variable, then 
Yl'kLi P(-X" > k) = E[XJ, where [X\ is the greatest integer not exceeding 



4.3. ARBITRARY RANDOM VARIABLES. 49 

X. (In particular, if X is non-negative-integer valued, then J2T=i P ( ^ — 
k) = E(X).) 

Proof. We compute that 

oo oo 

Y, P(-X" > k) = ^ lp(fc < X < k + 1) +P{k + 1 < X < k + 2) + ...} 
fc=i fc=i 

oo oo 

t=\ e=i 

4.3. Arbitrary random variables. 

Finally, we consider random variables which may be neither simple nor 
non-negative. For such a random variable X, we may write X = X+ — X~, 
where X+(u) = max(X(w),0) and X~{ui) = max(-X(w),0). Both X+ 
and X" are non-negative, so the theory of the previous subsection applies 
to them. We may then set 

E(X) = E ( Z + ) - E ( X " ) . (4.3.1) 

We note that E(X) is undefined if both E ( X + ) and E(X~) are infinite. 
However, if E ( X + ) = oo and E(X~) < oo, then we take E(X) = oo. 
Similarly, if E ( X + ) < oo and E(X~) = oo, then we take E(X) = -oo . 
Obviously, if E(X+) < oo and E(X~) < oo, then E(X) will be a finite 
number. 

We next check that, with this modification, expected value retains the 
basic properties of order-preserving, linear, etc.: 

Exercise 4.3.2. Let X and Y be two general random variables (not 
necessarily non-negative) with well-defined means, such that X < Y. 
(a) Prove that X+ < Y+ and X~ >Y~. 
(b) Prove that expectation is still order-preserving, i.e. that E(X) < E(Y) 
under these assumptions. 

Exercise 4.3.3. Let X and Y be two general random variables with 
finite means, and let Z = X + Y. 
(a) Express Z+ and Z~ in terms of X+, X~, Y+, and Y~. 
(b) Prove that E(Z) = E(X) + E(Y), i.e. that E ( Z + ) - E ( Z " ) = E ( X + ) -
E ( X - ) + E(Y + ) - E(F~) . [Hint: Re-arrange the relations of part (a) so 
that you can make use of (4.2.6).] 
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(c) Prove that expectation is still (finitely) linear, for general random vari
ables with finite means. 

Exercise 4.3.4. Let X and Y be two independent general random 
variables with finite means, and let Z — XY. 
(a) Prove that X+ and Y+ are independent, and similarly for each of X+ 

and Y~, and X~ and Y+, and X~ and Y~. 
(b) Express Z+ and Z~ in terms of X+, X~, Y+, and Y~. 
(c) Prove that E{XY) = E(X) E(Y). 

4.4. The integration connection. 

Given a probability triple (f2, T, P) , we sometimes write E(X) as J n XdP 
or JnX(o;)P(dw) (the "fi" is sometimes omitted). We call this the integral 
of the (measurable) function X with respect to the (probability) measure 
P. 

Why do we make this identification? Well, certainly expected value 
satisfies some similar properties to that of the integral: it is linear, order-
preserving, etc. But a more convincing reason is given by 

Theorem 4.4.1. Let {$l,T, P) be Lebesgue measure on [0,1]. Let 
X : [0,1] —> R be a bounded function which is Riemann integrable (i.e. 
integrable in the usual calculus sense). Then X is a random variable with 
respect to (fl,T,P), and E(X) = JQ X(t)dt. In words, the expected value 
of the random variable X is equal to the calculus-style integral of the func
tion X. 

Proof. Recall the definitions of lower and upper integrals, viz. 

L I X = sup \ Y~(U - U-i) inf X(t); 0 = t0 < tx < ... < tn = 1 I ; 
Jo [i=1 u^<t<u j 

U / X = mi\ y V i i - i i - i ) sup X{t);0 = to<t1<...<tn = l \ . 
Jo [i=1 ii_i<t<ti J 

Recall that we always have L J0 X < U JQ X, and that X is Riemann 

integrable if L JQ X = U fQ X, in which case JQ X(t) dt is defined to be this 
common value. 

B u t S™=i(i« — ti-i) mfti_i<t<ti X(t) = E(F) , where the simple random 
variable Y is defined by Y(w) = in f t^^ t^ t ; X(t) whenever U-i < u> < U. 
Hence, since X is Riemann integrable, for each n € N we can find a simple 
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random variable Yn < X with E(Yn) > L JQ X(t) dt — ~. Similarly we can 

find Zn > X with E(Zn) < U J^ X(t) dt+±. Let An = max(Yi, . . . , Yn), 
and Bn = min(Zi , . . . , Zn). 

We claim that {An} / X a.s. Indeed, {An} is increasing by construc
tion. Furthermore, An < X < Bn, and limn^oo E(An) = linin^oo E(S n ) = 
/0 X(t) dt. Hence, if S^ = {w e fi : linv^oo (Bn(u) - An(to)) > 1/fe}, then 
0 = l i n i n g E(B„ - An) > P(5fc) / k, so P(5fc) = 0 for all fc e N. Then 
Pflimn^oo An < X] < P[l im 

ra—>oo ^4« < liniji—Kx) B„] <P[U f c 5 f c ] = 0 b y 
countable subadditivity, proving the claim. 

Hence, by Theorem 4.2.2 and Remarks 4.2.3 and 3.1.9, X must be a 
random variable, with E(X) = lirrin^oo E(An) = J0 -X"(f) di. I 

On the other hand, there are many functions X which are not Riemann 
integrable, but which nevertheless are random variables with respect to 
Lebesgue measure, and thus have well-defined expected values. For exam
ple, if X is defined by X(i) = 1 for t irrational, but X(t) = 0 for t rational, 
i.e. X = I Q C where Q c is the set of irrational numbers, then X is not 
Riemann-integrable but we still have E(X) = J XdP = 1 being perfectly 
well-defined. 

We sometimes call the expected value of X, with respect to the Lebesgue 
measure probability triple, its Lebesgue integral, and if ~E\X\ < oo we say 
that X is Lebesgue integrable. By Theorem 4.4.1, the Lebesgue integral is a 
generalisation of the Riemann integral. Hence, in addition to learning many 
things about probability theory, we are also learning more about integration 
at the same time! 

We also note that we do not need to restrict attention to integrals over 
the unit interval [0,1]. Indeed, if X : R —> [0, oo) is Borel-measurable, then 
we can define J_ X dX, where A stands for Lebesgue measure on the entire 
real line R, by 

OO pi 

X(t)X(dt) = V] / X{n + t)P{dt), (4.4.2) 

or equivalent ly 

/
oo 

X(t)\(dt) = ^ E ( Y „ ) , 
-°° nez 

where Yn(t) = X(n + t) and the expectation is with respect to Lebesgue 
measure on [0,1]. That is, we can integrate a non-negative function over the 
entire real line by adding up its integral over each interval [n,n + 1). (For 
general X, we can then write X — X+ - X~, as usual.) In other words, 
we can represent A, Lebesgue measure on R, as a sum of countably many 
copies of Lebesgue measure on unit intervals. We shall see in Section 6 that 
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we may use Lebesgue measure on R to help us define the distributions of 
general absolutely-continuous random variables. 

Remark 4.4.3. Measures like A above, which are not finite but which 
can be written as the countable sum of finite measures, are called a-finite 
measures. They are not probability measures, and cannot be used to define 
probability spaces; however by countable additivity they still satisfy many 
properties that probability measures do. Of course, unlike in the probability 
measure case, J_ X dX may be infinite or undefined even if X is bounded. 

4.5. Exercises. 

Exercise 4.5.1. Let (fl,f,P) be Lebesgue measure on [0,1], and set 

( 1 , 0 < w < 1/4 
X(w) = I 2LO2, 1/4 < a; < 3/4 

[ to2, 3 / 4 < w < l . 

Compute P(X £ A) where 
(a) A =[0,1]. 
(b) A=[±,l]. 

Exercise 4.5.2. Let X be a random variable with finite mean, and let 
a G R be any real number. Prove that E(max(X, a)) > max (E(X),a) . 
[Hint: Consider separately the cases E p Q > a and E(X) < a.} (See also 
Exercise 5.5.7.) 

Exercise 4.5.3. Give an example of random variables X and Y defined 
on Lebesgue measure on [0,1], such that P(X > Y) > | , but E(X) < E(Y). 

Exercise 4.5.4. Let (fl,T, P) be the uniform distribution on fl = 
{1,2,3}, as in Example 2.2.2. Find random variables X, Y, and Z on 
(ft,.F,P) such that P ( X > Y)P(Y > Z)P(Z > X) > 0, and E(X) = 
E(Y) = E(Z). 

Exercise 4.5.5. Let X be a random variable on (fl, T, P) , and suppose 
that fi is a finite set. Prove that X is a simple random variable. 

Exercise 4.5.6. Let X be a random variable defined on Lebesgue measure 
on [0,1], and suppose that X is a one-to-one function, i.e. that if UJ\ ̂  W2 
then X(uii) ^ X(w2)- Prove that X is not a simple random variable. 
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Exercise 4.5.7. (Principle of inclusion-exclusion, general case) Let 
A\, A2,..., An G T. Generalise the principle of inclusion-exclusion to: 

n 

P(A1U...UAn) = ^ P ( A 2 ) - Y, p(^nAj) 
i=l l<i<j<n 

+ Yl P(AinAjnAk) - ... ± P(A1n...nAn). 
l<i<j<k<n 

[Hint: Expand 1 — n i L i ( l — 1̂ 4; )> a n d take expectations of both sides.] 

Exercise 4.5.8. Let f{x) = ax2 + bx + c be a second-degree polynomial 
function (where a, 6, c £ R are constants). 
(a) Find necessary and sufficient conditions on a, b, and c such that the 
equation E ( / ( Q X ) ) = a2~E(f(X)) holds for all a € R and all random 
variables X. 
(b) Find necessary and sufficient conditions on a, b, and c such that the 
equation E ( / ( X - /?)) = E( / (X)) holds for all /? £ R and all random 
variables X. 
(c) Do parts (a) and (b) account for the properties of the variance function? 
Why or why not? 

Exercise 4.5.9. In proving property (4.1.6) of variance, why did we 
not simply proceed by induction on nl That is, suppose we know that 
Var(X + Y) = Var(X) + Var(Y) whenever X and Y are independent. 
Does it follow easily that Var(X + Y + Z) = Var(X) + Var(Y) + Var(Z) 
whenever X, Y, and Z are independent? Why or why not? How does 
Exercise 3.6.6 fit in? 

Exercise 4.5.10. Let X i , X 2 , . . . be i.i.d. with mean \i and variance a2, 
and let iV be an integer-valued random variable with mean m and variance v, 
with N independent of all the X;. Let S = X\ +... + XM = YHLI Xi 1JV>J-

Compute Var(S') in terms of fi, a2, m, and v. 

Exercise 4.5.11. Let X and Z be independent, each with the standard 
normal distribution, let a, b G R (not both 0), and let Y = aX + bZ. 
(a) Compute Corr(X,Y). 
(b) Show that |Corr(X, Y)\ < 1 in this case. (Compare Exercise 5.5.6.) 
(c) Give necessary and sufficient conditions on the values of a and b such 
that Cor r (X ,F ) = 1. 
(d) Give necessary and sufficient conditions on the values of a and b such 
that C o r r ( X , r ) = - 1 . 
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Exercise 4.5.12. Let X and Y be independent general non-negative 
random variables, and let Xn = * n ( X ) , where \P„(x) = min(n, 2~n [2nx]) 
as in Proposition 4.2.5. 
(a) Give an example of a sequence of functions $ n : [0, oo) —> [0, oo), oi/ier 
than $ n(x) = *„(x), such that for all x, 0 < $n(a;) < x and {<f>„(x)} /* a; 
as n —> oo. 
(b) Suppose y„ = $ n ( y ) with $ n as in part (a). Must Xn and F n be 
independent? 
(c) Suppose {Yn} is an arbitrary collection of non-negative simple random 
variables such that {Yn} / Y. Must Xn and Yn be independent? 
(d) Under the assumption of part (c), determine (with proof) which quan
tities in equation (4.2.7) are necessarily equal. 

Exercise 4.5.13. Give examples of a random variable X denned on 
Lebesgue measure on [0,1], such that 
(a) E(X+) = oo and 0 < E(X~) < oo. 
(b) E (X") = oo and 0 < E(X+) < oo. 
(c) E ( X + ) = E ( X - ) = oo. 
(d) E(X) < oo but E(X2) = oo. 

Exercise 4.5.14. Let Z\, Z 2 , . . . be general random variables with E|Z*| < 
oo, and let Z = Z\ + Z2 + • • •• 

(a) Suppose E i E ( X + ) < oo and E » E ( X r ) < oo. Prove that E(Z) = 
EiE(Z 4 ) . 
(b) Show that we still have E(Z) = E i E(Zj) if we have at least one of 
E i E ( Z + ) < o o o r E l E ( Z r ) < o o . 
(c) Let {Z;} be independent, with P(Zi = +1) = P(Zj = —1) = | for each 
i. Does E(Z) = £ \ E(Z,) in this case? How does that relate to (4.2.8)? 

Exercise 4.5.15. Let (£}i,.Fi,Pi) and (fi2,J72,P2) be two probability 
triples. Let Ai,A2,... G J^i, and Bi,B2, • • • & T2. Suppose that it happens 
that the sets {An x Bn} are all disjoint, and furthermore that (J^LiC-^n x 

Bn) = A x B for some A G T\ and i? G ^2-
(a) Prove that for each u G Q.\, we have 

oo 

l A (w)P 2 (B) = ^ U » P 2 ( B n ) . 
n=l 

[Hint: This is essentially countable additivity of P 2 , but you do need to be 
careful about disjointness.] 
(b) By taking expectations of both sides with respect to P i and using 
countable additivity of P i , prove that 

oo 

Pi (A)P 2 (B) = ^ P 1 ( A n ) P 2 ( B n ) . 
n=l 
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(c) Use this result to prove that the J and P for product measure, pre
sented in Subsection 2.6, do indeed satisfy (2.5.5). 

4.6. Section summary. 

In this section we defined the expected value E(X) of a random variable 
X, first for simple random variables and then for general random variables. 
We proved basic properties such as linearity and order-preserving. We de
fined the variance Var(X). If X and Y are independent, then E(XY) = 
E(X)E(Y) and Var(X + Y) = Var(X) + Var(Y). We also proved the 
monotone convergence theorem. Finally, we connected expected value to 
Riemann (calculus-style) integration. 





5. INEQUALITIES AND CONVERGENCE. 57 

5. Inequalities and convergence. 

In this section we consider various relationships regarding expected val
ues and limits. 

5.1. Various inequalities. 

We begin with two very important inequalities about random variables. 

Proposition 5.1.1. (Markov's inequality.) IfX is a non-negative random 
variable, then for all a > 0, 

P ( X > a ) < E ( X ) / a . 

In words, the probability that X exceeds a is bounded above by its mean 
divided by a. 

Proof. Define a new random variable Z by 

Z{UJ) - \ 0, X(Lo)<a. 

Then clearly Z < X, so that E(Z) < E(X) by the order-preserving prop
erty. On the other hand, we compute that E(Z) = aP(X > a). Hence, 
aP{X>a)<E(X). I 

Markov's inequality applies only to non-negative random variables, but 
it immediately implies another inequality which holds more generally: 

Proposition 5.1.2. (Chebychev's inequality.) Let Y be an arbitrary 
random variable, with finite mean fiy Then for all a > 0, 

T?(\Y-nY\>a) < V a r ( T ) / a 2 . 

In words, the probability that Y differs from its mean by more than a is 
bounded above by its variance divided by a2. 

Proof. Set X = (Y — /xy)2. Then X is a non-negative random variable. 
Thus, using Proposition 5.1.1, we have 

P (\Y - fiy\ > a) = P (X > a2) < E ( X ) / a 2 = Var(F)/ a2. 

We shall use the above two inequalities extensively, including to prove 
the laws of large numbers presented below. Two other sometimes-useful 
inequalities are as follows. 
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Proposi t ion 5.1.3. (Cauchy-Schwarz inequality.) Let X and Y be 
random variables with E(X2) < oo and E(Y2) < oo. Then E\XY\ < 
^/E(X2)E(Y2). 

Proof. Let Z = \X\ / s/E(X2) and W = \Y\ / y/E(Y2), so that E(Z2) = 
E(W2) = 1. Then 

0 < E((Z-W)2) = E ( Z 2 + W 2 - 2 Z W ) = 1 + 1-2E(ZW), 

so E(ZW) < 1, i.e. E\XY\ < s/E(X2) E(Y2). I 

Proposi t ion 5.1.4. (Jensen's inequality.) Let X be a random variable 
with finite mean, and let <p : R —> R be a convex function, i.e. a function 
such that X(p(x) + (1 — X)cp(y) > <f)(Xx + (1 — X)y) for x,y,X € R and 
0 < A < 1. Then E {<p(X)) > <j> (E(X)). 

Proof. Since (p is convex, we can find a linear function g(x) = ax + b 
which lies entirely below the graph of <j> but which touches it at the point x = 
E(X), i.e. such that g(x) < <f>(x) for all x 6 R, and g(E(X)) = </>(E(X)). 
Then 

E((f)(X)) > E(g(X)) = E(aX + b) = aE(X) +b = g(E(X)) = <j>(E(X)). I 

5.2. Convergence of random variables. 

If Z, Zi,Zi,... are random variables defined on some {Q.,T, P) , what 
does it mean to say that {Zn} converges to Z as n —> oo? 

One notion we have already seen (cf. Theorem 4.2.2) is pointwise con
vergence, i.e. lim„_+00 Zn(u>) = Z(w). A slightly weaker notion which often 
arises is convergence almost surely (or, a.s. or with probability 1 or w.p. 1 
or almost everywhere), meaning that P( l im n ^ 0 0 Zn = Z) = 1, i.e. that 
P{w £ fl : linin^oo Zn(u) = Z(a>)} = 1. As an aid to establishing such 
convergence, we have the following: 

Lemma 5.2.1. Let Z, Z\, Z2,... be random variables. Suppose for each 
e > 0, we have P( |Z„ - Z\ > e i.o.) = 0. Then P(Zn -> Z) = 1, i.e. {Zn} 
converges to Z almost surely. 

Proof. It follows from Proposition A.3.3 that 

P ( Z n ^ Z ) = P ( V e > 0 , | Z n - Z | <ea .a . ) = l - P ( 3 e > 0 , \Zn-Z\ >ei.o.). 
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By countable subadditivity, we have that 

P ( 3 e > 0 , e rational, \Zn-Z\ > e i.o.) < ^ P(|Z„ - Z\ > e i.o.) = 0 . 

e rational 

But given any e > 0, there exists a rational e' > 0 with e' < e. For this e', 
we have that {\Zn - Z\> e i.o.} C {|Zn — Z| > e' i.o.}. It follows that 

P ( 3 e > 0 , \Zn-Z\ >ei.o.) < P ( 3 e ' > 0, e' rational, \Zn-Z\ > e'i.o.) = 0, 

thus giving the result. I 

Combining Lemma 5.2.1 with the Borel-Cantelli Lemma, we obtain: 

Corollary 5.2.2. Let Z,Z\,Z2,. • • be random variables. Suppose for 
each e > 0, we have J2n

 p(\Zn - Z\>e) <oo. Then P(Zn ->• Z) = 1, i.e. 
{Zra} converges to Z almost surely. 

Another notion only involves probabilities: we say that {Zn} converges 
to Z in probability if for all e > 0, liran^^ P(\Zn — Z\ > e) = 0. We next 
consider the relation between convergence in probability, and convergence 
almost surely. 

Proposition 5.2.3. Let Z,Zi,Z2,.. • be random variables. Suppose 
Zn —> Z almost surely (i.e., ~P(Zn —> Z) = 1). Then Zn —> Z in probability 
(i.e., for any e > 0, we have P(\Zn — Z\ > e) —* 0). That is, if a sequence of 
random variables converges almost surely, then it converges in probability 
to the same limit. 

Proof. Fix e > 0, and let An = {UJ ; 3 m > n, \Zm — Z\ > c}. Then 
{An} is a decreasing sequence of events. Furthermore, if w G p | n ^ n ' 
then Zn(u) +> Z(LO) as n -^ 00. Hence, P ( f \ ^ n ) < P(Zn /> Z) = 0. 
By continuity of probabilities, we have P(An) —> P(f^\nAn) = 0. Hence, 
P(\Zn - Z\>e)< P(An) -> 0, as required. I 

On the other hand, the converse to Proposition 5.2.3 is false. (This 
justifies the use of "strong" and "weak" in describing the two Laws of 
Large Numbers below.) For a first example, let {Zn} be independent, with 
P(Zn — 1) = \/n = 1 - P{Zn = 0). (Formally, the existence of such {Zn} 
follows from Theorem 7.1.1.) Then clearly Zn converges to 0 in probability. 
On the other hand, by the Borel-Cantelli Lemma, P(Zn = 1 i.o.) = 1, so 
P(Zn —> 0) = 0, so Zn does not converge to 0 almost surely. 

For a second example, let (fi,^7, P) be Lebesgue measure on [0,1], and 
set Zi = l[0 , i) , Z2 = l j i ,!] , Z3 = l[0 , i) , Z4 = l [ i , i ) , Z5 = l [ i , | ) , Z6 = 
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Ira i], ^7 = l[o,i); %8 — l [ i , i ) i e t c - Then, by inspection, Zn converges to 
0 in probability, but Zn does not converge to 0 almost surely. 

5.3. Laws of large numbers . 

Here we prove a first form of the weak law of large numbers. 

Theorem 5.3.1. (Weak law of large numbers - first version.) Let 
Xi, X2, • • • be a sequence of independent random variables, each having the 
same mean m, and each having variance < v < 00. Then for all e > 0, 

lim P 
n—*oo 

~(X1+X2 + ... + Xn) n 
> e = 0. 

In words, the partial averages ^ (X\ + Xi +... + Xn) converge in probability 
to m. 

Proof. Set Sn = ~{Xi + X2 + • • • + Xn). Then using linearity of ex
pected value, and also properties (4.1.5) and (4.1.6) of variance, we see 
that E(5n) = m and Var(57l) < v/n. Hence by Chebychev's inequality 
(Theorem 5.1.2), we have 

> e) < v/e2n —> 0, n —> 00 , - (X!+X 2 + . . .+*„) -
n 

as required. I 

For example, in the case of infinite coin tossing, if Xi = Ti = 0 or 1 as 
the i t h coin is tails or heads, then Theorem 5.3.1 states that the probability 
that the fraction of heads on the first n tosses differs from \ by more than e 
goes to 0 as n —> 00. Informally, the fraction of heads gets closer and closer 
to \ with higher and higher probability. 

We next prove a first form of the strong law of large numbers. 

Theorem 5.3.2. (Strong law of large numbers - first version.) Let 
X\, X2, • •. be a sequence of independent random variables, each having the 
same finite mean m, and each having E((X^ — rn)A) < a < 00. Then 

P ( lim -pG + X2 + ... + Xn) = m J = 1. 
\n—>oo n J 

In words, the partial averages ^{X\ +X2 + • • -+Xn) converge almost surely 
to m. 
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Proof. Since (Xi — TO)2 < (Xi — m)4 + 1 (consider separately the two cases 
(Xi - TO)2 < 1 and (Xt - m)2 > 1), it follows that each Xi has variance 
< a + l = i i<oo . We assume for simplicity that m = 0; if not then we can 
simply replace Xi by Xi — TO. 

Let Sn = X1+X2 + ...+ Xn, and consider E(,S4). Now, S4 will (when 
multiplied out) contain many terms of the form XiXjXkXt for i,j,k,£ 
distinct, but all of these have expected value zero. Similarly, it will contain 
many terms of the form XiXj(Xk)2 and Xt(Xj)3 which also have expected 
value zero. The only terms with non-vanishing expectation will be n terms 
of the form (Xi)4, and (™) (4) = 3n(n - 1) terms of the form {Xif(X:j)

2 

with i ^ j . Now, E ((X^)4) < a. Furthermore, if i ^ j then X2 and X? are 
independent by Proposition 3.2.3, so since m = 0 we have E ((X,)2(Xj)2) = 
E ((Xi)2) E {(Xj)2) = Var(X,)Var(X i) < v2. We conclude that E(S4) < 
na + 3n(n — l)v2 < Kn2 where K = a + 2>v2. This is the key. 

To finish, we note that for any e > 0, we have by Markov's inequality 
that 

i S„| > e) = P ( |5n | > ne) = P ( |5 n | 4 > n4e4) 

< E (54) /(n4e4) < Kn2/{n4e4) = Ke~4^ . 

Since Y^=\ ^2 < °° by (A.3.7), it follows from Corollary 5.2.2 that -Sn 

converges to 0 almost surely. I 

For example, in the case of coin tossing, Theorem 5.3.2 states that the 
fraction of heads on the first n tosses will converge, as n —> 00, to i . Al
though this conclusion sounds quite similar to the corresponding conclusion 
from Theorem 5.3.1, we know from Proposition 5.2.3 (and the examples 
following) that it is actually a stronger result. 

5.4. Eliminating the moment conditions. 

Theorems 5.3.1 and 5.3.2 provide clear evidence that the partial sums 
i ( X i + . . . + Xn) are indeed converging to the common mean TO in some 
sense. However, they require that the variance (i.e., second moment) or 
even the fourth moment of the Xi be finite (and uniformly bounded). This 
is an unnatural condition which is sometimes difficult to check. 

Thus, in this section we develop a new form of the strong law of large 
numbers which requires only that the mean (i.e., first moment) of the ran
dom variables be finite. However, as a penalty, it demands that the random 
variables be "i.i.d." as opposed to merely independent. (Of course, once we 
have proven a strong law, we will immediately obtain a weak law by using 
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Proposition 5.2.3.) Our proof follows the approach in Billingsley (1995). 
We begin with a definition. 

Definition 5.4.1. A collection of random variables {Xa}aGj are iden
tically distributed if for any Borel-measurable function / : R —> R, the 
expected value E( / (X Q ) ) does not depend on a, i.e. is the same for all 
a el. 

Remark 5.4.2. It follows from Proposition 6.0.2 and Corollary 6.1.3 
below that {Xa}aei are identically distributed if and only if for all x G R, 
the probability P (Xa < x) does not depend on a. 

Definition 5.4.3. A collection of random variables {Xa}a€j are i.i.d. if 
they are independent and are also identically distributed. 

Theorem 5.4.4. (Strong law of large numbers - second version.) Let 
Xi,X2,... be a sequence of i.i.d. random variables, each having finite mean 
m. Then 

P ( lim -(Xl + X2 + ... + Xn) = m) = 1. 

In words, the partial averages ^ (X\ +X2 + • • • + Xn) converge almost surely 
to m. 

Proof. The proof is somewhat difficult because we do not assume the 
finiteness of any moments of the Xi other than the first. Instead, we shall 
use a "truncation argument", by defining new random variables Yi which 
are truncated versions of the corresponding Xt. Thus, higher moments will 
exist for the Yi, even though the Yi will tend to be "similar" to the Xi. 

To begin, we assume that Xi > 0; if not, we can consider separately Xf~ 
and X~. (Note that we cannot now assume without loss of generality that 
m = 0.) We set Yi = Xilx(<i, i.e. Yi = Xi unless Xi exceeds i, in which 
case Yi = 0. Then since 0 < Yi < i, therefore E(Fi

fc) < ik < oo. Also, by 
Proposition 3.2.3, the {Yi} are independent. Furthermore, since the Xi are 
i.i.d., we have that E(F») = E(XilXi<i) = E (X 1 l X l < i ) / E(Xi) = m as 
i —> oo, by the monotone convergence theorem. 

We set Sn = J27=i Xi, and set 5* = YA=I *i- We compute using (4.1.6) 
and (4.1.4) that 

Vav(S*n) = Var(Y!) + . . . + Var(Fn) < E ( l f ) + . . . + E(F„2) 

= E(X1
2 lX l<1) + . . . + E{X*lXn<n) < nB(XflXl<n) < n3 < oo . (5.4.5) 

We now choose a > 1 (we will later let a \ 1), and set un = \an\, i.e. 
un is the greatest integer not exceeding an. Then un < an. Furthermore, 



5.4. ELIMINATING THE MOMENT CONDITIONS. 63 

since an > 1, it follows (consider separately the cases an < 2 and an > 2) 
that un > an/2, i.e. l/un < 2/an. Hence, for any x > 0, we have that 

oo ~ , 

E v«n < E v«n < E 2/a" ^ E 2/«fc = ^ r • (5A6) 

u „>x Q " > X C " > X K=logQ a: " 

(Note that here we sum over k = loga x, logQ x + 1, . . . , even if logQ x is not 
an integer.) 

We now proceed to the heart of the proof. For any e > 0, we have that 

-E(S;J > e 

y u„ i — J 

— E^Li ^T2—~"^ by Chebychev's inequality 

= T ^ i ^ 1 by (4.1.5) 

< E^i UnE{Xl^] by (5.4.5) 

= JrE (Xf J2"Z=i ^1un>x1) by countable linearity 

< ^ E ( X ? ^ | ) by (5.4.6) 

= ^ X ) E ( ^ ) 
- ^ m < oo. 
" <2( i- i) 

This finiteness is the key. It now follows from Corollary 5.2.2 that 

( o* J?( G* \ ^ 
< —— ^— > converges to 0 almost surely . (5.4.7) 
I. un ) 

To complete the proof, we need to replace — ^ ^ - by m, and replace 
5* by <SU„, and finally replace the index un by the general index k. We 
consider each of these three issues in turn. 

First, since E(Yi) —> m as i —> oo, and since un —> oo as n —> oo, it 

follows immediately that ^- —> m as n —> oo. Hence, it follows from 
(5.4.7) that 

< — ŝ- > converges to m almost surely . (5.4.8) 

I un J 

Second, we note by Proposition 4.2.9 that 

oo oo oo 

fc=l fc=l fc=l 
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y^P{X!>k) = ELXiJ < E ( X i ) = m < o o . 
fc=i 

Hence, again.by Borel-Cantelli, we have that P{Xk ^ Y^ i.o.) = 0, so that 
P(Xfc = Yk a.a.) = 1. It follows that, with probability one, as n —> oo the 

limit of —— coincides with the limit of ——. Hence, (5.4.8) implies that 

{-} 
L u n J 

converges to m almost surely. (5.4.9) 

Finally, for an arbitrary index k, we can find n = n^ so that un < k < 
un+i. But then 

un+1 un un+1 k un un+1 un 

Now, as k —•> oo, we have n = n*. —> oo, so that - ^ • — and 
Hence, for any a > 1 and 5 > 0, with probability 1 we have m/ ( l + 8)a < 
^r < (1 + <J)am for all sufficiently large k. For any e > 0, choosing a > 1 
and <5 > 0 so that m/ ( l + J)a > m — e and (1 + % m < m + e, this implies 
that P(|(5fc/fc) — m\ > e z.o.) = 0. Hence, by Lemma 5.2.1, we have that as 
k —> oo, 

—— converges to m almost surely, 
k 

as required. | 

Using Proposition 5.2.3, we immediately obtain a corresponding state
ment about convergence in probability. 

Corollary 5.4.11. (WeaJc iaw of large numbers - second version.) Let 
X\,X2,... be a sequence ofi.i.d. random variables, each having finite mean 
m. Then for all e > 0, 

lim P 
n—»oo 

-(Xi + X2 + ... + Xn) - m 
n > e = 0. 

In words, the partial averages — (Xi + X% +... + Xn) converge in probability 
to m. 
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5.5. Exercises. 

Exercise 5.5.1. Suppose E(2X) = 4. Prove that P(X > 3) < 1/2. 

Exercise 5.5.2. Give an example of a random variable X and a > 0 such 
that P ( X > a) > E(X)/a. [Hint: Obviously X cannot be non-negative.] 
Where does the proof of Markov's inequality break down in this case? 

Exercise 5.5.3. Give examples of random variables Y with mean 0 and 
variance 1 such that 
(a) P( |Y| > 2) = 1/4. 
(b) P ( | y | > 2) < 1/4. 

Exercise 5.5.4. Suppose X is a non-negative random variable with 
E(X) = oo. What does Markov's inequality say in this case? 

Exercise 5.5.5. Suppose Y is a random variable with finite mean /ly 
and with Var(F) = oo. What does Chebychev's inequality say in this case? 

Exercise 5.5.6. For general jointly defined random variables X and 
Y, prove that |Corr(X, Y)\ < 1. [Hint: Don't forget the Cauchy-Schwarz 
inequality.] (Compare Exercise 4.5.11.) 

Exercise 5.5.7. Let a s R, and let <j>{x) = max(x, a) as in Exercise 4.5.2. 
Prove that 0 is a convex function. Relate this to Jensen's inequality and to 
Exercise 4.5.2. 

Exercise 5.5.8. Let <f>(x) = x2. 
(a) Prove that 0 is a convex function. 
(b) What does Jensen's inequality say for this choice of 0? 
(c) Where in the text have we already seen the result of part (b)? 

Exercise 5.5.9. Prove Cantelli's inequality, which states that if X is a 
random variable with finite mean m and finite variance v, then for a > 0, 

P (X - m > a) < — V - ^ . 
v ~ ' ~ v + a2 

[Hint: First show P(X - m > a) < P ( (X - m + y)2 > (a + y)2). Then 
use Markov's inequality, and minimise the resulting bound over choice of 
y>0.) 

Exercise 5.5.10. Let X\, X2,... be a sequence of random variables, with 
E[Xn] = 8 and Var[Xra] = \j\fn for each n. Prove or disprove that {Xn} 
must converge to 8 in probability. 

file:///j/fn
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Exercise 5.5.11. Give (with proof) an example of a sequence {Yn} of 
jointly-defined random variables, such that as n —> oo: (i) Yn/n converges 
to 0 in probability; and (ii) Yn/n

2 converges to 0 with probability 1; but 
(iii) Yn/n does not converge to 0 with probability 1. 

Exercise 5.5.12. Give (with proof) an example of two discrete random 
variables having the same mean and the same variance, but which are not 
identically distributed. 

Exercise 5.5.13. Let r G N. Let Xi,X2,... be identically distributed 
random variables having finite mean m, which are r-dependent, i.e. such 
that Xfc15Xfc2,..., .Xfc. are independent whenever fcj+i > ki + r for each i. 
(Thus, independent random variables are O-dependent.) Prove that with 
probability one, ^ X^=i -Xi —> m as n —> oo. [Hint: Break up the sum 
Y^i=\ Xi into r different sums.] 

Exercise 5.5.14. Prove the converse of Lemma 5.2.1. That is, prove 
that if {Xn} converges to X almost surely, then for each e > 0 we have 
P(\Xn-X\ >ei.o.) = 0. 

Exercise 5.5.15. Let X\,X2,... be a sequence of independent random 
variables with P(X„ = 3") = P(X„ = - 3 n ) = \. Let Sn = Xx + . . . +Xn. 
(a) Compute E(Xn) for each n. 
(b) For n G N, compute Rn = sup{r G R; P(|>Sn| > r) = 1}, i.e. the 
largest number such that \Sn\ is always at least Rn. 
(c) Compute linifj^oo 
(d) For which e > 0 (if any) is it the case that P ( £ | S n | > e) •/* 0? 
(e) Why does this result not contradict the various laws of large numbers? 

5.6. Section summary. 

This section presented inequalities about random variables. The first, 
Markov's inequality, provides an upper bound on P ( I > a) for non-
negative random variables X. The second, Chebychev's inequality, provides 
an upper bound on P( |V — /zy| > a) in terms of the variance of Y. The 
Cauchy-Schwarz and Holder inequalities were also discussed. 

It then discussed convergence of sequences of random variables, and pre
sented various versions of the Law of Large Numbers. This law concerns 
partial averages ^ (Xj + . . . + Xn) of collections of independent random vari
ables {Xn} all having the same mean m. Under the assumption of either 
finite higher moments (First Version) or identical distributions (Second Ver
sion), we proved that these partial averages converge in probability (Weak 
Law) or almost surely (Strong Law) to the mean m. 
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6. Distributions of random variables. 

The distribution or law of a random variable is defined as follows. 

Definition 6.0.1. Given a random variable X on a probability triple 
(il, T', P) , its distribution (or law) is the function [i defined on B, the Borel 
subsets of R, by 

H{B) = P(X e B) = P(X~1(B)), BeB. 

If \i is the law of a random variable, then (R, B, u.) is a valid probability 
triple. We shall sometimes write ii as C(X) or as P I " 1 . We shall also 
write X ~ it, to indicate that fj, is the distribution of X. 

We define the cumulative distribution function of a random variable X 
by Fx(x) = ~P(X < x), for x £ R. By continuity of probabilities, the 
function Fx is right-continuous, i.e. if {irn} \ a; then Fx(x n ) —> Fx-(x). It 
is also clearly a non-decreasing function of x, with lim^^co irx(3;) = 1 a n d 
lim^^-oo Fx{x) = 0. We note the following. 

Proposition 6.0.2. Let X and Y be two random variables (possibly 
defined on different probability triples). Then C(X) — £(Y) if and only if 
Fx(x) = FY(x) for all x £ R. 

Proof. The "if" part follows from Corollary 2.5.9. The "only if" part is 
immediate upon setting B = (~-oo,x]. I 

6.1. Change of variable theorem. 

The following result shows that distributions specify completely the ex
pected values of random variables (and functions of them). 

Theorem 6.1.1. (Change of variable theorem.) Given a probability 
triple (Q, T, P) , let X be a random variable having distribution fi. Then 
for any Borel-measurable function / : R —* R, we have 

f f(X(u))P(dw) = f°° f(t)»(dt), (6.1.2) 

i.e. Ep[/(X)] = EM( / ) , provided that either side is well-defined. In words, 
the expected value of the random variable f(X) with respect to the proba
bility measure P on fi is equal to the expected value of the function f with 
respect to the measure ji on R. 
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Proof. Suppose first that / = I s is an indicator function of a Borel 
set S C R . Then JQ f (X(OJ)) P(dw) = / „ l { x ( u ) € B } P ( d w ) = P(X e B), 

while JZofitMdt) = SZoMteB}rtdt) = KB) = P(X G B), so equality 
holds in this case. 

Now suppose that / is a non-negative simple function. Then / is a finite 
positive linear combination of indicator functions. But since both sides of 
(6.1.2) are linear functions of / , we see that equality still holds in this case. 

Next suppose that / is a general non-negative Borel-measurable func
tion. Then by Proposition 4.2.5, we can find a sequence {/„} of non-negative 
simple functions such that {fn} /* f • We know that (6.1.2) holds when / 
is replaced by fn. But then by letting n —> oo and using the Monotone 
Convergence Theorem (Theorem 4.2.2), we see that (6.1.2) holds for / as 
well. 

Finally, for general Borel-measurable / , we can write / = f+ — f~ • Since 
(6.1.2) holds for / + and for / ~ separately, and since it is linear, therefore 
it must also hold for / . I 

Remark . The method of proof used in Theorem 6.1.1 (namely con
sidering first indicator functions, then non-negative simple functions, then 
general non-negative functions, and finally general functions) is quite widely 
applicable; we shall use it again in the next subsection. 

Corollary 6.1.3. Let X and Y be two random variables (possibly de
fined on different probability triples). Then C(X) = C(Y) if and only if 
E[/(X)] = E[/(Y)] for all Borel-measurable f : R - • R for which either 
expectation is well-defined. (Compare Proposition 6.0.2 and Remark 5.4.2.) 

Proof. If C(X) = C(Y) — \i (say), then Theorem 6.1.1 says that 
E[/pO] = E[/(y)] = /R /d/x. 

Conversely, if E[f{X)} = E[/(F)] for all Borel-measurable / : R -> R, 
then setting / = 1B shows that P[X € B] = P[V € B] for all Borel S C R , 
i.e. that C(X) = C(Y). I 

Corollary 6.1.4. If X and Y are random variables with P(X = Y) = l, 
then E[/(X)] = B[f(Y)] for all Borel-measurable f : R -> R for which 
either expectation is well-defined. 

Proof. It follows directly that C(X) = C(Y). Then, letting /x = C(X) -
C(Y), we have from Theorem 6.1.1 that E[/(X)] = E[/(Y)] = J^fd/i. I 
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6.2. Examples of distributions. 

For a first example of a distribution of a random variable, suppose that 
P(X = c) = 1, i.e. that X is always (or, at least, with probability 1) 
equal to some constant real number c. Then the distribution of X is the 
point mass 5C, defined by 5C(B) = 1B(C), i.e. 5C{B) equals 1 if c G B and 
equals 0 otherwise. In this case we write X ~ 5C, or C(X) = 5C- From 
Corollary 6.1.4, since P(X = c) = 1, we have E(X) — E(c) = c, and 
F,(X3 + 2) = E(c3 + 2) = c3 + 2, and more generally E[/(X)] = /(c) for any 
function / . In symbols, fnf{X(w))P{duj) = JRf(t)dc(dt) = f(c). That is, 
the mapping / >-> E[/(X)] is an evaluation map. 

For a second example, suppose X has the Poisson(5) distribution con
sidered earlier. Then P(X G A) = J2jeA e _ 5 5 J 7 j ! , which implies that 
C(X) = X]fco(e_5^:'/j')^j> a convex combination of point masses. The fol
lowing proposition shows that we then have E( / (X)) = Y^jLo f(J) e~5&Ifi 
for any function / : R —> R. 

Proposition 6.2.1. Suppose fi = J^ifti^it where {fii} are probability 
distributions, and {/3,} are non-negative constants (summing to 1, if we 
want (j, to also be a probability distribution). Then for Boiel-measurable 
functions f : R —> R, 

/ fdfJ. = ^2fc fd-Vi. 

provided either side is well-defined. 

Proof. As in the proof of Theorem 6.1.1, it suffices (by linearity and 
the monotone convergence theorem) to check the equation when / = 1 B is 
an indicator function of a Borel set B. But in this case the result follows 
immediately since n(B) = J2i PiUiiB). I 

Clearly, any other discrete random variable can be handled similarly to 
the Poisson(5) example. Thus, discrete random variables do not present 
any substantial new technical issues. 

For a third example of a distribution of a random variable, suppose X 
has the Normal(0,1) distribution considered earlier (henceforth denoted 
iV(0,1)). We can define its law /ijy by 

/

oo 

4>(t)lB{t)X(dt), B Borel, (6.2.2) 

-oo 

where A is Lebesgue measure on R (cf. (4.4.2)) and where <p(t) = 77 |^ e _ t • 
We note that for a mathematically complete definition, it is necessary to 
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use the Lebesgue integral rather than the Riemann integral. Indeed, the 
Riemann integral is undefined unless B is a rather simple set (e.g. a finite 
union of intervals, or more generally a set whose boundary has measure 
0), while we need HN{B) to be defined for all Borel sets B. Furthermore, 
since <p is continuous it is Borel-measurable (Proposition 3.1.8), so Lebesgue 
integrals such as (6.2.2) make sense. 

Similarly, given any Borel-measurable function (called a density func
tion) f such that / > 0 and J_ f(t)X(dt) = 1, we can define a law [i 
by 

/
oo 

f(t)lB(t)\(dt), B Borel. 
-oo 

We shall sometimes write this as n(B) = JB f or (J,(B) = JB f(t) X(dt), or 
even as /j,(dt) = f(t) \(dt) (where such equalities of "differentials" have the 
interpretation that the two sides are equal when integrated over t G B for 
any Borel B, i.e. that fB fi(dt) = JB f(t)X(dt) for all B). We shall also write 
this as ^f = / , and shall say that fi is absolutely continuous with respect 
to X, and that / is the density for /J, with respect to X. We then have the 
following. 

Proposition 6.2.3. Suppose fj, has density f with respect to X. Then 
for any Borel-measurable function g : R —> R, 

EM(ff) = / g(t)fi(dt) = / g(t)f(t)X(dt), 
J—oo J~ oo 

provided either side is well-defined. In words, to compute the integral of a 
function with respect to \i, it suffices to compute the integral of the function 
times the density with respect to X. 

Proof. Once again, it suffices to check the equation when g = l g is 
an indicator function of a Borel set B. But in that case, f g(t)[i(dt) = 
flB(t)n(dt) = MS), while /g{t)f(t)X{dt) = JlB(t)f(t)X(dt) = (M(B) by 
definition. The result follows. I 

By combining Theorem 4.4.1 and Proposition 6.2.3, it is possible to 
do explicit computations with absolutely-continuous random variables. For 
example, if X ~ N(0,1), then 

E(X) = / tfiN(dt) = / tcj)(t)X(dt) = / t<f>(t)dt, 

and more generally 

E(g(X)) = Jg{t) u.N(dt) = J g(t) <j>(t) X(dt) = J°° g(t) </>(t) dt 
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for any Riemann-integrable function g; here the last expression is an ordi
nary, old-fashioned, calculus-style Riemann integral. It can be computed in 
this manner that E(X) = 0, E(X2) = 1, E(X4) = 3, etc. 

For an example combining Propositions 6.2.3 and 6.2.1, suppose that 
JC(X) = jSi + j<̂ 2 + \[IN, where /J,N is again the JV(0,1) distribution. 
Then E(X) = 1(1) + \{2) + | (0) = f, E(X2) = | (1) + ±(4) + 1(1) = | , 
and so on. Note, however, that it is not the case that Var(X) equals the 
corresponding linear combination of variances (indeed, the variance of a 
point-mass is 0, so that the corresponding linear combinations of variances 
is !(0) + j(0) + i ( l ) = i ) ; rather, the formula Var(X) = E p f 2 ) - E ( X ) 2 = 
1 - ( | ) 2 = i | should be used. 

Exercise 6.2.4. Why does Proposition 6.2.1 not imply that Var(X) 
equals the corresponding linear combination of variances? 

6.3. Exercises. 

Exercise 6.3.1. Let (f2, T, P) be Lebesgue measure on [0,1], and set 

( 1 , 0 < u> < 1/4 
X{UJ) = I 2w2, 1/4 < u < 3/4 

{ LO2, 3/4 < UJ < 1. 

Compute P(X e A) where 
(a) A =[0,1]. 
(b) A = [ll]. 

Exercise 6.3.2. Suppose P(Z = 0) = P(Z = 1) = \, that Y ~ N(0,1), 
and that Y and Z are independent. Set X = YZ. What is the law of XI 

Exercise 6.3.3. Let X ~ Poisson(5). 
(a) Compute E(X) and Var(X). 
(b) Compute E(3X). 

Exercise 6.3.4. Compute E(X), E(X 2) , and Var(X), where the law of 
X is given by 
(a) C(X) = 7j5i + ^A, where A is Lebesgue measure on [0,1]. 
(b) C{X) = |($2 + §Miv, where /x^ is the standard normal distribution 
7V(0,1). 

Exercise 6.3.5. Let X and Z be independent, with X ~ N(0,1), and 
with P ( Z = 1) = P ( Z = -1) = 1/2. Let Y = XZ (i.e., Y is the product of 
X and Z). 
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(a) Prove that Y ~ N(0,1). 
(b) Prove that P ( |X | = \Y\) = 1. 
(c) Prove that X and Y are not independent. 
(d) Prove that Cov(X, Y) = 0. 
(e) It is sometimes claimed that if X and Y are normally distributed ran
dom variables with Cov(X, Y) = 0, then X and Y must be independent. 
Is that claim correct? 

Exercise 6.3.6. Let X and Y be random variables on some probability 
triple (Q,.F,P). Suppose E(X4) < oo, and that P[m < X < z] = P[m < 
Y < z] for all integers m and all z 6 R. Prove or disprove that we necessarily 
have E(Y4) = E(X 4 ) . 

Exercise 6.3.7. Let X be a random variable, and let Fx(x) be its cumu
lative distribution function. For fixed x £ R, we know by right-continuity 
that l in i j ,^ Fx(y) = Fx(x). 
(a) Give a necessary and sufficient condition that \im.yyx Fx(y) = Fx(a;). 
(b) More generally, give a formula for Fx(x) — (\im.y/-xFx(y)), in terms 
of a simple property of X. 

Exercise 6.3.8. Consider the statement: f(x) = (f(x)) for all x G R. 
(a) Prove that the statement is true for all indicator functions f = 1B-
(b) Prove that the statement is not true for the identity function f(x) = x. 
(c) Why does this fact not contradict the method of proof of Theorem 6.1.1? 

6.4. Section summary. 

This section defined the distribution (or law), C(X), of a random vari
able X, to be a corresponding distribution on the real line. It proved that 
C{X) is completely determined by the cumulative distribution function, 
Fx(x) = P(X < x), of X. It proved that expectation E( / (X)) of any func
tion of X can be computed (in principle) once C(X) or Fx(x) is known. It 
then considered a number of examples of distributions of random variables, 
including discrete and continuous random variables and various combina
tions of them. It provided a number of results for computing expected 
values with respect to such distributions. 



7. STOCHASTIC PROCESSES AND GAMBLING GAMES. 73 

7. Stochastic processes and gambling games. 

Now that we have covered most of the essential foundations of rigor
ous probability theory, it is time to get "moving", i.e. to consider random 
processes rather than just static random variables. 

A (discrete time) stochastic process is simply a sequence Xo, Xi, X2, • • • 
of random variables denned on some fixed probability triple (fi, J7, P) . The 
random variables {Xn} are typically not independent. In this context we 
often think of n as representing time; thus, Xn represents the value of a 
random quantity at the time n. 

For a specific example, let (ri,r2, • • •) be the result of infinite fair coin 
tossing (so that {r;} are independent, and each r̂  equals 0 or 1 with prob
ability | ; see Subsection 2.6), and set 

X0 = 0; Xn = n+r2 + ... + rn, n > 1; (7.0.1) 

thus, Xn represents the number of heads obtained up to time n. Alterna
tively, we might set 

XQ = 0; Xn = 2(n +r2 + ... + rn)-n, n > 1; (7.0.2) 

then Xn represents the number of heads minus the number of tails obtained 
up to time n. This last example suggests a gambling game: each time we 
obtain a head we increase Xn by 1 (i.e., we "win"), while each time we 
obtain a tail we decrease Xn by 1 (i.e., we "lose"). 

To allow for non-fair games, we might wish to generalise (7.0.2) to 

XQ = 0; Xn = Zi + Z2 + .. • + Zn, n > 1, 

where the {Zi} are assumed to be i.i.d. random variables, satisfying P(Zj = 
1) = p and P(Zi = —1) = 1 — p, for some fixed 0 < p < 1. (If p = \ then 
this is equivalent to (7.0.2), with Zi — 2r̂  — 1.) 

This raises an immediate issue: can we be sure that such random vari
ables {Zi} even exist? In fact the answer to this question is yes, as the 
following subsection shows. 

7.1. A first existence theorem. 

We here show the existence of sequences of independent random vari
ables having prescribed distributions. 

Theorem 7.1.1. Let fj,i,p,2,--- be any sequence of Borel probability 
measures on R. Then there exists a probability space (fi, J7, P ) , and random 
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variables Xi,X2, 
and C(Xn) = \xn. 

.. defined on (ft, T, P), such that {Xn} are independent, 

We begin with a lemma. 

Lemma 7.1.2. Let U bea random variable whose distribution is Lebesgue 
measure (i.e., the uniform distribution) on [0,1]. Let F be any cumulative 
distribution function, and set <j>[u) = inf{x;F(x) > u} for 0 < u < 1. Tien 
P(<p(U) < x) = F(z) for each z G R; in words, the cumulative distribution 
function of <j)(U) is F. 

Proof. Since F is non-decreasing, if F(z) < u, then <j>(u) > z. On the 
other hand, since F is right-continuous, we have that inf {x; F(x) > u} = 
mm{x;F(x) > u}; that is, the infimum is actually obtained. It follows 
that if F(z) > u, then <f>(u) > z. Hence, 4>(u) < z if and only if u < F(z). 
Since 0 < F(z) < 1, we obtain that P(<p(U) < z) = P(U < F(z)) = F(z). I 

Proof of Theorem 7.1.1. We let (Q,F,P) be infinite independent fair 
coin tossing, so that ri,j"2, • • • are i.i.d. with P(rj = 0) = P(rj = 1) = \. 
Let {Zij} be a two-dimensional array filled by these r^, as follows: 

r6 . . . \ /Zn 
Zi\ 

Z31 

Z41 

\ : 

Z\2 

Z22 

Z-j,2 

Z42 

Zl3 

Z23 

Z33 

Z43 

•A 

) 

= 

fri 
T2 

T4 

T7 

\ \ 

T3 

T5 

rg 

J 
Hence, {Z^} are independent, with P(Zij = 0) = P(Zij = 1) = | . 

Then, for each n G N, we set Un = Y^kLi Znk/2h'• By Corollary 3.5.3, 
the {Un) are independent. Furthermore, by the way the Un were con
structed, we have P ( ^ < Un < ^-) = ^ for k € N and 0 < j < 2fe. 
By additivity and continuity of probabilities, this implies that P(o < Un < 
b) = b — a whenever 0 < a < b < 1. Hence, by Proposition 2.5.8, each Un 

follows the uniform distribution (i.e. Lebesgue measure) on [0,1]. 
Finally, we set Fn(x) = fin ((—00,x]) for x e R, set <pn(u) = ini{x;u < 

Fn(x)} for 0 < u < 1, and set Xn — <fin(Un). Then {Xn} are independent 
by Proposition 3.2.3, and Xn ~ /xn by Lemma 7.1.2, as required. I 
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7.2. Gambling and gambler's ruin. 

By Theorem 7.1.1, for fixed 0 < p < 1 we can find random variables 
{Z{\ which are i.i.d. with P(Zj = 1) = p and P(Zj = —1) = 1 — p = q. We 
then set Xn = a + Z\ + Zi +... + Zn (with XQ = a) for some fixed integer a. 
We shall interpret Xn as a gambling player's "fortune" (in dollars) at time 
n when repeatedly making $1 bets, and shall refer to the stochastic process 
{Xn} as simple random walk. Thus, our player begins with $a, and at each 
time has probability p of winning $1 and probability q = 1 — p of losing $1. 

We first note the distribution of Xn. Indeed, clearly ~P{Xn = a + k) = 0 
unless — n < k < n with n + k even. For such k, there are (rJ±k) different 

V 2 ' 

possible sequences Z\,..., Zn such that Xn = a + k, namely all sequences 
consisting of ^y^ symbols +1 and Ik^ symbols —1. Furthermore, each such 

n-\-k n — k 

sequence has probability p~^~ q~^~ . We conclude that 

I TL \ n + fc n - fc 

P(Xn — a + k) — I n+k \p 2 q 2 , — n < k < n. n + k even, 

with ~P(Xn = a + k) = 0 otherwise. 
This is a rather "static" observation about the process {Xn}; of greater 

interest are questions which depend on its time-evolution. One such ques
tion is the gambler's ruin problem, defined as follows. Suppose that 0 < 
a < c, and let To = inf{n > 0;Xn = 0} and TC = inf{n > 0;Xn = c} be 
the first hitting time of 0 and c, respectively. (These infima are taken to 
be +oo if the condition is satisfied for no n.) The gambler's ruin question 
is, what is P ( T C < TO)? That is, what is the probability that the player's 
fortune will reach the value c before it reaches the value 0. Informally, what 
is the probability that the gambler gets rich before going broke? (Note that 
{TC < TO} includes the case when To = oo while TC < oo; but it does not 
include the case when TC = TO = oo.) 

Solving this question is not straightforward, since there is no limit to 
how long it will take until either the fortune c or the fortune 0 is reached. 
However, by using the right trick, the solution presents itself. We set s(a) = 
sc,p(a) = P(T"C < ro)- Writing the dependence on a explicitly will allow us 
to vary a, and to relate s(a) to s(a— 1) and s (a+ l ) . Indeed, for 1 < a < c— 1 
we have that 

s{a) = P ( T C < T0) 

= P(Zi = - 1 , TC < TO) + P(Zi = +1 , TC < TO) (7.2.1) 
= qs(a - 1) +ps(a+ 1). 

That is, s(a) is a simple convex combination of s(a — 1) and s(a + 1); this 
is the key. We further have by definition that s(0) = 0 and s(c) = 1. 
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Now, (7.2.1) gives c—1 equations, for the c—1 unknowns s ( l ) , . . . , s(c—1). 
This system of equations can then be solved in several different ways (see 
Exercises 7.2.4, 7.2.5, and 7.2.6 below), to obtain that 

l - f 2 V 1 
a(a) = sCtP(a) = ) ^ , p ? - . (7.2.2) 

i-GO 
and 

s(a) = sCtP(a) = a/c, v=2' (7.2.3) 

(This last equation is suggestive: for a fair game (p = | ) , with probability 
a/c you end up with c dollars; and the product of these two quantities is 
your initial fortune a. We will consider this issue again when we study 
martingales; see in particular Exercises 14.4.10 and 14.4.11.) 

Exercise 7.2.4. Verify that (7.2.2) and (7.2.3) satisfy (7.2.1), and also 
satisfy s(0) = 0 and s(c) = 1. 

Exercise 7.2.5. Solve equation (7.2.1) by direct algebra, as follows. 
(a) Show that (7.2.1) implies that for 1 < a < c — 1, s(a + 1) — s(a) = 
$(s(a)-8(a-l)). 
(b) Show that this implies that for 0 < a < c — 1, s(a + 1) — s(a) = 

(c) Show that this implies that for 0 < a < c, s(a) = Y^t=o ( ~ ) s(-0-

(d) Solve for s(l), and verify (7.2.2) and (7.2.3). 

Exercise 7.2.6. Solve equation (7.2.1) using the theory of difference 
equations, as follows. 
(a) Show that the corresponding "characteristic equation" t° = qt~x +ptx 

has two distinct roots t\ and ti when p ^ 1/2, and one double root £3 when 
p = 1/2. Solve for t\, £2, and £3. 
(b) When p ^ 1/2, the theory of difference equations says that we must 
have sCiP(a) = Ci(ti)a + C ^ ^ ) " for some constants C\ and Ci- Assuming 
this, use the boundary conditions sc,p(0) = 0 and sC}P(c) = 1 to solve for C\ 
and C2. Verify (7.2.2). 
(c) When p = 1/2, the theory of difference equations says that we must 
have sCtP(a) = Cz(t^)a + C4,a(tz)a for some constants C3 and C4. Assuming 
this, use the boundary conditions to solve for C3 and C4. Verify (7.2.3). 

As a specific example, suppose you start with $9,700 (i.e., a = 9700) and 
your goal is to win $10,000 before going broke (i.e., c = 10000). If p = | , 
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then your probability of success is a/c = 0.97, which is very high; on the 
other hand, if p = 0.49, then your probability of success is given by 

1 -
0.51\ 
0.49 J 

9700 0.51 
0.49 

10000 

which is approximately 6.1 x 10~6, or about one chance in 163,000. This 
shows rather dramatically that even a small disadvantage on each bet can 
lead to a very large disadvantage in the long run! 

Now let r(a) — rc>p(a) = P(TO < rc) be the probability that our gambler 
goes broke before reaching the desired fortune. Then clearly s(a) and r(a) 
are related. Indeed, by "considering the bank's point of view", we see imme
diately that rCtP(a) — sCii_p(c —a) (that is, the chance of going broke before 
obtaining c dollars, when starting with a dollars and having probability p 
of winning each bet, is the same as the chance of obtaining c dollars before 
going broke, when starting with c — a dollars and having probability 1 — p 
of winning each bet), so that 

rc,p(a) 

i-(f)c 

i-(?)c V±\ 

Finally, let us consider the probability that the gambler will eventually 
go broke if they never stop gambling, i.e. P(ro < oo) without regard to 
any target fortune c. Well, if we let Hc = {T0 < TC}, then clearly {Hc} is 
increasing up to {TQ < oo}, as c —> oo. Hence, by continuity of probabilities, 

P(TQ < oo) = lim P(HC) = lim rCiP{a) 

I (?)" • 

V<\ 

p> 

(7.2.7) 

Thus, if p < \ (i.e., if the gambler has no advantage), then the gambler is 
certain to eventually go broke. On the other hand, if say p = 0.6 and a = 1, 
then the gambler has probability 1/3 of never going broke. 

7.3. Gambling policies. 

Suppose now that our gambler is allowed to choose how much to bet 
each time. That is, the gambler can choose random variables Wn so that 
their fortune at time n is given by 

Xn — W1Z1+W2Z2 + ... + WnZn 
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with {Zn} as before. To avoid "cheating", we shall insist that Wn > 0 (you 
can't bet a negative amount), and also that Wn = fn(Zi, Z2, • • •, -Zn-i) is a 
function only of the previous bet results (you can't know the result of a bet 
before you choose how much to wager). Here the /„ : {—1, l } n _ 1 —» R - ° are 
fixed deterministic functions, collectively referred to as the gambling policy. 
(If Wn = 1 for each n, then this is equivalent to our previous gambling 
model.) 

Note that Xn = I „ _ i +WnZn, with Wn and Zn independent, and with 
E(Zn) = p-q. Hence, E(Xn) = E(X n _i) + (p - <?)E(Wn). Furthermore, 
since Wn > 0, therefore E(W„) > 0. It follows that 
(a) if p = | , then E(Xn) = E(X„_i) = . . . = E(X0) = a, so that 
l imE(Xn) = a; 
(b) if p < \, then E(X n ) < E(X„_].) < . . . < E(X0) = a, so that 
limE(Xn) < a ; 
(c) if p > | , then E(Xn) > E(X n _i) > . . . > E(X0) = a, so that 
l imE(Xn) > a. 
This seems simple enough, and corresponds to our intuition: if p < \ then 
the player's expected value can only decrease. End of story? 

Perhaps not. Consider the "double 'til you win" policy, defined by 

Wi = l ; Wn = l2n~1' Zi=Z? = ... = Zn-1 = -l n > 2 

' n \ 0, otherwise ' ~ 

That is, we first bet $1. Each time we lose, we double our bet on the 
succeeding turn. As soon as we win once, we bet zero from then on. 

It is easily seen that, with this gambling policy, we will be up $1 as soon 
as we win a bet. That is, letting r = inf{n > 1; Zn = +1}, we have that 
Xn = a+1 provided that r < n. Now, clearly P ( r > n) = (1 —p)n. Hence, 
assuming p > 0, we see that P ( r < 00) = 1. It follows that P( l imX n = 
a + 1) = 1, so that E(lim Xn) = a + 1. In words, with probability one we 
will gain $1 with this gambling policy, for any positive value of p, and thus 
"cheat fate". How can this be, in light of (a) and (b) above? 

The answer, of course, is that in this case E(limX„) (which equals a + 1) 
is not the same as l imE(Xn) (which must be < a). This is what allows us 
to "cheat fate". On the other hand, we may need to lose an arbitrarily large 
amount of money before we win our $1, so "infinite capital" is required to 
follow this gambling policy. We show now that, if the fortunes Xn must 
remain bounded (i.e., if we only have a finite amount of capital to draw on), 
then E(limXn) must indeed be the same as l imE(Xn) . 

Theorem 7.3.1. (The bounded convergence theorem.) Let {Xn} be a 
sequence of random variables, with l imXn = X. Suppose there is K G R 
such that \Xn\ < K for all n G N (i.e., the {Xn} are uniformly bounded). 
ThenE(X) = l imE(X„) . 
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Proof. We have from the triangle inequality that 

|E(X) - E(Xn)\ = |E(X - Xn)\ < E( |X - Xn\). 

We shall show that this last expression goes to 0 as n —> oo. Indeed, fix 
e > 0, and set An = {to e Q,; \X(u) - Xn(u)\ > e}. Then \X{w) -
Xn{u)\ < e + 2KlAn(u), so that E(\X - Xn\) < e + 2KP(An). Hence, 
using Proposition 3.4.1, we have that 

l i m s u p E ( | X - X „ | ) < e + 2K l imsupP(An) 
< e + 2KP(l imsupA„) 
= e, 

since \X(LO) — Xn(uj)\ —> 0 for all u> G fi, so that limsup^4„ is the empty 
set. Hence, E( |X — X n | ) —> 0, as claimed. I 

It follows immediately that, if we are gambling with p < \, and we use 
any gambling policy which leaves the fortunes {Xn} uniformly bounded, 
then limXn (if it exists) will have expected value equal to l imE(Xn) , and 
therefore be < a. So, if we have only finite capital (no matter how large), 
then it is not possible to cheat fate. 

Finally, we consider the following question. Suppose p < \, and 0 < 
a < c. What gambling system maximises P(r c < To), i.e. maximises the 
probability that we reach the fortune c before losing all our money? 

For example, suppose again that p = 0.49, and that a = 9700, c = 10000. 
If Wn = 1 (i.e. we bet exactly $1 each time), then we already know that 
P(r c < T0) = [(0.51/0.49)9700 - l] / [(0.51/0.49)10000 - l] = 6.1 x 10"6. 
On the other hand, if Wn = 2, then this is equivalent to instead having 
a = 4850 and c = 5000, so we see that P ( T C < r0) = [(0.51/0.49)4850 - l] / 
[(0.51/0.49)5000 - 1] = 2.5 x 10"3, which is about 400 times better. In fact, 
if Wn = 100, thenP(Tc < T0) = [(0.51/0.49)97 - l] / [(0.51/0.49)100 - l] = 
0.885, which is a very favourable probability. 

This example suggests that, if p < \ and we wish to maximise P ( T C < 
To), then it is best to bet in larger amounts, i.e. to get the game over with as 
quickly as possible. This is indeed true. More precisely, we define bold play 
to be the gambling strategy Wn = min(Xn_i, c — Xn-i), i.e. the strategy 
of betting as much as possible each time. It is then a theorem that, when 
p < \, this is the optimal strategy in the sense of maximising P ( T C < To). 
For a proof, see e.g. Billingsley (1995, Theorem 7.3). 

Disclaimer. We note that for p < | , even though to maximise P ( T C < T0) 
it is best to bet large amounts, still overall it is best not to gamble at all. 
Indeed, by (7.2.7), if p < \ and you have any finite amount of money, then 
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if you keep betting you will eventually lose it all and go broke. This is the 
reason few probabilists attend gambling casinos! 

7.4. Exercises. 

Exercise 7.4.1. For the stochastic process {Xn} given by (7.0.1), com
pute (for n, k > 0) 
(a) P(Xn = k). 
(b) P ( r f e = n ) . 
[Hint: These two questions do not have the same answer.] 

Exercise 7.4.2. For the stochastic process {Xn} given by (7.0.2), com
pute (for n, k > 0) 
(a) P(Xn = k). 
(b) P(Xn > 0). 

Exercise 7.4.3. Prove that there exist random variables Y and Z such 
that p ( r = i) = P ( y = - l ) = P ( Z = i) = P(Z = - l ) = i , p ( r = 
0) = P ( Z = 0) = A, and such that Cov(Y,Z) = \. (In particular, y 
and Z are not independent.) [Hint: First use Theorem 7.1.1 to construct 
independent random variables X\, X2, and X3 each having certain two-
point distributions. Then construct Y and Z as functions of Xi, X2, and 
* » • ] 

Exercise 7.4.4. For the gambler's ruin model of Subsection 7.2, with 
c = 10000 and p = 0.49, find the smallest positive integer a such that 
sc,P(a) > | - Interpret your result in plain English. 

Exercise 7.4.5. For the gambler's ruin model of Subsection 7.2, let 
Pn = P(min(To,rc) > n) be the probability that the player's fortune has 
not hit 0 or c by time n. 
(a) Find any explicit, simple expression 7„ such that (3n < -fn for all n G N, 
and such that linin^oo 7n = 0. 
(b) Find any explicit, simple expression an such that /3n > an > 0 for all 
n e N. 

Exercise 7.4.6. Let {Wn} be i.i.d. with P[Wn = +1] = P[Wn = 0] = 1/4 
and P[W„ = — 1] = 1/2, and let a be a positive integer. Let Xn = a + W\ + 
. . . + Wn, and let To — inf{n > 0; Xn = 0}. Compute P(TO < 00). [Hint: 
Let {Yn} be like {Xn}, except with immediate repetitions of values omitted. 
Is {Yn} a simple random walk? With what parameter pi] 
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Exercise 7.4.7. Verify explicitly that rC}P(a) + sCtP(a) = 1 for all a, c, 
and p. 

Exercise 7.4.8. In gambler's ruin, recall that {TC < To} is the event 
that the player eventually wins, and {TO < rc} is the event that the player 
eventually loses. 
(a) Give a similar plain-English description of the complement of the union 
of these two events, i.e. ({TC < To} U {TO < rc}) . 
(b) Give three different proofs that the event described in part (a) has 
probability 0: one using Exercise 7.4.7; a second using Exercise 7.4.5; and 
a third recalling how the probabilities sCjP(a) were computed in the text, 
and seeing to what extent the computation would have differed if we had 
instead replaced sc,p(a) by SCiP(a) = P( r c < TO). 
(c) Prove that, if c > 4, then the event described in part (a) contains un
countably many outcomes (i.e., that uncountably many different sequences 
Z\,Z<x,--. correspond to this event, even though it has probability 0). [Hint: 
This is not entirely dissimilar from the analysis of the Cantor set in Sub
section 2.4.] 

Exercise 7.4.9. For the gambling policies model of Subsection 7.3, 
consider the "triple 'til you win" policy defined by W\ = 1, and for n > 2, 
Wn = 3 " " 1 if Zi = ... = Z„_i = - 1 otherwise Wn = 0. 
(a) Prove that, with probability 1, the limit limn^oo Xn exists. 
(b) Describe precisely the distribution of linin^oo Xn. 

Exercise 7.4.10. Consider the gambling policies model, with p = 1/3, 
a = 6, and c = 8. 
(a) Compute the probability sCtP(a) that the player will win (i.e. hit c 
before hitting 0) if they bet $1 each time (i.e. if Wn = 1). 
(b) Compute the probability that the player will win if they bet $2 each 
time (i.e. if Wn = 2). 
(c) Compute the probability that the player will win if they employ the 
strategy of Bold Play (i.e., if Wn = min(Xn_i,c — Xn-i)). [Hint: While it 
is difficult to do explicit computations involving Bold Play in general, here 
the numbers are small enough that it is not difficult.] 

7.5. Section summary. 

This section introduced the concept of stochastic processes, from the 
point of view of gambling games. It proved a general theorem about the 
existence of sequences of independent random variables having arbitrary 
specified distributions. It used this to define several models of gambling 
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games. If the player bets $1 each time, and has independent probability p of 
winning each bet, then explicit formulae were developed for the probability 
that the player achieves some specified target fortune c before losing all 
their money. The formula is very sensitive to values of p near ^. 

If the player is allowed to choose how much to bet at each stage, then 
with clever betting they can "cheat fate" and always win. However, this 
requires them to have infinite capital available. If their capital is finite, 
and p < \, then on average they will always lose money by the Bounded 
Convergence Theorem. 
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8. Discrete Markov chains. 

In this section, we consider the general notion of a (discrete time, discrete 
space, time-homogeneous) Markov chain. 

A Markov chain is characterised by three ingredients: a state space S 
which is a finite or countable set; an initial distribution {vi\i£s consisting of 
non-negative numbers summing to 1; and transition probabilities {pij}ij^s 
consisting of non-negative numbers with YljesPiJ = 1 f° r e a c n * e &. 

Intuitively, a Markov chain represents the random motion of some par
ticle moving around the space S. Vi represents the probability that the 
particle starts at the point i, while p^ represents the probability that, if 
the particle is at the point i, it will then jump to the point j on the next 
step. 

More formally, a Markov chain is defined to be a sequence of random 
variables XQ, X\, X2, • • • taking values in the set S, such that 

P(X0 = i0,Xi = i\,... ,Xn = in) = viopioilpili2 .. .pin_lin 

for any n € N and any choice of io,h, • • • >in £ S. (Note that, for these 
{Xn} to be random variables in the sense of Definition 3.1.1, we need to 
have 5 C R; however, if we allow more general random variables as in 
Remark 3.1.10, then this restriction is not necessary.) It then follows that, 
for example, 

P(Xi=j) = ^ P ( X 0 = i, Xx=j) = Y,^-
ies ies 

This also has a matrix interpretation: writing [p] for the matrix {pij}i,jzs, 
and [//")] for the row-vector {P(Xn = i)}ies, we have [/i^] = [n^] [p], 
and more generally [^n+1)] = [fi^] [p]. 

We present some simple examples of Markov chains here. Note that, 
except in the first example, we do not bother to specify initial probabili
ties {vi}] we shall see that initial probabilities are often not crucial when 
studying a chain's properties. 

Example 8.0.1. (Simple random walk.) Let S = Z be the set of all 
integers. Fix a G Z, and let va = 1, with v^ = 0 for i ^ a. Fix a real 
number p with 0 < p < 1, and let Pi,i+i = p and pt,i-i = 1 — p for each 
i £ Z, with p^ = 0 if j ^ i ± 1. Thus, this Markov chain begins at the 
point a (with probability 1), and at each step either increases by 1 (with 
probability p) or decreases by 1 (with probability 1— p). It is easily seen that 
this Markov chain corresponds precisely to the gambling game of Subsection 
7.2. 
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Example 8.0.2. Let S = {1,2,3} consist of just three elements, and 
define the transition probabilities {pij} in matrix form by 

/ 0 1/2 1/2\ 
(Pij) = 1/3 1/3 1/3 

\ l / 4 1/4 1 /2 / 

(so that P3i = \, etc.). This Markov chain jumps around on the three 
points {1, 2, 3} in a random and interesting way. 

Example 8.0.3. (Random walk on Z/(d).) Let S = {0 ,1 ,2 , . . . , d - 1}, 
and define the transition probabilities by 

_ J | , i = j or i = j + l(mod d)ori = j — l(mod d); 
3 \ 0, otherwise. 

If we think of the d elements of S as arranged in a circle, then our particle, 
at each step, either stays where it is, or moves one step clockwise, or moves 
one step counter-clockwise, each with probability | . 

Example 8.0.4. (Ehrenfest's urn.) Consider two urns, Urn 1 and Urn 2. 
Suppose there are d balls divided between the two urns. Suppose at each 
step, we choose one ball uniformly at random from among the d balls, and 
switch it to the opposite urn. We let Xn be the number of balls in Urn 1 at 
time n. Thus, S = {0,1, 2 , . . . , d}, with p%^-\ = i/d and Pi,i+i = (d — i)/d, 
for 0 < i < d (with p^ = 0 if j ^ i ± 1). Thus, this Markov chain moves 
randomly among the possible numbers { 0 , 1 , . . . , d} of balls in Urn 1 at each 
time. One might expect that, if d is large and the Markov chain is run for a 
long time, that there would most likely be approximately d/2 balls in Urn 
1. (We shall consider such questions in Subsection 8.3 below.) 

We note that we can also interpret Markov chains in terms of conditional 
probability. Recall that, if A and B are events with P(B) > 0, then the 
conditional probability of A given B is P(A\B) = p/^\ ', intuitively, it is 
the probabilistic proportion of the event B which is also contained in the 
event A. Thus, for a Markov chain, if P(Xk = i) > 0, then 

P(Xk+1=j\Xk = i) 

This formally justifies the notion of p^ as a transition probability. Note 
also that this conditional probability does not depend on the starting time 

P(Xk=i, Xk+1=j) 
P ( X f c = t ) 

2-^i0,i1,...,ik_1
 VioPiOilPil'2---Pik-2ik-lPik-liPii 

2^li0,i1 ik_1
 l / i o P ' 0 ' l P » l » 2 - - ' P ' k - 2 i / c - l P i k - l i 

Pij-
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k, justifying the notion of time homogeneity. (The only reason we do not 
take this conditional probability as our definition of a Markov chain, is that 
the conditional probability is not well-defined if P(X^ = i) = 0.) 

We can similarly compute, for any n G N, again assuming P(Xk = i) > 
0, that P(Xk+n = j | Xk = i) is equal to 

E _ (n) . 
Piik + lPik + lik + 2 • • •Pik + n-2ik+n-lPik+n-lj — Pij > 

ik + l,ik + 2,---,ik+n-l 

here p^ is an n t h order transition probability. Note again that this prob
ability does not depend on the starting time k (despite appearances to the 
contrary). By convention, we set 

$=*« = {o, othLse • (8-°-5) 

i.e. in zero time units the Markov chain just stays where it is. 

8.1. A Markov chain existence theorem. 

To rigorously study Markov chains, we need to be sure that they exist. 
Fortunately, this is relatively straightforward. 

Theorem 8.1.1. Given a non-empty countable set S, and non-negative 
numbers {^}iGs and {Pij}ijes, with Y.jvi = l and J2jPij = 1 for eacn 

i G S, there exists a probability triple (fi,^7, P) , and random variables 
XQ,Xi,... deGned on (fi, T, P) , such that 

P(Xo = io,X=ii, ...,Xn = in) = VioPioit • • -Pin^in 

for all n G N and all IQ, ... ,in G S. 

Proof. We let (fi,^7, P) be Lebesgue measure on [0,1]. We construct the 
random variables {Xn} as follows. 

1. Partition [0,1] into intervals {l\ }ies, with length(7J ') = i>i. 

2. Partition each l\ ' into intervals {l\j }i,jes, with length(7^- ) = ViPij-

3. Inductively partition [0,1] into intervals {7 t^ in}i0,h,-..,i„eSi s u c n tnat 

4t...i» ^ 4"7.1-x a n d lengtM/W..^) = W ^ - P i n - ^ ^ all 
n G N. 
Define J 
of i0,... ,in-\ G S. 

4. Define Xn by saying that Xn(w) = in if w G 7]™^...,n_lin for some choice 
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Then it is easily verified that the random variables {Xn} have the desired 
properties. I 

We thus see that, as in Theorem 7.1.1, an "old friend" (in this case 
Lebesgue measure on [0,1]) was able to serve as a probability space on 
which to define important random variables. 

8.2. Transience, recurrence, and irreducibility. 

In this subsection, we consider some fundamental notions related to 
Markov chains. For simplicity, we shall assume that i/j > 0 for alH € S, and 
shall write P$(- • •) as shorthand for the conditional probability P(- • • \Xo = 
i). Intuitively, Pi(A) stands for the probability that the event A would have 
occurred, had the Markov chain been started at the state i. We shall also 
write Ej(- • •) for expected values with respect to P j . 

To proceed, we define, for i,jeS and n e N, the probabilities 

/ £ ° = Pi(Xn = j , but Xm ± j for 1 < m < n - 1); 

OO 

fa = Ti(3n>l;Xn=j) = £ /g° . 
n=l 

That is, f>j is the probability, starting from i, that we first hit j at the 
time n; fij is the probability, starting from i, that we ever hit j . 

A state i e S is called recurrent (or persistent) if fa = 1, i.e. if starting 
from i we will certainly eventually return to i. It is called transient if it is 
not recurrent, i.e. if fa < 1. Recurrence and transience are very important 
concepts in Markov chain theory, and we prove some results about them 
here. (Recall that i.o. stands for infinitely often.) 

Theorem 8.2.1. Let {Xn} be a Markov chain, on a state space S. 

Let i G S. Then i is transient if and only if Pi(Xn = i i.o.) = 0 if and 

only if Y^!=iPii < °°- On ine other hand, i is recurrent if and only if 

Pi(Xn = i i.o.) = 1 if and only ifJ2™=iPu') = °°-

To prove this theorem, we begin with a lemma. 

Lemma 8.2.2. We have P j (#{n > 1; Xn = j} > k) = fijifjjf'1, for 
k = 1,2, — In words, the probability that, starting from i, we eventually 
hit the state j at least k times, is given by fij(fjj)k~1-

Proof. Starting from i, to hit j at least k times is equivalent to first 
hitting j once (starting from i), then to return to j at least k — 1 more 
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times (each time starting from j). The result follows. I 

Proof of Theorem 8.2.1. By continuity of probabilities, and by Lemma 
8.2.2, we have that 

Vr{Xn = i i.o.) = lim P , (#{n > 1; Xn = i} > k) 
k—>oo 

= lim Uuf = { ?' ft) 
This proves the first equivalence to each of transience and recurrence. 

Also, using first countable linearity, and then Proposition 4.2.9, and then 
Lemma 8.2.2, we compute that 

n ° = i P i ( * * = * ) 
E r = l E ' ( 1 ^ n = i ) 
E i ( E ^ L l 1Xn=i) 
E i ( # { n > l ; J f n = i}) 
E r = i P i ( # { " > i ; ^ n = i}>fc) 
Er=i(/«)fe 

f T^nl < °° > /« < ! 
I oo, /« = 1 

thus proving the remaining two equivalences. I 

As an application of this theorem, we consider simple symmetric ran
dom walk (cf. Subsection 7.2 or Example 8.0.1, with XQ = 0 and p = ^) . 

We recall that here S = Z, and for any i e Z w e have p£' = (n/2) (5)™ = 

((w/2)n22n ^or n e v e n (with Pi™ = 0 for n odd). Using Sterling's approx

imation, which states that n! ~ (^) \/2im a s n - t 00, we compute that 

for large even n, we have p™ ~ \J2pKn. Hence, we see (cf. (A.3.7)) that 

Y^=\Pii — °°- Therefore, by Theorem 8.2.1, simple symmetric random 
walk is recurrent. 

On the other hand, if p ^ | for simple random walk, then p̂™ = 

(n/2) (̂ (-̂  ~ P))n with p(l — p) < j . Sterling then gives for large even 

n that pj,n) - [4p(l - p)]n/2-y/2/Tm, with 4p(l - p) < 1. It follows that 

Y^=\Pii < °°> s o that s i m p l e asymmetric random walk is not recurrent. 
In higher dimensions, suppose that S = Zd, with each of the d coordi

nates independently following simple symmetric random walk. Then clearly 
p\i for this process is simply the d*h power of the corresponding quantity 
for ordinary (one-dimensional) simple symmetric random walk. Hence, for 

(n) 

file:///J2pKn
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large even n, we have p\™ ~ {2/im)d/2 in this case. It follows (cf. (A.3.7)) 

that Yl^Li Pu = oo if and only if d < 2. That is, higher-dimensional simple 
symmetric random walk is recurrent in dimensions 1 and 2, but transient 
in dimensions > 3, a somewhat counter-intuitive result. 

Finally, we note that for irreducible Markov chains, somewhat more 
can be said. A Markov chain is irreducible if fij > 0 for all i,j £ S, i.e. 
if it is possible for the chain to move from any state to any other state. 
Equivalently, the Markov chain is irreducible if for any i,j G S, there is 
r G N with pf-' > 0. (A chain is reducible if it is not irreducible, i.e. if 
fij = 0 for some i, j G S.) We can now prove 

Theorem 8.2.3. Let {Pij}ijeS be the transition probabilities for an 
irreducible Markov chain on a state space S. Then the following are equiv
alent: 
(1) There is k G S with fkk = 1, i-e. with k recurrent. 
(2) For all i,j G S, we have fij = 1 (so, in particular, all states are recur
rent). 

(3) There are k,£ G S with Yl^Li Pu = °°-

(4) For all i,j G S, we have Yl^Li Pij = °°. 

If any of (l)-(4) hold, we say that the Markov chain itself is recurrent. 

Proof. That (2) implies (1) is immediate. 
That (1) implies (3) follows immediately from Theorem 8.2.1. 
To show that (3) implies (4): Assume that (3) holds, and let i,j G S. 

By irreducibility, there are m, r G N with p^' > 0 and pf) > 0. But then, 
(m+n+r) ^ (m) (n) ( r ) , r—v (n) ^ (m) (r) v-~* (n) 

since plj > p\k 'pU'p}/, we have J2nPij ^ Pik Pij E „ P w = °°. 
as claimed. 

To show that (4) implies (2): Suppose, to the contrary of (2), that 
fij < 1 for some i,j G S. Then 1 — fjj > Pj(n < Tj)(l — fij) > 0. (Here 
PJ(TJ < Tj) stands for the probability, starting from j , that we hit i before 
returning to j ; and it is positive by irreducibility.) Hence, fjj < 1, so by 
Theorem 8.2.1 we have YlnPjj < °°> contradicting (4). I 

For example, for simple symmetric random walk, since YlnPii = °°> 
this theorem says that from any state i, the walk will (with probability 1) 
eventually reach any other state j . Thus, the walk will keep on wondering 
from state to state forever; this is related to "fluctuation theory" for random 
walks. In particular, this implies that for simple symmetric random walk, 
with probability 1 we have l imsupnX„ = oo and liminfnXn = —oo. 

Such considerations are related to the remarkable law of the iterated log
arithm. Let Xn = Z\ + . . . + Zn define a random walk, where Z\, Z^, • •. 
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are i.i.d. with mean 0 and variance 1. (For example, perhaps {Xn} is sim
ple symmetric random walk.) Then it is a fact that with probability 1, 
limsupn(X„/v /2nloglogn) = 1. In other words, for any e > 0, we have 
P(Xn > (l+e)y/2nloglogni.o.) = 0andP(X„ > ( l -e )V2 nloglogn i.o.) = 
1. This gives extremely precise information about how the peaks of {Xn} 
grow for large n. For a proof see e.g. Billingsley (1995, Theorem 9.5). 

8.3. Stationary distributions and convergence. 

Given a Markov chain on a state space <S, with transition probabili
ties {Pij}, let {iTi}i£s be a distribution on S (i.e., TTi > 0 for all i G S, 
and ^2ieSTTi = 1). Then {TTi}ies is stationary for the Markov chain if 
^2ieS niPij = Kj for all j G 5. (In matrix form, [7r][p] = [w].) 

What this means is that if we start the Markov chain in the distribution 
{•7Tj} (i.e., P[Xo — i] = ni for all i G S), then one time unit later the 
distribution will still be {71-;} (i.e., P[X\ = i] — 7Tj for all i G S); this is the 
reason for the terminology "stationary". It follows immediately by induction 
that the chain will still be in the same distribution {7^} any number n steps 

later (i.e., P[Xn = i] = m for all i £ S). Equivalently, Ylies^Pij ~ ^i f° r 

any n e N , (In matrix form this is even clearer: [7r][p]n = [n].) 

Exercise 8.3.1. A Markov chain is said to be reversible with respect to 
a distribution {71-;} if, for all i, j G S, we have TViPij — TTjPji- Prove that, if 
a Markov chain is reversible with respect to {7r,}, then {wi} is a stationary 
distribution for the chain. 

For example, for random walk on Z/(d) as in Example 8.0.3, it is com
puted that the uniform distribution, given by 7^ = \/d for i = 0 , 1 , . . . , d— 1, 
is a stationary distribution. For Ehrenfest's Urn (Example 8.0.4), it is com
puted that the binomial distribution, given by 7r̂  = (j)^r f° r i = 0,1, • • • ,d, 
is a stationary distribution. 

Exercise 8.3.2. Verify these last two statements. 

Now, given a Markov chain with a stationary distribution, one might 
expect that if the chain is run for a long time (i.e. n —> 00), that the prob
ability of being at a particular state j G S might converge to TVJ , regardless 
of the initial state chosen. That is, one might expect that lim^^oo Pj(X„ = 
j) = TTJ for any i,j G S. This is not true in complete generality, as the fol
lowing two examples show. However, we shall see in Theorem 8.3.10 below 
that this is indeed true for many Markov chains. 
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For a first example, suppose S = {1,2}, and that the transition proba
bilities are given by 

(Ptf) = (J J) • 

That is, this Markov chain never moves at all! Hence, any distribution is 
stationary for this chain. In particular, we could take TTI = TT2 = \ as a 
stationary distribution. On the other hand, we clearly have V\(Xn = 1) = 1 
for all n G N, which certainly does not approach ^. Thus, this Markov chain 
does not converge to the stationary distribution {iTi}. In fact, this Markov 
chain is clearly reducible (i.e., not irreducible), which is the obstacle to 
convergence. 

For a second example, suppose again that S = {1,2}, and that the 
transition probabilities are given this time by 

(P«) = (? I) • 

Again we may take 7Ti = n2 = \ as a stationary distribution (in fact, 
this time the stationary distribution is unique). Furthermore, this Markov 
chain is irreducible. On the other hand, we have ~P\{Xn = 1) = 1 for n even, 
and Pi(Xn = 1) = 0 for n odd. Hence, again we do not have P i (X„ = 
1) —> | . (On the other hand, the Cesaro averages of P i ( X n = 1), i.e. 
n S r = i P i ( ^ i = 1)) do indeed converge to ^, which is not a coincidence.) 
Here the obstacle to convergence is that the Markov chain is "periodic", 
with period 2, as we now discuss. 

Definition 8.3.3. Given Markov chain transitions {pij} on a state space 
5, and a state i 6 S, the period of i is the greatest common divisor of the 
set {n>l;p[f > 0}. 

That is, the period of i is the g.c.d. of the times at which it is possible 
to travel from i to i. For example, if the period of i is 2, then this means it 
is only possible to travel from i to i in an even number of steps. (Such was 
the case for the second example above.) Clearly, if the period of a state is 
greater than 1, then this will be an obstacle to convergence to a stationary 
distribution. This prompts the following definition. 

Definition 8.3.4. A Markov chain is aperiodic if the period of each state 
is 1. (A chain which is not aperiodic is said to be periodic.) 

Before proceeding, we note a fact about periods that makes aperiodicity 
easier to verify. 
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Lemma 8.3.5. Let i and j be two states of a Markov chain, and suppose 
that fij > 0 and fa > 0 (i.e., i and j "communicate"). Then the periods 
ofi and of j are equal. 

Proof. Since f^ > 0 and fji > 0, there are r, s e N with p\y > 0 and 

p£> > 0. Since p £ + " + s ) > pVpWpV, this implies that 

p(r+n+s) > 0 w h e n e v e r p(") > o . (8.3.6) 

Now, if we let the periods of i and j be tj and tj, respectively, then (8.3.6) 

with n = 0 implies that U divides r + s. Then, for any n <E N with pf) > 0, 
(8.3.6) implies that tj divides r + n + s, hence that tj divides n. That is, t, 
is a common divisor of {n E N; p^" > 0}. Since tj is the greatest common 
divisor of this set, we must have tj <tj. Similarly, tj < U, so we must have 

i — 3' ^ 

This immediately implies 

Corollary 8.3.7. If a MarJcov chain is irreducible, then all of its states 
have the same period. 

Hence, for an irreducible Markov chain, it suffices to check aperiodicity 
at any single state. 

We shall prove in Theorem 8.3.10 below that all Markov chains which 
are irreducible and aperiodic, and have a stationary distribution, do in fact 
converge to it. Before doing so, we require two further lemmas, which give 
more concrete implications of irreducibility and aperiodicity. 

Lemma 8.3.8. If a Markov chain is irreducible, and has a stationary 
distribution {7Tj}, then it is recurrent. 

Proof. Suppose to the contrary that the chain is not recurrent. Then, by 
Theorem 8.2.3, we have YlnPij < °° ^or a ^ s t a t e s i and j ; in particular, 
limn_xx,p^!j = 0. Now, since {TTI} is stationary, we have TVJ = ^2t ^iVij f° r 

all n € N. Hence, letting n —> oo, we see (formally, by using the M-test, 
cf. Proposition A.4.8) that we must have TVJ = 0, for all states j . This 
contradicts the fact that V TTJ = 1. I 

Remark. The converse to Lemma 8.3.8 is false, in the sense that just 
because an irreducible Markov chain is recurrent, it might not have a sta
tionary distribution (e.g. this is the case for simple symmetric random walk). 
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Lemma 8.3.9. If a Markov chain is irreducible and aperiodic, then for 
each pair (i,j) 
for all n > no-
each pair (i,j) of states, there is a number no = no(i,j), such that p\j > 0 

Proof. Fix states i and j . Let T = {n > l;p$™ > 0}. Then, by 
aperiodicity, gcd(T) = 1. Hence, we can find m € N, and k\,... ,km € T, 
and integers b\,..., bm, such that k\bi + ... + kmbm = 1. We furthermore 
choose any a &T, and also (by irreducibility) choose c G N with p\j > 0. 
These values shall be the key to defining no-

We now set M = k\\bi\ + ... + km\bm\ (i.e., a sum that without the 
absolute value signs would be 1), and define no = no(i,j) = aM + c. Then, 
if n > no, then letting r = [(n — c)/a\, we can write n = c + ra + s where 
0 < s < a and r > M. We then observe that, since Y^eLi beke = 1 and 

YlT=i 1^1^ = - ^ i w e n a v e 

m 

n = (r - M)a + J ^ (a\be| + sbe) ke + c, 

where the quantities in brackets are non-negative. Hence, recalling that 
a, ki € T, and that p\j > 0, we have that 

a\be\+sbe 

$ > o. 4-' a w n («**)' 
as required. I 

We are now able to prove our main Markov chain convergence theorem. 

Theorem 8.3.10. If a Markov chain is irreducible and aperiodic, and 
has a stationary distribution {iti}, then for all states i and j , we have 
linin^oo Pi(Xn = j) = TTJ. 

Proof. The proof uses the method of "coupling". Let the original Markov 
chain have state space S, and transition probabilities {Pij}- We define a new 
Markov chain {(Xn,Yn)}™=0, having state space S — S x S, and transition 
probabilities given by P(ij)t(ke) = PikPje- That is, our new Markov chain 
has two coordinates, each of which is an independent copy of the original 
Markov chain. 

It follows immediately that the distribution on S given by Tf{ij) = iriftj 
(i.e., a product of two probabilities in the original stationary distribution) 
is in fact a stationary distribution for our new Markov chain. Furthermore, 
from Lemma 8.3.9 above, we see that our new Markov chain will again 
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be irreducible and aperiodic (indeed, we have p|".l (kg, > 0 whenever n > 
max.(no(i,k),rio(j,£))). Hence, from Lemma 8.3.8, we see that our new 
Markov chain is in fact recurrent. This is the key to what follows. 

To complete the proof, we choose i$ € S, and set r = inf{n > l;Xn = 
Yn — io}. Note that, for TO < n, the quantities P^(T = m,Xn = k) 
and P ( J J ) (T = m,Yn = k) are equal; indeed, they both equal P( i j)(r = 
m)Pik- Hence, for any states i, j , and k, we have that 

(n) 
Plk 

(n) 
•Pjk p w ) ( x n = fc)-pW)(yn = fc)| 

E L i p(ij)(xn = k, T = m)+ P{ij)(Xn = k, r>n) 

- Em=i F(ij)(Yn = k, T = rn) - P(ij)(V„ = fc, r > n) 
= |P ( i j ) (X„ = fc, T > n) - P(ij){Yn = k, r>n)\ 
< P w ) ( r > n ) 

(where the inequality follows since we are considering a difference of two 
positive quantities, each of which is < P ( ; J ) ( T > n)). Now, since the new 
Markov chain is irreducible and recurrent, it follows from Theorem 8.2.3 
that f(ij)ji0i0) = 1- That is, with probability 1, the chain will eventually 
hit the state (io,io), in which case r < oo. Hence, as n —> oo, we have 

P W ) ( T > n) -> 0, so that p&> - p £ > - 0. 

On the other hand, by stationarity, we have for the original Markov 
chain that 

(n) 
Pij sX^-pi?) 

fees 

, V ^ I (n) (7 

fees 

and we see (again, by the M-test) that this converges to 0 as n —> oo. Since 

Pij = ^ii-X-n = j), this proves the theorem. I 

Finally, we note that Theorem 8.3.10 remains true if the chain begins in 
some other initial distribution {V;} besides those with J/J = 1 for some i: 

Corollary 8.3.11. If a Markov chain is irreducible and aperiodic, and 
has a stationary distribution {iTi}, then regardless of the initial distribution, 
for all j e 5, we have limn^oo ~P(Xn = j) = TTJ. 
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Proof. Using the M-test and Theorem 8.3.10, we have 

l im^oo P(Xn - j) = lim„^oo Y^ieS P(Xo = h Xn = J) 
= h m ^ o o J2iesP(X0 = i)P(Xn =j\X0=i) 
= l im^oo Yies vi p;(-^™ = J) 
= J2i€S Vi l i m n - o o Pi(Xn = j) 

which gives the result. I 

8.4. Existence of stationary distributions. 

Theorem 8.3.10 gives powerful information about the convergence of 
irreducible and aperiodic Markov chains. However, this theorem requires 
the existence of a stationary distribution {TTZ}. It is reasonable to ask for 
conditions under which a stationary distribution will exist. We consider 
that question here. 

Given a Markov chain {Xn} on a state space S, and given a state i G S, 
we define the mean return time m,i by raj = Ej (inf{n > l;Xn = i}). That 
is, rrii is the expected time to return to the state i. We always have ra.j > 1. 
If i is transient, then with positive probability we will have inf{n > 1; Xn — 
i] = oo, so of course we will have mi = oo. On the other hand, if i is 
recurrent, then we shall call i null recurrent if ra, = oo, and shall call i 
positive recurrent if mi < oo. (The names come from considering l/m,i 
rather than rrij.) 

The main theorem of this subsection is 

Theorem 8.4.1. If a Markov chain is irreducible, and if each state i of 
the Markov chain is positive recurrent with (finite) mean return time rm, 
then the Markov chain has a unique stationary distribution {iTi}, given by 
7Tj = 1/rrii for each state i. 

This theorem is rather surprising. It is not immediately clear that the 
mean return times m$ have anything to do with a stationary distribution; it 
is even less expected that they provide a precise formula for the stationary 
distribution values. The proof of the theorem relies heavily on the following 
lemma. 

Lemma 8.4.2. LetGn(i,j) = E< ( # R 1 < I < n, Xe = j}) = E L i ^ ? -
Tien for an irreducible recurrent Markov chain, 

lim ^ M = J_ 
n^oo n mj 
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for any states i and j . 

Proof. Let TJ be the time of the r t h hit of the state j . Then 

TJ = T] + (T? - Tj) + . . . + (TJ - T ; - 1 ) ; 

here the r — 1 terms in brackets are i.i.d. and have mean rrij. Hence, from 
the Strong Law of Large Numbers (second version, Theorem 5.4.4), we have 

that lirm.^00 -J- = rrij with probability 1. 
Now, for n G N, let r(n) = #{£; 1 < I < n, Xe = j}. Then 

linin^oo r(n) = oo with probability 1 by recurrence. Also clearly T j ( n ) < 

n<Tfn)+\ so that 

rr,r(n) r r 1 r (n ) + l 
J-, n i „• 
- ^ < ~^-: < r(n) r(n) 

Hence, we must have linin^oo ^ r = rrij with probability 1 as well. There

fore, with probability 1 we have linin^oo ^ ^ = 1/rrij. 

On the other hand, Gn(i,j) = Ei(r(n)), and furthermore 0 < ^—^- < 1. 
Hence, by the bounded convergence theorem, 

= 1 / m ] , 

claimed. 

lim °n{hj) -
n—*oo Xi 

= lim Ej | 
n—*oo 

fr{n) 
\ n 

Remark 8.4.3. We note that this proof goes through without change in 
the case rrij = oo, so that linin^oo n^'J> = 0 in that case. 

Proof of Theorem 8.4.1. We begin by proving the uniqueness. Indeed, 
suppose that ^V ctiPij = otj for all states j , for some probability distribution 
{ai}. Then, by induction, J2iaiPij = ao f° r a u £ £ N , so t h a t also (*) 

i E I U E i <*iPi? = <*j- Hence, 

ocj = l im^oo i J X i E i a»P« 

= E , " i l imn^oo £ E"=i Pi*5 by t h e M-test 
= J2iai^k~ by the Lemma 

= I/™,- • 

That is, a.j = 1/rrij is the only possible stationary distribution. 
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Now, fix any state z. Then for all t £ N, we have J2jPZj = •*•• Hence, 
if we set C = ^ • l/rrij, then using the Lemma and (A.4.9), we have 

c = J2 i™ - E 4 - ^ lim EiE^i? = i-
3 *=1 i *=1 

In particular, C < oo. 
Again fix any state z. Then for all states j , and for all t € N , we have 

Y^iVziPij = Pzj • Hence, again by the Lemma and (A.4.9), we have 

'/•»> = *2.±±ft» - AE;E"fi '*^E;>- l8-i4» 

But then summing both sides over all states j , and recalling that J2i ^~ = 

C < oo, we see that we must have equality in (8.4.4), i.e. we must have 
'WT = S i ^k~Pij- But this means that the probability distribution defined 
by 7!"i = l/Crrii must be a stationary distribution for the Markov chain! 

Finally, by uniqueness, we must have TTJ = 1/m.j for each state j , i.e. we 
must have C = 1. This completes the proof of the theorem. I 

On the other hand, states which are not positive recurrent cannot con
tribute to a stationary distribution: 

Proposition 8.4.5. If a Markov chain has a stationary distribution {iti}, 
and if a state j is not positive recurrent (i.e., satisfies rrij = ooj, then we 
must have TTJ = 0 . 

Proof. We have that ^ TTip\-' = TTJ for all t G N. Hence, using the 
M-test and also Lemma 8.4.2 and Remark 8.4.3, we have 

" - J» ;E"X>§' - E*„'» ;!>.'? - E('.X») -»• 
as claimed. I 

Corollary 8.4.6. If a Markov chain has no positive recurrent states, then 
it does not have a stationary distribution. 

Proof. Suppose to the contrary that it did have a stationary distribution 
{iTi}. Then from the above proposition, we would necessarily have TTJ = 0 
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for each state j , contradicting the fact that V • ITJ = 1. I 

Theorem 8.4.1 and Corollary 8.4.6 provide clear information about Mar
kov chains where all states are positive recurrent, or where none are, re
spectively. One could still wonder about chains which have some positive 
recurrent and some non-positive-recurrent states. We now show that, for 
irreducible Markov chains, this cannot happen. The statement is somewhat 
analogous to that of Lemma 8.3.5. 

Proposi t ion 8.4.7. Let i and j be two states of a Markov chain. Suppose 
that fij > 0 and fji > 0 (i.e., the states i and j communicate). Then ifi is 
positive recurrent, then j is also positive recurrent. 

Proof. Find r , ( 6 N with p{£ > 0 and p[f > 0. Then by Lemma 8.4.2 
and Remark 8.4.3, 

1 1 ™ 1 n T) ( r ) T) ( t ) 
1 l- L V^ (m) ^ r L V^ (r) (m-r-t) (t) fji fij ^ n — = hm - > p), ' > hm - > p)iP)i p)i = — — > 0 , 

J m=l m=r-\-t 

so that rrij < oo. I 

Corollary 8.4.8. For an irreducible Markov chain, either all states are 
positive recurrent or none are. 

Combining this corollary with Theorem 8.4.1 and Corollary 8.4.6, we see 
that 

Theorem 8.4.9. Consider an irreducible Markov chain. Then either (a) 
all states are positive recurrent, and there exists a unique stationary distri
bution, given by TTJ = 1/m.j, to which (assuming aperiodicity) Pi(Xn = j) 
converges as n —> oo; or (b) no states are positive recurrent, and there does 
not exist a stationary distribution. 

For example, consider simple symmetric random walk, with state space 
the integers Z. It is clear that rrij must be the same for all states j (i.e. 
no state is any "different" from any other state). Hence, it is impossible 
that X^jez VTOj ~ 1- Thus, simple symmetric random walk cannot fall 
into category (a) above. Hence, simple symmetric random walk falls into 
category (b), and does not have a stationary distribution; in fact, it is null 
recurrent. 

Finally, we observe that all irreducible Markov chains on finite state 
spaces necessarily fall into category (a) above: 
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Proposition 8.4.10. For an irreducible Markov chain on a finite state 
space, all states are positive recurrent (and hence a unique stationary dis
tribution exists). 

Proof. Fix a state i. Write hrj^' = T?j(Xt = i for some 1 < t < m) = 

2™=i fji- Then limm^oo h^J1' = fji > 0, for each state j . Hence, since 

the state space is finite, we can find m G N and 5 > 0 such that hj? > S 

for all states j . 

But then we must have 1 — h\"' < (1 — (5)Ln/mJ, so that letting Tj = 
inf{n > 1; Xn = i}, we have by Proposition 4.2.9 that 

oo oo oo 

rm = E P,(n > n + 1) = £ ( 1 - /#>) < 2 ( 1 - 5)L"/mJ = j < oo . I 
n—0 n=0 n—0 

8.5. Exercises. 

Exercise 8.5.1. Consider a discrete-time, time-homogeneous Markov 
chain with state space S = {1, 2}, and transition probabilities given by 

Pu=a, pi2 = l - a , p2i = 1, J?22 = 0 . 

For each 0 < a < 1, 
(a) Compute p\j = P(Xn = j \ X$ = i) for each i,j<EX and n G N. 
(b) Classify each state as recurrent or transient. 
(c) Find all stationary distributions for this Markov chain. 

Exercise 8.5.2. For any e > 0, give an example of an irreducible Markov 
chain on a countably infinite state space, such that \pij — pu-\ < e for all 
states i, j , and k. 

Exercise 8.5.3. For an arbitrary Markov chain on a state space consisting 
of exactly d states, find (with proof) the largest possible positive integer N 
such that for some states i and j , we have p\- > 0 but p£j' = 0 for all 
n < N. 

Exercise 8.5.4. Given Markov chain transition probabilities {Pij}i,jes 
on a state space S, call a subset C C S closed if Ylj^cPij = 1 f° r e a c n 

i G C. Prove that a Markov chain is irreducible if and only if it has no 
closed subsets (aside from the empty set and S itself). 
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Exercise 8.5.5. Suppose we modify Example 8.0.3 so the chain moves 
one unit clockwise with probability r, or one unit counter-clockwise with 
probability 1 — r, for some 0 < r < 1. That is, S = {0,1, 2 , . . . , d — 1} and 

Pij 

r , j = i + l(mod d) 
• r , j = i — l(mod d) 
0, otherwise. 

Find (with explanation) all stationary distributions of this Markov chain. 

Exercise 8.5.6. Consider the Markov chain with state space S = {1,2,3} 
and transition probabilities p\2 = P23 = P31 = 1- Let ix\ = 7T2 = K3 = 1/3. 
(a) Determine whether or not the chain is irreducible. 
(b) Determine whether or not the chain is aperiodic. 
(c) Determine whether or not the chain is reversible with respect to {7r,}. 
(d) Determine whether or not {-TT,} is a stationary distribution. 
(e) Determine whether or not limn^^ p\l = m. 

Exercise 8.5.7. Give an example of an irreducible Markov chain, and 

two distinct states i and j , such that f>™' > 0 for all n G N, and such that 

/} is not a decreasing function of n (i.e. for some n G N, / | n < /^" '). 

Exercise 8.5.8. 
Condition on X\. 

Prove the identity /„• = pi:j + Y^k^jPikfkj- [Hint: 

Exercise 8.5.9. For each of the following transition probability matri
ces, determine which states are recurrent and which are transient, and also 
compute fn 

/1/2 

(a) T 
V 1 

/ 1 

(b) 

1/2 
0 
0 

1/10 

0 
V 0 

or each i. 
1/2 0 

0 0 
0 4/5 
0 0 

0 0 
0 1/2 
1/5 4/5 
0 1/3 
0 0 
0 0 
0 0 

° \ 
1/3 
1/5 
0 / 

0 
0 
0 
1/3 
0 
0 
0 

0 
0 
0 
1/3 
7/10 
0 
0 

0 
0 
0 
0 
0 
0 
1 

0 
0 
0 
0 
1/5 
1 
0 

Exercise 8.5.10. Consider a Markov chain (not necessarily irreducible) 
on a finite state space. 
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(a) Prove that at least one state must be recurrent. 
(b) Give an example where exactly one state is recurrent (and all the rest 
are transient). 
(c) Show by example that if the state space is countably infinite then part 
(a) is no longer true. 

Exercise 8.5.11. For asymmetric one-dimensional simple random walk 
(i.e. where P(Xn = Xn-\ + 1) = p = 1 — P(Xn = X„_i — 1) for some 
P ¥" \)i provide an asymptotic upper bound for Y^=NPU • That is, find 

an explicit expression 7JV, with limjv-»oo IN = 0, such that Y^=NPU — ~fN 
for all sufficiently large N. 

Exercise 8.5.12. Let P = (py) be the matrix of transition probabilities 
for a Markov chain on a finite state space. 
(a) Prove that P always has 1 as an eigenvalue. [Hint: Recall that the 
eigenvalues of P are the same whether it acts on row vectors to the left or 
on column vectors to the right.] 
(b) Suppose that v is a row eigenvector for P corresponding to the eigen
value 1, so that vP = v. Does v necessarily correspond to a stationary 
distribution? Why or why not? 

Exercise 8.5.13. Call a Markov chain doubly stochastic if its transi
tion matrix {Pij}ijes has the property that ^2ieSPij = 1 for each j G S. 
Prove that, for a doubly stochastic Markov chain on a finite state space 
S, the uniform distribution (i.e. 7Tj = 1/|5| for each i € S) is a stationary 
distribution. 

Exercise 8.5.14. Give an example of a Markov chain on a finite state 
space, such that three of the states each have a different period. 

Exercise 8.5.15. Consider Ehrenfest's Urn (Example 8.0.4). 
(a) Compute Po(X„ = 0) for n odd. 
(b) Prove that P0(Xn = 0) /» 2~d as n -> oo. 
(c) Why does this not contradict Theorem 8.3.10? 

Exercise 8.5.16. Consider the Markov chain with state space S = 
{1, 2,3} and transition probabilities given by 

/ 0 2/3 1/3 \ 
(Pij) = 1 / 4 0 3/4 . 

\ 4 / 5 1/5 0 / 

(a) Find an explicit formula for P I ( T I = n) for each n G N, where T\ = 
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inf{n > 1; Xn = 1}. 
(b) Compute the mean return time mi — E ( T I ) . 

(c) Prove that this Markov chain has a unique stationary distribution, to 
be called {iti}. 
(d) Compute the stationary probability 7Ti. 

Exercise 8.5.17. Give an example of a Markov chain for which some 
states are positive recurrent, some states are null recurrent, and some states 
are transient. 

Exercise 8.5.18. Prove that if fy > 0 and fa = 0, then i is transient. 

Exercise 8.5.19. Prove that for a Markov chain on a finite state space, 
no states are null recurrent. [Hint: The previous exercise provides a starting 
point.] 

Exercise 8.5.20. (a) Give an example of a Markov chain on a finite 
state space which has multiple (i.e. two or more) stationary distributions. 
(b) Give an example of a reducible Markov chain on a finite state space, 
which nevertheless has a unique stationary distribution. 
(c) Suppose that a Markov chain on a finite state space is decomposable, 
meaning that the state space can be partitioned as S = S1US2, with Si 
non-empty, such that fy = fji = 0 whenever i £ Si and j G S2 • Prove that 
the chain has multiple stationary distributions. 
(d) Prove that for a Markov chain as in part (b), some states are transient. 
[Hint: Exercise 8.5.18 may help.] 

8.6. Section summary. 

This section gave a lengthy exploration of Markov chains (in discrete 
time and space). It gave several examples of Markov chains, and proved 
their existence. It defined the important concepts of transience and recur
rence, and proved a number of equivalences of them. For an irreducible 
Markov chain, either all states are transient or all states are recurrent. 

The section then discussed stationary distributions. It proved that the 
transition probabilities of an irreducible, aperiodic Markov chain will con
verge to the stationary distribution, regardless of the starting point. Finally, 
it related stationary distributions to the mean return times of the chain's 
states, proving that (for an irreducible chain) a stationary distribution exists 
if and only if these mean return times are all finite. 
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9. More probability theorems. 

In this section, we discuss a few probability ideas that we have not 
needed so far, but which will be important for the more advanced material 
to come. 

9.1. Limit theorems. 

Suppose X, X\, Xi,... are random variables defined on some proba
bility triple ( n , ^ , P) . Suppose further that linv^oo Xn(u>) = X(u>) for 
each fixed w G O (or at least for all ui outside a set of probability 0), i.e. 
that {Xn} converges to X almost surely. Does it necessarily follow that 
l im n ^ 0 0 E(X n ) = E(X)? 

We already know that this is not the case in general. Indeed, it was not 
the case for the "double 'til you win" gambling strategy of Subsection 7.3 
(where if 0 < p < 1/2, then E(Xn) < a for all n, even though E(limX„) = 
a + 1). Or for a simple counter-example, let fi = N, with P(cu) = 2~" 
for w G fi, and let Xn(u) = 2™<5Wjra (i.e., Xn(uj) = 2™ if ui = n, and 
equals 0 otherwise). Then {Xn} converges to 0 with probability 1, but 
E(Xn) = 1 7^ 0 as n —• oo. 

On the other hand, we already have two results giving conditions under 
which it is true that E(X„) —> E(X), namely the Monotone Convergence 
Theorem (Theorem 4.2.2) and the Bounded Convergence Theorem (Theo
rem 7.3.1). Such limit theorems are sometimes very helpful. 

In this section, we shall establish two more similar limit theorems, 
namely the Dominated Convergence Theorem and the Uniformly Integrable 
Convergence Theorem. A first key result is 

Theorem 9.1.1. (Fatou's Lemma) IfXn > C for all n, and some constant 
C > —oo, then 

E (liminf Xn) < liminf E ( X n ) . 

(We allow the possibility that both sides are infinite.) 

Proof. Set Yn = inffc>nXfc, and let Y = linv^oo Yn = liminf Xn. 
n—>oo 

Then Yn > C and {Yn} /* Y, and furthermore Yn < Xn. Hence, by the 
order-preserving property and the monotone convergence theorem, we have 
liminfn E(Xn) > liminfn E(Yn) = E(F) , as claimed. I 

Remarks . 
1. In this theorem, "liminfn^oo Xn" is of course interpreted pointwise; that 

is, its value at to is liminf^^oo Xn(uj). 
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2. For the "simple counter-example" mentioned above, it is easily verified 
that E(liminfn_>00X„) = 0 while liminf„^oo E(Xn) = 1, so the theo
rem gives 0 < 1 which is true. If we replace Xn by — Xn in that example, 
we instead obtain 0 < —1 which is false; however, in that case the {Xn} 
are not bounded below. 

3. For the "double 'til you win" gambling strategy of Subsection 7.3, the 
fortunes {Xn} are not bounded below. However, they are bounded above 
(by a + 1), so their negatives are bounded below. When the theorem is 
applied to their negatives, it gives that — (a + 1) < liminf E(—Xn), so 
that lim sup E(Xn) < a + 1, which is certainly true since Xn < a + 1 for 
all n. (In fact, if p < | , then l imsupE(Xn) < a.) 

It is now straightforward to prove 

Theorem 9.1.2. (The Dominated Convergence Theorem) IfX, X\, X2, • • • 
are random variables, and if {Xn} —* X with probability 1, and if there is 
a random variable Y with \Xn\ < Y for all n and with E(Y) < 00, then 
limn^ocE(Xn) = E(X). 

Proof. We note that Y + Xn > 0. Hence, applying Fatou's Lemma to 
{Y + Xn}, we obtain that 

E(Y) + E(X) = E(Y + X) < lim inf E(Y + Xn) = E{Y) + lim inf E ( X n ) . 
n n 

Hence, canceling the E(Y) terms (which is where we use the fact that 
E(Y) < 00), we see that E(X) < liminf„E(Xn) . 

Similarly, Y — Xn > 0, and applying Fatou's Lemma to {Y — Xn}, 
we obtain that E(Y) - E(X) < E(Y) + l iminf n E(-X„) = E(Y) -
limsup„E(X„), so that E(X) > l imsupnE(X„). 

But we always have l imsupnE(X„) > lim inf n E(X n ) . Hence, we must 
have that l imsup nE(X n ) = l iminfnE(Xn) = E(X), as claimed. I 

Remark. Of course, if the random variable Y is constant, then the dom
inated convergence theorem reduces to the bounded convergence theorem. 

For our second new limit theorem, we need a definition. Note that 
for any random variable X with E(|X|) < 00 (i.e., with X "integrable"), 
by the dominated convergence theorem linia-xx, E ( | ^ | l | x |>a ) = E(0) = 0. 
Taking a supremum over n makes a collection of random variables uniformly 
integrable: 
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Definition 9.1.3. A collection {Xn} of random variables is uniformly 
integrable if 

lim s u p E ( | X „ | l | X „ | > a ) = 0 . (9.1.4) 
a—oo n i i - / 

Uniform integrability immediately implies boundedness of certain ex
pectations: 

Proposi t ion 9.1.5. If{Xn} is uniformly integrable, then supn E(|Xra|) < 
oo. Furthermore, if also {Xn} —> X a.s., then E |X| < oo. 

Proof. Choose a\ so that (say) sup n E ( |X n | l | x„ |> a i ) < 1- Then 

supE( |X n | ) = s u p E ( | X „ | l | X n | < a i + |X n | l | X n |> Q l ) < Q ; I + 1 < O O . 
n n 

It then follows from Fatou's Lemma that, if {Xn} —> X a.s., then E(|X|) < 
liminf„E(|Xn | ) < sup n E( |X n | ) < oo. I 

The main use of uniform integrability is given by: 

Theorem 9.1.6. (The Uniform Integrability Convergence Theorem) If 
X, Xi, X2, • • • are random variables, and if {Xn} —> X with probability 1, 
and if {Xn} are uniformly integrable, then linin^oo E(Xn) = E(X). 

Proof. Let Yn = \Xn-X\, so that Yn -> 0. We shall show that ~E(Yn) -> 0; 
it then follows from the triangle inequality that |E(X„) — E(X) | < E(Yn) —> 
0, thus proving the theorem. We will consider E( l^) in two pieces, using 
that Yn = YnlYn<a + YnlYn>a-

Let Yn = y n ly„« i - Then for any fixed a > 0, we have \Yn \ < a, 
and also Yn —> 0 as n —> 00, so by the bounded convergence theorem we 
have 

lim E(YW) = 0 , a>0. (9.1.7) 

For the second piece, we note by the triangle inequality (again) that 
Yn < \Xn\ + \X\ <2Mn where Mn = max(|Xn | , \X\). Hence, if Yn > a, 
then we must have Mn > a /2, and thus that either \Xn\ > a/2 or \X\ > 
a/2. This implies that 

YnlYn>a < 2MnlMri>a/2 < 2\Xn\l\Xrl\>a/2 + 2|-X"|l|x|>a/2 • 

Taking expectations and supremums gives 

supE(y„ly n > Q ) < 2supE( |X„ | l | X r i \>a/2) + 2 E (|-X"|l|X|>a/2) • 
n n 
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Now, as a —> oo, the first of these two terms goes to 0 by the uniform 
integrability assumption; and the second goes to 0 by the dominated con
vergence theorem (since E|X| < oo). We conclude that 

lim supE(F„ l F „> a ) = 0. (9.1.8) 
a-^oo n 

To finish the proof, let e > 0. By (9.1.8), we can find «o > 0 such 
that supnE(Y7llYn>c*0) < e/2. By (9.1.7), we can find no G N such that 
E ( Yn ) < e/2 for all n > no. Then, for any n > no, we have 

E(y„) = E (Y^) + E (Y„ly„>ao) <e-+e-=e. 

Hence, E(Yn) —> 0, as desired. I 

R e m a r k 9.1.9. While the above limit theorems were all stated for a 
countable limit of random variables, they apply equally well for continuous 
limits. For example, suppose {Xt}t>o is a continuous-parameter family 
of random variables, and that lim^o-Xt (w) = Xo(ui) for each fixed ui G 
fl. Suppose further that the family {Xt}t>o is dominated (or uniformly 
integral) as in the previous limit theorems. Then for any countable sequence 
of parameters {tn} \ 0, the theorems say that E(X t n ) —> E(Xo). Since 
this is true for any sequence {tn} \ 0, it follows that l im^o E(X t) = E(X) 
as well. 

9.2. Differentiation of expectation. 

A classic question from multivariable calculus asks when we can "differ
entiate under the integral sign". For example, is it true that 

4- f estds = f'l^-e^ds = I'sestdsl 
dt J0 Jo ldt J J0 

The answer is yes, as the following proposition shows. More generally, the 
proposition considers a family of random variables {Ft} (e.g. Ft(ui) = e"*), 
and the derivative (with respect to t) of the function E(F t) (e.g. of f0 eujta\o). 

Proposi t ion 9.2.1. Let {Ft}a<t<b be a collection of random variables 
with finite expectations, defined on some probability triple (f2, J-, P ) . Sup
pose for each u and each a < t < b, the derivative F[(ui) = -^.Ft(ui) exists. 
Then F[ is a random variable. Suppose further that there is a random vari
able Y on (fi,.F,P) with E(Y) < oo, such that |F/ | < Y for all a < t < b. 
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Then if we define <j>(t) = E(Ft), then <j> is differentiable, with finite derivative 
cp'(t) = E(F/) for alla<t<b. 

Proof. To see that F[ is a random variable, let tn = t + -. Then F( = 
limn^oo n(Ftn — Ft) and hence is the countable limit of random variables, 
and therefore is itself a random variable by (3.1.6). 

Next, note that we always have Ft+h-Ft 
h < Y. Hence, using the domi

nated convergence theorem together with Remark 9.1.9, we have 

h^O h h^Q \ h 

-»(ft* **ir*)-=<*>• 
and this is finite since E(|F/|) < F,(Y) < oo. I 

9.3. Moment generating functions and large deviations. 

The moment generating function of a random variable X is the function 

Mx(s) = E(esX), s e R . 

At first glance, it may appear that this function is of little use. However, 
we shall see that a surprising amount of information about the distribution 
of X can be obtained from Mx(s). 

If X and Y are independent random variables, then esX and esY are 
independent by Proposition 3.2.3, so we have by (4.2.7) that 

MX+Y(S) = Mx(s)MY(s), X, Y independent. (9.3.1) 

Clearly, we always have Mx(0) = 1. However, we may have Mx{s) = oo 
for certain s ^ 0. For example, if P[X = m] = c/m2 for all integers m ^ O , 
where c = (^JMJ~2)~1, then Mx(s) = oo for all s ^ 0. On the other 
hand, if X ~ N(0,1), then completing the square gives that 

/

OO -| /»00 -| 

esx^=e-x^2dx = es2l2 / -±=e-^-^/2dx 
-oo V27T 7 - o o V27T 

= e s 2/2(l) = e s 2 / 2 . (9.3.2) 

A key property of moment generating functions, at least when they are 
finite in a neighbourhood of 0, is the following. 
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Theorem 9.3.3. Let X be a random variable such that Mx(s) < oo for 
|s| < so, for some so > 0. Then E |X" | < oo for all n, and Mx(s) is analytic 
for \s\ < so with 

oo 

Mx(s) = ^ E ( X " ) s " / n ! . 
n=0 

In particular, the r t h derivative at s = 0 is given by Mx(0) = E(X r) . 

Proof. The idea of the proof is that 
Mx(s) = E{esX) = E ( l + (sX) + (sX)2 /2! + . . .) 

= l + sE(X) + ^ E ( X 2 ) + . . . . 

However, the final equality requires justification. For this, fix s with |s| < so, 
and let Zn = 1 + (sX) + (sX)2/2\ + ... + (sX)n/n\. We have to show that 
E(limn_0 0 Zn) = limn—oo E(Zn). Now, for all n G N, 

\Zn\ < l + \sX\ + \sX\2/2\ + ... + \sX\n/n\ 

< 1 + | S X | + | S X | 2 / 2 ! + . . . = e | s X | < esX+e~sX = Y. 

Since \s\ < SQ, we have E(y ) = Mx{s) + Mx{—s) < oo. Hence, by the 
dominated convergence theorem, E(lim„_>00 Zn) = limn-^oo E(Zn). I 

Remark. Theorem 9.3.3 says that the r t h derivative of Mx at 0 equals 
the r t h moment of X (thus explaining the terminology "moment gener
ating function"). For example, Mx{0) = 1, M'x{0) = E(X), Mx{0) = 
E(X 2 ) , etc. This result also follows since ( £ ) r E ( e s X ) = E ( ( £ ) r e s X ) = 
E ( X r e s X ) , where the exchange of derivative and expectation can be justi
fied (for \s\ < so) using Proposition 9.2.1 and induction. 

We now consider the subject of large deviations. If X\, X2, • • • are i.i.d. 
with common mean m and finite variance v, then it follows from Cheby-
chev's inequality (as in the proof of the Weak Law of Large Numbers) that 
for all e > 0, P ( X ) + ' r t

+ X " >m + e) < v/ne2, which converges to 0 as 
n —> 00. But how quickly is this limit reached? Does the probability really 
just decrease as 0 ( l / n ) , or does it decrease faster? In fact, if the moment 
generating functions are finite in a neighbourhood of 0, then the convergence 
is exponentially fast: 

Theorem 9.3.4. Suppose X\,X2,--. are i.i.d. with common mean m, 
and with Mxi{s) < 00 for —a < s < b where a,b > 0. Then 

p(Xl + ---+Xn>m + e) < pn, n e N , 
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where p = inf0<s<b (e-<
m+^MXl{s)) < 1. 

This theorem gives an exponentially small upper bound on the probabil
ity that the average of the Xi exceeds its mean by at least e. This is a (very 
simple) example of a large deviations result, and shows that in this case the 
probability is decreasing to zero exponentially quickly - much faster than 
just 0(l/n). 

To prove Theorem 9.3.4, we begin with a lemma: 

Lemma 9.3.5. Let Z be a random variable with E(Z) < 0, such that 
Mz(s) < oo for -a < s < b, for some a, b > 0. Then P ( Z > 0) < p, where 
p = mi0<s<bMz{s) < 1. 

Proof. For any 0 < s < b, since the function x i—> esx is increasing, 
Markov's inequality implies that 

P ( Z > 0) = P{esZ > 1) < -±—!- = Mz{s). 

Hence, taking the infimum over 0 < s < b, 

P ( Z > 0 ) < inf Mz(s) =p. 
0<s<b 

Furthermore, since Mz(0) = 1 and M'Z(0) = E(Z) < 0, we must have that 
Mz{s) < 1 for all positive s sufficiently close to 0. In particular, p < 1. I 

Remark . In Lemma 9.3.5, we need a > 0 to ensure that M'z(0) = E(Z). 
However, the precise value of a is unimportant. 

Proof of Theorem 9.3.4. Let Yi=Xi-m-e,so E(Yi) = - e < 0. Then 
for -a<s<b, MYi{s) = E(esYi) = e - s ( m + e )E(e s X i ) = e-^m+^MXi(s) < 
oo. Using Lemma 9.3.5 and (9.3.1), we have 

p ( X l + ; - + x " > T O + e)=p(yi + -n- + y">o) 

= P (Y1 + ... + Yn > 0) < inf MYl+...+Yn (s) = inf (MYl (s))n = pn , 
0<s<6 0<s<b 

where p = mi0<s<bMYl(s) = mi0<s<b{e's{m+t)MXl{
s))- Furthermore, 

from Lemma 9.3.5, p < 1. I 
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9.4. Fubini 's Theorem and convolution. 

In multivariable calculus, an iterated integral like fQ J0 x
2 y3 dx dy, can 

be computed in three different ways: integrate first x and then y, or inte
grate first y and then x, or compute a two-dimensional "double integral" 
over the full two-dimensional region. It is well known that under mild con
ditions, these three different integrals will all be equal. 

A generalisation of this is Fubini's Theorem, which allows us to compute 
expectations with respect to product measure in terms of an "iterated in
tegral" , where we integrate first with respect to one variable and then with 
respect to the other, in either order. (For non-negative / , the theorem is 
sometimes referred to as Tonelli's theorem.) 

Theorem 9.4.1. (Fubini's Theorem) Let fi be a probability measure on 
X, and v a probability measure on y, and let fix v be product measure on 
X x y. If f : X x y —> R is measurable with respect to fix u, then 

Jxxyfd(vxv) = Sx(jyf(x>vMdy))ri<te) ( 9 A 2 ) 

= ly (Ix f(x> V)^dx)) u(dy) > 

provided that either JXxy f+d(fi x v) < oo or JXxy f~d(fi x v) < oo (or 
both). [This is guaranteed if, for example, f > C > —oo, or f < C < oo, 
or JXxy | / | d(fi xv)<oo. Note that we allow that the inner integrals (i.e., 
the integrals inside the brackets) may be infinite or even undefined on a set 
of probability 0.] 

The proof of Theorem 9.4.1 requires one technical lemma: 

Lemma 9.4.3. The mapping E i—> L (J^ lE(x,y)fi(dx)) v{dy) is a 
well-defined, countably additive function of subsets E. 

Proof (optional) . For E C X x y, and y 6 y, let Sy(E) = {x e 
X; (x,y) € E}. We first argue that, for any y € y and any set E which 
is measurable with respect to fi x v, the set Sy(E) is measurable with 
respect to fi. Indeed, this is certainly true if E — A x B with A and B 
measurable, for then Sy(E) is always either A or 0. On the other hand, since 
Sy preserves set operations (i.e., Sy(EiUE2) = Sy(Ei)uSy(E2), Sy(E

c) = 
Sy(E)c, etc.), the collection of sets E for which Sy(E) is measurable is 
a er-algebra. Furthermore, the measurable rectangles A x B generate the 
product measure's entire cr-algebra. Hence, for any measurable set E, Sy{E) 
is a measurable subset of X, so that fi(Sy(E)^ is well-defined. 

Next, consider the collection Q of those measurable subsets E C X x 
y for which fi{Sy{E)') is a measurable function of y G y. This Q cer
tainly contains all the measurable rectangles Ax B, since then fi(Sy(Ef) = 
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fi(A) 1B(V) which is measurable. Also, Q is closed under complements since 
fi(Sy(E

c)) = fi(Sy(E)c) = 1 - fi(Sv(E)). It is also closed under countable 
disjoint unions, since if {En} are disjoint, then so are {Sy(En)}, and thus 
fi(Sy([jnEn)) = /*(U„Si/CEn)) = EnKSv(En))- ^ these facts, it fol
lows (formally, from the "ir-\ theorem", e.g. Billingsley, 1995, p. 42) that Q 
includes all measurable subsets E, i.e. that fi(Sy(E)^ is a measurable func
tion of y for any measurable set E. Thus, integrals like Jy fi(Sy(E)^j v(dy) 
are well-defined. Since fy (Jx lE(x,y)fi(dx)) v{dy) = Jy fi(Sy(E)) v(dy), 
the claim about being well-defined follows. 

To prove countable additivity, let {En} be disjoint. Then, as above, 
fJ-(Sy(\Jn En)) = ^2n ^{Sy(En)). Countable additivity then follows from 
countable linearity of expectations with respect to v. I 

Proof of Theorem 9.4.1. We first consider the case where / = \E is an 
indicator function of a measurable set E C X x y. By Lemma 9.4.3, the 
mapping E *—> Jy (Jx lE(x,y)fi(dx)) v(dy) is a well-defined, countably ad
ditive function of subsets E. When E = A x B, this integral clearly equals 
n(A) v{B) = (fi x u)(E). Hence, by uniqueness of extensions (Proposi
tion 2.5.8), we must have Jy (fx lE(x,y)fi(dx)') v{dy) = (fix v)(E) for any 

measurable subset E. Similarly, Jx (jy l£(x,y)v(dy) I fi(dx) = (fix v)(E), 

so that (9.4.2) holds whenever / = 1^. 
We complete the proof by our usual arguments. Indeed, by linear

ity, (9.4.2) holds whenever / is a simple function. Then, by the mono
tone convergence theorem, (9.4.2) holds for general measurable non-negative 
/ . Finally, again by linearity since / = / + — / ~ , we see that (9.4.2) 
holds for general functions / as long as we avoid the oo — oo case where 
JXxy f+d(fi x v) = JXxy f~d(fi x v) = oo (while still allowing that the 
inner integrals may be oo — oo on a set of probability 0). I 

Remark. If JXxy f+d(fi x u) = JXxy f~d(fi x v) = oo, then Fubini's 
Theorem might not hold; see Exercises 9.5.13 and 9.5.14. 

By additivity, Fubini's Theorem still holds if fi and/or v are a-finite 
measures (cf. Remark 4.4.3), rather than just probability measures. In 
particular, letting fi = P and v be counting measure on N leads to the 
following generalisation of countable linearity (essentially a re-statement of 
Exercise 4.5.14(a)): 

Corollary 9.4.4. Let Z\, Z2, • • • be random variables with J2i E|Zj| < oo. 
Then-E(ZlZt) = EMZi). 
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As an application of Fubini's Theorem, we consider the convolution for
mula, about sums of independent random variables. 

Theorem 9.4.5. Suppose X and Y are independent random variables 
with distributions /i = C(X) and v = C(Y). Then the distribution ofX + Y 
is given by /x * u, where 

(p*u)(H) = [ ii(H-y)u(dy), ffCR, 
JR 

with H — y = {h — y; h G H}. Furthermore, if fi has density f and v has 
density g (with respect to X = Lebesgue measure on H), then /J, * v has 
density f * g, where 

(f*9)(x) = [ f(x-y)g(y)X(dy), xGR. 
JR 

Proof. Since X and Y are independent, we know that C((X, Y)) = \i x v, 
i.e. the distribution of the ordered pair (X, Y) is equal to product measure. 
Given a Borel subset H C R, let B = {(x,y) G R2; x + y € H). Then 
using Fubini's Theorem, we have 

P(X + YeH)= P((X,Y)eB) 
= (/ixi/)(fl) 

= L R ^ * ^ ) 
= In(lR1B{x,y)fJ-(dx))i^(dy) 
= J R viz G R; (x, y) G B} u{dy) 
= In ^(H - y) v(dy) 

so C(X + Y)=/j,*v. If u. has density / and v has density g, then using 
Proposition 6.2.3, shift invariance of Lebesgue measure as in (1.2.5), and 
Fubini's theorem again, 

(n*v)(H) = !^(H-y)V(dy) 
= InilH-y1 Kdx))u{dy) 
= JR{IH_yf(x)X(dx))g(y)X(dy) 
= IR(IH f(x - v) Kdx))a{y) Hdy) 
= / R ( IH f(x - y) 9{y) \(dx))\(dy) 
= IH(Iiif(x-y)9(y)Kdy))x(dx) 

= IH(f * 9)(x) X(dx), 

so /i * v has density given by / * g. I 
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9.5. Exercises. 

Exercise 9.5.1. For the "simple counter-example" with tt = N, P(w) = 
2~w for w e l l , and Xn(ui) = 2n <L,n, verify explicitly that the hypotheses 
of each of the Monotone Convergence Theorem, the Bounded Convergence 
Theorem, the Dominated Convergence Theorem, and the Uniform Integra-
bility Convergence Theorem, are all violated. 

Exercise 9.5.2. Give an example of a sequence of random variables which 
is unbounded but still uniformly integrable. For bonus points, make the 
sequence also be undominated, i.e. violate the hypothesis of the Dominated 
Convergence Theorem. 

Exercise 9.5.3. Let X,Xi,X%,... be non-negative random variables, 
defined jointly on some probability triple (fl,J-, P) , each having finite ex
pected value. Assume that l imn_0 0X„(w) = X(ui) for all cje.fl. For 
n , i f 6 N, let Yn,K = mm(Xn,K). For each of the following statements, 
either prove it must true, or provide a counter-example to show it is some
times false. 
(a) limi^oo limn^oo E(Yn?K) = B(X). 
(b) limn^oo limx^oo E(yn > K) = E(X). 

Exercise 9.5.4. Suppose that lim.n^oo Xn(u>) = 0 for all w £ fl, but 
l im^oo E[X„] ^ 0. Prove that E(supn |Xn |) = oo. 

Exercise 9.5.5. Suppose supn E( |X„| r) < oo for some r > 1. Prove that 
{Xn} is uniformly integrable. [Hint: If |Xn(cA>)| > a > 0, then |Xn(u;)| < 
\Xn{u)\r / ar~\] 

Exercise 9.5.6. Prove that Theorem 9.1.6 implies Theorem 9.1.2. [Hint: 
Suppose \Xn\ < Y where E(Y) < oo. Prove that {Xn} satisfies (9.1.4).] 

Exercise 9.5.7. Prove that Theorem 9.1.2 implies Theorem 4.2.2, assum
ing that E |X| < oo. [Hint: Suppose {Xn} / X where E|X| < oo. Prove 
that {Xn) is dominated.] 

Exercise 9.5.8. Let fl = {1,2}, with P({1}) = P({2}) = \, and let 
F t({l}) = t2 and Ft({2}) = tA for 0 < t < 1. 
(a) What does Proposition 9.2.1 conclude in this case? 
(b) In light of the above, what rule from calculus is implied by Proposi
tion 9.2.1? 

Example 9.5.9. Let X1,X2,--. be i.i.d., each with P(Xi = 1) = P(Xt = 
-1 ) = 1/2. 

http://cje.fl
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(a) Compute the moment generating functions Mxi^s). 
(b) Use Theorem 9.3.4 to obtain an exponentially-decreasing upper bound 
on P ( i ( X i + . . . + * „ ) > 0.1). 

Exercise 9.5.10. Let Xi,X2,.-. be i.i.d., each having the standard 
normal distribution N{0,1). Use Theorem 9.3.4 to obtain an exponentially-
decreasing upper bound on P (^(-Xi + • • • + Xn) > O.l). [Hint: Don't for
get (9.3.2).] 

Example 9.5.11. Let X have the distribution Exponential(5), with 
density fx(x) = 5e~bx for x > 0 (with fx{x) = 0 for x < 0). 
(a) Compute the moment generating function Mxit). 
(b) Use Mx(t) to compute (with explanation) the expected value E(X). 

Example 9.5.12. Let a > 2, and let M(t) = e -l ' l" for t G R. Prove that 
M(t) is not a characteristic function of any probability distribution. [Hint: 
Consider M"(t).] 

Exercise 9.5.13. Let X = y = N, and let /x{n} = v{n} = 2~n for n G N. 
Let / : X x y -> R by f(n, n) = (4n - 1), and f(n, n + 1) = -2 (4" - 1), 
with f(n,m) — 0 otherwise. 

(a) Compute Jx (fy f{x, y)v(dyYj n(dx). 

(b) Compute Jy (Jx f(x, y)n(dx)) v{dy). 
(c) Why does the result not contradict Fubini's Theorem? 

Exercise 9.5.14. Let A be Lebesgue measure on [0,1], and let f(x,y) = 
8xy{x2 - y2)(x2 + y2)~3 for (x, y) ^ (0,0), with / (0, 0) = 0. 

(a) Compute JQ (fQ f(x,y)X(dy)j\(dx). [Hint: Make the substitution 

u = x2 + y2, v = x, so du = 2ydy, dv — dx, and x2 — y2 = 2v2 — u.] 

(b) Compute J^ ^ f(x,y)X(dx)j X(dy). 

(c) Why does the result not contradict Fubini's Theorem? 

Exercise 9.5.15. Let X ~ Poisson(a) and Y ~ Poisson(6) be indepen
dent. Let Z = X + Y. Use the convolution formula to compute P(Z = z) 
for all z e R , and prove that Z ~ Poisson(a + b). 

Exercise 9.5.16. Let X ~ N(a, v) and Y ~ N(b, w) be independent. Let 
Z = X + Y. Use the convolution formula to prove that Z ~ N(a + b, v + w). 

Exercise 9.5.17. For a,0 > 0, the Gamma(a,/3) distribution has 
density function f(x) = f3axa~1e~x//3/T(a) for x > 0 (with f(x) = 0 for 
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x < 0), where T(a) = J0 tx~1e"tdt is the gamma function. (Hence, when 
a = 1, Gamma(l,/3) = Exp(/3).) Let X ~ Gamma(a,/3) and F ~ 
Ganama(7,/?) be independent, and let Z = X + Y. Use the convolution 
formula to prove that Z ~ Gamma(a + 7,/?). [Note: You may use the 
facts that r ( a + 1) = a r ( a ) for a e R, and T(n) = (n — 1)! for n £ N, and 
J0

X r^ix - t)s-ldt = x^6-1 T(r) r (s) / r ( r + s) for r, s, x > 0.] 

9.6. Section summary. 

This section presented various probability results that will be required 
for the more advanced portions of the text. First, the Dominated Conver
gence Theorem and the Uniform Integrability Limit Theorem were proved, 
to extend the Monotone Convergence Theorem and the Bounded Conver
gence Theorem studied previously, providing further conditions under which 
limE(Xn) = E(limXn) . Second, a result was given allowing derivative and 
expectation operators to be exchanged. Third, moment generating functions 
were introduced, and some of their basic properties were studied. Finally, 
Fubini's Theorem for iterated integration was proved, and applied to give 
a convolution formula for the distribution of a sum of independent random 
variables. 
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10. Weak convergence. 

Given Borel probability distributions /x, fJ,i,fi2, • • • o n R-> w e shall write 
fin =>• n, and say that {//„} converges weakly to \i, if fRf dfin —• / R / d / i 
for all bounded continuous functions / : R —> R. 

This is a rather natural definition, though we draw the reader's atten
tion to the fact that this convergence need hold only for continuous functions 
/ (as opposed to all Borel-measurable / ; cf. Proposition 3.1.8). That is, the 
"topology" of R is being used here, not just its measure-theoretic properties. 

10.1. Equivalences of weak convergence. 

We now present a number of equivalences of weak convergence (see also 
Exercise 10.3.8). For condition (2), recall that the boundary of a set A C R 
is dA = {x G R; Ve > 0, A n {x - e, x + e) ^ 0, Ac D (a; - e, x + e) ^ 0}. 

Theorem 10.1.1. The following are equivalent. 
(1) nn =>• /i (i.e., {/Un} converges weakly to u,); 
(2) nn{A) —» /X(J4) for ah measurable sets A such that fi(dA) = 0; 
(3) /xn ((—oo, a;]) —> /i ((-co, x]) for ah a; € R such that /x{a:} = 0; 
(4) (Skorohod's Theorem) there are random variables Y, Yi, Y2,... defined 
jointly on some probability triple, with C(Y) = fi and C(Yn) = /x„ for each 
n e N, such that Yn —>Y with probability 1. 
(5) JRfdfin —> JRfdfi for all bounded Borel-measurable functions f : 
R —> R such that fi(Df) = 0, where D / is the set of points where f is 
discontinuous. 

Proof. (5) ==>• (1): Immediate. 
(5) =$• (2): This follows by setting / = 1A, SO that £fy = <9A, and 

H(D,) = n(dA) = 0. Then »n(A) = f f d^n -> / /dp = n(A). 
(2) ==> (3): Immediate, since the boundary of (—00, a;] is {x}. 
(1) ==$• (3): Let e > 0, and let / be the function defined by f(t) = 1 for 

t < x, f(i) = 0 for t > x + e, with / linear on the interval (x,x + e) (see 
Figure 10.1.2 (a)). Then / is continuous, with l(_oo,x] 5: / ^ l(-oo,x+e]-
Hence, 

limsup/i„ ((—00,a;]) < limsup / /d/x„ = / fdfj, < u.((—oo,x + e\) . 
n—*oo n—»oo J J 

In fact, it corresponds to the weak* ("weak-star") topology from functional analysis, 
with X the set of all continuous functions on R vanishing at infinity (cf. Exercise 10.3.8), 
with norm defined by | | / | | = s u p x € R | / (x ) | , and with dual space X* consisting of all 
finite signed Borel measures on R. The Helly Selection Principle below then follows from 
Alaoglu's Theorem. See e.g. pages 161-2, 205, and 216 of Folland (1984). 
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This is true for any e > 0, so we conclude that l imsup^^^ nn ((—oo, x]) < 
fx((-oo,x}). 

(a) 
/(*) 

x—e x x+e 

(b) 
9{t) 

x—e x x+e 

Figure 10.1.2. Functions used in proof of Theorem 10.1.1. 

Similarly, if we let g be the function defined by g(t) = 1 for t < x — e, 
g(t) — 0 for t > x, with g linear on the interval (x — e,x) (see Figure 10.1.2 
(b)), then l (_ o o x_ e j < g < l(_00)a ;], and we obtain that 

liminf Lin ((—oo,x]) > liminf / fdfxn = / fdfi > fi((—oo,x — e\) . 
n—>oo n—>oo J J 

This is true for any e > 0, so we conclude that lim min^^ \in ( (-co, a;]) > 
fi((-oo,x)). 

But if n{x} = 0, then fi ( (-co, x]) = fi ((—oo, x)), so we must have 

lim sup nn ( (-co, a;]) = liminf/i„ ((—oo,x\) = [/,((—oo,x]) , 

as claimed. 
(3) = > (4): We first define the cumulative distribution functions, by 

Fn{x) — nn ((—oo, x]) and F(x) = /i((—oo,x]). Then, if we let (17, J7, P) 
be Lebesgue measure on [0,1], and let Yn(u) = inf{x;Fn(x) > UJ} and 
Y(OJ) = inf{x; F(x) > UJ}, then as in Lemma 7.1.2 we have C(Yn) = fxn and 
C(Y) = ix. Note that if F(z) < a, then Y(a) > z, while if F(w) > b, then 
Y{b) < z. 

Since {Fn} - t f a t most points, it seems reasonable that {Yn} —• Y at 
most points. We will prove that {Yn} —> Y at points of continuity of Y. 
Then, since Y is non-decreasing, it can have at most a countable number 
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of discontinuities: indeed, it has at most m(Y(n + 1) — Y(n)) < oo discon
tinuities of size > 1/m within the interval (n,n + 1], then take countable 
union over m and n. Since countable sets have Lebesgue measure 0, this 
implies that {Yn} —> Y with probability 1, proving (4). 

Suppose, then, that Y is continuous at u>, and let y = Y(u>), For any 
e > 0, we claim that F(y-e) < u> < F(y+e). Indeed, if we had F(y-e) = ui, 
then setting w = y — e and b = u above, this would imply Y(u) < y — e = 
Y(w) - e , a contradiction. Or, if we had F(y + e) = w, then setting z = y + e 
and a = u + 8 above, this would imply Y(UJ + 8) > y + e = Y{UJ) + e for all 
8 > 0, contradicting the continuity of Y at to. So, F{y — e) < ui < F(y + e) 
for all e > 0. 

Next, given e > 0, find e' with 0 < e' < e such that fi{y — e'} = 
H{y + e'} = 0. Then Fn{y - e') -> F(y - e') and Fn(y + e') -> F(y + e'), so 
F„(y — e') < w < Fn(y + e') for all sufficiently large n. This in turn implies 
(setting first z = y — e' and a = u> above, and then w = y + e' and b = u 
above) that y - e' < Yn(uj) < y + e', i.e. \Yn(u>) - Y(w)| < e' < e for all 
sufficiently large n. Hence, Yn(u) —> Y(w). 

(4) ==> (5): Recall that if / is continuous at x, and if {xn} —> x, then 
/ ( x n ) - / (x) . Hence, if {Yn} - Y and Y 0 £>/) then {/(Yn)} - / ( F ) . 
It follows that P[{/(y„)} -> /(Y)] > P[{y„} - • y and Y 0 D/]. But 
by assumption, P[{Y„} -> Y] = 1 and P[Y 0 £>/] = A«(-D/) = 1, so also 
P[{/(Y„)} —> f(Y)] = 1. If / is bounded, then from the bounded conver
gence theorem, E [/(Y„)] —> E [/(Y)], i.e. J f d\in —> J" / d/LX, as claimed. | 

For a first example, let /i be Lebesgue measure on [0,1], and let \in be 
defined by \xn (^) = ^ for i = 1, 2 , . . . , n. Then fi is purely continuous while 
\in is purely discrete; furthermore, (J,(Q) = 0 while fin(Q) = 1 for each n. 
On the other hand, for any 0 < x < 1, we have /u((—oo,x]) = a; while 
/x„((-oo,x]) = \nx\/n. Hence, \fin ((-oc,x]) - / i((-oo,x]) | < ^ —• 0 as 
n —> oo, so we do indeed have nn =£• /i. (Note that <9Q = [0,1] so that 
n(dQ) ± 0.) 

For a second example, suppose Xi, X2, • • • are i.i.d. with finite mean TO, 
and Sn = ~(X\ + . . . + Xn). Then the weak law of large numbers says 
that for any e > 0 we have P (Sn < m — e) —> 0 and P (Sn < TO + e) —» 1 as 
n —» 00. It follows that C(Sn) => 5m(-), a point mass at TO. Note that it is 
not necessarily the case that P (Sn < m) —> 8m ((—00, m]) = 1, but this is 
no contradiction since the boundary of (—00, TO] is {TO}, and 8m{m} ^ 0. 

10.2. Connections to other convergence. 

We now explore a sufficient condition for weak convergence. 

Proposition 10.2.1. If {Xn} -> X in probability, then C{Xn) => C(X). 
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Proof. For any e > 0 , if X > z + e and \Xn — X\ < e, then we must 
have Xn > z. That is, {X > z + e} n {\Xn - X\ < e} C {Xn > z}. 
Taking complements, {X < z + e} U {\Xn - X\ > e} D {Xn < 2;}. 
Hence, by the order-preserving property and subadditivity, P(Xn < z) < 
P{X < z + e) + P(\X - Xn\ > e). Since {Xn} -> X in probability, we 
get that l imsup n ^ 0 0 P(X„ < z) < ~P(X < z + e). Letting e \ 0 gives 
limsuPTWOO P ( X n < 2) < P ( X < z). 

Similarly, interchanging X and Xn and replacing 21 with z — e in the 
above gives P ( X < 2 - e) < P ( X n < z) + P{\X - X n | > e), or T?(Xn < 
z) > P(X < z-e)-P(\X-Xn\ > e), so liminf P(Xn < z) > P(X < z-e). 
Letting e \ 0 gives liminf P(Xn < z) > P(X < z). 

If P(X = z) = 0, then P(X < z) = P{X < z), so we must have 
liminf P(Xn < z) = l imsupP(X„ < z) = P{X < z), as claimed. I 

Remark . We sometimes write jC(Xn) => C(X) simply as Xn =^ X, and 
say that {Xn} converges weakly (or, in distribution) to X. 

We now have an interesting near-circle of implications. We already knew 
(Proposition 5.2.3) that if Xn —• X almost surely, then Xn —> X in prob
ability. We now see from Proposition 10.2.1 that this in turn implies that 
C{Xn) => JC(X). And from Theorem 10.1.1(4), this implies that there are 
random variables Yn and Y having the same laws, such that Yn —> Y almost 
surely. 

Note that the converse to Proposition 10.2.1 is clearly false, since the 
fact that C{Xn) => C(X) says nothing about the underlying relationship 
between Xn and X, it only says something about their laws. For example, 
if X, Xi, X2, • • • are i.i.d., each equal to ±1 with probability | , then of course 
L{Xn) => £(X), but on the other hand P (\X - Xn\ > 2) = \ /> 0, so X„ 
does not converge to X in probability or with probability 1. However, if X is 
constant then the converse to Proposition 10.2.1 does hold (Exercise 10.3.1). 

Finally, we note that Skorohod's Theorem may be used to translate 
results involving convergence with probability 1 to results involving weak 
convergence (or, by Proposition 10.2.1, convergence in probability). For 
example, we have 

Proposition 10.2.2. Suppose C(Xn) =^ C{X), with Xn > 0. Then 
E(X) < liminf E(Xn). 

Proof. By Skorohod's Theorem, we can find random variables Yn and 
Y with C(Yn) = C{Xn), C{Y) = C(X), and Yn -> Y with probability 1. 
Then, from Fatou's Lemma, 

E(X) = E(Y) = E (lim inf Yn) < lim inf E(Yn) = lim inf B(Xn). I 
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For example, if X = 0, and if P(Xn = n) = £ and P(Xn = 0) = 1 - ±, 
then C(Xn) => £(X), and 0 = E(X) < liminfE(Xn) = 1. (In fact, here 
Xn —> X in probability, as well.) 

Remark 10.2.3. We note that most of these weak convergence concepts 
have direct analogues for higher-dimensional distributions, not considered 
here; see e.g. Billingsley (1995, Section 29). 

10.3. Exercises. 

Exercise 10.3.1. Suppose C(Xn) =>• 6C for some c G R. Prove that {Xn} 
converges to c in probability. 

Exercise 10.3.2. Let X,Y\,Y2,... be independent random variables, 
with P(F„ = 1) = 1/n and P(Yn = 0) = 1 - 1/n, . Let Zn = X + Yn. Prove 
that C(Zn) =>• JC(X), i.e. that the law of Zn converges weakly to the law of 
X. 

Exercise 10.3.3. Let fin = N(0, - ) be a normal distribution with 
mean 0 and variance - . Does the sequence {/J.„} converge weakly to some 
probability measure? If yes, to what measure? 

Exercise 10.3.4. Prove that weak limits, if they exist, are unique. That 
is, if /x, v, Hi, fi2, • • • are probability measures, and /Ltn => /x, and also \xn => is, 
then [i, = v. 

Exercise 10.3.5. Let \in be the Poisson(n) distribution, and let \x be the 
Poisson(5) distribution. Show explicitly that each of the four conditions 
of Theorem 10.1.1 are violated. 

Exercise 10.3.6. Let ai, a,2,... be any sequence of non-negative real num
bers with ]T\ dj = 1. Define the discrete measure \i by /i(-) = 5Zj6 N a>i8i(-), 
where 5,(-) is a point-mass at the positive integer i. Construct a sequence 
{Hn} of probability measures, each having a density with respect to Lebesgue 
measure, such that /xn => fi. 

Exercise 10.3.7. Let C(Y) = //, where fi has continuous density / . For 
n G N, let Yn — [nY\ / n, and let fin = C.{Yn). 
(a) Describe \xn explicitly. 
(b) Prove that \xn => \i. 
(c) Is \xn discrete, or absolutely continuous, or neither? What about jil 
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Exercise 10.3.8. Prove that the following are equivalent. 
(1) fin => fi. 

(2) f f d/in —> / / dfi for all non-negative bounded continuous / : R —> R. 
(3) f f dfin —> / / dfj, for all non-negative continuous / : R —> R with 
compact support, i.e. such that there are finite a and 6 with f(x) = 0 for all 
x < a and all x > b. 
(4) J" / d/xn —* J f dfj, for all continuous / : R —> R with compact support. 
(5) J f dfin —> / / dfj, for all non-negative continuous / : R —> R which 
vanish at infinity, i.e. such that linxr^-oo /(a;) = lima;_>00 /(a;) = 0. 
(6) f / d/in —> / / dfj, for all continuous / : R - > R which vanish at infinity. 
[Hints: You may assume the fact that all continuous functions on R which 
have compact support or vanish at infinity are bounded. Then, showing 
that (1) = > each of (4)-(6), and that each of (4)-(6) => (3), is easy. For 
(2) = > (1), note that if | / | < M, then / + M is non-negative. For (3) 
==>• (2), note that if / is non-negative bounded continuous and m G Z, 
then fm = f l[mtm+i) is non-negative bounded with compact support and 
is "nearly" continuous; then recall Figure 10.1.2, and that / = J2mez /«*•] 

Exercise 10.3.9. Let 0 < M < oo, and let / , A , / 2 , • • • : [0,1] -^ 
[0, M] be Borel-measurable functions with L f dX = JQ fn dX = 1. Suppose 
limn/n(a;) = f(x) for each fixed x 6 [0,1]. Define probability measures 
/j,,fj,i,fi2,---by n{A) = JAfdX and fj,n(A) = JAfndX, for Borel A C [0,1]. 
Prove that f\in => fj,. 

Exercise 10.3.10. Let / : [0,1] —• (0, oo) be a continuous function 
such that J0 f dX = 1 (where A is Lebesgue measure on [0,1]). Define 
probability measures fj, and {fin} by fi(A) = JQ fl^dX and fj,n(A) = 

E?=i/(V«)iA(i/«)/Er=i/(Vn)-
(a) Prove that fj,n => fi. [Hint: Recall Riemann sums from calculus.] 
(b) Explicitly construct random variables Y and {Yn} so that C(Y) = fi, 
C(Yn) = fj,n, and Yn —> Y with probability 1. [Hint: Remember the proof 
of Theorem 10.1.1.] 

10.4. Section summary. 

This section introduced the notion of weak convergence. It proved equiv
alences of weak convergence in terms of convergence of expectations of 
bounded continuous functions, convergence of probabilities, convergence of 
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cumulative distribution functions, and the existence of corresponding ran
dom variables which converge with probability 1. It proved that if random 
variables converge in probability (or with probability 1), then their laws 
converge weakly. 

Weak convergence will be very important in the next section, including 
allowing for a precise statement and proof of the Central Limit Theorem 
(Theorem 11.2.2 on page 134). 
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11. Characteristic functions. 

Given a random variable X, we define its characteristic function (or 
Fourier transform) by 

<t>x{t) = E (e i t x ) = E[cos(iX)]-ME[sin(iX)], t e R . 

The characteristic function is thus a function from the real numbers to the 
complex numbers. Of course, by the Change of Variable Theorem (The
orem 6.1.1), (/>x(t) depends only on the distribution of X. We sometimes 
write <f>x{t) as <fr(t). 

The characteristic function is clearly very similar to the moment gener
ating function introduced earlier; the only difference is the appearance of 
the imaginary number i = y/—! in the exponent. However, this change is 
significant; since \eltx\ = 1 for any (real) t and X, the triangle inequality 
implies that \<fix(t)\ < 1 < oo for all t and all random variables X. This is 
quite a contrast to the case for moment generating functions, which could 
be infinite for any s ^ 0. 

Like for moment generating functions, we have </>x(0) = 1 for any X, 
and if X and Y are independent then </>jt+y(t) = 4>x{t)4>Y(t) by (4.2.7). 
We further note that, with n = C(X), we have 

\<f>x(t + h)-<l>x(t)\ = J ^ei(t+h)x _ eitx^ ^dxj 

< f \e^t+h^x - eitx\ fi{dx) < f \eitx\ \eihx - 1\ fi(dx) 

ihx - l\ ti(dx). 
/ ' 

Now, as h —> 0, this last quantity decreases to 0 by the bounded convergence 
theorem (since \elhx — 1| < 2). We conclude that 4>x is always a (uniformly) 
continuous function. 

The derivatives of <px are also straightforward. The following propo
sition is somewhat similar to the corresponding result for Mx(s) (The
orem 9.3.3), except that here we do not require a severe condition like 
aMx{s) < oo for all \s\ < s0". 

Proposi t ion 11.0.1. Suppose X is a random variable with E (|X|fc) < 

oo. Then for 0 < j < k, <px has finite j t h derivative, given by <f>x'{t) = 

E [{iX)jeitx]. In particular, 4>x\o) = ijE(Xj). 

Proof. We proceed by induction on j . The case j = 0 is trivial. Assume 
now that the statement is true for j - 1. For t £ R, let Ft = (iXy~1eltx, 
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so that IF/1 \(ixye 
UX\ \X\>. Since E{\X\k) < oo, therefore also 

E(l-Xp) < oo. It thus follows from Proposition 9.2.1 that 

^\t) dVx w = Jtmx) j-ieitx} 

= ^[^-(ixy-1^] = E[{ixye
ux] 

11.1. The continuity theorem. 

In this subsection we shall prove the continuity theorem for characteris
tic functions (Theorem 11.1.14), which says that if characteristic functions 
converge pointwise, then the corresponding distributions converge weakly: 
[in => \i if and only if 4>n{i) —> <p(t) for all t. This is a very important 
result; for example, it is used to prove the central limit theorem in the 
next subsection. Unfortunately, the proof is somewhat technical; we must 
show that characteristic functions completely determine the correspond
ing distribution (Theorem 11.1.1 and Corollary 11.1.7 below), and must 
also establish a simple criterion for weak convergence of "tight" measures 
(Corollary 11.1.11). 

We begin with an inversion theorem, which tells how to recover infor
mation about a probability distribution from its characteristic function. 

Theorem 11.1.1. (Fourier inversion theorem) Let fi be a Borel proba
bility measure on R, with characteristic function <p(t) = J R eltxfi(dx). Then 
if a < b and fi{a} = /u{6} = 0, then 

M M D = lim — , 
T—KX> Z7T J _rp 

i pT —ita p — itb 

it 
4>(t)dt. 

To prove Theorem 11.1.1, we use two computational lemmas. 

Lemma 11.1.2. ForT>0 and a < b, 

JUJ-T 

p—ita p — itb 

it 
<t>(t) dtfi(dx) < 2T(b-a) < oo. 

Proof. We first note by the triangle inequality that 

~~ita p — itb 

1 

it 

Atx 
p—ita p — itb 

it 
f e~itrdr 

J a 
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< f | e - i t r | d r = f 
J a J a 

dr = ldr = b — a. 

Hence, 

p—ita p — itb 
.itx 

it 
dt (i(dx) < / / (b — a)dt fj,(dx) 

JRJ-T 

/ 2T (b - a) fi{dx) = 2T(b - a) 
JR 

L e m m a 11 .1 .3 . For T > 0 and 9 € R 

rT sin(0i) 
lim 

X—*oo t 
dt = 7r sign (9). (11.1.4) 

where sign (9) — 1 for 9 > 0, sign(#) = —1 for 9 < 0, and sign(0) = 0. 

Furthermore, there is M < oo such that \ f_T[sm(6i)/t]dt\ < M for all 

T > 0 and 9 e R. 

P r o o f (opt iona l ) . When (9 = 0 both sides of (11.1.4) vanish, so assume 
9 ^ 0. Making the substi tution s = \9\t, dt = ds/\9\ gives 

/I sin(0i) 

and hence 

dt = sign (0) 
i(\e\t) 

dt = sign 

lim smltfs ds = 2 sig: 
f 

n(9) 
Jo 

s i n s 

w/_ 

ds. 

|0|T 

9|T 
—ds, 

(11.1.5) 

(11.1.6) 

Furthermore, 

(sins) ( / e u s d u ) ds r^ds= r 
Jo s Jo 

POO / />0O \ /"OO / /-OO \ 

f ( / ( s i n s ) e - " s d s ) d w = / I {sin s)e~usds ) du. 

Now, for u > 0, integrating by par ts twice, 

/„. = / (sin s)e~usds = {-coss)e~us 

s = 0 
( - c o s s ) ( - u ) e usds 

0 - ( - l ) - u ( ( s i n s ) e - u s _ + / (sin s ) ( - w ) e - u s d s 
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f 
Jo 

u = 0 

= 1 + 0 -0-u2 / (sin s)e~usds. 
Jo 

Hence, Iu = 1 — u2Iu, so Iu = 1/(1 + u2). 
We then compute that 

/ ds = / Iudu = / = du = arctan(u) 

Jo s Jo io l + « 

= arctan(oo) — arctan(O) = n/2 — 0 = ir/2 . 

Combining this with (11.1.6) gives (11.1.4). 

Finally, since convergent sequences are bounded, it follows from (11.1.4) 
that the set { f_T[sm(t)/t] dt]T>Q is bounded. It then follows from (11.1.5) 
that the set { f_T[sm(0t)/t\ dt}T>0 g R is bounded as well. I 

Proof of Theorem 11.1.1. We compute that 

2TT t-T
 e"ta^lb m dt 

2TT J-T 
I f rT e » t ( x - o ) _ e i t ( x - 6 ) 

2* J-T ~ W— ( / R eitxKdx)) dt [by definition of <£(*)] 

~~ hi In I-T ~ W dt fi(dx) [by Fubini and Lemma 11.1.2] 

= i JR IIT s i n ( t ( *~ a ) ) r i n ( t ( X ~ b ) ) t a /*(<**) I s m c e '^¥1 is o d d ] • 
Hence, we may use Lemma 11.1.3, together with the bounded convergence 
theorem and Remark 9.1.9, to conclude that 

pT —ita a—itb 

T ^ o o 277 J_rp it 

1 f e^-""- - e~ 
lim — / : 4>{t)dt 
n —X» 27T J_rp ""* 

1 f°° 
— / 7r[sign (a; — a) — sign (x — b)] fi(dx) 
j 7 r J - O O 

2TT 

f 
J —c 

7r- [sign (x — a) — sign (x - &)] /x(dx) 

= ̂ W + MM^ + ^W-
(The last equality follows because (1/2) [sign (x — a) — sign (x — b)} is equal 
to 0 if x < a or x > b; is equal to 1/2 if x = a or x = b; and is equal to 1 if 
a < x < b.) But if /i{a} = fi{b} = 0, then this is precisely equal to fi([a,b]), 
as claimed. I 

From this theorem easily follows the important 
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Corollary 11.1.7. (Fourier uniqueness theorem) Let X and Y be random 
variables. Then 4>x(t) = <f>Y{t) for all t G R if and only if C(X) = C(Y), 
i.e. if and only if X and Y have the same distribution. 

Proof. Suppose <px (t) = 4>Y it) for all ( e R . From the theorem, we know 
that P(o < X < b) = P(o < Y < b) provided that P(X = a) = P(X = 
b) = P(Y = a) = P(Y = b) = 0, i.e. for all but countably many choices of 
a and b. But then by taking limits and using continuity of probabilities, we 
see that P(X G I) = P(Y G I) for all intervals / C R. It then follows from 
uniqueness of extensions (Proposition 2.5.8) that C(X) = C{Y). 

Conversely, if £(X) = £(Y), then Corollary 6.1.3 implies that F,(eitx) = 
E(e i t Y) , i.e. 4>x(i) = <j>Y{t) for all t G R. I 

This last result makes the continuity theorem at least plausible. How
ever, to prove the continuity theorem we require some further results. 

Lemma 11.1.8. (Helly Selection Principle) Let {Fn} be a sequence 
of cumulative distribution functions (i.e. Fn(x) = /zn((—oo,x]) for some 
probability distribution /j,n). Then there is a subsequence {Fnk}, and a 
non-decreasing right-continuous function F with 0 < F < 1, such that 
limfc^oo Fnk (x) = F(x) for all x G R such that F is continuous at x. [On 
the other hand, we might not have lim^^-oo F(x) = 0 or lim^-^oo F(x) = 1.] 

Proof. Since the rationals are countable, we can write them as Q = 
{<?i,92> • • •}• Since 0 < Fn(q{) < 1 for all n, the Bolzano-Weierstrass theo
rem (see page 204) says there is at least one subsequence {tk } such that 
lmifc^oo Fe (i)(<7i) exists. Then, there is a further subsequence {£k } (i.e., 
{£k } is a subsequence of {£k '}) such that limfc^oo Fik^){q2) exists (but 
also l im^oo Fik(2)(qi) exists, since {£k } is a subsequence of {£k }). Con
tinuing, for each m G N there is a further subsequence {£k } such that 
lim/c^oo F£k(m) (qj) exists for j < m. 

(k) 
We now define the subsequence we want by n^ = £k ', i.e. we take the 

kth element of the fcth subsequence. (This trick is called the diagonalisation 
method.) Since {rik} is a subsequence of {£k} from the fcth point onwards, 
this ensures that l im^oo Fnk (q) = G(q) exists for each q G Q. Since each 
Fnk is non-decreasing, therefore G is also non-decreasing. 

To continue, we set F(x) = mf{G(q); q G Q, q > x}. Then F is easily 
seen to be non-decreasing, with 0 < F(x) < 1. Furthermore, F is right-
continuous, since if {xn} \ x then {{q G Q : q > xn}} / {q G Q : 
q > x}, and hence F(xn) —* F(x) as in Exercise 3.6.4. Also, since G is 
non-decreasing, we have F(q) > G(q) for all q G Q. 
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Now, if F is continuous at x, then given e > 0 we can find rational 
numbers r, s, and u with r < u < x < s, and with F(s) — F(r) < e. We 
then note that 

F(x)- < 

II 
II 

II 
V

I 

< 

< 

< 

II 
V

I V
I 

F(r) 
inf G{q) 
q>r 
inf limFnk(q) 
q>r k 
inf lim inf Fnk (q) 
q>r k 
lim inf Fnk (u) 
lim inf Fnk (x) 

lim sup Fnk (x) 
k 

limsupFnfc(s) 
k 

G(s) 
F(s) 
F{x)+e. 

since u G Q, u > r 

since x > u 

since s > x 

This is true for any e > 0, hence we must have 

lim inf Fnk(x) = limsupFnfc(:r) = F(x), 
k k 

so that limfc Fnk{x) = F(x), as claimed. I 

Unfortunately, Lemma 11.1.8 does not ensure that lim^^oo F{x) = 1 or 
lim^^-oo F{x) = 0 (see e.g. Exercise 11.5.1). To rectify this, we require a 
new notion. We say that a collection {^n} of probability measures on R is 
tight if for all e > 0, there are a < b with fin ([a, b}) > 1 — e for all n. That 
is, all of the measures give most of their mass to the same finite interval; 
mass does not "escape off to infinity". 

Exercise 11.1.9. Prove that: 
(a) any finite collection of probability measures is tight. 
(b) the union of two tight collections of probability measures is tight. 
(c) any sub-collection of a tight collection is tight. 

We then have the following. 

Theorem 11.1.10. If {/j,n} is a tight sequence of probability measures, 
then there is a subsequence {/infc} &nd a probability measure /i, such that 
Hnk => fi, i.e. {Hnk} converges weakly to \x. 
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Proof. Let Fn(x) = fin((—oo,x\). Then by Lemma 11.1.8, there is a 
subsequence Fnk and a function F such that Fnk (x) —> F(x) at all continuity 
points of F. Furthermore 0 < F < 1. 

We now claim that F is actually a probability distribution function, i.e. 
that \mix^_ocF(x) = 0 and Yaa.x^>00F{x) = 1. Indeed, let e > 0. Then 
using tightness, we can find points a < b which are continuity points of F, 
such that fin((a,b]) > 1 — e for all n. But then 

lim F(x) - lim F(x) > F(b) - F{a) 
£ — • 0 0 2—*• — CO 

= lim [Fn{b) - Fn(a)] = lim/i„ ((a, 6]) > 1 - e . 
n n 

This is true for all e > 0, so we must have linx^oo F(x)—\inix^-oc F(x) = 1, 
proving the claim. 

Hence, F is indeed a probability distribution function. Thus, we can 
define the probability measure fi by fi ((a, b}) = F(b) — F(a) for a < b. Then 
finic =>• // by Theorem 10.1.1, and we are done. I 

A main use of this theorem comes from the following corollary. 

Corollary 11.1.11. Let {/J,n} be a tight sequence of probability distribu
tions on R. Suppose that fi is the only possible weak limit of {/J.„}, in the 
sense that whenever jink =>• v then v = u- (that is, whenever a subsequence 
of the {/x„} converges weakly to some probability measure, then that prob
ability measure must be fi). Then \in => JJL, i.e. the full sequence converges 
weakly to [i. 

Proof. If fj,n ^ (j,, then by Theorem 10.1.1, it is not the case that 
fj,n(oo,x] —> fj,(—oo,x] for all x € R with fi{x} = 0. Hence, we can find 
x G R, e > 0, and a subsequence {n*,}, with n{x} = 0, but with 

|M„fc((-oo,a;]) - / / ( ( -oo ,x] ) | > e, fceN. (11.1.12) 

On the other hand, {u.nk} is a subcollection of {/xn} and hence tight, so 
by Theorem 11.1.10 there is a further subsequence {[J>nk } which converges 
weakly to some probability measure, say v. But then by hypothesis we must 
have v — u., which is a contradiction to (11.1.12). I 

Corollary 11.1.11 is nearly the last thing we need to prove the continuity 
theorem. We require just one further result, concerning a sufficient condition 
for a sequence of measures to be tight. 

Lemma 11.1.13. Let {/nn} be a sequence of probability measures on 
R, with characteristic functions 4>n(t) = J eltx/j,n(dx). Suppose there is a 
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function g which is continuous at 0, such that lim„ (f>n{i) = g{t) for each 
\t\ < t0 for some t0 > 0. Then {/x„} is tight. 

Proof. We first note that g(0) = limn</)rl(0) = lim„ 1 = 1. We then 
compute that, for y > 0, 

Mn((-0O,- f ]U[ | ,0o)) = 
< 

< 

< 

Here the first inequality uses that 1 — -rg > | whenever \x\ > 2/y, the 

second inequality uses that sm}^x' = sm.,uli — ~rr >the second equality uses 
yx y\x\ y\x\ 

that J^ cos(tx) dt = sl1^ , the final inequality uses that 1 — cos(ta) > 0, 
the third equality uses that j^_ sin(te) dt = 0, and the final equality uses 
Pubini's theorem (which is justified since the function is bounded and hence 
has finite double-integral). 

To finish the proof, let e > 0. Since g(Q) = 1 and g is continuous at 
0, we can find yo with 0 < yo < to such that |1 — g{t)\ < e/4 whenever 
\t\ < y0. Then \± J ^ l - g(t))dt\ < e/2. Now, </>n(t) -> g(t) for all 
1*1 < 2/0i a n d |^n(*)| < 1- Hence, by the bounded convergence theorem, we 
can find no G N such that |^- J^° (1 — 4>n(t))dt\ < e for all n > UQ. 

Hence, M n( - ±, ^ ) = 1 - fin((-oo, - ^ ] U [J ,oo) ) > 1 - e for all 
n > no- It follows from the definition that {fin} is tight. I 

We are now, finally, in a position to prove the continuity theorem. 

Theorem 11.1.14. (Continuity Theorem.) Let fi, Hi,[i2, • • • be prob
ability measures, with corresponding characteristic functions 4>,(j)i,4>2-, 
Then fin =>• fi if and only if </>„(£) —> 4>(t) for all t G R. In words, the proba
bility measures {/in} converge weakly to [i if and only if their characteristic 
functions converge pointwise to that of fi. 

Proof. First, suppose that /x„ =>- /i. Then, since cos(tx) and sin(te) are 
bounded continuous functions, we have as n —> oo for each t G R that 

4>n{t) = J cos(tx)fj,n(dx) + i J sm(tx)nn(dx) 
—> / cos(tx)/j,(dx) + i f sm(tx)[i(dx) 

= 4>{t)-

I\x\>1/y l ^{dx) 
2I\x\>2/y (l ~ yh) Vnidx) 

J\x\>2/y(l/v) I-y (! " COB(te)) dt /J,n{dx) 

fzenO-fv) I-y i1 ~ cos(te)) dt nn{dx) 
IxeR(i/y)I*v(i-e 

ry 
y J-y^ 

y
y(l-e

u*)dtnn(dx) 
(t))dt. 
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Conversely, suppose that <j>n(t) —> <fi(t) for each t g R . Then by Lemma 
11.1.13 (with g = (j>), the {{J.n} are tight. Now, suppose that we have fj,nk => 
v for some subsequence {/xnfc } and some measure v. Then, from the previous 
paragraph we must have (fink (t) —> (fiv(t) for all t, where <fiv(t) = J eltxv(dx). 
On the other hand, we know that 4>nk(t) —> (fi(t) for all t; hence, we must 
have <j>v = <fi. But from Fourier uniqueness (Corollary 11.1.7), this implies 
that v = JJL. 

Hence, we have shown that fi is the only possible weak limit of the {/xn}. 
Therefore, from Corollary 11.1.11, we must have (j,n => fi, as claimed. I 

11.2. The Central Limit Theorem. 

Now that we have proved the continuity theorem (Theorem 11.1.14), it 
is very easy to prove the classical central limit theorem. 

First, we compute the characteristic function for the standard normal 
distribution iV(0,1), i.e. for a random variable X having density with respect 
to Lebesgue measure given by fx{x) = -?k=e~x >2. That is, we wish to 
compute 

ox /

OO i 

eltx^=e-x2/2dx. 
V2^ Comparing with the computation leading to (9.3.2), we might expect that 

4>x{t) = Mx{it) = e('*) I2 = e~* /2 . This is in fact correct, and can be 
justified using theory of complex analysis. But to avoid such technicalities, 
we instead resort to a trick. 

Proposition 11.2.1. If X ~ iV(0,1), then <j)X{t) = e"*2/2 for all t G R. 

Proof. By Proposition 9.2.1 (with Ft = eitx and Y = \X\, so that 
E(Y) < oo and |F/ | = \{iX)eitx\ = \X\<Y for all t), we can differentiate 
under the integral sign, to obtain that 

1_ 

2TT 

ieitx—^=xe x /2dx. 
/

OO -1 P 

ixe
itx—e-x2/2dx = J 

Integrating by parts gives that 

/

°° 1 2 

i(it)eitx—=e-x /2dx = -tcf>x(t). 
-oo V27r 

Hence, <j)'x{t) = —t<px(t), so that -^\og4>x(t) = —t. Also, we know that 

log <fix (0) = log 1 = 0. Hence, we must have log (fix (t) = f0{-s)ds = -t2/2, 
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whence (j>x{t) = e ' I2• I 

We can now prove 

Theorem 11.2.2. (Central Limit Theorem) Let Xi,X2,.-. be i.i.d. 
with finite mean m and finite variance v. Set Sn = X\ + ... + Xn. Then as 
n —• oo, 

' Sn — nm\ 
£ 1=— ) => VN, 

\ y/vn J 
where /ijv = N(0,1) is the standard normal distribution, i.e. the distribution 
having density -jk=e~x ^2 with respect to Lebesgue measure. 

Proof. By replacing Xi by i
/^

m , we can (and do) assume that m = 0 
and v = 1. 

Let <pn(t) = E ( eltSnl"J™ J be the characteristic function of Sn/^/n. By 

the continuity theorem (Theorem 11.1.14), and by Proposition (11.2.1), it 
suffices to show that limn <j>n (t) = e - ' I"1 for each fixed t £ R. 

To this end, set <f>(t) = E(eltXl). Then as n —> oo, using a Taylor 
expansion and Proposition 11.0.1, 

<j>n{t) = E ( > ( * i + - + * n ) / V ^ 

= Ht/v^r 
\ + $.JZ(Xl) + ^ ( ^ ) 2 E ((XO2) + o(l /n) 

= ( l - ^ + 0 ( l / n ) j 

as claimed. (Here o(l/n) means a quantity qn such that qn/(l/n) —-> 0 as 
n —> oo. Formally, the limit holds since for any e > 0, for sufficiently large 
n we have qn > —e/n and also qn < e/n, so that the liminf is > e~(* / 2 )~ e 

and the limsup is < e~(* /2)+e.) I 

Since the normal distribution has no points of positive measure, this 
theorem immediately implies (by Theorem 10.1.1) the simpler-seeming 

Corollary 11.2.3. Let {Xn}, m, v, and Sn be as above. Then for each 
fixed x € R, 

^ (Sn — nm \ . . , . 
lim P r— <x\ = $(x), (11.2.4) 

n->oo \ Jnv I 

where Q(x) = fx„ -A=e * l2dt is the cumulative distribution function for 
\ ' J —oo V27T 

the standard normal distribution. 
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This can also be written as P(5 r a < nm + x^/nv) —> Q(x). That is, 
Xi +... + Xn is approximately equal to nm, with deviations from this value 
of order ^fn. For example, suppose X\, X2, • • • each have the Poisson(5) 
distribution. This implies that m = E(Xj) = 5 and v = Var(Xi) = 5. 
Hence, for each fixed x € R, we see that 

P (Xi + ... + Xn < 5n + xVSn) -> $ (x) , n -^ 00. 

Remarks . 
1. It is not essential in the Central Limit Theorem to divide by \/v. With

out doing so, the theorem asserts instead that 

Sn~nm^ • N(0,v). 

2. Going backwards, the Central Limit Theorem in turn implies the WLLN, 
since if y > m, then a s n - t 00, 

P[{Sn/n) <y}= P[Sn < ny] = P[(Sn - nm)/^/nv < (ny - nm)/y/nv] 

w $[(ny - nm)/^/iw\ = $>[y/n(y - m)/y/v\ —> $(+00) = 1, 

and similarly if y < m then P{(Sn/n) <?/]—> $(—00) = 0. Hence, 
C(Sn/n) => Sm, and so Sn/n converges to m in probability. 

11.3. Generalisations of the Central Limit Theorem. 

The classical central limit theorem (Theorem 11.2.2 and Corollary 11.2.3) 
is extremely useful in many areas of science. However, it does have certain 
limitations. For example, it provides no quantitative bounds on the conver
gence in (11.2.4). Also, the insistence that the random variables be i.i.d. is 
sometimes too severe. 

The first of these problems is solved by the Berry-Esseen Theorem, which 
states that if Xi, X2 , . . . are i.i.d. with finite mean m, finite positive variance 
v, and E (\Xi — m|3) = p < 00, then 

, Xi + ... + Xn - nm , 
P 7= <x\— ®(x) 

<4L 

This theorem thus provides a quantitative bound on the convergence in 
(11.2.4), depending only on the third moment. For a proof see e.g. Feller 
(1971, Section XVI.5). Note, however, that this error bound is absolute, not 
relative: as x —> -00 , both •p(xx+~+x*-nm < x) and $(x) get small, and 
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the Berry-Esseen Theorem says less and less. In particular, the theorem 

does not assert that P ( Xl+---+-^-"~nm < x) decreases as 0(e~x 2 /2) as x —> 

—oo, even though $(a;) does. (We have already seen in Theorem 9.3.4 that 

P ( X I +VLJ±X" < x) often decreases as px for some p < 1.) 

Regarding the second problem, we mention just two of many results. 
To state them, we shall consider collections {Znk; n > 1, 1 < fc < r„} of 
random variables such that each row {Zn^iKkKr^. is independent, called 
triangular arrays. (If rn = n they form an actual triangle.) We shall 
assume for simplicity that E(Znfc) = 0 for each n and k. We shall further 
set a\k = E(Z^fc) (assumed to be finite), 
s2

n = Var(Sn) = G-*1 + ... + a2
nrn. 

For such a triangular array, the Lindeberg Central Limit Theorem states 
that C(Sn/sn) => N(0,1), provided that for each e > 0, we have 

lim ^ J > ^ n f c l |z„*>«J = 0. (11.3.1) 
n_>°° s " fc=i 

This Lindeberg condition states, roughly, that as n —> oo, the tails of the 
Znk contribute less and less to the variance of Sn. 

Exercise 11.3.2. Consider the special case where rn = n, with Znk = 
-4= Yn where {Yn} are i.i.d. with mean 0 and variance v < oo (so sn = 1). 
(a) Prove that the Lindeberg condition (11.3.1) is satisfied in this case. 
[Hint: Use the Dominated Convergence Theorem.] 
(b) Prove that the Lindeberg CLT implies Theorem 11.2.2. 

This raises the question that, if (11.3.1) is not satisfied, then what other 
limiting distributions may arise? Call a distribution fi a possible limit if 
there exists a triangular array as defined above, with sup„ s\ < oo and 
lrnin^oo maxi<fc<rn a^k = 0 (so that no one term dominates the contribu
tion to Var(Sn)) , such that C(Sn) =>• fi. Then we can ask, what distribu
tions are possible limits? Obviously the normal distributions iV(0, v) are 
possible limits; indeed C(Sn) => N(0,v) whenever (11.3.1) is satisfied and 
si —-> v. But what else? 

The answer is that the possible limits are precisely the infinitely divisible 
distributions having mean 0 and finite variance. Here a distribution \i is 
called infinitely divisible if for all n e N , there is a distribution vn such that 
the n-fold convolution of vn equals fi (in symbols: vn * un * ... * vn — /z). 
Recall that this means that, if X±, X2,..., Xn ~ vn are independent, then 
Xi + ...+Xn~n. 

Half of this theorem is obvious; indeed, if fj, is infinitely divisible, then 
we can take rn = n and C(Xnk) = vn in the triangular array, to get that 
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C(Sn) => [i. For a proof of the converse, see e.g. Billingsley (1995, Theorem 
28.2). 

11.4. Method of moments. 

There is another way of proving weak convergence of probability mea
sures, which does not explicitly use characteristic functions or the continuity 
theorem (though its proof of correctness does, through Corollary 11.1.11). 
Instead, it uses moments, as we now discuss. 

Recall that a probability distribution ji on R has moments defined by 
a.k = / xk n.{dx), for k = 1,2,3,. . . . Suppose these moments all exist and are 
all finite. Then is \i the only distribution having precisely these moments? 
And, if a sequence {/x„} of distributions have moments which converge to 
those of fi, then does it follow that fin =>• /i, i.e. that the / in converges weakly 
to fi? We shall see in this section that such conclusions hold sometimes, 
but not always. 

We shall say that a distribution u. is determined by its moments if all 
its moments are finite, and if no other distribution has identical moments. 
(That is, we have J \xk\u.(dx) < oo for all k G N, and furthermore whenever 
J xku.(dx) = J xkv(dx) for all k G N, then we must have v = fi.) 

We first show that, for those distributions determined by their moments, 
convergence of moments implies weak convergence of distributions; this re
sult thus reduces the second question above to the first question. 

Theorem 11.4.1. Suppose that \x is determined by its moments. Let 
{fj-n} be a sequence of distributions, such that J xk/in(dx) is finite for all 
n, k G N, and such that lin^^oo J xkfin(dx) = J xk/j,(dx) for each k G N. 
Then /j, =>• \x, i.e. the fin converge weakly to fx. 

Proof. We first claim that {^n} is tight. Indeed, since the moments 
converge to finite quantities, we can find K^ G R with J xkfin(dx) < Kk 
for all n G N. But then, by Markov's inequality, letting Yn ~ //n, we have 

u.n([-R,R}) = P ( | r „ | < i 2 ) 
= i - p ( | r n | > i j ) 
= l - P ( F n

2 > i ? 2 ) 
> i - (E[r„ 2 ] / iJ 2 ) 
> i - ( ^ 2 / i ? 2 ) , 

which is > 1 — e whenever R > \fK2ft, thus proving tightness. 
We now claim that if any subsequence {/iHr} converges weakly to some 

distribution v, then we must have v = fx. The theorem will then follow from 
Corollary 11.1.11. 

file:///fK2ft
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Indeed, suppose finr => v. By Skorohod's theorem, we can find ran
dom variables Y and {Yr} with C{Y) = v and C(Yr) = /i„ r , such that 
Yr —> Y with probability 1. But then also Yk —> Yfe with probability 1. 
Furthermore, for k £ N and a > 0, we have 

E (|rr|
fci|Yr|,>Q) < E (M-i | y r | f c > Q ) < I E (|YT |2fc\ 

= I E ( ( Y r ) 2 f c ) < ^ , 

which is independent of r, and goes to 0 as a —> oo. Hence, the {Y^} 
are uniformly integrable. Thus, by Theorem 9.1.6, E(Fr

fe) —> E(Yfe), i.e. 
/xkfinr(dx) —> /x k v{dx) . 

But we already know that f xk /inr(dx) —*• Jxkfi(dx). Hence, the mo
ments of J/ and /i must coincide. And, since /z is determined by its moments, 
we must have z/ = fi, as claimed. I 

This theorem leads to the question of which distributions are determined 
by their moments. Unfortunately, not all distributions are, as the following 
exercise shows. 

Exercise 11.4.2. Let f(x) = ^ = e - ( l o g x ) 2 / 2 for x > 0 (with f(x) = 
0 for x < 0) be the density function for the random variable ex, where 
X - iV(0,l)- Let g(x) = f(x) (1 + sin(27rlogx)). Show that g(x) > 0 
and that Jxkg(x)dx = Jxkf(x)dx for k = 0 ,1 ,2, . . . . [Hint: Consider 
Ja;fc/(a;)sin(27rloga;)da;, and make the substitution x = esek, dx = esekds.} 
Show further that J \x\k f (x)dx < oo for all k £ N. Conclude that g is 
a probability density function, and that g gives rise to the same (finite) 
moments as does / . Relate this to Theorem 11.4.1 above and Theorem 
11.4.3 below. 

On the other hand, if a distribution satisfies that its moment generating 
function is finite in a neighbourhood of the origin, then it will be determined 
by its moments, as we now show. (Unfortunately, the proof requires a result 
from complex function theory.) 

Theorem 11.4.3. Let SQ > 0, and Jet X be a random variable with 
moment generating function Mx{s) which is finite for \s\ < SQ. Then C(X) 
is determined by its moments (and also by Mx(s)). 

Proof (optional). Let fx(z) = E{ezX) for z e C. Since \ezX\ =e
XUez, 

we see that fx(z) is finite whenever \$te z\ < So- Furthermore, just like for 
Mx(s), it follows that fx{z) is analytic on {z G C; |5Re^| < SQ}. NOW, if 
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Y has the same moments as does X, then for \s\ < so, we have by order-
preserving and countable linearity that 

E ( e s Y ) < E(esY + e~sY) 

= J B ( 1 + ^ ! + . . . )-2(1 + ^ ) + . . . ) 

= 2 ( l + S E
2 7 K..)j=Mx(S) + Mx(-S)<oo. 

Hence, My(s) < oo for \s\ < so- It now follows from Theorem 9.3.3 that 
MY(s) = Mx{s) for |s| < s0, i.e. that fx(s) = fy(s) for real \s\ < s0. By 
the uniqueness of analytic continuation, this implies that fy{z) = fx{z) 
for \lRez\ < SQ. In particular, since <f>x(t) = fx(it) and 4>y(t) = fy(it), 
we have <px — 4>Y- Hence, by the uniqueness theorem for characteristic 
functions (Theorem 11.1.7), we must have £(Y) = C(X), as claimed. I 

Remark 11.4.4. Proving weak convergence by showing convergence of 
moments is called the method of moments . Indeed, it is possible to prove 
the central limit theorem in this manner, under appropriate assumptions. 

Remark 11.4.5. By similar reasoning, it is possible to show that if 
Mxn(s) < oo and Mx(s) < oo for all n € N and \s\ < so, and also 
MXn(s) -> Mx{s) for all \s\ < s0, then we must have C{Xn) => C(X). 

11.5. Exercises. 

Exercise 11.5.1. Let fin = Sn be a point mass at n (for n = 1, 2 , . . . ) . 
(a) Is {//„} tight? 
(b) Does there exist a subsequence {Hnk}, and a Borel probability measure 
/i, such that fink => /i? (If so, then specify {n^} and /i.) Relate this to 
theorems from this section. 
(c) Setting Fn(x) = fin((—oo,x\), does there exist a non-decreasing, right-
continuous function F such that Fn(x) —> F(x) for all continuity points x 
of Fl (If so, then specify F.) Relate this to the Helly Selection Principle. 
(d) Repeat part (c) for the case where fin = <5_„ is a point mass at — n. 

Exercise 11.5.2. Let \in = Sn mod 3 be a point mass at n mod 3. (Thus, 
/ i l = Si, H2 = $2, M3 = <*0, f-4 = 81, (15 = $2, fJ-6 = $0, e tc . ) 

*This should not be confused with the statistical estimation procedure of the same 
name, which estimates unknown parameters by choosing them to make observed moments 
equal theoretical ones. 
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(a) Is {fin} tight? 
(b) Does there exist a Borel probability measure /x, such that /x„ => /x? (If 
so, then specify xx.) 
(c) Does there exist a subsequence {fink}> a n d a Borel probability measure 
/x, such that fink =*> /x? (If so, then specify {rife} and /J.) 
(d) Relate parts (b) and (c) to theorems from this section. 

Exercise 11.5.3. Let {xn} be any sequence of points in the interval [0,1]. 
Let fin = SXn be a point mass at xn. 
(a) Is {/x„} tight? 
(b) Does there exist a subsequence {fink}, and a Borel probability measure 
/x, such that /x„fc =>• fi? (Hint: by compactness, there must be a subsequence 
of points {xnk} which converges, say to y € [0,1]. Then what does finie 

converge to?) 

Exercise 11.5.4. Let /X2n = <̂o> a n d let fi^n+i = $n, for n = 0,1,2, — 
(a) Does there exist a Borel probability measure /x, such that /x„ =$• /x? 
(b) Suppose for some subsequence {/xnfc } and some Borel probability mea
sure v, we have /x„fc => v. What must v be? 
(c) Relate parts (a) and (b) to Corollary 11.1.11. Why is there no contra
diction? 

Exercise 11.5.5. Let /x„ = Uniform[0,n], so fj,n([a,b]) = (b — a)/n for 
0 < a < b < n. 
(a) Prove or disprove that {/x«} is tight. 
(b) Prove or disprove that there is some probabilty measure /x such that 
Hn => /X. 

Exercise 11.5.6. Suppose \in => /x. Prove or disprove that {/x„} must 
be tight. 

Exercise 11.5.7. Define the Borel probability measure /x„ by /x„ ({x}) = 
1/n, for x = 0, ^, ^ , . . . , R^- Let A be Lebesgue measure on [0,1]. 
(a) Compute </>n(i) = f ettxfin(dx), the characteristic function of /x„. 
(b) Compute cj>(t) = J eltxX(dx), the characteristic function of A. 
(c) Does 4>n(t) —> (j>(t), for each t e R ? 
(d) What does the result in part (c) imply? 

Exercise 11.5.8. Use characteristic functions to provide an alternative 
solution of Exercise 10.3.2. 

Exercise 11.5.9. Use characteristic functions to provide an alternative 
solution of Exercise 10.3.3. 
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Exercise 11.5.10. Use characteristic functions to provide an alternative 
solution of Exercise 10.3.4. 

Exercise 11.5.11. Compute the characteristic function <fix(t), and also 
4>'x(0) =iE(X), where X follows 
(a) the binomial distribution: P(X = k) = (fc)pfc(l - p)n~k, for k = 
0 ,1 ,2 , . . . , n . 
(b) the Poisson distribution: P(X = k) = e " A ^ , for k = 0,1,2, . . . . 
(c) the exponential distribution, with density with respect to Lebesgue 
measure given by fx{x) = \e~~Xx for x > 0, and fx(x) = 0 for x < 0. 

Exercise 11.5.12. Suppose that for n G N, we have P[Xn = 5] = 1/n 
a n d P [ X n = 6] = 1 - (1/n). 
(a) Compute the characteristic function <j>xn(t), for all n € N and t G R. 
(b) Compute l im^oo <f>x„ (t). 
(c) Specify a distribution /x such that l i m ^ - ^ cf>xn (£) = J eltx n(dx) for all 
ten. 
(d) Determine (with explanation) whether or not C(Xn) =>• JJL. 

Exercise 11.5.13. Let {Xn} be i.i.d., each having mean 3 and variance 
4. Let S = Xi + X2 + • • •+ ^10,000- In terms of $(x), give an approximate 
value for P [ 5 < 30,500]. 

Exercise 11.5.14. Let Xi,X<z,... be i.i.d. with mean 4 and variance 
9. Find values C(n, x), for n S N and x € R, such that as n —> co, 
P[Xi + X2 + . •. + Xn < C{n, x)] « #(a;). 

Exercise 11.5.15. Prove that the Poisson(A) distribution, and the 
N(m, v) (normal) distribution, are both infinitely divisible (for any A > 0, 
m € R, and v > 0). [Hint: Use Exercises 9.5.15 and 9.5.16.] 

Exercise 11.5.16. Let X be a random variable whose distribution C{X) 
is infinitely divisible. Let a > 0 and 6 G R, and set Y = aX + b. Prove that 
C(Y) is infinitely divisible. 

Exercise 11.5.17. Prove that the Poisson(A) distribution, the N(m,v) 
distribution, and the Exp(A) (exponential) distribution, are all determined 
by their moments, for any A > 0, m € R, and v > 0. 

Exercise 11.5.18. Let X,Xi,X2,- • • be random variables which are 
uniformly bounded, i.e. there is M G R with \X\ < M and \Xn\ < M for 
all n. Prove that {C(Xn)} =» C(X) if and only if E (X*) - • E (Xfc) for all 
fcGN. 



142 11. CHARACTERISTIC FUNCTIONS. 

11.6. Section summary. 

This section introduced the characteristic function (px(t) = E(ettx). 
After introducing its basic properties, it proved an Inversion Theorem (to 
recover the distribution of a random variable from its characteristic func
tion) and a Uniqueness Theorem (which shows that if two random variables 
have the same characteristic function then they have the same distribution). 

Then, using the Helly Selection Principle and the notion of tightness, it 
proved the important Continuity Theorem, which asserts the equivalence of 
weak convergence of distributions and pointwise convergence of characteris
tic functions. This important theorem was used to prove the Central Limit 
Theorem about weak convergence of averages of i.i.d. random variables to 
a normal distribution. Some generalisations of the Central Limit Theorem 
were briefly discussed. 

The section ended with a discussion of the method of moments, an al
ternative way of proving weak convergence of random variables using only 
their moments, but not their characteristic functions. 
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12. Decomposition of probability laws. 

Let /x be a Borel probability measure on R. Recall that \i is discrete if it 
takes all its mass at individual points, i.e. if ^2xeji l^{x} = M(R-)- Also [x is 
absolutely continuous if there is a non-negative Borel-measurable function 
/ such that fi(A) = JA f(x)X(dx) — J lA(x)f(x)X(dx) for all Borel sets A, 
where A is Lebesgue measure on R. 

One could ask, are these the only possible types of probability distribu
tions? Of course the answer to this question is no, as fi could be a mixture of 
a discrete and an absolutely continuous distribution, e.g. fj, = ^50+^N(0,1). 
But can every probability distribution at least be written as such a mixture? 
Equivalently, is it true that every distribution \i with no discrete component 
(i.e. which satisfies fi{x} — 0 for each x £ R) must necessarily be absolutely 
continuous? 

To examine this question, say that (j, is dominated by A (written / i < A ) , 
if fi(A) = 0 whenever X(A) = 0. Then clearly any absolutely continuous 
measure fj, must be dominated by A, since whenever X(A) = 0 we would 
then have n(A) = f lA{x)f(x)X{dx) = 0. (We shall see in Corollary 12.1.2 
below that in fact the converse to this statement also holds.) 

On the other hand, suppose Zi,Z2,. • • are i.i.d. taking the value 1 with 
probability 2/3, and the value 0 with probability 1/3. Set Y = Y^=i Zn2~n 

(i.e. the base-2 expansion of Y is O.Z1Z2 • •.). Further, define S C R by 

S = ( a r e [0,1]; lim - f > ( a : ) = ^ ) , 

where di(x) is the ith digit in the (non-terminating) base-2 expansion of x. 
Then by the strong law of large numbers, we have P(Y £ S) = 1 while 
X(S) — 0. Hence, from the previous paragraph, the law of Y cannot be 
absolutely continuous. But clearly C(Y) has no discrete component. We 
conclude that C(Y) cannot be written as a mixture of a discrete and an 
absolutely continuous distribution. In fact, C(Y) is singular with respect to 
A (written C(Y) _l_ A), meaning that there is a subset S C R with X(S) = 0 
and P ( F e Sc) = 0. 

12.1. Lebesgue and Hahn decompositions. 

The main result of this section is the following. 

Theorem 12.1.1. (Lebesgue Decomposition) Any probability measure 
H on R c a n uniquely be decomposed as fi = fidisc + Vac + Using, where the 
measures Hdisc, fJ-ac and fj,sing satisfy 
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(a) u-disc is discrete, i.e. ^ I £ R Vdisc{x} = Hdisc(R); 
(b) fiac is absolutely continuous, i.e. u.ac(A) = JAf dX for all Borel sets A, 
for some non-negative, Borel-measurable function f, where X is Lebesgue 
measure on R; 
(c) fusing is singular continuous, i.e. fj,Sing{x} = 0 for all i £ R , but there 
is S C R with X(S) = 0 and nsing(S

c) = 0. 

Theorem 12.1.1 will be proved below. We first present an important 
corollary. 

Corollary 12.1.2. (Radon-Nikodym Theorem) A Borel probability 
measure u. is absolutely continuous (i.e. there is f with ^JL(A) = JAfdX for 
all Borel A) if and only if it is dominated by X (i.e. \x <C A, i.e. fJ,(A) = 0 
whenever X(A) = 0). 

Proof. We have already seen that if fi is absolutely continuous then 
/ / « A. 

For the converse, suppose \x <C A, and let fi = fidisc + Hac + losing as in 
Theorem 12.1.1. Since X{x} = 0 for each x, we must have ji{x} = 0 as well, 
so that Hdisc = 0. Similarly, if S is such that X(S) = 0 and /J,Sing(Sc) = 0, 
then we must have fi(S) = 0, so that fising(S) = 0, so that /J,Sing = 0. 
Hence, fi = fiac, i.e. /x is absolutely continuous. I 

Remark 12.1.3. If fi(A) = JAfdX for all Borel A, we write ^ = / , and 
call / the density, or Radon-Nikodym derivative, of [i with respect to A. 

It remains to prove Theorem 12.1.1. We begin with a lemma. 

Lemma 12.1.4. (Hahn Decomposition) Let 4> be a finite "signed mea
sure" on (fi, T), i.e. <fi = \x — v for some finite measures [i and v. Then there 
is a partition tt = A+i)A~, with A+, A" € T, such that <f>(E) > 0 for all 
E C A+, and <j){E) < 0 for all E C A". 

Proof. Following Billingsley (1995, Theorem 32.1), we set 

a = sup{</)(A); AeF}. 

We shall construct a subset A+ such that (j){A+) — a. Once we have 
done this, then we can then take A~ = Q\ A+. Then if E C A+ but 
<f>(E) < 0, then (j)(A+\E) = <j)(A+) -<j>(E) > 4>{A+) = a, which contradicts 
the definition of a. Similarly, if E C A~ but <p(E) > 0, then <fr(A+ U 
E) > 4>{A+) + <t>(E) > a, again contradicting the definition of a. Thus, to 
complete the proof, it suffices to construct A+ with <p(A+) = a. 
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To that end, choose (by the definition of a) subsets Ay, A^,... G T such 
that <t>(An) —> a. Let A = \JAi, and let 

Qn = < P | A'k , each A'k = Ak or A \ Ak \ 

(so that Qn contains < 2n different subsets, which are all disjoint). Then 
let 

Cn= |J S, 
SESn 

* ( S ) > 0 

i.e. Cn is the union of those elements of Qn with non-negative measure under 
(p. Finally, set A+ = limsupCra. We claim that 4>(A+) = a. 

First, note that since An is a union of certain particular elements of 
Qn (namely, all those formed with A'n = An), and Cn is a union of all the 
(^-positive elements of Qn, it follows that <j>{Cn) > (j>(An). 

Next, note that CmU.. .UC„ is formed from CmU.. .UCn-y by including 
some additional 0-positive elements of Qn, so (f>(Cm U Cm+i U . . . U Cn) > 
4>{Cm U C m + i U . . . U Cn_i) . It follows by induction that 4>(Cm U . . . U Cn) > 
<^(Cm) > 4>{Am). Since this holds for all n, we must have (by continuity of 
probabilities on [i and v separately) that <fi(Cm U Cm+i U .. .) > 4>(Am) for 
all rn. 

But then (again by continuity of probabilities on fi and v separately) we 
have 

<p(A+) =<^(limsupCn) = lim <p{Cm U Cm+1 U .. .) > lim 0(Am) = a . 
m—>oo m—>oo 

Hence, <f)(A+) = a, as claimed. I 

Remarks. 
1. The Hahn decomposition is unique up to sets of ^-measure 0, i.e. if 

A+UA~ and B+L)B~ are two Hahn decompositions then (p(A+\B+) = 
<j>(B+ \ A+) = 4>(A- \B~) = 4>(B~ \ A~) = 0, since e.g. A+ \ B+ = 
A+ fl -B - must have </>-measure both > 0 and < 0. 

2. Using the Radon-Nikodym theorem, it is very easy to prove the Hahn 
decomposition; indeed, we can let £ = /x + v, let / = -^ and g = -£, 
and set A+ = {/ > gf}. However, this reasoning would be circular, 
since we are going to use the Hahn decomposition to prove the Lebesgue 
decomposition which in turn proves the Radon-Nikodym theorem! 

3. If (f> is any countably additive mapping from T to R (not necessarily 
non-negative, nor assumed to be of the form fi — u), then continuity 
of probabilities follows just as in Proposition 3.3.1, and the proof of 
Theorem 12.1.4 then goes through without change. Furthermore, it then 
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follows that <f> = n-v where n{E) = <f)(EnA+) and v(E) = -^EnA'), 
i.e. every such function is in fact a signed measure. 

We are now able to prove our main theorem. 

Proof of Theorem 12.1.1. We first take care of Hdisc- Indeed, clearly 
we shall define Hdisc{A) = Y^,xeA M { X } ' a n d then fi — ^disc has no discrete 
component. Hence, we assume from now on that \x has no discrete compo
nent. 

Second, we note that by countable additivity, it suffices to assume that 
(j, is supported on [0,1], so that we may also take A to be Lebesgue measure 
on [0,1]. 

To continue, call a function g a candidate density if g > 0 and fEgd\ < 
n(E) for all Borel sets E. We note that if g\ and g2 are candidate densities, 
then so is max((?i, <?2), since 

/ rnax(g1,g2)d\= / gidX + g2d\ 
JE JEn{gi>g2} JEn{gi<g2} 

< KE n {31 > 92}) + n(E n {31 < g2}) = /i(E). 

Also, by the monotone convergence theorem, if h\,h2,... are candidate 
densities and hn y h, then h is also a candidate density. It follows from 
these two observations that if g\,g2, • • • are candidate densities, then so is 
sup„ gn = l im^oo max(51, . . . , gn). 

Now, let (3 = sup{JJ0 ^ gdX; g a, candidate density}. Choose candidate 

densities gn with J,Q ̂  gndX > j3 — ^, and let / = sup n > 1 gn, to obtain that 
/ is a candidate density with J,Q ̂  f dX = /?, i.e. / is (up to a set of measure 
0) the largest possible candidate density. 

This / shall be our density for /xac. That is, we define fiac(A) = JAf dX. 
We then (of course) define ^Sing{A) = n(A) — /j,ac(A). Since / was a can
didate density, therefore fiSing(A) > 0. To complete the existence proof, it 
suffices to show that fiSing is singular. 

For each n G N, let [0,1] = A+ U A~ be a Hahn decomposition (cf. 
Lemma 12.1.4) for the signed measure <j>n = Using — ^A. Set M = [JnA+. 
Then Mc = ^\„A~, s o that Mc C A~ for each n. It follows that 
(Using ~ £A) (Md) < 0 for all n, so that fiSing{Mc) < ±X(MC) for all 
n. Hence, nSing{MG) = 0. We claim that X(M) = 0, so that muSing is 
indeed singular. To prove this, we assume that X(M) > 0, and derive a 
contradiction. 

If X(M) > 0, then there is n G N with A(A+) > 0. For this n, we have 
{Using - £A) (E) > 0, i.e. Hsing{E) > ±A(£), for all E C A+. We now 
claim that the function g = f + ^ 1A+ is a candidate density. Indeed, we 
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compute for any Borel set E that 

fE9dX = 
= V

I V
I II 

fEfdx 

Vac(E) 
Hac(E) 
Vac(E) 

+ 
+ 
+ 
+ 

n JB 1 A + 

^ ( ^ n 
ftsirig{An 

fusing \-I-J ) 

dX 
E) 

n£) 

thus verifying the claim. 
On the other hand, we have 

[ gdX= f fdX + - f lA+dX = p+-X(A+)>f3, 
J [0,1] J[0,1] n J[0,1] " n 

which contradicts the maximality of / . Hence, we must actually have had 
X(M) = 0, showing that Using must actually be singular, thus proving the 
existence part of the theorem. 

Finally, we prove the uniqueness. Indeed, suppose /i = fiac + /iSing = 
l^ac i losing5 

with fiac{A) = JAfdX and vac(A) = JAgdX. S ince Using a n d 

using are singular, we can find Si and S2 with A(Si) = A(SI
2) = 0 and 

Vsing(S?) = uaing(S$) = 0. Let S = S1US2, and let B = {u> € Sc; f(u) < 
g(tu)}. Then g - f > 0 on B, but ]B{g - f)dX = fiac(B) - vac(B) = 
li(B) - v(B) = 0. Hence, X(B) = 0. But we also have X(S) = 0, hence 
A{/ < g} = 0. Similarly A{/ > g} = 0. We conclude that A{/ = g} = 1, 
whence fiac = vac, whence nsing = vsing. I 

Remark . Note that, while / i a c is unique, the density / = - ^ £ is only 
unique up to a set of measure 0. 

12.2. Decomposition with general measures. 

Finally, we note that similar decompositions may be made with respect 
to other measures. Instead of considering absolute continuity or singularity 
with respect to A, we can consider them with respect to any other prob
ability measure v, and the same proofs apply. Furthermore, by countable 
additivity, the above proofs go through virtually unchanged for cr-finite v as 
well (cf. Remark 4.4.3). We state the more general results as follows. (For 
the general Radon-Nikodym theorem, we write /x <C v, and say that y, is 
dominated by v, if fJ-(A) = 0 whenever v(A) = 0.) 

Theorem 12.2.1. (Lebesgue Decomposition, general case) Iffi and v are 
two a-Bnite measures on some measurable space (fi, !F), then ji can uniquely 

file:///-I-J
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be decomposed as u- = /xac + Using, where fiac is absolutely continuous with 
respect to v (i.e., there is a non-negative measurable function f : fl —> R 
such that Hac(A) = JAfdu for all A e T), and u.sing is singular (i.e., there 
is SCO, with v(S) = 0 and u.Sing(Sc) = 0). 

Remark . In the above statement, for simplicity we avoid mentioning 
the discrete part fidisc, thus allowing for the possibility that v may itself 
have some discrete component (in which case the corresponding discrete 
component of \i would still be absolutely continuous with respect to v). 
However, if v has no discrete component, then if we wish we can extract 
V-disc from Using as in Theorem 12.1.1. 

Corollary 12.2.2. (Radon-Nikodym Theorem, general case) If \x and 
v are two a-finite measures on some measurable space (fi,.F), then u. is 
absolutely continuous with respect to v if and only if u. <C v. 

If (j, <C v, so fJ,(A) = fAfdi; for all A e T, then we write -£; = / , 
and call -J^ the Radon-Nikodym derivative of /i with respect to v. Thus, 
n(A) = fA{fo) dv. If v is a probability measure, then we can also write this 
as fJ,(A) = E^f^ 1,4], where E^ stands for expectation with respect to v. 

12.3. Exercises. 

Exercise 12.3.1. Prove that /i is discrete if and only if there is a countable 
set S with u.(Sc) = 0. 

Exercise 12.3.2. Let X and Y be discrete random variables (not neces
sarily independent), and let Z = X + Y. Prove that C(Z) is discrete. 

Exercise 12.3.3. Let X be a random variable, and let Y = cX for some 
constant c > 0. 
(a) Prove or disprove that if £(X) is discrete, then C(Y) must be discrete. 
(b) Prove or disprove that if C(X) is absolutely continuous, then C(Y) 
must be absolutely continuous. 
(c) Prove or disprove that if C(X) is singular continuous, then C(Y) must 
be singular continuous. 

Exercise 12.3.4. Let X and Y be random variables, with JC(Y) absolutely 
continuous, and let Z = X + Y. 
(a) Assume X and Y are independent. Prove that C(Z) is absolutely 
continuous, regardless of the nature of C(X). [Hint: Recall the convolution 
formula of Subsection 9.4.] 
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(b) Show that if X and Y are not independent, then C(Z) may fail to be 
absolutely continuous. 

Exercise 12.3.5. Let X and Y be random variables, with C{X) discrete 
and JC(Y) singular continuous. Let Z = X + Y. Prove that C(Z) is singular 
continuous. [Hint: If X(S) = P(Y G Sc) = 0, consider the set U = {s + x : 
s e S, P(X = x)> 0}.] 

Exercise 12.3.6. Let A,B,Zi, Z2, • • • be i.i.d., each equal to +1 with 
probability 2/3, or equal to 0 with probability 1/3. Let Y = YA^LI %i 2~ l as 
at the beginning of this section (so v = L(Y) is singular continuous), and 
let W ~ iV(0,1). Finally, let X = A(BY + (1 - B)W), and set fi = C{X). 
Find a discrete measure Hdisc, a n absolutely continuous measure /xac, and a 
singular continuous measure /J,S, such that fi = Hdisc + Vac + Ms-

Exercise 12.3.7. Let /i, v, and p be probability measures with /x <S 
v < p. Prove that ^ = ^f^ with p-probability 1. [Hint: Use Proposition 
6.2.3.] 

Exercise 12.3.8. Let \x and v be probability measures with p, <C v and 
v <C p- (This is sometimes written as p = v.) Prove that -J*; > 0 with 
^-probability 1, and in fact ^ = 1 / ^ -

Exercise 12.3.9. Let p and v be discrete probability measures, with 
<fi = p — v. Write down an explicit Hahn decomposition D, = A+ U A~ for 
4>. 

Exercise 12.3.10. Let p and v be absolutely continuous probability 
measures on R (with the Borel cr-algebra), with <f> = p — v. Write down an 
explicit Hahn decomposition R = A+ U A~ for <j>. 

12.4. Section summary. 

This section proved the Lebesgue Decomposition theorem, which says 
that every measure may be uniquely written as the sum of a discrete mea
sure, an absolutely continuous measure, and a singular continuous measure. 
From this followed the Radon-Nikodym Theorem, which gives a simple con
dition under which a measure is absolutely continuous. 
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13. Conditional probability and expectation. 

Conditioning is a very important concept in probability, and we consider 
it here. 

Of course, conditioning on events of positive measure is quite straight
forward. We have already noted that if A and B are events, with P(-B) > 0, 
then we can define the conditional probability P(A | B) = ~P(A n B) / P(B); 
intuitively, this represents the probabilistic proportion of the event B which 
also includes the event A. More generally, if Y is a random variable, and 
if we define v by v{S) = P(Y € S\B) = P ( F e S , B)/P(B), then 
v = C(Y \B) is a probability measure, called the conditional distribution 
of Y given B. We can then define conditional expectation by E (Y | B) = 
J y u(dy). Also, C(Y 1B) = P{B) C(Y | B) + P{BC) 50, so taking expecta
tions and re-arranging, 

E ( y | B ) = E ( y i f l ) / P ( f l ) . (13.0.1) 

No serious difficulties arise. 
On the other hand, if P(-B) = 0 then this approach does not work at 

all. Indeed, it is quite unclear how to define something like P(Y € S \ B) in 
that case. Unfortunately, it frequently arises that we wish to condition on 
events of probability 0. 

13.1. Conditioning on a random variable. 

We being with an example. 

Example 13.1.1. Let (X, Y) be uniformly distributed on the triangle 
T = {(x,y) e R2; 0 < y < 2, y < x < 2}; see Figure 13.1.2. (That 
is, P ((X,Y) G S) = iA2(5 n T) for Borel S C R2 , where A2 is Lebesgue 
measure on R2; briefly, dP = \ 1 T dx dy.) Then what is P (Y > f | X = l )? 
What is E (Y | X = 1)? Since P(X = 1) = 0, it is not clear how to proceed. 
We shall return to this example below. 

Because of this problem, we take a different approach. Given a random 
variable X, we shall consider conditional probabilities like ~P(A\X), and 
also conditional expected values like E ( Y | X ) , to themselves be random 
variables. We shall think of them as functions of the "random" value X. 
This is very counter-intuitive: we are used to thinking of P(- • •) and E(- • •) 
as numbers, not random variables. However, we shall think of them as 
random variables, and we shall see that this allows us to partially resolve 
the difficulty of conditioning on sets of measure 0 (such as {X = 1} above). 
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Figure 13.1.2. The triangle T in Example 13.1.1. 

The idea is that, once we define these quantities to be random variables, 
then we can demand that they satisfy certain properties. For starters, we 
require that 

E [ P ( A | X ) ] = P ( A ) , E [E(Y | X)} = E(Y). (13.1.3) 

In words, these random variables must have the correct expected values. 
Unfortunately, this does not completely specify the distributions of the 

random variables P(A \ X) and E(Y | X); indeed, there are infinitely many 
different distributions having the same mean. We shall therefore impose a 
stronger requirement. To state it, recall that if Q is a sub-cr-algebra (i.e. a 
cr-algebra contained in the main a-algebra T\ then a random variable Z is 
^-measurable if {Z < z} G Q for all z G R. (It follows that also {Z = z} = 
{Z <z}\ \Jn{Z <z-±}eG.) Also, a{X) = {{X e B} : B C R Borel}. 

Definition 13.1.4. Given random variables X and Y with E|Y| < oo, 
and an event A, P(A \ X) is a conditional probability of A given X if it is a 
cr(X)-measurable random variable and, for any Borel S C R, we have 

E(P(A |x)iX € S) = P ( A n { i e S}) (13.1.5) 

Similarly, E(Y | X) is a conditional expectation of Y given X if it is a cr(X)-
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measurable random variable and, for any Borel S C R, we have 

E ( E ( F | X ) l X 6 s ) = E ( y i X e S ) . (13.1.6) 

That is, we define conditional probabilities and expectations by specify
ing that certain expected values of them should assume certain values. This 
prompts some observations. 

Remarks. 
1. Requiring these quantities to be <r(X)-measurable means that they are 

functions of X alone, and do not otherwise depend on the sample point 
u>. Indeed, if a random variable Z is cr(X)-measurable, then for each 
z en, {Z = z} = {X e Bz} for some Borel Bz C R. Then Z = f(X) 
where / is defined by f(x) = z for all x £ Bz, i.e. Z is a function of X. 

2. Of course, if we set S = R in (13.1.5) and (13.1.6), we obtain the special 
case (13.1.3). 

3. Since expected values are unaffected by changes on a set of measure 0, 
we see that conditional probabilities and expectations are only unique 
up to a set of measure 0. Thus, if P(X = x) = 0 for some particular 
value of x, then we may change P(A | X) on the set {X = x} without 
restriction. However, we may only change its value on a set of measure 
0; thus, for "most" values of X, the value P(A \ X) cannot change. In 
this sense, we have mostly (but not entirely) overcome the difficulty of 
Example 13.1.1. 

These conditional probabilities and expectations always exist: 

Propos i t ion 13.1.7. Let X and Y be jointly defined random variables, 
and let A be an event. Then P(A\X) and E(Y | X) exist (though they are 
only unique up to a set of probability 0). 

Proof. We may define P(A\X) to be -^-, where PQ and v are measures 
on u(X) defined as follows. Po is simply P restricted to cr(X), and 

v(E) = P(AnE), Eea{X). 

Note that v <C Po, so by the general Radon-Nikodym Theorem (Corol
lary 12.2.2), -^- exists and is unique up to a set of probability 0. 

Similarly, we may define E(Y | X) to be ^ -^-, where 

p+(E) = E(Y+lE) , p-(E)=-E(Y-lE), Eea(X). 

Then (13.1.5) and (13.1.6) are automatically satisfied, since e.g. 

dv 
E [ P ( A | X ) 1 J C 6 S ] = E 

dp-0
lx&S 

[ J^ 
Jxes d p o 

dP 
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= / ^-dPo = H{XeS}) = P(An{XeS}). I 
Jxes «^o 

Example 13.1.1 continued. To better understand Definition 13.1.4, we 
return to the case where (X, Y) is assumed to be uniformly distributed over 
the triangle T = {(x, y) € R2; 0 < y < 2, y < x < 2}. We can then define 
P ( y > § I X) and E(Y | X) to be what they "ought" to be, namely 

V{Y>-\X) = J ^ ' X>3/4 E(Y\X) = —. 
y ~ 4 ' ; | 0, X < 3/4 ' \ \ J 2 

We then compute that, for example, 

E(p(Y>l\X)lXeS) = / r^Al
X{dv)X{dx) 

V 4 / isn[|,2]7o 'sn[f ,2]^n x 2 

/ fx-|)iA(dx) 
•Asn[f,2] V 4 / 2 

while 

' ( y > | , XGS) = / J* (l)\\{dy)\{dx) 
v 4 J isn[4,2l73/4 2 Sn[f,2]./3/4 

/ ( : z ; - 7 ) o A ( ^ ) . 
isn[ f ,2] V 4 / 2 

thus verifying (13.1.5) for the case A = {Y > f }. Similarly, for S C [0, 2], 

E(E(F|X)lX e S) = / | iU(dj/)A(<faO 
irn(SxR) z z 

= js
X2[\Kdv)Kdx) = Js^

X{dxh 

while 

E ( y i X 6 s ) = / y^A(d|/)da: 
iTn(SxR) Z 

= Jfy \x^dy) x(dx) = / TA(dx)' 
so that the two expressions in (13.1.6) are also equal. 

This example was quite specific, but similar ideas can be used more gen
erally; see Exercises 13.4.3 and 13.4.4. In summary, conditional probabilities 
and expectations always exist, and are unique up to sets of probability 0, 
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but finding them may require guessing appropriate random variables and 
then verifying that they satisfy (13.1.5) and (13.1.6). 

13.2. Conditioning on a sub-er-algebra. 

So far we have considered conditioning on just a single random variable 
X. We may think of this, equivalently, as conditioning on the generated 
cr-algebra, (r(X). More generally, we may wish to condition on something 
other than just a single random variable X. For example, we may wish to 
condition on a collection of random variables Xi,X2,--. ,Xn, or we may 
wish to condition on certain other events. 

Given any sub-a-algebra Q (in place of a(X) above), we define the con
ditional probability P(A \ Q) and the conditional expectation E(Y | Q) to be 
(/-measurable random variables satisfying that 

E ( P ( A | 0 ) 1 G ) = P ( A n G ) (13.2.1) 

and 
E ( E ( y | 0 ) l G ) = E ( Y 1 G ) (13.2.2) 

for any G G Q. If Q = cr{X), then this definition reduces precisely to the 
previous one, with P(A \ X) being shorthand for P(A \ cr(X)), and E(Y | X) 
being shorthand for E(Y | o~{X)). Similarly, we shall write e.g. E(Y | X\, X2) 
as shorthand for E(Y | a(X1,X2)), where <r(X1,X2) = {{X1 < a} D {X2 < 
b} : a,b € R } is the cr-algebra generated by X\ and X2. As before, these 
conditional random variables exist (and are unique up to a set of probabil
ity 0) by the Radon-Nikodym Theorem. 

Two further examples may help to clarify matters. If Q = {0,0} (i.e., 
G is the trivial o-algebra), then P(A|<?) = P(A) and E(Y \ g) = E(Y) 
are constants. On the other hand, if g = T (i.e., g is the full cr-algebra), 
or equivalently if A € g and X is (/-measurable, then P(^4 \g) = 1A and 
E(X | g) = X. Intuitively, if g is small then the conditional values cannot 
depend too much on the sample point w, but rather they must represent 
average values. On the other hand, if g is large then the conditional values 
can (and must) be very close approximations to the unconditional values. 
In brief, the larger g is, the more random are conditionals with respect to 
g. See also Exercise 13.4.1. 

Exercise 13.2.3. Let £i and g2 be two sub-c-algebras. 
(a) Prove that if Z is ^-measurable, and C?i C g2, then Z is also g2-
measurable. 
(b) Prove that if Z is ^-measurable, and also Z is ^'-measurable, then Z 
is (g D C?')-measurable. 
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Exercise 13.2.4. Let Si and 52 be two disjoint events, and let Q be a 
sub-er-algebra. Show that the following hold with probability 1. [Hint: Use 
proof by contradiction.] 
(a) 0 < P ( S i | £ ) < l . 
(b) p(5i u s21g) = P(s11 g) + P(s21 g). 

Remark 13.2.5. Exercise 13.2.4 shows that conditional probabilities 
behave "essentially" like ordinary probabilities. Now, the additivity prop
erty (b) is only guaranteed to hold with probability 1, and the exceptional 
set of probability 0 could perhaps be different for each S\ and S2. This 
suggests that perhaps P(S | Q) cannot be defined in a consistent, countably 
additive way for all S G T. However, it is a fact that if a random variable 
Y is real-valued (or, more generally, takes values in a Polish space, i.e. a 
complete separable metric space like R), then there always exist regular 
conditional distributions, which are versions of P(Y G B\Q) defined pre
cisely (not just w.p. 1) for all Borel B in a countably additive way; see e.g. 
Theorem 10.2.2 of Dudley (1989), or Theorem 33.3 of Billingsley (1995). 

We close with two final results about conditional expectations. 

Proposition 13.2.6. Let X and Y be random variables, and let g be a 
sub-a-algebra. Suppose that E(Y) and E ( J 7 ) are finite, and furthermore 
that X is Q-measurable. Then with probability 1, 

E(XY\g) = XE(Y\g). 

That is, we can "factor" X out of the conditional expectation. 

Proof. Clearly X~E(Y\g) is ^-measurable. Furthermore, if X = 1G0, 
with Go, G G g, then using the definition of E(Y | £/), we have 

E (X E(Y | g) 1G) = E (E(F | g) l G n G o ) = E (YlGnG0) = E (XY1G) , 

so that (13.2.2) holds in this case. But then by the usual linearity and 
monotone convergence arguments, (13.2.2) holds for general X. It then fol
lows from the definition that X E(Y | £/) is indeed a version of F*(XY | Q). I 

For our final result, suppose that <5i C g2. Note that since E ( Y | £ i ) 
is £i-measurable, it is also ^-measurable, so from the above discussion we 
have E (E(Y | &) | Q2) = E(Y | Q{). That is, conditioning first on Qx and 
then on g2 is equivalent to conditioning just on the smaller sub-cr-algebra, 
Q\. What is perhaps surprising is that we obtain the same result if we 
condition in the opposite order: 
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Proposi t ion 13.2.7. Let Y be a random variable with Unite mean, and 
let Q\ C Qi be two sub-a-algebras. Then with probability 1, 

E(E(y|&)|0i) = E(Y\G1). 

That is, conditioning first on Qi and then on Q\ is equivalent to conditioning 
just on the smaller sub-a-algebra Q\. 

Proof. By definition, E (E(Y | Q2) \ G\) is £?i-measurable. Hence, to show 
that it is a version of E(Y | Q\), it suffices to check that, for any G &Q\ QQ2, 
E [E (E(Y | Q2) | Qi) 1G] = E(Y1G) . But using the definitions of E(- • • | gx) 
and E(- • • | g2), respectively, and recalling that G e Q\ and G £ Q2, we have 
that 

E [E (E(Y | g2) | gx) 1G] = E (E(Y | Q2) 1G) = E (Y 1G) . I 

In the special case <?i = g2 = g, we obtain that E[E(Y | g) \ g) = 
E[Y|£/]. In words, repeating the operation "take conditional expectation 
with respect to C?" multiple times is equivalent to doing it just once. That 
is, conditional expectation is a projection operator, and can be thought of 
as "projecting" the random variable Y onto the <r-algebra g. 

13.3. Conditional variance. 

Given jointly defined random variables X and Y, we can define the 
conditional variance of Y given X by 

V a r ( Y | X ) = E[(Y - E(Y | X)f \ X]. 

Intuitively, Var(Y | X) is a measure of how much uncertainty there is in Y 
even after we know X. Since X may well provide some information about 
Y, we might expect that on average Var(Y | X) < Var(Y). That is indeed 
the case. More precisely: 

Theorem 13.3.1. Let Y be a random variable, and g a sub-a-algebra. 
If Var(Y) < oo, then 

Var(Y) = E[Var(Y | £)] + Var[E(Y | £)] . 

Proof. We compute (writing m = E(Y) = E[E(Y | g)], and using (13.1.3) 
and Exercise 13.2.4) that 

Var(Y) = E [ ( Y - m ) 2 ] 
= E [ E [ ( Y - m ) 2 | £ ] ] 

= E[E[(Y - E(Y | Q) + E(Y | g) - mf \ g}] 

= E[E[(Y - E(Y | g))2 | g] + E[(E(Y | g) - mf \ g}} 
+2 E[E[(Y - E(Y | g)) (E(Y \g)-m)\ g]] 

= E [Var(Y | g)] + Var [E(Y \g)]+0, 



158 13. CONDITIONAL PROBABILITY AND EXPECTATION. 

since using Proposition 13.2.6, we have 

E[(Y-E(Y\g))(E(Y\g)-m)\G} = (E(Y\g)-m)E[(Y-E(Y\g))\g] 

= (E(y |g) -m) [E(y |g) -E(Y|g)} = o. I 

For example, if g = cr(X), then E[Var(Y \X)} represents the average 
uncertainty in Y once X is known, while Var[E(Y | X)] represents the un
certainty in Y caused by uncertainty in X. Theorem 13.3.1 asserts that the 
total variance of Y is given by the sum of these two contributions. 

13.4. Exercises. 

Exercise 13.4.1. Let A and B be events, with 0 < P{B) < 1. Let 
g = <J{B) be the cr-algebra generated by B. 
(a) Describe g explicitly. 
(b) Compute P(A | Q) explicitly. 
(c) Relate P(A\g) to the earlier notion of P{A \ B) = P(A n B) / P(B). 
(d) Similarly, for a random variable Y with finite mean, compute E(Y | g), 
and relate it to the earlier notion of E(Y | B) = E(Y 1B)/P(B). 

Exercise 13.4.2. Let g be a sub-u-algebra, and let A be any event. 
Define the random variable X to be the indicator function 1^. Prove that 
E(X | g) = P(A | g) with probability 1. 

Exercise 13.4.3. Suppose X and Y are discrete random variables. Let 
q(x,y) = P(X = x,Y = y). 
(a) Show that with probability 1, 

[Hint: One approach is to first argue that it suffices in (13.1.6) to consider 
the case S = {^o}.] 
(b) Compute P(Y = y\X). [Hint: Use Exercise 13.4.2 and part (a).] 
(c) Showth&tE{Y\X) = YiyyP(Y = y\X). 

Exercise 13.4.4. Let X and Y be random variables with joint dis
tribution given by C(X,Y) = dP = f(x,y)\2(dx,dy), where A2 is two-
dimensional Lebesgue measure, and / : R 2 —> R is a non-negative Borel-
measurable function with JR 2 f d\2 = 1. (Example 13.1.1 corresponds to 
the case f(x,y) = | 1 T ( £ , 2 / ) . ) Show that we can take P(Y e B\X) = 
fB9x{y)Hdy) and E(Y\X) = fRygx(y)\{dy), where the function gx : 
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R -> R is denned by gx(y) = r f(*'?)x,dt) whenever Jnf(x,t)\(dt) is pos

itive and finite, otherwise (say) gx{y) = 0. 

Exercise 13.4.5. Let Q = {1,2,3}, and define random variables X and 
Y by Y(w) = w, and X(l) = X{2) = 5 and X(3) = 6. Let Z = E(Y | X). 
(a) Describe o~{X) precisely. 
(b) Describe (with proof) Z(u>) for each w € f2. 

Exercise 13.4.6. Let £ be a sub-cr-algebra, and let X and Y be two in
dependent random variables. Prove by example that E(X | Q) and E(Y | Q) 
need not be independent. [Hint: Don't forget Exercise 3.6.3(a).] 

Exercise 13.4.7. Suppose Y is er(X)-measurable, and also X and Y are 
independent. Prove that there is C G R with P(Y = C) — 1. [Hint: First 
prove that P(Y < y) = 0 or 1 for each y e R.] 

Exercise 13.4.8. Suppose Y is ^-measurable. Prove that Var(Y | £?) = 0. 

Exercise 13.4.9. Suppose X and Y are independent. 
(a) Prove that E(Y | X) = E(Y) w.p. 1. 
(b) Prove that Var(Y | X) = Var(Y) w.p. 1. 
(c) Explicitly verify Theorem 13.3.1 (with Q = cr(X)) in this case. 

Exercise 13.4.10. Give an example of jointly defined random variables 
which are not independent, but such that E(Y | X) = E(Y) w.p. 1. 

Exercise 13.4.11. Let X and Y be jointly defined random variables. 
(a) Suppose E(Y | X) = E(Y) w.p. 1. Prove that E(XY) = E(X) E(Y). 
(b) Give an example where E(XY) = E(X)E(Y) , but it is not the case 
that E ( Y | X ) = E ( Y ) w.p. 1. 

Exercise 13.4.12. Let {Zn} be independent, each with finite mean. Let 
Xo = a, and Xn = a + Z\ + ... + Zn for n > 1. Prove that 

E ( X n + 1 | X o , X i , . . . ,Xn) = Xn + E ( Z n + i ) . 

Exercise 13.4.13. Let X0,Xi,... be a Markov chain on a countable 
state space S, with transition probabilities {p^}, and with E |X n | < oo for 
all n. Prove that with probability 1: 
(a) E(Xn+i\X0,X1,...,Xn)=52jeXjpxnj. [Hint: Don't forget Exer
cise 13.4.3.] 
(b) E(Xn+11 Xn) = Y,jex3PXn3-
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13.5. Section summary. 

This section discussed conditioning, with an emphasis on the problems 
that arise (and their partial resolution) when conditioning on events of prob
ability 0, and more generally on random variables and on sub-a-algebras. It 
presented definitions, examples, and various properties of conditional prob
ability and conditional expectation in these cases. 
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14. Martingales. 

In this section we study a special kind of stochastic process called a 
martingale. A stochastic process Xo,X\,... is a martingale if E |X n | < oo 
for all n, and with probability 1, 

E (Xn+i | Xo,X\,... ,Xn) = Xn . 

Of course, this really means that E (Xn+i \ fn) = Xn, where Tn is the a-
algebra O~{XQ, X\,..., Xn). Intuitively, it says that on average, the value of 
Xn+i is the same as that of Xn. 

Remark 14.0.1. More generally, we can define a martingale by specifying 
that E (Xn+i | Tn) = Xn for some choice of increasing sub-cr-fields Tn such 
that Xn is measurable with respect to Tn. But then CF{XQ, ..., Xn) C Tn, 
so by Proposition 13.2.7, 

E ( X n + 1 \X0,... ,Xn) = E [ E ( X n + 1 | jFn) | XQ, ... ,Xn\ 

= E[Xra I XQ, ..., Xn] = Xn , 

so the above definition is also satisfied, i.e. the two definitions are equivalent. 

Markov chains often provide good examples of martingales (though there 
are non-Markovian martingales too, cf. Exercise 14.4.1). Indeed, by Exer
cise 13.4.13, a Markov chain on a countable state space S, with transition 
probabilities pij, and with E |X n | < oo, will be a martingale provided that 

J^JPij = i, ieS. (14.0.2) 
jes 

(Intuitively, given that the chain is at state i at time n, on average it will 
still equal i at time n + 1.) An important specific case is simple symmetric 
random walk, where S = Z and XQ = 0 and pt^-i = Pi,i+i = \ for all 
ieZ. 

We shall also have occasion to consider submartingales and supermartin-
gales. The sequence XQ,X\, . . . is a submartingale if E |X n | < oo for all n, 
and also 

E (Xn+1 \X0,Xl,...,Xn)>Xn. (14.0.3) 

It is a supermartingale if E|X„| < oo for all n, and also 

E (Xn+i | Xo, X\,..., Xn) < Xn . 

(These names are very standard, even though they are arguably the reverse 
of what they should be.) Thus, a process is a martingale if and only if it is 
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both a submartingale and a supermartingale. And, {Xn} is a submartin
gale if and only if {—Xn} is a supermartingale. Furthermore, again by 
Exercise 13.4.13, a Markov chain {Xn} with E |X n | < oo is a submartingale 
if ~!2jesJPiJ — * f° r a ^ i & S, or is a, supermartingale if Y^jesJPiJ — * 
for all i G S. Similarly, if X0 — 0 and X„ = Zi + . . . + Zn, where {Zj} 
are i.i.d. with finite mean, then by Exercise 13.4.12, {Xn} is a martingale 
if E(Zj) = 0, is a supermartingale if E(Zj) < 0; or is a submartingale if 
E(Z0 > 0. 

If {Xn} is a submartingale, then taking expectations of both sides 
of (14.0.3) gives that E ( X n + i ) > F,(Xn), so by induction 

E(X„) > E(X n _i) > . . . > E(XX) > E(X0). (14.0.4) 

Similarly, using Proposition 13.2.7, 

E [Xn + 2 | X0,..., Xn] = E[E(X„+2 | Xo, • • •, l n + i ) I XQ, . . . , Xn\ 

> E[Xn+i\Xo,... ,Xn] > Xn, 

so by induction 

E(Xm\X0,X1,...,Xn)>Xn, m>n. (14.0.5) 

For supermartingales, analogous statements to (14.0.4) and (14.0.5) follow 
with each > replaced by <, and for martingales they can be replaced by =. 

14.1. Stopping times. 

If X0, XI, . . . is a martingale, then as in (14.0.4), E(Xn) = E(X0) for all 
n e N. But what about E(XT), where r is a random time? That is, if we 
define a new random variable Y by Y(ui) = XT^(u>), then must we also 
have E(y) = E(Xo)? If r is independent of {Xn}, then E(XT) is simply a 
weighted average of different E(Xn), and therefore still equals E(Xo). But 
what if T and {Xn} are not independent? 

We shall assume that r is a stopping time, i.e. a non-negative-integer-
valued random variable with the property that {T = n} e cr(X0,... ,Xn). 
(Intuitively, this means that one can determine if r = n just by knowing 
the values Xo,..., Xn; T does not "look into the future" to decide whether 
or not to stop at time n.) Under these conditions, must it be true that 
E(X r ) = E(X0)? 

The answer to this question is no in general. Indeed, consider simple 
symmetric random walk, with Xo = 0, and let r = inf{n > 0;Xn = —5}. 
Then r is a stopping time, since {T = n} = {XQ J^ —5, . . . , X n _i ^ 
—5, Xn = 5} G a(Xo,... ,Xn). Furthermore, since {Xn} is recurrent, we 
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have P ( T < oo) = 1. On the other hand, clearly XT = — 5 with probability 
1, so that E(Xr) = - 5 , not 0. 

However, for bounded stopping times the situation is quite different, as 
the following result (one version of the Optional Sampling Theorem) shows. 

Theorem 14.1.1. Let {Xn} be a submartingale, let M e N, and let 
Ti,T2 be stopping times such that 0 < T\ < T2 < M with probability 1. 
ThenE{XT2) >E(XTl). 

Proof. Note first that {n < k < r2} = {n < k - 1} n {r2 < fc - 1} C , 
so that (since n and r2 are stopping times) the event {T\ < fc < T 2} is in 
a (Xo , . . . , Xfc_i). We therefore have, using a telescoping series, linearity of 
expectation, and the definition of E(- • • | X0,..., Xk-i), that 

E ( X T 2 ) - E ( X T 1 ) 
= E(XT2 — XTl) 

= E (Efc2=T1+i(xfc - xfc-i)) 
= E [12k=i(xk - xfc_i)iTl<fc<T2J 
= Sfc = l E ((" f̂e ~ ^fe-l)lTi<fc<T2) 

= S f c = l E ( ( E ( X f c | X o , • •• ,-Xfc-l) — Xfc_i) l T i< fc<r 2 ) • 

But since {Xn} is a submartingale, (E(Xk\Xo,... ,Xk-i) — Xk-i) > 0. 
Therefore, E(XT2) - E(XT l) > 0, as claimed. I 

Corollary 14.1.2. Let {Xn} be a martingale, let M e N , and let TI ,T 2 

be stopping times such that 0 < T\ < r2 < M with probability 1. Tien 
E(XT2) = E(XT1). 

Proof. Since both {Xn} and {—Xn} are submartingales, the proposition 
gives that E(XT2) > E(XT l) and also E( -X T 2 ) > E ( - X T l ) . The result 
follows. I 

Setting n = 0, we obtain: 

Corollary 14.1.3. If{Xn} be a martingale, and r is a bounded stopping 
time, then E(XT) = E(X0). 

Example 14.1.4. Let {Xn} be simple symmetric random walk with 
X0 = 0, and let r = min(1012, inf{n > 0;Xn = -5}) . Then r is indeed a 
bounded stopping time (with r < 1012), so we must have E(XT) = 0. This 
is surprising since the probability is extremely high that r < 1012, and in 
this case XT = - 5 . However, in the rare case that r — 1012, XT will (on 
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average) be so large as to cancel this —5 out. More precisely, using the 
observation (13.0.1) that ~E(Z\B) = E ( Z 1 B ) / P ( B ) when P(B) > 0, we 
have that 

0 = E(XT) = E ( X T l T < 1 0 i 2 ) + E ( X T l T = 1 0 i 2 ) 

= E(XT | r < 1012) P ( r < 1012) + E(XT \ r = 1012) P ( r = 1012) 

= (-5) P ( T < 1012) + E(X10i2 | r = 1012) P ( r = 1012). 

Here P ( r < 1012) « 1 and P ( r = 1012) « 0, but E(X10i2 | T = 1012) is so 
huge that the equation still holds. 

A generalisation of Theorem 14.1.1, allowing for unbounded stopping 
times, is as follows. 

Theorem 14.1.5. Let {Xn} be a martingale with stopping time r . 
Suppose P ( r < oo) = 1, and E|XT | < oo, and lim„^oo E[Xn lT>n] — 0. 
ThenE(XT) = E(X0). 

Proof. Let Zn = Xmin^n) for n = 0,1,2, Then Zn = XTlT<n + 
Xni-T>n = XT — XTlT>n + XnlT>n, so XT = Zn — XnlT>n + XTlT>n. 
Hence, 

E(XT) = E(Zn) — E[ATnlT>n] + E [ X T l T > n ] . 

Since min(r, n) is a bounded stopping time (cf. Exercise 14.4.6(b)), it follows 
from Corollary 14.1.3 that E(Zn) = E(X0) for all n. As n —> oo, the second 
term goes to 0 by assumption. Also, the third term goes to 0 by the Domi
nated Convergence Theorem, since S|XT | < oo, and lT > r a —> 0 w.p. 1 since 
P[r < oo] = 1. Hence, letting n —> oo, we obtain that E(XT) = E(X0). I 

Remark 14.1.6. Theorem 14.1.5 in turn implies Corollary 14.1.3, since 
if r < M, then Xn lT>n = 0 for all n > M, and also 

E|XT | = E | X 0 l T = o + . . . + X M l T = M | < E\X0\ + ... + E\XM\ < oo. 

However, this reasoning is circular, since we used Corollary 14.1.3 in the 
proof of Theorem 14.1.5. 

Corollary 14.1.7. Let {Xn} be a martingale with stopping time r, 
such that P [ T < oo] = 1. Assume that {Xn} is bounded up to time r , 
i.e. that there is M < oo such that \Xn\ ln<T < M ln<T for all n. Then 
E(XT) = E(X0). 
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Proof. We have |XT | < M, so that E\XT\ < M < oo. Also | E ( X „ l T > n ) | < 
E ( | X n | l T > n ) < E(M l T > n ) = M P ( r > n), which converges to 0 as n -» oo 
since P[r < oo] = 1. Hence, the result follows from Theorem 14.1.3. I 

Remark 14.1.8. For submartingales {Xn} we may replace = by > in 
Corollary 14.1.3 and Theorem 14.1.5 and Corollary 14.1.7, while for super-
martingales we may replace = by <. 

Another approach is given by: 

Theorem 14.1.9. Let r be a stopping time for a martingale {Xn}, with 
P ( T < oo) = 1. Then E(XT) = E(X0) if and only if lim^^ E[Xmin(T,n)] = 
E[l im n^ 0 0 Xmin(T]n) j . 

Proof. By Corollary 14.1.3, l i m , ^ ^ E[Xmin(T)n)] = limn_^00 E(X0) = 
E(X0). Also, since P ( r < oo) = 1, we must have Pprnin-^oo Xmin^T^ = 
XT] — 1, so Eflimn^oo Xmin(r i„)] = E(XT). The result follows. I 

Combining Theorem 14.1.9 with the Dominated Convergence Theorem 
yields: 

Corollary 14.1.10. Let r be a stopping time for a martingale {Xn}, 
with P ( r < oo) = 1. Suppose there is a random variable Y with E(V) < oo 
and |Xmin(TiTl)| < Y for all n. Then E(XT) = E(X0). 

As a particular case, we have: 

Corollary 14.1.11. Let r be a stopping time for a martingale {Xn}. 
Suppose E ( T ) < oo, and \Xn - X n _ i | < M < oo for all n. Then E(XT) = 
E(X0) . 

Proof. Let Y = \X0\ + Mr. Then E(Y) < E\X0\ +ME(T) < oo. Also, 

l-Xmin(T,n)l < l*oI + M min(r,n) < Y. 

Hence, the result follows from Corollary 14.1.10. I 

Similarly, combining Theorem 14.1.9 with the Uniform Integrability 
Convergence Theorem yields: 

Corollary 14.1.12. Let T be a stopping time for a martingale {Xn}, 
with P ( T < oo) = 1. Suppose 

lim supE( |X m i n ( T ) n ) | l | x |>Q) = 0. 
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ThenE(XT) = E(X0). 

Example 14.1.13. (Sequence waiting time.) Let {rn}n>\ be infinite 
fair coin tossing (cf. Subsection 2.6), and let r = inf{n > 3 : r„_2 = 
1, r n _i = 0, rn = 1} be the first time the sequence heads-tails-heads is 
completed. Surprisingly, E(r) can be computed using martingales. Indeed, 
suppose that at each time n, a new player appears and bets $1 on tails, 
then if they win they bet $2 on heads, then if they win again they bet 
$4 on heads. (They stop betting as soon as they either lose once or win 
three bets in a row.) Let Sn be the total amount won by all the betters by 
time n. Then by construction, {Sn} is a martingale with stopping time r , 
and furthermore \Sn — Sn-i\ < 7 < oo. Also, E(r) < oo, and ST = —r + 10 
by Exercise 14.4.12. Hence, by Corollary 14.1.11, 0 = E(5T) = - E ( r ) +10, 
whence E(r) = 10. (See also Exercise 14.4.13.) 

Finally, we observe the following fact about E(XT) when {Xn} is a gen
eral random walk, i.e. is given by sums of i.i.d. random variables. (If the 
{Zi} are bounded, then part (a) below also follows from applying Corol
lary 14.1.11 to {Xn - nm}.) 

Theorem 14.1.14. (Wald's theorem) Let {Zi} be i.i.d. with finite 
mean m. Let X$ = a, and Xn = a + Z\ + . . . + Zn for n > 1. Let r 
be a stopping time for {Xn}, with E(r) < oo. Then 
(a) E(XT) = a + m E ( r ) ; and furthermore 
(b) if m = 0 and E(Z?) < oo, then Var(XT) = Y*{Z\) E(r ) . 

Proof. Since {i < r } = {r > i-1} G a(X0,... ,X;_i) = a(Z0,..., ^ _ i ) , 
it follows from Lemma 3.5.2 that {i < r } and {Zi £ B} are independent 
for any Borel B C R, so that li<T and Zi are independent for each i. 

For part (a), assume first that the Zi are non-negative. It follows from 
countable linearity and independence that 

B(XT-a) = E(Z1 + ... + ZT) = Eff^ZiliKr} 
^ i=l ' 

oo oo 

= 2 E ( Z i l i < T ) = ^ E ( Z i ) E ( l i < T ) 

oo oo 

= ^ E ( Z 1 ) E ( l i < T ) = E ( Z i ) ^ P ( r > i ) = E ( Z ! ) E ( T ) , 
i = l t = l 

the last equality following from Proposition 4.2.9. 
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For general Zi, the above shows that E(]TV \Zt\ li<T) = E |Z i |E ( r ) < 
oo. Hence, by Exercise 4.5.14(a) or Corollary 9.4.4, we can write 

E(XT-a) = E f ^ Z i l ^ j = ^ E ^ l ^ ) = E(ZI)E(T). 

For part (b), if m = 0 then from the above E(XT) — a. Assume first 
that r is bounded, i.e. r < M < oo. Then using part (a), 

( M 2 \ 
Var(XT) = E((XT-a)2) = E ( ^ 2 , % ) J 

= E(f^(Z02li<TJ+0 = E(Z2)E(r), 

where the cross terms equal 0 since as before {j < T } G CT(ZQ, ..., Zj-\) so 
Zi lj<T is independent of Zj, and hence 

E I 2_^ ZiZj lj<T lj<T I = E I 2_^ ZiZj l j<T I 
\i<j J \l<i<j<M J 

= Yl E ( Z i Z j l j < T ) = J2 V(Zilj<r)-E(ZJ)=0. 
l<i<j<M l<i<j<M 

If r is not bounded, then let pk = min(r, k) be corresponding bounded 
stopping times. The above gives that Var(XP(.) = ~E{Z2) E(/9fe) for each k. 
As k —> oo, E(pfc) —> E(r) by the Monotone Convergence Theorem, so the 
result follows from Lemma 14.1.15 below. I 

The final argument in the proof of Theorem 14.1.14 requires two tech
nical lemmas involving L2 theory: 

Lemma 14.1.15. In the proof of Theorem 14.1.14, limfc^oo Va.r(XPk) = 
Var(XT). 

Proof (optional). Clearly XPk -> XT a.s. Let \\W\\ = ^/E(W2) be the 
usual 1? norm. Note first that for m < n, using Theorem 14.1.14(a) and 
since the cross terms again vanish, we have 

\\XPn-XPm\\2 = E[(XPn - XPJ2} = E[(ZPm+1 + ... + ZpJ
2} 

= E[Z2
m+1 + ... + Z2J+0 = E[Z2 + ... + Z2

n}-E[Z2 + ... + Z2
pJ 



168 14. MARTINGALES. 

= E(Z2)E(p„) - E(Z2)E(pm) = E(Z 1
2 ) [E(p„)-E(p m ) ] 

which —> E(Z 2)[E(r) - E(r)] = 0 as n,m —> oo. This means that the se
quence {^Tp„}^i is a Cauchy sequence in L2, and since L? is complete (see 
e.g. Dudley (1989), Theorem 5.2.1), we must have l im^oo \\XPn -Y\\=0 
for some random variable Y. It then follows from Lemma 14.1.16 below 
(with p = 2) that Y = XT a.s., so that linin^oo \\XPn — XT\\ = 0. The 
triangle inequality then gives that |||XPn — a\\ — \\XT — a\\\ < \\XPn — XT\\, 
solim^^oo | | X P n - a | | = | |X T - a | | . Hence, limn_oo \\XPn -a\\2 = | |X T - a | | 2 , 
i.e. limn^oo Var(X 2J = Var(X2). I 

Lemma 14.1.16. It {Yn} -> Y in LP, i.e. l i m ^ ^ E(|Yn - Y\p) = 0, 
where 1 < p < oo, then there is a subsequence {Ynk} with Ynk —> Y a.s. In 
particular, if {Yn} —> Y in LP, and also {Yn} —> Z a.s., then Y = Z a.s. 

Proof (optional). Let {Ynk} be any subsequence such that E(|Y„fc -
Y\P) < 4"fc, and let Ak = {u e Q : \Ynk(to) - Y{LO)\ > 2"* /"} . Then 

ATk > E(\Ynk-Y\>) > E(\Ynk-Y\*lAk) 

> (2- f c /P)Pp(A f c) = 2- f e P(^l f c ) . 

Hence, P{Ak) < 2~k, so Y.k^i^-k) = 1 < CXD, so by the Borel-Cantelli 
Lemma, P(limsupfe Ak) = 0. For any e > 0, since {w G Q, : |Ynfc(a>) — 
Y(u)\ > e} C Ak for all k > p log2(l/e), this shows that P(|Y„fc(w) -
^ ( w ) | > e i.o.) < P(limsupfc Ak) = 0. Lemma 5.2.1 then implies that 
{Y„J^Ya.s. I 

14.2. Martingale convergence. 

If {Xn} is a martingale (or a submartingale), will it converge almost 
surely to some (random) value? 

Of course, the answer to this question in general is no. Indeed, simple 
symmetric random walk is a martingale, but it is recurrent, so it will forever 
oscillate between all the integers, without ever settling down anywhere. 

On the other hand, consider the Markov chain on the non-negative 
integers with (say) Xo = 50, and with transition probabilities given by 
Pij = 2i+T f° r 0 — J — 2i, with pij = 0 otherwise. (That is, if Xn = i, 
then Xn+i is uniformly distributed on the 2i + 1 points 0 , 1 , . . . , 2i.) This 
Markov chain is a martingale. Clearly if it converges at all it must converge 
to 0; but does it? 
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This question is answered by: 

Theorem 14.2.1. (Martingale Convergence Theorem) Let {Xn} be 
a submartingale. Suppose that sup„E|X n | < oo. Then there is a (finite) 
random variable X such that Xn —> X almost surely (a.s.). 

We shall prove Theorem 14.2.1 below. We first note the following im
mediate corollary. 

Corollary 14.2.2. Let {Xn} be a martingale which is non-negative (or 
more generally satisfies that either Xn > C for all n, or Xn < C for all 
n, for some C € H). Then there is a (finite) random variable X such that 
Xn —> X a.s. 

Proof. If {Xn} is a non-negative martingale, then E |X n | = E(Xra) = 
E(X0), so the result follows directly from Theorem 14.2.1. 

If Xn > C [respectively Xn < C], then the result follows since {Xn — C} 
[respectively {—Xn + C}] is a non-negative martingale. I 

It follows from this corollary that the above Markov chain example does 
indeed converge to 0 a.s. 

For a second example, suppose X0 = 50 and that pij = 2min(i ioo-i)+i 
for \j -i\< mm(i, 100 - i). This Markov chain lives on {0 ,1 ,2 , . . . , 100}, at 
each stage jumping uniformly to one of the points within min(i, 100 — i) of 
its current position. By Corollary 14.2.2, {Xn} —> X a.s. for some random 
variable X, and indeed it is easily seen that P ( X = 0) = P (X = 100) = ^. 

For a third example, let S = {2™; n G Z}, with a Markov chain on S hav
ing transition probabilities Pit2i = | , Pi i = §• This is again a martingale, 
and in fact it converges to 0 a.s. (even though it is unbounded). 

For a fourth example, let S = N be the set of positive integers, with 
Xo = 1. Let pu = 1 for i even, with Pi,i-i = 2/3 and Pi,i+2 = 1/3 
for i odd. Then it is easy to see that this Markov chain is a non-negative 
martingale, which converges a.s. to a random variable X having the property 
that P ( X = i) > 0 for every even non-negative integer i. 

It remains to prove Theorem 14.2.1. We require the following lemma. 

Lemma 14.2.3. (Upcrossing Lemma) Let {Xn} be a submartingale. 

For M € N and a < j3, let 

U^f = sup{fc; 3ai <bi < a2 <b2 < a3 < ... 

<ak<bk<M; Xai < a, Xbi > (3) . 
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(Intuitively, V^f represents the number of times the process {Xn} "up-
crosses" the interval [a,0\ by time M.) Then 

E ( / 7 ^ ) < E\XM-X0\/((3-a). 

Proof. By Exercise 14.4.2, the sequence {max(X„,a)} is also a sub-
martingale, and it clearly has the same number of upcrossings of [a, 0\ as 
does {Xn}. Furthermore, | max(XM,a)-max(Xo,a) | < \XM~XQ\. Hence, 
for the remainder of the proof we can (and do) replace Xn by max(X„, a), 
i.e. we assume that Xn > a for all n. 

Let UQ = VQ = 0, and iteratively define Uj and Vj for j > 1 by 

Uj = min(M, inf{fc > Vj-\\ Xk < a}) ; 

Vj = min (M, inf{fc > Uj\ Xk > /?}) . 

We necessarily have VM = M, so that 

E ( X M ) = E(XVM) 

= E(XVM — XUM + XUM —XVM_X + XVM_X — XUM_t +... + XUl — XQ + XQ) 

( M \ M 

Y,{xVk -xUk)\ + ] T E (xUk - x^). 
fc=l / k=l 

Now, E(XUk — XVk_1) > 0 by Theorem 14.1.1, since {Xn} is a sub-
martingale and Vk-i < Uk < M. Hence, 5Zfc=1 E(XUk — XVk_1) > 0. (This 
is the subtlest part of the proof; since usually XUk < a and XVk_t > (3, it 
is surprising that Fi(XUk — XVk_1) > 0.) 

Furthermore, we claim that 
E ( £ ( * „ * - XUk)\ > E ((/? - a) U^) . (14.2.4) 

Indeed, each upcrossing contributes at least ji—a to the sum. And, any "null 
cycle" where uk = Vk = M contributes nothing, since then XVk — XUk = 
XM~XM = 0. Finally, we may have one "incomplete cycle" where uu < M 
but Vk — M. However, since we are assuming that Xn > a, we must have 
XVk —XUk = XM—XUI. > a — a = 0 in this case; that is, such an incomplete 
cycle could only increase the sum. This establishes (14.2.4). 

We conclude that E{XM) > E(X0) + ( /?- a) E (u%}p\ Re-arranging, 

(/3-a)E ( t /^ / 3 ) < E{XM)-E(X0) < E\XM-X0\, which gives the result. I 
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Proof of Theorem 14.2.1. Let K = sup„ E (\Xn\) < oo. Note first that 
by Fatou's lemma, 

E fliminf IXnl") < l iminfE|XJ < K < oo. 
\ n J n 

It follows that P {\Xn\ —• oo) = 0, i.e. {Xn} will not diverge to ±oo. 
Suppose now that P (liminf Xn < lim sup Xn) > 0. Then since 

{ lim inf Xn < lim sup Xn } 

= [J [J | lim inf Xn < q < q + - < lim sup Xn \ , 
gSQfcSN 

it follows from countable subadditivity that we can find a, (3 € Q with 

P( l iminfX„ < a < /3 < l imsupXn) > 0. 

With U^f as in Lemma 14.2.3, this implies that P (liniM^oo ^ M = oo) > 

0, so E IlimM-xx) C^M = °°) = oo. Then by the monotone convergence 

theorem, limM->oo E(f7^ ) = E(liniM-.oo £ ^ ) = oo. But Lemma 14.2.3 

says that for all M e N , E ( ? 7 ^ ) < mX^_~a
X°l < j ^ , a contradiction. 

We conclude that P(lim„^oo \Xn\ = oo) = 0 and also P(liminf Xn < 
limsupXra) = 0. Hence, we must have P(lim„^0O Xn exists and is finite) = 
1, as claimed. I 

14.3. Maximal inequality. 

Markov's inequality says that for a > 0, P(XQ > a) < P(|Xo| > a) < 
E\XQ\ / a. Surprisingly, for a submartingale, the same inequality holds with 
Xo replaced by max0<i<„Xj, even though usually (maxo<i<nXj) > XQ. 

Theorem 14.3.1. (Martingale maximal inequality) If {Xn} is a sub
martingale, then for all a > 0, 

I max Xi) > a 
\0<i<n ) 

< E|*n| 

Proof. Let Ak be the event {Xk > a, but Xi < a for i < k}, i.e. the 
event that the process first reaches a at time k. And let A = U o<fc<n̂ .fc 
be the event that the process reaches a by time n. 
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We need to show that P(A) < E\Xn\ /a, i.e. that aP(A) < E\Xn\. To 
that end, we compute (letting Tk = O{XQ, X\,...,Xk)) that 

aP(A) = Sfe=oaP(^fc) since {Afc} disjoint 
= ELoE(ai^) 
< Sfe=o E (xklAk) since I t > a on Ak 

< E L 0 E ( E ( X „ | J - f c ) l ^ ) by (14.0.5) 
= Y2=o^(Xn^-Ak) since Afc G J"fe 

= E ( X n l ^ ) since {Ak} disjoint 
< E(\Xn\lA) 
< E |X„ | , 

as required. I 

Theorem 14.3.1 is clearly false if {Xn} is not a submartingale. For 
example, if the Xi are i.i.d. equal to 0 or 2 each with probability | , and if 
a = 2, then P [(max0<i<„ Xi) > a] = 1 — ( | ) n + 1 , which for n > 1 is not 
< E | X „ | / Q = | . 

If {Xn} is in fact a non-negative martingale, then E|X„| = E(Xn) = 
E(XQ), so the bound in Theorem 14.3.1 does not depend on n. Hence, 
letting n —* oo and using continuity of probabilities, we obtain: 

Corollary 14.3.2. If {Xn} is a non-negative martingale, then for all 
a > 0, 

y w 1 <- E(*Q) 
sup Xi I > a < . 

^0<i<oo ' J a 

For example, consider the third Markov chain example above, where 
S = {2n;n e Z} and pi^i = | , p^ i = §. If, say, X0 = 1, then we obtain 
that P [(sup0 < i < o o Xi) > 2] < | , which is perhaps surprising. (This result 
also follows from applying (7.2.7) to the simple non-symmetric random walk 
{log2X„}.) 

Remark 14.3.3. (Martingale Central Limit Theorem) If Xn = ZQ + 
. . . + Zn, where {Z,} are i.i.d. with mean 0 and variance 1, then we already 
know from the classical Central Limit Theorem that 4 ^ =>• N(0,1), i.e. 
that the properly normalised Xn converge weakly to a standard normal 
distribution. In fact, a similar result is true for more general martingales 
{Xn}. Let Tn = a(X0, Xi,..., Xn). Set CTQ = Var(Xo), and for n > 1 set 

a\ = Var(X„ | Tn^) = E {X2
n - X2

n_x \ Tn^) . 

Then follows from induction that Var(X„) = Y^=o E ( a | ) , and of course 
E(Xra) = E(-XQ) does not grow with n. Hence, if we set vt = min{n > 
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0) Sfc=o a\ — *}> then for large i, the random variable XvJ\/i has mean 
close to 0 and variance close to 1. We then have —P- =$• N(0,1) as t —> oo 

under certain conditions, for example if Y^n
 an = °° with probability one 

and the differences Xn — Xn-\ are uniformly bounded. For a proof see e.g. 
Billingley (1995, Theorem 35.11). 

14.4. Exercises. 

Exercise 14.4.1. Let { Z J be i.i.d. with P(Z* = 1) = P(Z* = - 1 ) = 1/2. 
Let X0 = 0, X1 = Zi, and for n > 2, X„ = X n _i + (1 + Zi + ••• + Z„_i)(2 * 
Z„ — 1). (Intuitively, this corresponds to wagering, at each time n, one 
dollar more than the number of previous victories.) 
(a) Prove that {Xn} is a martingale. 
(b) Prove that {Xn} is not a Markov chain. 

Exercise 14.4.2. Let {Xn} be a submartingale, and let a £ R. Let 
Yn = max(X„,a). Prove that {Yn} is also a submartingale. (Hint: Use 
Exercise 4.5.2.) 

Exercise 14.4.3. Let {Xn} be a non-negative submartingale. Let 
Yn = (Xn)

2. Assuming E(Yn) < oo for all n, prove that {Yn} is also a 
submartingale. 

Exercise 14.4.4. The conditional Jensen's inequality states that if (j> is 
a convex function, then E (<p(X) \G)>4> (E(X | Q)). 
(a) Assuming this, prove that if {Xn} is a submartingale, then so is {(f>(Xn)} 
whenever <j> is non-decreasing and convex with E |^(X n ) | < oo for all n. 
(b) Show that the conclusions of the two previous exercises follow from 
part (a). 

Exercise 14.4.5. Let Z be a random variable on a probability triple 
(fl, T, P) , and let QQ C QX C . . . C T be a nested sequence of sub-u-algebras. 
Let Xn — E(Z | Qn). (If we think of Qn as the amount of information we have 
available at time n, then Xn represents our best guess of the value Z at time 
n.) Prove that Xo, X\,... is a martingale. [Hint: Use Proposition 13.2.7 to 
show that E ( X n + i | Qn) = Xn. Then use the fact that Xi is ^-measurable 
to prove that cr(Xo,..., Xn) C Qn] 

Exercise 14.4.6. Let {Xn} be a stochastic process, let r and p be two 
non-negative-integer-valued random variables, and let m G N. 
(a) Prove that r is a stopping time for {Xn} if and only if {r < n} G 
(r(X0,..., Xn) for all n > 0. 
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(b) Prove that if r is a stopping time, then so is min(r, m). 
(c) Prove that if r and p are stopping times for {X„}, then so is min(r, p). 

Exercise 14.4.7. Let C E R, and let {Zi} be an i.i.d. collection of random 
variables with P[Z, = -1] = 3/4 and P[Zt = C] = 1/4. Let X0 = 5, and 
Xn = 5 + Zi + Z2 + . . . + Zn for n > 1. 
(a) Find a value of C such that {Xn} is a martingale. 
(b) For this value of C, prove or disprove that there is a random variable 
X such that a s n - » o o , Xn —• X with probability 1. 
(c) For this value of C, prove or disprove that ~P[Xn = 0 for some n G 
N] = 1. 

Exercise 14.4.8. Let {Xn} be simple symmetric random walk, with 
XQ = 0. Let r = inf {n > 5 : Xn+i = Xn +1} be the first time after 4 which 
is just before the chain increases. Let p = r + 1. 
(a) Is r a stopping time? Is p a stopping time? 
(b) Use Theorem 14.1.5 to compute E(Xp) . 
(c) Use the result of part (b) to compute E(XT). Why does this not 
contradict Theorem 14.1.5? 

Exercise 14.4.9. Let 0 < a < c be integers, with c > 3. Let {Xn} be 
simple symmetric random walk with Xo = a, let a = inf{n > 1 : Xn = 
0 or c}, and let p — a — 1. Determine whether or not E(XCT) = a, and 
whether or not E(Xp) = a. Relate the results to Corollary 14.1.7. 

Exercise 14.4.10. Let 0 < a < c be integers. Let {Xn} be simple 
symmetric random walk, started at Xo = a. Let r = inf{n > 1; Xn = 0 or 
c}. 
(a) Prove that {Xn} is a martingale. 
(b) Prove that E(XT) = a. [Hint: Use Corollary 14.1.7.] 
(c) Use this fact to derive an alternative proof of the gambler's ruin formula 
given in Section 7.2, for the case p = 1/2. 

Exercise 14.4.11. Let 0 < p < 1 with p ^ 1/2, and let 0 < a < c be 
integers. Let {Xn} be simple random walk with parameter p, started at 
X0 = a. Let r = inf{n > 1; Xn = 0 or c}. Let Zn = ((1 - p)/p)Xn for 
n = 0 , l , 2 , . . . . 
(a) Prove that {Zn} is a martingale. 
(b) Prove that E(ZT) = ((1 -p)/p)a. [Hint: Use Corollary 14.1.7.] 
(c) Use this fact to derive an alternative proof of the gambler's ruin formula 
given in Section 7.2, for the case p ^ 1/2. 

Exercise 14.4.12. Let {Sn} and r be as in Example 14.1.13. 
(a) Prove that E(r) < oo. [Hint: Show that P ( T > 3m) < (7/8)m , and 
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use Proposition 4.2.9.] 
(b) Prove that Sr = —r + 10. [Hint: By considering the r different players 
one at a time, argue that ST = (r - 3)(—1) + 7 — 1 + 1.] 

Exercise 14.4.13. Similar to Example 14.1.13, let {rn}n>i be infinite 
fair coin tossing, a = inf{n > 3 : rn_2 — 0, r„_i = 1, rn = 1}, and 
p = M{n > 4 : r„_ 3 = 0, r„_ 2 = 1, r„_i = 0, rn = 1}. 
(a) Describe a and p in plain English. 
(b) Compute E(cr). 
(c) Does E(a) = E ( T ) , with T as in Example 14.1.13? Why or why not? 
(d) Compute E(p). 

Exercise 14.4.14. Why does the proof of Theorem 14.1.1 fail if M = oo? 
[Hint: Exercise 4.5.14 may help.] 

Exercise 14.4.15. Modify the proof of Theorem 14.1.1 to show that 
if {Xn} is a submartingale with |X„+ i — Xn\ < M < oo, and T\ < r2 

are stopping times (not necessarily bounded) with E ( T 2 ) < oo, then we 
still have E(XT2) > E(XT l) . [Hint: Corollary 9.4.4 may help.] (Compare 
Corollary 14.1.11.) 

Exercise 14.4.16. Let {Xn} be simple symmetric random walk, with 
XQ = 10. Let r = min{n > 1; Xn = 0}, and let Yn = Xm^nTy Determine 
(with explanation) whether each of the following statements is true or false. 
(a) E(X200) = 10. 
(b) E(y200) = 10. 
(c) E(XT) = 10. 
(d) E(yT) = 10. 
(e) There is a random variable X such that {Xn} —> X a.s. 
(f) There is a random variable Y such that {Yn} —> Y a.s. 

Exercise 14.4.17. Let {Xn} be simple symmetric random walk with 
XQ = 0, and let r = inf{n > 0; Xn = —5}. 
(a) What is E(X r ) in this case? 
(b) Why does this fact not contradict Wald's theorem part (a) (with a = 
m = 0)? 

Exercise 14.4.18. Let 0 < p < 1 with p ^ 1/2, and let 0 < a < c be 
integers. Let {Xn} be simple random walk with parameter p, started at 
X0 = a. Let r = inf{n > 1; Xn = 0 or c}. (Thus, from the gambler's ruin 
solution of Subsection 7.2, P(XT = c) = \({l-p)/p)a-1} / [ ( ( l -p) /p) c - l ] . ) 
(a) Compute E(XT) by direct computation. 
(b) Use Wald's theorem part (a) to compute E(r) in terms of E(XT). 
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(c) Prove that the game's expected duration satisfies E(r) = (a — c[((l — 
P ) / P ) ° - 1 ] / [ ( ( 1 - P ) / P ) C - 1 ] ) / ( 1 - 2 P ) . 
(d) Show that the limit of E(r) as p —> 1/2 is equal to a(c — a). 

Exercise 14.4.19. Let 0 < a < c be integers, and let {Xn} be simple 
symmetric random walk with XQ = a. Let r = inf{n > 1; Xn = 0 or c}. 
(a) Compute Var(XT) by direct computation. 
(b) Use Wald's theorem part (b) to compute E(r) in terms of Var(XT). 
(c) Prove that the game's expected duration satisfies E(r) = a(c — a). 
(d) Relate this result to part (d) of the previous exercise. 

Exercise 14.4.20. Let {Xn} be a martingale with |X„+i — Xn\ < 10 for 
all n. Let r = inf{n > 1 : \Xn\ > 100}. 
(a) Prove or disprove that this implies that P ( T < oo) = 1. 
(b) Prove or disprove that this implies there is a random variable X with 
{Xn} - X a.s. 
(c) Prove or disprove that this implies that P [T < oo, or there is a random 
variable X with {Xn} —> X] = 1. [Hint: Let Yn = Xmin(r^ny] 

Exercise 14.4.21. Let Zi,Z2,... to be independent, with 

/ 2i \ 2* — 1 1 
PlZi = ) = — and P(Zt = -2l) = - . 

V 2* - 1/ 2l y ' 2% 

Let XQ = 0, and Xn = Z\ + ... + Zn for n > 1. 
(a) Prove that {Xn} is a martingale. [Hint: Don't forget (14.0.2).] 
(b) Prove that P[Zj > 1 a.a.) = 1, i.e. that with probability 1, Zi > 1 for 
all but finitely many i. [Hint: Don't forget the Borel-Cantelli Lemma.] 
(c) Prove that Pflinin^oo Xn = oo] = 1. (Hence, even though {Xn} is a 
martingale and thus represents a player's fortune in a "fair" game, it is still 
certain that the player's fortune will converge to +oo.) 
(d) Why does this result not contradict Corollary 14.2.2? 
(e) Let r — inf{n > 1 : Xn < 0}, and let Yn = ^min(T,n)- Prove that 
{Yn} is also a martingale, and that Pflim.,^00 Yn = oo] > 0. Why does this 
result not contradict Corollary 14.2.2? 

14.5. Section summary. 

This section provided a brief introduction to martingales, including 
submartingales, supermartingales, and stopping times. Some examples 
were given, mostly arising from Markov chains. Various versions were of 
the Optional Sampling Theorem were proved, giving conditions such that 
E(Xj-) = E(Xo). This together with the Upcrossing Lemma was then used 
to prove the important Martingale Convergence Theorem. Finally, the Mar
tingale maximal inequality was presented. 
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15. General stochastic processes. 

We end this text with a brief look at more general stochastic processes. 
We attempt to give an intuitive discussion of this area, without being overly 
careful about mathematical precision. (A full treatment of these processes 
would require another course, perhaps following one of the books in Sub
section B.5.) In particular, in this section a number of results are stated 
without being proved, and a number of equations are derived in an intuitive 
and non-rigorous manner. All exercises are grouped by subsection, rather 
than at the end of the entire section. 

To begin, we define a (completely general) stochastic process to be any 
collection {Xt; t G T} of random variables defined jointly on some probabil
ity triple. Here T can be any non-empty index set. If T = {0,1,2, . . .} then 
this corresponds to our usual discrete-time stochastic processes; if T = R - ° 
is the non-negative real numbers, then this corresponds to a continuous-time 
stochastic process as discussed below. 

15.1. Kolmogorov Existence Theorem. 

As with all mathematical objects, a proper analysis of stochastic pro
cesses should begin with a proof that they exist. In two places in this text 
(Theorems 7.1.1 and 8.1.1), we have proved the existence of certain random 
variables, denned on certain underlying probability triples, having certain 
specified properties. The Kolmogorov Existence Theorem is a huge general
isation of these results, which allows us to define stochastic processes quite 
generally, as we now discuss. 

Given a stochastic process {Xt; t e.T}, and k G N, and a finite collec
tion t\,..., tk G T of distinct index values, we define the Borel probability 
measure Att1...tfc on Rfc by 

/*tl ...tk (H) = P ((Xtl,..., Xt J e H) , HCHk Borel. 

The distributions {^...tk\ fc G N, ti,...,tk&T distinct} are called the 
finite-dimensional distributions for the stochastic process {Xt\ t G T}. 

These finite-dimensional distributions clearly satisfy two sorts of consis
tency conditions: 

(CI) If (s(l), s (2 ) , . . . , s(k)) is any permutation of (1 ,2 , . . . , k) (meaning 
that s : {1, 2 , . . . , k} —> {1 ,2 , . . . , A;} is one-to-one), then for distinct 
t\,..., tk G T, and any Borel Hy,..., Hk C R, we have 

( i l l . . i l ( I f 1 x . . . x f l f c ) = Mt. ( 1 ) . . . t .w(# s(i)X---xffa(fc)). (15.1.1) 
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That is, if we permute the indices U, and correspondingly modify the 
set H = Hi x . . . x Hk, then we do not change the probabilities. For 
example, we must have ~P(X £ A, Y £ B) = P(Y E B, X £ A), even 
though this will not usually equal P(Y € A, X £ B). 

(C2) For distinct t\,..., tk £ T, and any Borel Hi,..., Hk-i C R, we have 

u,tl...tk(
Hi ><••• xHk-i x R ) = fj.tl...tk_i(#i x ...xHk-i). (15.1.2) 

That is, allowing Xtk to be anywhere in R is equivalent to not men
tioning Xtk at all. For example, P(X £ A, Y £ R) = P(X £ A). 

Conditions (CI) and (C2) are quite obvious and uninteresting. However, 
what is surprising is that they have an immediate converse; that is, for any 
collection of finite-dimensional distributions satisfying them, there exists a 
corresponding stochastic process. A formal statement is: 

Theorem 15.1.3. (Kolmogorov Existence Theorem) A family of Borel 
probability measures {fit1...tk; k £ N, ij £ T distinct}, with fiti...tk a 
measure on Rk, satisfies the consistency conditions (CI) and (C2) above 
if and only if there exists a probability triple (RT , .FT , P) , and random 
variables {Xt}teT defined on this triple, such that for all k £ N, distinct 
ti,..., tk £ T, and Borel H C Rfc, we have 

P((Xtl,...,Xtk)£H) = u.tl...tk(H). (15.1.4) 

The theorem thus says that, under extremely general conditions, stochas
tic processes exist. Theorems 7.1.1 and 8.1.1 follow immediately as special 
cases (Exercises 15.1.6 and 15.1.7). 

The "only if" direction is immediate, as discussed above. To prove the 
"if" direction, we can take 

R T = {all functions T -> R} 

and 
TT = G {{Xt £H}; t£T, HCR Borel} . 

The idea of the proof is to first use (15.1.4) to define P for subsets of the 
form {Xtl,.. -,Xtk) £ H} (for distinct tx,...,tk£T, and Borel H C Rfe), 
and then extend the definition of P to the entire u-algebra TT, analogously 
to the proof of the Extension Theorem (Theorem 2.3.1). The argument is 
somewhat involved; for details see e.g. Billingsley (1995, Theorem 36.1). 

Exercise 15.1.5. Suppose that (15.1.1) holds whenever s is a transpo
sition, i.e. a one-to-one function s : {1,2,... ,k} —• {1 ,2 , . . . , k} such that 
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s(i) = i for k — 2 choices of i € {1 ,2 , . . . , k}. Prove that the first consistency 
condition is satisfied, i.e. that (15.1.1) holds for all permutations s. 

Exercise 15.1.6. Let X\, X^, • • • be independent, with Xn ~ /x„. 
(a) Specify the finite-dimensional distributions tH^,t2,...,tk f° r distinct non-
negative integers t\, t^, • • •, tk-
(b) Prove that these m-L,tz,...,tk satisfy (15.1.1) and (15.1.2). 
(c) Prove that Theorem 7.1.1 follows from Theorem 15.1.3. 

Exercise 15.1.7. Consider the definition of a discrete Markov chain 
{X„}, from Section 8. 
(a) Specify the finite-dimensional distributions Hti,t2,-..,tk for non-negative 
integers t\ < t% < ... < th-
(b) Prove that they satisfy (15.1.1). 
(c) Specify the finite-dimensional distributions Hti,t2,...,tk f° r general dis
tinct non-negative integers t\,t2, • • • , tk, and explain why they satisfy (15.1.2). 
[Hint: It may be helpful to define the order statistics, whereby £(r) is the 
r th-largest element of {£1,^2, • • • ,tk} for 1 < r < k.] 
(d) Prove that Theorem 8.1.1 follows from Theorem 15.1.3. 

15.2. Markov chains on general state spaces. 

In Section 8 we considered Markov chains on countable state spaces 
S, in terms of an initial distribution {vi}i^s and transition probabilities 
{pij}ijes- We now generalise many of the notions there to general (perhaps 
uncountable) state spaces. 

We require a general state space X, which is any non-empty (perhaps 
uncountable) set, together with a a-algebra T of measurable subsets. The 
transition probabilities are then given by {P(x,A)}x£x, AeT- We make the 
following two assumptions: 
(Al) For each fixed x E X, P(x, •) is a probability measure on (X,T). 
(A2) For each fixed A£ T, P(x, A) is a measurable function of x G X. 
Intuitively, P(x, A) is the probability, if the chain is at a point x, that it 
will jump to the subset A at the next step. If X is countable, then P(x, {i}) 
corresponds to the transition probability pxi of the discrete Markov chains 
of Section 8. But on a general state space, we may have P(x, {i}) = 0 for 
all i G X. 

We also require an initial distribution v, which is any probability dis
tribution on (X,J~). The transition probabilities and initial distribution 
then give rise to a (discrete-time, general state space, time-homogeneous) 
Markov chain XQ,X\,X2,---, where 

P(X 0 e A0, X1eA1,...,Xne An) 
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= / v{dx0) / P(x0,dxi)... 
J XQ^AQ A16/I1 

. . . / P(x n _ 2 ) da;„- i )P(a ; n _i ,A n ) . (15.2.1) 

Note that these integrals (i.e., expected values) are well-defined because of 
condition (A2) above. 

As before, we shall write P ^ - • •) for the probability of an event condi
tional on XQ — x, i.e. under the assumption that the initial distribution 
v is a point-mass at the point x. And, we define higher-order transi
tion probabilities inductively by P1(x, A) = P(x,A), and Pn+1(x, A) = 
Jx P(x, dz)Pn(z, A) for n > 1. 

Analogous to the countable state space case, we define a stationary dis
tribution for a Markov chain to be a probability measure TT(-) on (X,!F), 
such that n(A) = Jx n(dx)P(x, A) for all A G T. (This generalises our ear
lier definition ITJ = J2ies ^ Pij •) As m t n e countably infinite case, Markov 
chains on general state spaces may or may not have stationary distributions. 

Example 15.2.2. Consider the Markov chain on the real line (i.e. with 
X = R), where P(x, •) = A7"(|, | ) for each x G X. In words, if Xn is equal 
to some real number x, then the conditional distribution of Xn+\ will be 
normal, with mean | and variance | . Equivalently, Xn+i = \Xn + Un+i, 
where {Un} are i.i.d. with Un ~ N(0, | ) . This example is analysed in 
Exercise 15.2.5 below; in particular, it is shown that ir(-) = N(0,1) is a 
stationary distribution for this chain. 

For countable state spaces S, we defined irreducibility to mean that for 
all i, j G S, there is n G N with p*™' > 0. On uncountable state spaces this 
definition is of limited use, since we will often (e.g. in the above example) 
have pi™' = 0 for all i,j £ X and all n > 1. Instead, we say that a Markov 
chain on a general state space X is 4>-irreducible if there is a non-zero, a-
finite measure ip on {X,!F) such that for any A G T with ip(A) > 0, we 
have PX(TA < oo) > 0 for all x G X. (Here TA = inf{n > 0; Xn G A} is the 
first hitting time of the subset A; thus, TA < oo is the event that the chain 
eventually hits the subset A, and </>-irreducibility is the statement that the 
chain has positive probability of eventually hitting any subset A of positive 
tp measure.) 

Similarly, on countable state spaces S we defined aperiodicity to mean 
that for all i G S, gcd{n > 1 : p\™' > 0} = 1, but on uncountable state 
spaces we will usually have p\™' = 0 for all n. Instead, we define the period 
of a general-state-space Markov chain to be the largest (finite) positive 
integer d such that there are non-empty disjoint subsets Xi,..., Xd C X, 
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with P(x, Xi+1) = 1 for all x G Xt (1 < i < d - 1) and P(x, Xi) = 1 for all 
x € X4. The chain is periodic if its period is greater than 1, otherwise the 
chain is aperiodic. 

In terms of these definitions, a fundamental theorem about general state 
space Markov chains is the following generalisation of Theorem 8.3.10. For 
a proof see e.g. Meyn and Tweedie (1993). 

Theorem 15.2.3. If a discrete- time Markov chain on a general state space 
is (f>-irreducible and aperiodic, and furthermore has a stationary distribution 
7r(-), then for TT-almost every x G X, we have that 

lim sup \Pn(x,A)-n(A)\ -> 0. 

In words, the Markov chain converges to its stationary distribution in the 
total variation distance metric. 

Exercise 15.2.4. Consider a Markov chain which is ^-irreducible with 
respect to some non-zero er-finite measure %[), and which is periodic with 
corresponding disjoint subsets X\,..., X&. Let B = [jiXi. 
(a) Prove that Pn(x, Bc) = 0 for all x G B. 
(b) Prove that ip{Bc) = 0. 
(c) Prove that ip{Xi) > 0 for some i. 

Exercise 15.2.5. Consider the Markov chain of Example 15.2.2. 
(a) Let 7r(-) = N(Q,1) be the standard normal distribution. Prove that 
7r(-) is a stationary distribution for this Markov chain. 
(b) Prove that this Markov chain is 0-irreducible with respect to A, where 
A is Lebesgue measure on R. 
(c) Prove that this Markov chain is aperiodic. [Hint: Don't forget Exer
cise 15.2.4.] 
(d) Apply Theorem 15.2.3 to this Markov chain, writing your conclusion 
as explicitly as possible. 

Exercise 15.2.6. (a) Prove that a Markov chain on a countable state 
space X is (/(-irreducible if and only if there is j G X such that PJ(TJ < 
00) > 0 for all i G X. 
(b) Give an example of a Markov chain on a countable state space which 
is ^-irreducible, but which is not irreducible in the sense of Subsection 8.2. 

Exercise 15.2.7. Show that, for a Markov chain on a countable state 
space S, the definition of aperiodicity from this subsection agrees with the 
previous definition from Definition 8.3.4. 
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Exercise 15.2.8. Consider a discrete-time Markov chain with state space 
X = R, and with transition probabilities such that P(x, •) is uniform on the 
interval [x — 1, x + 1]. Determine whether or not this chain is </>-irreducible. 

Exercise 15.2.9. Recall that counting measure is the measure ip{') de
fined by ip{A) = \A\, i.e. tp(A) is the number of elements in the set A, with 
rp(A) = oo if the set A is infinite. 
(a) For a Markov chain on a countable state space X, prove that irre-
ducibility in the sense of Subsection 8.2 is equivalent to 0-irreducibility 
with respect to counting measure on X. 
(b) Prove that the Markov chain of Exercise 15.2.5 is not ^-irreducible with 
respect to counting measure on R. (That is, prove that there is a set A, 
and x G X, such that PX(TA < oo) = 0, even though ^(A) > 0 where tp is 
counting measure.) 
(c) Prove that counting measure on R is not cr-finite (cf. Remark 4.4.3). 

Exercise 15.2.10. Consider the Markov chain with X = R, and with 
P(x, •) = N(x, 1) for each x £ X. 
(a) Prove that this chain is ^-irreducible and aperiodic. 
(b) Prove that this chain does not have a stationary distribution. Relate 
this to Theorem 15.2.3. 

Exercise 15.2.11. Let X = {1 ,2 , . . .} . Let P ( l , {1}) = 1, and for x > 2, 
P{x, {1}) = l/x2 and P(x, {x + 1}) = 1 - {1/x2). 
(a) Prove that this chain has stationary distribution w(-) = Si(-). 
(b) Prove that this chain is 0-irreducible and aperiodic. 
(c) Prove that if XQ = x > 2, then P[X„ = x + n for all n) > 0, and 
| |Pn(x, •) - TT(-)|| ~h 0- Relate this to Theorem 15.2.3. 

Exercise 15.2.12. Show that the finite-dimensional distributions im
plied by (15.2.1) satisfy the two consistency conditions of the Kolmogorov 
Existence Theorem. What does this allow us to conclude? 

15.3. Continuous-time Markov processes. 

In general, a continuous-time stochastic process is a collection {Xt}t>o 
of random variables, defined jointly on some probability triple, taking values 
in some state space X with er-algebra T, and indexed by the non-negative 
real numbers T = {t > 0}. Usually we think of the variable t as representing 
(continuous) time, so that Xt is the (random) state at some time t > 0. 
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Such a process is a (continuous-time, time-homogeneous) Markov process 
if there are transition probabilities Pt(x,-) for alH > 0 and all x e X, and 
an initial distribution u, such that 

P(X 0 e A0, Xtl G Au ..., Xtn € An) 

= / • • - / v{dx0) 
Jx0eAo Jxtl€Ai JxtneAn 

P^{x0,dxtl)P^-^{xtl,dxt2) ... i * " - * " - 1 ^ . ! , ^ ) (15.3.1) 

for all times 0 < ii < . . . < tn and all subsets A\,... ,An € T. Letting 
P°(x, •) be a point-mass at x, it then follows that 

Ps+t(x,A) = f Ps(x,dy)Pt{y,A), s , t > 0 , i 6 A f , A e f . (15.3.2) 

(This is the semigroup property of the transition probabilities: Ps+t = 
Ps Pl.) On a countable state space X, we sometimes write p\^ for P*(i, {j}); 
(15.3.2) can then be written as p^ = ^2keX p\kPkj.

 A s hi (8.0.5), p% = % , 
(i.e., at time t = 0, p°- equals 1 for i = j and 0 otherwise). 

Exercise 15.3.3. Let {P* (a;, •)} be a collection of Markov transition prob
abilities satisfying (15.3.2). Define finite-dimensional distributions Hti...tk 

for ti,...,tk > 0 by fj,tl...tk(A0 x . . . x Ak) = P(Xtl € Au ...,Xtk € Ak) 
as implied by (15.3.1). 
(a) Prove that the Kolmogorov consistency conditions are satisfied by 
{^ti...tk}- [Hint: You will need to use (15.3.2).] 
(b) Apply the Kolmogorov Existence Theorem to {fJ-t!...tk}, and describe 
precisely the conclusion. 

Another important concept for continuous-time Markov processes is the 
generator. If the state space X is countable (discrete), then the generator 
is a matrix Q = (qij), defined for i,j € X by 

^ = S s ^ - (15-3-4) 

Since 0 < p'j ^ 1 f° r all i > 0 and all i and j , we see immediately that 
qu < 0, while qtj > 0 if i ^ j . Also, since J^jiPij ~ <*«j) = 1 - 1 = 0, we 
have ]T\- q^ = 0 for each i. The matrix Q represents a sort of "derivative" 
of P* with respect to t. Hence, pf̂  ~ 5ij + sqij for small s > 0, i.e. 
Ps =1 + sQ + o(s) as s \ 0. 

Exercise 15.3.5. Let {P '} = {p*-} be the transition probabilities for 
a continuous-time Markov process on a finite state space X, with finite 
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generator Q = {qtj} given by (15.3.4). Show that P* = exp(tQ). (Given 
a matrix M, we define exp(M) by exp(M) = I + M+ \M2 + ±M3 + ..., 
where I is the identity matrix.) [Hint: P* = (P*/n)n , a n d as n —> oo, we 
have P*/" = J + (t/n)Q + 0( l /n 2 ) . ] 

Exercise 15.3.6. Let # = {1,2}, and let Q = (qij) be the generator of 
a continuous-time Markov process on X, with 

Compute the corresponding transition probabilities P* = (p* •) of the pro
cess, for any £ > 0. [Hint: Use the previous exercise. It may help to know 
that the eigenvalues of Q are 0 and —9, with corresponding left eigenvectors 
(2,1) and (1,-1).] 

The generator Q may be interpreted as giving "jump rates" for our 
Markov processes. If the chain starts at state i and next jumps to state j , 
then the time before it jumps is exponentially distributed with mean l/g»j. 
We say that the process jumps from i to j at rate qij. Exercise 15.3.5 shows 
that the generator Q contains all the information necessary to completely 
reconstruct the transition probabilities P* of the Markov process. 

A probability distribution n(-) on A1 is a stationary distribution for the 
process {Xt}t>0 if J n(dx) Pf(x, •) = TT(-) for all t > 0; if X is countable we 
can write this as TCJ = Yliex niPh f° r a u j ' £ ^ a n d all t > 0. Note that it 
is no longer sufficient to check this equation for just one particular value of 
t (e.g. t = 1). Similarly, we say that {Xt}t>o is reversible with respect to 
7r(-) if ir(dx)Pt(x, dy) = Tr(dy) Pf(y,dx) for all x,y S X and all t > 0. 

Exercise 15.3.7. Let {Xt}t>0 be a Markov process. Prove that 
(a) if {Xt}t>o is reversible with respect to n(-), then ir(-) is a stationary 
distribution for {Xt}t>o-
(b) if for some T > 0 we have f n(dx) P*(x, •) = TT(-) for all 0 < t < T, 
then 7r(-) is a stationary distribution for {Xt}t>o-
(c) if for some T > 0 we have Tr(dx) Pt(x,dy) = n(dy) Pt(y,dx) for all 
x,y £ X and all 0 < t < T, then {Xt}t>o is reversible with respect to TT(-). 

Exercise 15.3.8. For a Markov chain on a finite state space X with 
generator Q, prove that {ir^i^x is a stationary distribution if and only if 
•K Q = 0, i.e. if and only if J2iex ni lij = ® f° r a u 3 e ^. 

Exercise 15.3.9. Let {Zn} be i.i.d. - Exp(5), so P[Zn > z] = e~5z for 
z > 0. Let Tn = Z\ + Z2 + • • • + Zn for n > 1. Let {Xt}t>o be a continuous-
time Markov process on the state space X = {1,2}, defined as follows. The 
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process does not move except at the times Tn, and at each time Tn, the 
process jumps from its current state to the opposite state (i.e., from 1 to 
2, or from 2 to 1). Compute the generator Q for this process. [Hint: You 
may use without proof the following facts, which are consequences of the 
"memoryless property" of the exponential distribution: for any 0 < a < b, 
(i) P ( 3 n : a < Tn < 6) = 1 - e-5(b-«) j whi ch is « 5(6 - a) as b \ a; and 
also (ii) P ( 3 n : a < T „ < Tn+1 < b) = 1 - e - 5 ( 6 - a ) ( l + 5(6 - a)), which is 
« 25(6 - a)2 as 6 \ a.] 

Exercise 15.3.10. (Poisson process.) Let A > 0, let {Zn} be i.i.d. 
~ Exp(A), and let Tn = Zx + Z2 + ... + Zn for n > 1. Let {Nt}t>o be a 
continuous-time Markov process on the state space X = {0 ,1 ,2 , . . .} , with 
iVo = 0, which does not move except at the times Tn, and increases by 1 
at each time Tn. (Equivalently, Nt = #{n e N : Tn < t}\ intuitively, Nt 

counts the number of events by time t.) 
(a) Compute the generator Q for this process. [Don't forget the hint from 
the previous exercise.] 
(b) Prove that P(7Vt < m) = e~xt{\t)m/m\ + P(Nt < m - 1) for m = 
0,1,2 , . . . . [Hint: First argue that P(iVt < m) = P ( T m + i > t) and that 
Tm ~ Gamma(m, A), and then use integration by parts; you may assume 
the result and hints of Exercise 9.5.17.] 
(c) Conclude that P(ATt = j) = e~xt(Xty / j \ , i.e. that Nt ~ Poisson(At). 
[Remark: More generally, there are Poisson processes with variable rate 
functions A : [0, oo) —> [0, oo), for which Nt ~ Poisson( JQ X(s) ds).] 

Exercise 15.3.11. Let {iVt}t>o be a Poisson process with rate A > 0. 
(a) For 0 < s < t, compute P(./Vs = 11 iVt = 1). 
(b) Use this to specify precisely the conditional distribution of the first 
event time T\, conditional on JV( = 1. 
(c) More generally, for r < t and m € N, specify the conditional distribu
tion of Tm, conditional on NT = m — 1 and Nt = m. 

Exercise 15.3.12. (a) Let {Nt}t>o be a Poisson process with rate 
A > 0, let 0 < s < t, and let Ui, U2 be i.i.d. ~ Uniform[0, t]. 
(a) Compute P(JVS = 0 | Nt = 2). 
(b) Compute ~P{Ui > s and U2 > s). 
(c) Compare the answers to parts (a) and (b). What does this comparison 
seem to imply? 
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15.4. Brownian motion as a limit. 

Having discussed continuous-time processes on countable state spaces, 
we now turn to continuous-time processes on continuous state spaces. Such 
processes can move in continuous curves and therefore give rise to interesting 
random functions. The most important such process is Brownian motion, 
also called the Wiener process. Brownian motion is best understood as a 
limit of discrete time processes, as follows. 

Let Z\, Z2 , . . . be any sequence of i.i.d. bounded random variables having 
mean 0 and variance 1, e.g. Z* = ±1 with probability 1/2 each. For each n € 
N, define a discrete-time random process 

{y i n ) }£o iteratively by ro
(n) = 0, 

n 

and 
i = 0 , l , 2 , . . . . (15.4.1) 

I i+ i 

Thus, r | n ) = -^{Zi + Z2 + • • • + Zi). In particular, {Y|n )} is like simple 
symmetric random walk, except with time sped up by a factor of n, and 
space shrunk by a factor of y/n. 

Figure 15.4.2. Constructing Brownian motion. 

We can then "fill in" the missing values by linear interpolation on each in

terval [^, ^ t i ] . In this way, we obtain a continuous-time process {Y™ }t>o\ 
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see Figure 15.4.2. Thus, {Yt }(>o is a continuous-time process which agrees 

with Yt whenever t = ^. Furthermore, Yt is always within 0(l/n) of 

yLt" j , where [r\ is the greatest integer not exceeding r. Intuitively, then, 

{Yt }t>o is like an ordinary discrete-time random walk, except that it has 
been interpolated to a continuous-time process, and furthermore time has 
been sped up by a factor of n and shrunk by a factor of \Jn. In summary, 
this process takes lots and lots of very small steps. 

Remark. It is not essential that we choose the missing values so as to make 
the function linear on [^, ^ ] . The same intuitive limit will be obtained 
no matter how the missing values are denned, provided only that they are 
close (as n —> oo) to the corresponding Y± values. For example, another 
option is to use a constant interpolation of the missing values, by setting 

Yt = y\t" j • I n fact, this constant interpolation would make the following 

calculations cleaner by eliminating the 0(l/n) errors. However, the linear 

interpolation has the advantage that each Yt is then a continuous function 
of t, which makes it more intuitive why Bt is also continuous. 

Now, the factors n and y/n have been chosen carefully. We see that 

F | n ) « Y^ = A-(Z! + Z2 + . . . + ZL t n J). Thus, y f > is essentially A-
n 

times the sum of \tn\ different i.i.d. random variables, each having mean 0 
and variance 1. It follows from the ordinary Central Limit Theorem that, 
as n —> oo with t fixed, we have C\Yt 1 => N(0,t), i.e. for large n the 

random variable Yt is approximately normal with mean 0 and variance t. 

Let us note a couple of other facts. Firstly, for s < t, E [Y™ Yt J « 

i E ( y g ^ S l ) = E ( (Z i + • • • + Zlsn})(Zi + ••• + Zltni)). Since the 
\ n n / 

Zi have mean 0 and variance 1, and are independent, this is equal to 
which converges to s as n —• oo. 

Secondly, if n —> oo with s < t fixed, the difference Yt — Ys is within 
0(l/ri) of ^[snj+i + • • • + Z\tn\- Hence, by the Central Limit Theorem, 
Yt — Ys converges weakly to N(0,t — s) as n —> oo, and is in fact 

independent of Ys . 

Brownian motion is, intuitively, the limit as n —> oo of the processes 

{Yt }t>o- That is, we can intuitively define Brownian motion {Bt}t>o by 

saying that Bt = limn-Kx, Yt for each fixed t > 0. This analogy is very 
useful, in that all the n —> oo properties of Yt discussed above will apply 
to Brownian motion. In particular: 
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• normally distributed: C{Bt) = N(Q,t) for any t > 0. 

• covariance structure: ~E(BsBt) = s for 0 < s < t. 

• independent normal increments: £(Bt2 — Btx) = N(0,t2 — ti), and Bti — 
Bt3 is independent of Bt2 — Btl whenever 0 < t\ < t2 < £3 < £4. 

In addition, Brownian motion has one other very important property. 
It has continuous sample paths, meaning that for each fixed w G fl, the 
function Bt(co) is a continuous function of t. (However, it turns out that, 
with probability one, Brownian motion is not differentiable anywhere at all!) 

Exercise 15.4.3. Let {Bt}t>o be Brownian motion. Compute E[(£?2 + 
B3 + l)2}. 

Exercise 15.4.4. Let {Bt}t>o be Brownian motion, and let Xt = 2t+3Bt 
for t > 0. 
(a) Compute the distribution of Xt for t > 0. 
(b) Compute E[(X t)

2] for t > 0. 
(c) Compute E(XsXt) for 0 < s < t. 

Exercise 15.4.5. Let {-Bt}t>o be Brownian motion. Compute the dis
tribution of Zn for n G N, where Zn = - (B\ + B^ + . . . + Bn). 

Exercise 15.4.6. (a) Let / : R —> R be a Lipschitz function, i.e. a 
function for which there exists a G R such that \f{x) — f(y)\ < a\x — y\ for 
all x, y G R. Compute lim^\v0(/(i + h) — f(t))2/h for any t € R. 
(b) Let {Bt} be Brownian motion. Compute lim/^o E ((Bt+h —Bt)

2/h) 
for any t > 0. 
(c) What do parts (a) and (b) seem to imply about Brownian motion? 

15.5. Existence of Brownian motion. 

We thus see that Brownian motion has many useful properties. However, 
we cannot make mathematical use of these properties until we have estab
lished that Brownian motion exists, i.e. that there is a probability triple 
(Q,J-*, P) , with random variables {Bt}t>o defined on it, which satisfy the 
properties specified above. 

Now, the Kolmogorov Existence Theorem (Theorem 15.1.3) is of some 
help here. It ensures the existence of a stochastic process having the same 
finite-dimensional distributions as our desired process {Bt}. At first glance 
this might appear to be all we need. Indeed, the properties of being nor
mally distributed, of having the right covariance structure, and of having 
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independent increments, all follow immediately from the finite-dimensional 
distributions. 

The problem, however, is that finite-dimensional distributions cannot 
guarantee the property of continuous sample paths. To see this, let {Bt}t>o 
be Brownian motion, and let U be a random variable which is distributed 
according to (say) Lebesgue measure on [0,1]. Define a new stochastic 
process {B't}t>o by B't = Bt + l{U=ty That is, B't is equal to Bt, except 
that if we happen to have U = t then we add one to Bt. Now, since 
P(U = t) = 0 for any fixed t, we see that {-Bt}t>o has exactly the same finite-
dimensional distributions as {Bt}t>o does. On the other hand, obviously if 
{Bt}t>o has continuous sample paths, then {B't}t>o cannot. This shows that 
the Kolmogorov Existence Theorem is not sufficient to properly construct 
Brownian motion. Instead, one of several alternative approaches must be 
taken. 

In the first approach, we begin by setting B0 = 0 and choosing B\ ~ 
AT(0,1). We then define B\ to have its correct conditional distribution, 
conditional on the values of BQ and B\. Continuing, we then define Bi 
to have its correct conditional distribution, conditional on the values of Bo 
and Bi; and similarly define Bz conditional on the values of B\ and B\. 
Iteratively, we see that we can define Bt for all values of t which are dyadic 
rationals, i.e. which are of the form -^ for some integers i and n. We then 
argue that the function {Bt; t a non-negative dyadic rational} is uniformly 
continuous, and use this to argue that it can be "filled in" to a continuous 
function {Bt; t > 0} defined for all non-negative real values t. For the 
details of this approach, see e.g. Billingsley (1995, Theorem 37.1). 

In another approach, we define the processes {Yt } as above, and ob-

serve that Yt is a (random) continuous function of t. We then prove that 
in\ 

ast»-> oo, the distributions of the functions {Yt }t>o (regarded as prob
ability distributions on the space of all continuous functions) are tight, and 
in fact converge to the distribution of {Bt}t>o that we want. We then use 
this fact to conclude the existence of the random variables {Bt}t>o. For 
details of this approach, see e.g. Fristedt and Gray (1997, Section 19.2). 

Exercise 15.5.1. Construct a process {B't'}t>o which has the same 
finite-dimensional distributions as does {Bt}t>o and {B't}t>o, but such that 
neither {B't'}t>o nor {B" — i?(}t>o has continuous sample paths. 

Exercise 15.5.2. Let {Xt}teT and {X[}t^T be a stochastic processes 
with the countable time index T. Suppose {Xt}teT and {X't}teT have iden
tical finite-dimensional distributions. Prove or disprove that {Xt}t^T and 
{X't}teT must have the same full joint distribution. 
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15.6. Diffusions and stochastic integrals. 

Suppose we are given continuous functions /z, a : R —> R, and we replace 
equation (15.4.1) by 

y W = y W + -Lz i + 1 <r (y<n>) + - ^ (y<n )) . (15.6.1) 
- £ - n V 7 1 \ n / 71 \ n / 

That is, we multiply the effect of Zi+\ by criYY1'), and we add in an extra 
n 

drift of lix{Y^]). If we then interpolate this function to a function {yj™^} 

defined for all t > 0, and let n —> oo, we obtain a diffusion, with drift n(x), 
and diffusion coefficient or volatility a(x). Intuitively, the diffusion is like 
Brownian motion, except that its mean is drifting according to the function 
fi(x), and its local variability is scaled according to the function a(x). In 
this context, Brownian motion is the special case fi(x) = 0 and o~(x) = 1. 

Now, for large n we see from (15.4.1) that A=Zi+\ « B±±i — B±, so 
V n n n 

that (15.6.1) is essentially saying that 

Y%] - Y[n) « ffii+i - B±) a(Y\n)\ + - JY^]) . 
—^T n V " " / V n / n V n / 

If we now (intuitively) set Xt = limn^oo Yt for each fixed t > 0, then 
we can write the limiting version of (15.6.1) as 

dXt = <T{Xt)dBt+n{Xt)dt, (15.6.2) 

where {Bt}t>o is Brownian motion. The process {Xt}t>o is called a dif
fusion with drift JJL{X) and diffusion coefficient or volatility o(x). Its def
inition (15.6.2) can be interpreted roughly as saying that, as h \ 0, we 
have 

Xt+h « X t + <T(X t ) (B t + h -B t ) + /i(X t)/i ; (15.6.3) 

thus, given that Xt = x, we have that approximately Xt+h ~ AT (a; + 
fj,(x)h, a2(x)h). If //(x) = 0 and a{x) = 1, then the diffusion coincides 
exactly with Brownian motion. 

We can also compute a generator for a diffusion defined by (15.6.2). To 
do this we must generalise the matrix generator (15.3.4) for processes on 
finite state spaces. We define the generator to be an operator Q acting on 
smooth functions / : R —> R by 

(Q f)(x) = hm i E x (f(Xt+h) - f{Xt)) , (15.6.4) 
n,—+0 rl 

where E x means expectation conditional on Xt = x. That is, Q maps one 
smooth function / to another function, Q f. 
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Now, for a diffusion satisfying (15.6.3), we can use a Taylor series ex
pansion to approximate f(Xt+h) as 

f(Xt+h) « f{Xt) + (Xt+h-Xt)f'(Xt) + \ (Xt+h-Xt)
2 f"(Xt). (15.6.5) 

On the other hand, 

Xt+h-Xt « (r{Xt)(Bt+h-Bt) + n(Xt)h. 

Conditional on Xt = x, the conditional distribution of Bt+h — Bt is normal 
with mean 0 and variance h; hence, the conditional distribution of Xt+h~Xt 

is approximately normal with mean fi(x) h and variance a2(x) h. So, taking 
expected values conditional on Xt — x, we conclude from (15.6.5) that 

Ex[f(Xt+h)-f(Xt)j « Kx)hf{x) + \ [(^x)h)2 + a2(x)h\ f"(x) 

= n(x)hf'(x) + ±a2(x)hf"(x) + 0(h2). 

It then follows from the definition (15.6.4) of generator that 

(Qf)(x) = H(x)f'(x) + \a2{x)f'{x). (15.6.6) 

We have thus given an explicit formula for the generator Q of a diffusion 
defined by (15.6.2). Indeed, as with Markov processes on discrete spaces, 
diffusions are often characterised in terms of their generators, which again 
provide all the information necessary to completely reconstruct the process's 
transition probabilities. 

Finally, we note that Brownian motion can be used to define a certain 
unusual kind of integral, called a stochastic integral or ltd integral. Let 
{Bt}t>o be Brownian motion, and let {Ct}t>o be a non-anticipative real-
valued random variable (i.e., the value of Ct is conditionally independent 
of {Bs}s>t, given {-Bs}s<t). Then it is possible to define an integral of the 
form J Ct dBt, i.e. an integral "with respect to Brownian motion". Roughly 
speaking, this integral is defined by 

/ CtdBt = lim ^2Cti(Btt+1-Btt), 
Ja i=o 

where a = to < t\ < . . . < tm = b, and where the limit is over finer 
and finer partitions {(*i-i,£i]} of (a,b]. Note that this integral is random 
both because of the randomness of the values of the integrand Ct, and also 
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because of the randomness from Brownian motion Bt itself. In particular, 
we now see that (15.6.2) can be written equivalently as 

t>b pb 

Xb-Xa = / a{Xt) dBt + / n{Xt) dt, 
J a J a 

where the first integral is with respect to Brownian motion. Such stochastic 
integrals are used in a variety of research areas; for further details see e.g. 
Bhattacharya and Waymire (1990, Chapter VII), or the other references in 
Subsection B.5. 

Exercise 15.6.7. Let {Xt}t>o be a diffusion with constant drift fj,(x) = a 
and constant volatility a(x) = b>0. 
(a) Show that Xt=at + bBt. 
(b) Show that C(Xt) = N{at, bH). 
(c) Compute E(XS Xt) for 0 < s < t. 

Exercise 15.6.8. Let {Bt}t>o be standard Brownian motion, with 
Bo = 0. Let Xt = JQsds + J0 bBsds = at + bBt be a diffusion with 
constant drift fi(x) = a > 0 and constant volatility cr(x) = b > 0. Let 
Zt = exp [ - (a + \b2)t + Xt]. 
(a) Prove that {Zt}t>o is a martingale, i.e. that E[Z t | Zu (0 < u < s)] = Zs 

for 0 < s < t. 
(b) Let A, B > 0, and let TA = inf{t > 0 : Xt = A} and T_B = inf {t > 
0 : Xt = —B} denote the first hitting times of A and —B, respectively. 
Compute P(TA < T _ B ) . [Hint: Use part (a); you may assume that Corol
lary 14.1.7 also applies in continuous time.] 

Exercise 15.6.9. Let g : R —> R be a smooth function with g(x) > 0 
and Jg(x)dx = 1. Consider the diffusion {Xt} defined by (15.6.2) with 
<r(x) = 1 and fi(x) = ^g'(x)/g(x). Show that the probability distribution 
having density g (with respect to Lebesgue measure on R) is a stationary 
distribution for the diffusion. [Hint: Show that the diffusion is reversible 
with respect to g(x) dx. You may use (15.6.3) and Exercise 15.3.7.] This 
diffusion is called a Langevin diffusion. 

Exercise 15.6.10. Let {p\j} be the transition probabilities for a Markov 
chain on a finite state space X. Define the matrix Q — (qij) by (15.3.4). 
Let / : X —> R be any function, and let i G X. Prove that (Qf)i (i.e., 
Y^kexl^fk) corresponds to (Q/)( i ) from (15.6.4). 

Exercise 15.6.11. Suppose a diffusion {Xt}t>0 satisfies that 

(Qf)(x) = l7f(x) + 2Zx2f"(x), 
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for all smooth / : R —> R. Compute the drift and volatility functions for 
this diffusion. 

Exercise 15.6.12. Suppose a diffusion {Xt}t>o has generator given 
by (Qf){x) = — f/'(a;) + \f"(x). (Such a diffusion is called an Ornstein-
Uhlenbeck process.) 
(a) Write down a formula for dXt. [Hint: Use (15.6.6).] 
(b) Show that {Xt}t>o is reversible with respect to the standard normal 
distribution, iV(0,1). [Hint: Use Exercise 15.6.9.] 

15.7. Ito's Lemma. 

Let {Xt}t>o be a diffusion satisfying (15.6.2), and let / : R —+ R be a 
smooth function. Then we might expect that {f(Xt)}t>o would itself be a 
diffusion, and we might wonder what drift and volatility would correspond 
to {f(Xt)}t>o- Specifically, we would like to compute an expression for 
d(f(Xt)). 

To that end, we consider small h « 0, and use the Taylor approximation 

f(Xt+h) « f(Xt) + f(Xt) (Xt+h - Xt) + \f"(Xt) (Xt+h - Xtf + o(h). 

Now, in the classical world, an expression like (Xt+h ~~ Xt)2 would be 0(h2) 
and hence could be neglected in this computation. However, we shall see 
that for Ito integrals this is not the case. 

We continue by writing 

/

t+h rt+h 

a(Xs)dBs + / v(Xs)ds 

rt+h rt+h 
a(Xs)dBs + 

t Jt 

a(Xt)(Bt+h-Bt) + v(Xt)h. 

Hence, 

f(Xt+h) * f(Xt) + f(Xt)[o-(Xt)(Bt+h-Bt)+fi(Xt)h] 

+ \f"(Xt) \a(Xt) (Bt+h - Bt) + fi(Xt) h}2 + o(h). 

In the expansion of (a(Xt)(Bt+h — Bt) + n(Xt)h)2, all terms are o(h) aside 
from the first, so that 

f(Xt+h) « f(Xt) + f'(Xt) \a(Xt) (Bt+h ~ Bt) + tx(Xt) h) 

+ l-f"(Xt) [a(Xt) (Bt+h - Bt)]
2 + o(h). 
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But Bt+h-Bt ~ N{0, h), so that E [{Bt+h - Bt)
2] = h, and in fact (Bt+h-

Bt)
2 = h + o(h). (This is the departure from classical integration theory; 

there, we would have {Bt+h — Bt)
2 = o(h).) Hence, as h —> 0, 

f{Xt+h) « f{Xt) + f{Xt)[o-{Xt){Bt+h-Bt)+^Xt)h] 

+ ±f"(Xt)o-2(Xt)h + o(h). 

We can write this in differential form as 

d (f(Xt)) = f'(Xt) [a(Xt) dBt + fi(Xt) dt] + \f"{Xt) a2(Xt) dt, 

or 

d(f(Xt)) = f(Xt)cr(Xt)dBt+(f'(Xt)^Xt) + ^f"(Xt)(T
2(Xt)\dt. 

(15.7.1) 
That is, {f(Xt)} is itself a diffusion, with new drift ~fi{x) = f'{x)fi{x) + 
\f"{x) o-2(x) and new volatility a(x) = f'{x) a(x). 

Equation (15.7.1) is Ito's Lemma, or Ito's formula. It is a generalisation 
of the classical chain rule, and is very important for doing computations with 
Ito integrals. By (15.6.2), it implies that d(f(Xt)) is equal to f'(Xt) dXt + 
\f"(Xt) cr2{Xt) dt. The extra term \f"{Xt) a2(Xt) dt arises because of the 
unusual nature of Brownian motion, namely that (-Bt+/t — Bt)

2 w h instead 
of being 0(h2). (In particular, this again indicates why Brownian motion 
is not differentiable; compare Exercise 15.4.6.) 

Exercise 15.7.2. Consider the Ornstein-Uhlenbeck process {Xt} of 
Exercise 15.6.12, with generator (Q/)(x) = -%f{x) + \f"{x). 
(a) Let Yt = (Xt)

2 for each t > 0. Compute dYt. 
(b) Let Zt = (Xt)

3 for each t > 0. Compute dZt. 

Exercise 15.7.3. Consider the diffusion {Xt} of Exercise 15.6.11, with 
generator (Qf){x) = 17f'(Xt) + 23(Xt)

2 f"{Xt). Let Wt = {Xtf for each 
t > 0. Compute dWt. 

15.8. The Black-Scholes equation. 

In mathematical finance, the prices of stocks are often modeled as diffu
sions. Various calculations, such as the value of complicated stock options 
or derivatives, then proceed on that basis. 

In this final subsection, we give a very brief introduction to financial 
models, and indicate the derivation of the famous Black-Scholes equation 
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for pricing a certain kind of stock option. Our treatment is very cursory; 
for more complete discussion see books on mathematical finance, such as 
those listed in Subsection B.6. 

For simplicity, we suppose there is a constant "risk-free" interest rate r. 
This means that an amount of money M at present is worth ertM at a time 
t later. Equivalently, an amount of money M a time t later is worth only 
e~rtM at present. 

We further suppose that there is a "stock" available for purchase. This 
stock has a purchase price Pt at time t. It is assumed that this stock price 
can be modeled as a diffusion process, according to the equation 

dPt = bPtdt + aPtdBt, (15.8.1) 

i.e. with /i(x) = bx and <J(X) = ax. Here Bt is Brownian motion, b is the 
appreciation rate, and <x is the volatility of the stock. For present purposes 
we assume that b and a are constant, though more generally they (and also 
r) could be functions of t. 

We wish to find a value, or fair price, for a "European call option" (an 
example of a financial derivative). A European call option is the option to 
purchase the stock at a fixed time T > 0 for a fixed price q > 0. Obviously, 
one would exercise this option if and only if PT > q, and in this case 
one would gain an amount PT — q. Therefore, the value at time T of the 
European call option will be precisely max(0, PT — q); it follows that the 
value at time 0 is e~rT max(0, PT — q). The problem is that, at time 0, the 
future price PT is unknown (i.e. random). Hence, at time 0, the true value 
of the option is also unknown. What we wish to compute is a fair price for 
this option at time 0, given only the current price Po of the stock. 

To specify what a fair price means is somewhat subtle. This price is 
taken to be the (unique) value such that neither the buyer nor the seller 
could strictly improve their payoff by investing in the stock directly (as op
posed to investing in the option), no matter how sophisticated an investment 
strategy they use (including selling short, i.e. holding a negative number of 
shares) and no matter how often they buy and sell the stock (without being 
charged any transaction commissions). 

It turns out that for our model, the fair price of the option is equal to 
the expected value of the option given PQ, but only after replacing b by r, 
i.e. after replacing the appreciation rate by the risk-free interest rate. We 
do not justify this fact here; for details see e.g. Theorem 1.2.1 of Karatzas, 
1997. The argument involves switching to a different probability measure 
(the risk-neutral equivalent martingale measure), under which {Bt} is still 
a (different) Brownian motion, but where (15.8.1) is replaced by dPt = 
rPtdt + aPtdBt. 
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We are thus interested in computing 

E (e-rT max(0, PT-q)\ Po) , (15.8.2) 

under the condition that 

b is replaced by r . (15.8.3) 

To proceed, we use Ito's Lemma to compute d(logP t). This means that 
we let f(x) = logo; in (15.7.1), so that f'(x) = 1/x and f"(x) = -1/x2. 
We apply this to the diffusion (15.8.1), under the condition (15.8.3), so that 
fj,(x) = rx and a(x) = ax. We compute that 

dt 

whence 

d (log Pt) = ^aPt dBt +{^Pt^t+\(-j») (vPtf) 

= adBt+(r- -cr2)dt. 

Since these coefficients are all constants, it now follows that 

log (PT/PQ) = log PT - log Po = a (BT - B0) + (r - iCT
2) (T - 0) , 

PT = Po exp (a{BT - So) + ( r - \°2)T) • 

Recall now that BT — Po has the normal distribution N(0,T), with 
density function } T

e~x ^2T • Hence, by Proposition 6.2.3, we can compute 
the value (15.8.2) of the European call option as 

^ e~rT max f 0, P0 exp Lx + (r - \O*)T\ - q) -jL= e~*l'2T dx . 

(15.8.4) 
After some re-arranging and substituting, we simplify this integral to 

Po * ( ^ = (log(Po/?) + T(r + ^ a 2 ) ) ) 

- qe-rT^ ^ - l = ( l o g ( P 0 / g ) + T ( r - i a 2 ) ) ) , (15.8.5) 

where $(z) = -A= f * e~s l2ds is the usual cumulative distribution func-
tion of the standard normal. 

Equation (15.8.5) thus gives the time-0 value, or fair price, of a European 
call option to buy at time T > 0 for price q > 0 a stock having initial price 
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PQ and price process {Pt}t>o governed by (15.8.1). Equation (15.8.5) is the 
well-known Black-Scholes equation for computing the price of a European 
call option. Recall that here r is the risk-free interest rate, and a is the 
volatility. Furthermore, the appreciation rate b does not appear in the final 
formula, which is advantageous because b is difficult to estimate in practice. 

For further details of this subject, including generalisations to more com
plicated financial models, see any introductory book on the subject of math
ematical finance, such as those listed in Subsection B.6. 

Exercise 15.8.6. Show that (15.8.4) is indeed equal to (15.8.5). 

Exercise 15.8.7. Consider the price formula (15.8.5), with r, a, T, and 
Po fixed positive quantities. 
(a) What happens to the price (15.8.5) as q \ 0? Does this result make 
intuitive sense? 
(b) What happens to the price (15.8.5) as q —> oo? Does this result make 
intuitive sense? 

Exercise 15.8.8. Consider the price formula (15.8.5), with r, a, Po, and 
q fixed positive quantities. 
(a) What happens to the price (15.8.5) as T \ 0? [Hint: Consider sepa
rately the cases q > PQ, q = P0, and q < Po] Does this result make intuitive 
sense? 
(b) What happens to the price (15.8.5) as T —> oo? Does this result make 
intuitive sense? 

15.9. Section summary. 

This section considered various aspects of the theory of stochastic pro
cesses, in a somewhat informal manner. All of the topics considered can be 
thought of as generalisations of the discrete-time, discrete-space processes 
of Sections 7 and 8. 

First, the section considered existence questions, and stated (but did not 
prove) the important Kolmogorov Existence Theorem. It then discussed 
discrete-time processes on general (non-discrete) state spaces. It provided 
generalised notions of irreducibility and aperiodicity, and stated a theorem 
about convergence of irreducible, aperiodic Markov chains to their station
ary distributions. Next, continuous-time processes were considered. The 
semigroup property of Markov transition probabilities was presented. Gen
erators of continuous-time, discrete-space Markov processes were discussed. 

The section then focused on processes in continuous time and space. 
Brownian motion was developed as a limit of random walks that take smaller 
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and smaller steps, more and more frequently; the normal, independent in
crements of Brownian motion then followed naturally. Diffusions were then 
developed as generalisations of Brownian motion. Generators of diffusions 
were described, as were stochastic integrals. 

The section closed with intuitive derivations of Ito's Lemma, and of 
the Black-Scholes equation from mathematical finance. The reader was 
encouraged to consult the books of Subsections B.5 and B.6 for further 
details. 
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A. Mathematical Background. 

This section reviews some of the mathematics that is necessary as a 
prerequisite to understanding this text. The material is reviewed in a form 
which is most helpful for our purposes. Note, however, that this material 
is merely an outline of what is needed; if this section is not largely review 
for you, then perhaps your background is insufficient to follow this text 
in detail, and you may wish to first consult references such as those in 
Subsection B.l. 

A. l . Sets and functions. 

A fundamental object in mathematics is a set, which is any collection 
of objects. For example, {1,3,4, 7}, the collection of rational numbers, the 
collection of real numbers, and the empty set 0 containing no elements, are 
all sets. Given a set, a subset of that set is any subcollection. For example, 
{3,7} is a subset of {1,3,4,7}; in symbols, {3,7} C {1,3,4,7}. 

Given a subset, its complement is the set consisting of all elements of a 
"universal" set which are not in the subset. In symbols, if A C f2, where fi 
is understood to be the universal set, then Ac = {wGSl;w^ A}. 

Given a collection of sets {Aa}aej (where I is any indicator set; perhaps 
I = {1, 2}), we define their union to be the set of all elements which are in 
at least one of the Aa; in symbols, [J Aa = {to; u> 6 Aa for some a £ / } . 
Similarly, we define their intersection to be the set of all elements which are 
in all of the Aa; in symbols, |"|a Aa = {u; u G Aa for all a £ I}. 

Union, intersection, and complement satisfy de Morgan's Laws, which 
state that (UQ Aaf = f|Q A° and (f|Q Aa)

c = (JQ A%. In words, comple
ment converts unions to intersections and vice-versa. 

A collection {Aa}a&i of subsets of a set fi are disjoint if the intersection 
of any pair of them is the empty set; in symbols, if Aai D Aa2 = 0 whenever 
ct\,a.2 6 I are distinct. The collection {Aa}aei is called a partition of fi 
if {Aa}aei is disjoint and also [ja Aa = Q,. If {Aa}a^i are disjoint, we 

sometimes write their union as [J Aa (e.g. Aai U Aa2) and call it a disjoint 

union. 
We also define the difference of sets A and B by A\B — An Bc; for 

example, {1, 3,4, 7} \ {3, 7,9} = {1,4}. 
Given sets Oi and 0,2, we define their (Cartesian) product to be the set 

of all ordered pairs having first element from Q.\ and second element from 

*In fact, certain very technical restrictions are required to avoid contradictions such 
as Russell's paradox. But we do not consider that here. 
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fi2; in symbols, f2x x Q,2 = {(wi,u>2);u>i G fii, o;2 € f22}- Similarly, larger 
Cartesian products ]1 Q ^ a are defined. 

A function f is a mapping from a set Oi to a second set S72; in symbols, 
f : fli —> ^2. Its domain is the set of points in Oi for which it is defined, 
and its range is the set of points in fi2 which are of the form f{tJ\) for some 

If / : fii —> 0 2 , and if Si C f̂  and 52 C fi2, then the image of Si under 
/ is given by / (S i ) = {w2 G ^25^2 = /(wi) for some wi G Si}, and the 
inverse image of S2 under / is given by / _ 1 ( S 2 ) = {wi G £l\\ f(wi) G S2}. 
We note that inverse images preserve the usual set operations, for example 
/ - 1 ( S i U S 2 ) = / - 1 ( S i ) U / - 1 ( S 2 ) ; / - 1 ( 5 i n S 2 ) = r 1 ( 5 i ) n / - 1 ( S 2 ) ; a n d 
f-1(Sc) = f-1(S)c. 

Special sets include the integers Z = {0,1, —1,2, —2,3, . . .} , the positive 
integers or natural numbers N = {1,2 ,3 , . . .} , the rational numbers Q = 
{ ^ ; m , n 6 Z , n / 0 } , and the real numbers R. 

Given a subset SCSI , its indicator function lg : £1 —> R is defined by 

1 1 \ J !> w e S 

ls(w) = {o , W £ s . 
Finally, the Axiom of Choice states that given a collection {Aa}aei of 

non-empty sets (i.e., Aa 7̂  0 for all a ) , their Cartesian product ]Ja Aa is 
also non-empty. In symbols, 

J J ^ Q ^ 0 whenever Aa ^ 0 for each a. ( A l . l ) 
a. 

That is, it is possible to "choose" one element simultaneously from each of 
the non-empty sets Aa - a fact that seems straightforward, but does not 
follow from the other axioms of set theory. 

A.2. Countable sets. 

One important property of sets is their cardinality, or size. A set Q 
is finite if for some n G N and some function / : N —• fl, we have 
/ ({1 ,2 , . . . , n}) D fl. A set is countable if for some function / : N —* Ct, we 
have / (N) = ft. (Note that, by this definition, all finite sets are countable. 
As a special case, the empty set 0 is both finite and countable.) A set is 
countably infinite if it is countable but not finite. It is uncountable if it is 
not countable. 

More formally, it is a collection of ordered pairs {UJ\,OJ2) £ fii x £^2, with UJ\ G fh 
and U2 = / (wi ) e Q2, such that no uti appears in more than one pair. 
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Intuitively, a set is countable if its elements can be arranged in a se
quence. It turns out that countability of sets is very important in prob
ability theory. The axioms of probability theory make certain guarantees 
about countable operations (e.g., the countable additivity of probability 
measures) which do not necessarily hold for uncountable operations. Thus, 
it is important to understand which sets are countable and which are not. 

The natural numbers N are obviously countable; indeed, we can take the 
identity function (i.e., / (n ) = n for all n € N) in the definition of countable 
above. Furthermore, it is clear that any subset of a countable set is again 
countable; hence, any subset of N is also countable. 

The integers Z are also countable: we can take, say, / ( l ) = 0, /(2) = 1, 
/(3) = - 1 , /(4) = 2, /(5) = - 2 , /(6) = 3, etc. to ensure that / ( N ) = Z. 
More surprising is 

Proposition A.2.1. Let il\ and f22 be countable sets. Then their 
Cartesian product Cl\ x fi2 is aiso countable. 

Proof. Let fx and f2 be such that / i (N) = fii and / 2 (N) = fi2. 
Then define a new function / : N -> Qx x Sl2 by / ( l ) = ( / i ( l ) , / 2 ( l ) ) , 
/(2) = ( / i ( l ) , / 2(2)) , /(3) = ( / i (2) , / 2( l ) ) , /(4) = ( / i ( l ) , / 2(3)) , /(5) = 
(/i(2),/2(2)), /(6) = (A(3) , / 2( l ) ) , /(7) = ( / i ( l ) , / 2(4)) , etc. (See Fig
ure A.2.2.) Then / ( N ) = fix x fi2, as required. I 

(1,4) (2,4) (3,4) (4,4) 

(1,3) (2,3) (3,3) (4,3) 

X X X 
(1,2) (2,2) (3,2) (4,2) 

X X X X 
(1,1) (2,1) (3,1) (4,1) 

Figure A.2.2. Constructing / in Proposition A.2 .1 . 

From this proposition, we see that e.g. N x N is countable, as is Z x 
Z. It follows immediately (and, perhaps, surprisingly) that the set of all 
rational numbers is countable; indeed, Q is equivalent to a subset of Z x Z 
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if we identify the rational number m/n (in lowest terms) with the element 
(m, n) G Z x Z. It also follows that, given a sequence fli, 0,2, • • • of countable 
sets, their countable union Q = [ji fij is also countable; indeed, if /j(N) = 
fii, then we can identify f2 with a subset of N x N by the mapping (m, n) i—> 
/m(n)-

For another example of the use of Proposition A.2.1, recall that a real 
number is algebraic if it is a root of some non-constant polynomial with 
integer coefficients. 

Exercise A.2.3. Prove that the set of all algebraic numbers is countable. 

On the other hand, the set of all real numbers is not countable. Indeed, 
even the unit interval [0,1] is not countable. To see this, suppose to the 
contrary that it were countable, with / : N —> [0,1] such that / ( N ) = [0,1]. 
Imagine writing each element of [0,1] in its usual base-10 expansion, and 
let di be the ith digit of the number f(i). Now define Cj by: c, = 4 if di = 5, 
while Ci = 5 it di ^z 5. (In particular, Cj ^ d,.) Then let x = Y^tLi ci 10 ' 
(so that the base-10 expansion of x is O.C1C2C3 . . . ) . Then x differs from f(i) 
in the ith digit of their base-10 expansions, for each i. Hence, x ^ f(i) for 
any i. This contradicts the assumption that / ( N ) = [0,1]. 

A.3. Epsilons and Limits. 

Real analysis and probability theory make constant use of arguments 
involving arbitrarily small e > 0. A basic starting block is 

Proposition A.3.1. Let a and b be two real numbers. Suppose that, for 
any e > 0, we have a <b + e. Then a < b. 

Proof. Suppose to the contrary that a > b. Let e = 9^. Then e > 0, 
but it is not the case that a < b + e. This is a contradiction. | 

Arbitrarily small e > 0 are used to define the important concept of a 
limit. We say that a sequence of real numbers xi,X2,- • • converges to the 
real number x (or, has limit x) if, given any e > 0, there is TV e N (which 
may depend on e) such that for any n > N, we have \xn — x\ < e. We shall 
also write this as limjj^oo xn = x, and shall sometimes abbreviate this to 
limn xn = x or even limxn = x. We also write this as {xn} —> x. 

Exercise A.3.2. Use the definition of a limit to prove that 
(a) l im^oo i = 0. 
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(b) limn^oo ^ = 0 for any k> 0. 
(c) l im^oo 21 /" = 1. 

A useful reformulation of limits is given by 

Proposition A.3.3. Let {xn} be a sequence of real numbers. Then 
{xn} —> x if and only if for each e > 0, the set {n G N; \xn — x\ > e} is 
finite. 

Proof. If {xn} —> x, then given e > 0, there is N G N such that 
\xn — x\ < e for all n > N. Hence, the set {n; \xn — x\ > e} contains at 
most N — 1 elements, and so is finite. 

Conversely, given e > 0, if the set {n; \xn — x\ > e} is finite, then it has 
some largest element, say K. Setting N = K + 1, we see that \xn — x\ < e 
whenever n> N. Hence, {xn} —> x. I 

Exercise A.3.4. Use Proposition A.3.3 to provide an alternative proof 
for each of the three parts of Exercise A.3.2. 

A sequence which does not converge is said to diverge. There is one 
special case. A sequence {xn} converges to infinity if for all M E R , there 
is N e N, such that xn > M whenever n > N. (Similarly, {xn} converges 
to negative infinity if for all M G R, there is N e N, such that xn < M 
whenever n > N.) This is a special kind of "convergence" which is also 
sometimes referred to as divergence! 

Limits have many useful properties. For example, 

Exercise A.3.5. Prove the following: 
(a) If limn xn = x, and a G R, then limn axn = ax. 
(b) If lim„ xn = x and lim„ yn = y, then limn (x„ + yn) = x + y. 
(c) If limn xn = x and lim„ yn = y, then limn [xnyn) = xy. 
(d) If lim„ xn = x, and x ^ 0, then limu(l/a;ra) = 1/x. 

Another useful property is given by 

Proposition A.3.6. Suppose xn —> x, and xn < a for all n G N. Then 
x < a. 

Proof. Suppose to the contrary that x > a. Let e = ^SL- Then e > 0, 
but for all n G N we have \xn — x\ > x — xn > x — a > e, contradicting the 
assertion that x„ —> x. I 
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Given a sequence {xn}, a subsequence {xnk} is any sequence formed 
from {xn} by omitting some of the elements. (For example, one sub
sequence of the sequence (1,3,5,7,9, . . . ) of all positive odd numbers is 
the sequence (3,9,27,81,...) of all positive integer powers of 3.) The 
Bolzano- Weierstrass theorem, a consequence of compactness, says that ev
ery bounded sequence contains a convergent subsequence. 

Limits are also used to define infinite series. Indeed, the sum Y^Li si *s 

simply a shorthand way of writing limn^oo 5Z"=i si- If this limit exists and 
is finite, then we say that the series X^Si s« converges; otherwise we say 
the series diverges. (In particular, for infinite series, converging to infinity 
is usually referred to as diverging.) If the Sj are non-negative, then Yl'iZi s% 
either converges to a finite value or diverges to infinity; we write this as 
X ^ i Si < oo and X)Si s* = °°> respectively. 

For example, it is not hard to show (by comparing Yl'iLi * ° to the 
integral J^° t~~adt) that 

oo 

^ ( l / i ° ) < oo if and only if a > 1. (A3.7) 
i=\ 

Exercise A.3.8. Prove that Ylili ( 1 / ̂ log(i)) = oo. [Hint: Show 

J2ZA1 /il°s(i)) > ir'(dx/x lo&x)-) 

Exercise A.3.9. Prove that X]^ i (l /*l°gWloglog(i)) = °°> D u t 

ESi ( l /^og(0[ log log( i ) ] 2 )<oo . 

A.4. Infimums and supremums. 

Given a set {xa}aei °f r e&l numbers, a lower bound for them is a real 
number £ such that xa > £ for all a £ I. The set {xa}a€i is bounded below 
if it has at least one lower bound. A lower bound is called the greatest lower 
bound if it is at least as large as any other lower bound. 

A very important property of the real numbers is: Any non-empty set 
of real numbers which is bounded below has a unique greatest lower bound. 
The uniqueness part of this is rather obvious; however, the existence part 
is very subtle. For example, this property would not hold if we restricted 
ourselves to rational numbers. Indeed, the set {q G Q; q > 0, q2 > 2} does 
not have a greatest lower bound if we allow rational numbers only; however, 
if we allow all real numbers, then the greatest lower bound is \ /2. 

The greatest lower bound is also called the infimum, and is written as 
inf{xa;o: e / } or in f a 6 /x Q . We similarly define the supremum of a set 
of real numbers to be their least upper bound. By convention, for the 
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empty set 0, we define inf 0 = oo and sup0 = —oo. Also, if a set S is not 
bounded below, then inf S = —oo; similarly, if it is not bounded above, then 
sup S = oo. One obvious but useful fact is 

inf 5 < x, for any x G S. (A4.1) 

Of course, if a set of real numbers has a minimal element (for example, 
if the set is finite), then this minimal element is the infimum. However, 
infimums exist even for sets without minimal elements. For example, if S 
is the set of all positive real numbers, then inf S = 0, even though 0 ^ 5 . 

A simple but useful property of infimums is the following. 

Proposition A.4.2. Let S be a non-empty set of real numbers which 
is bounded below. Let a = inf S. Then for any e > 0, there is s G S with 
a < s < a + e. 

Proof. Suppose, to the contrary, that there is no such s. Clearly there is 
no s G S with s < a (otherwise a would not be a lower bound for 5); hence, 
it must be that all s G S satisfy s > a + e. But in this case, a + e is a lower 
bound for S which is larger than a. This contradicts the assertion that o 
was the greatest lower bound for S. I 

For example, if S is the interval (5,20), then inf S = 5, and 5 0 S, but for 
any e > 0, there is x € S with x < 5 + e. 

Exercise A.4.3. (a) Compute inf {a; € R : x > 10}. 
(b) Compute inf {q G Q : q > 10}. 
(c) Compute ini{q € Q : q > 10}. 

Exercise A.4.4. (a) Let R, S C R each be non-emtpy and bounded 
below. Prove that inf(i?U S) = min (inf R, inf 5 ) . 
(b) Prove that this formula continues to hold if R = 0 and/or 5 = 0. 
(c) State and prove a similar formula for sup(i? U S). 

Exercise A.4.5. Suppose {an} —> a. Prove that inf„a„ < a < sup na„. 
[Hint: Use proof by contraction.] 

Two special kinds of limits involve infimums and supremums, namely the 
limit inferior and the limit superior, defined by liminf xn = lim inffc>„ Xk 

n n—>oo 

and lim sup xn = lim supfc>n:rfc, respectively. Indeed, such limits always 
n n->oo 

exist (though they may be infinite). Furthermore, lim„ xn exists if and only 
if lim inf xn = lim sup xn. 
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Exercise A.4.6. Suppose {an} —> a and {bn} —» 6, with a < 6. Let c„ = 
an for n odd, and cn = bn for n even. Compute liminf c„ and limsupc„. 

n n 

We shall sometimes use the "order" notations, O(-) and o(-). A quantity 
g(x) is said to be 0{h(x)) as x —> f if limsup.,.^ g(x)/fo(x) < oo. (Here 
I can be oo, or —oo, or 0, or any other quantity. Also, h(x) can be any 
function, such as x, or x2, or 1/x, or 1.) Similarly, g(x) is said to be o(h(x)) 
as x —> f if limsupx_^ g(x)/ft.(x) = 0. 

Exercise A.4.7. Prove that {an} —> 0 if and only if an = o(l) as n —> oo. 

Finally, we note the following. We see by Exercise A.3.5(b) and induc
tion that if {xnk} are real numbers for n G N and 1 < k < K < oo, with 
linin^oo xnk = 0 for each k, then lirrin^oo J2k=i Xnk = 0 as well. However, 
if there are an infinite number of different k then this is not true in general 
(for example, suppose xnn = 1 but xnk = 0 for k ^ n). Still, the following 
proposition gives a useful condition under which this conclusion holds. 

Proposition A.4.8. (The M-test.) Let {xnk}n,keTSS be a collection of real 
numbers. Suppose that lin^^oo xnk = dk for each fixed fc£N. Suppose 
further that YlT=i suPn \xnk\ < °°- Tnen lim„^oo X)feli x«fc = Dfcli ak-

Proof. The hypotheses imply that JZfeLi \ak\ < °°- Hence, by replacing 
xnk by xnk — ak, it suffice to assume that ak = 0 for all k. 

Fix e > 0. Since Xl^=isuPnxnfc < °°J w e c a n n n d if G N such 
that ^ fc lx+ i SUP« xnk < e/2- Since linijj^oo x„fc = 0, we can find (for 
k = 1, 2 , . . . , K) numbers Nk with xnk < e/2K for all n > Nk. Let N = 
m&x(Ni,..., NK)- Then for n > JV, we have 52/£Li ^ t < -^27? + I = e-

Hence, lim„^oo Z)fcli x«fc ^ Sfcliafc- Similarly, \imn^00J2T=ixnk > 
Yl'k>=iak- The result follows. I 

If linin^oo xnk = ak for each fixed k G N, with xnk > 0, but if we do 
not know that ^ZfcLi suPn xnfe < °°; then we still have 

oo oo 

lim V" xnk > y^ak, (AA.9) 
fc=l k=\ 

assuming this limit exists. Indeed, if not then we could find some finite 
K G N with linijj-xx, YlT=i xnk < ]Cfc=iafc> contradicting the fact that 

I i m n _ » 0 0 2__,fc—1 Xnk _ l ^ W - t o o 2-^k=l Xnk = Z-/fc=l ®k • 
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A.5. Equivalence relations. 

In one place in the notes (the proof of Proposition 1.2.6), the idea of an 
equivalence relation is used. Thus, we briefly review equivalence relations 
here. 

A relation on a set S is a boolean function on S x S; that is, given 
x,y 6 5, either x is related to y (written x ~ y), or x is not related to y 
(written x */* y). A relation is an equivalence relation if (a) it is reflexive, 
i.e. x ~ x for all x E S; (b) it is symmetric, i.e. x ~ y whenever t/ ~ x; and 
(c) it is transitive, i.e. x ~ z whenever x ~ y and y ~ z. 

Given an equivalence relation ~ and an element x G S, the equivalence 
class of x is the set of all y G 5 such that y ~ x. It is straightforward 
to verify that, if ~ is an equivalence relation, then any pair of equivalence 
classes is either identical or disjoint. It follows that, given an equivalence 
relation, the collection of equivalence classes form a partition of the set S. 
This fact is used in the proof of Proposition 1.2.6 herein. 

Exercise A.5.1. For each of the following relations on S = Z, determine 
whether or not it is an equivalence class; and if it is, then find the equivalence 
class of the element 1: 
(a) x ~ y if and only if \y — x\ is an integer multiple of 3. 
(b) x ~ y if and only if \y — x\ < 5. 
(c) x ~ y if and only if |x|, \y\ < 5. 
(d) x ~ y if and only if either x = y, or |x|, \y\ < 5 (or both). 
(e) x ~ y if and only if \x\ = \y\. 
(f) x ~ y if and only if |x| > |y|. 
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Index 
Ac, see complement 
L2, 168 
LP, 168 
Mjf(s), see moment generating func

tion 
N(0,1), 69 
O(-), 206 
E, see expected value 
Ei, 86 
T, see cr-algebra 
N, 200 
Q, 200 
R, 200 
Z, 200 
£1, see sample space 
P , see probability measure 
Pi , 86 
fl, see intersection 
U, see union 
Sc (point mass), 69 
Sij, 85, 183 
U, see disjoint union 
0, see empty set 
L- - - J ,47 
MX, 43 

fln => fl, 117 
I s , see indicator function 
(^-irreducibility, 180 
<Px(t), see characteristic function 
\ , see difference of sets 
(T-finite measure, 52, 147, 182 
cr-algebra, 7 

Borel, 16 
generated, 16 

(T-field, see cr-algebra 
C, see subset 
fij, 86 
o(-), 206 

a.a., 34 
a.s., 47, 58 

absolute continuity, 70, 143, 144, 
148 

additivity 
countable, 2, 24 
finite, 2 
uncountable, 2, 24 

Alaoglu's theorem, 117 
algebra, 10, 13 

semi, 9 
sigma, 7 

algebraic number, 3, 202 
almost always, 34 
almost everywhere, 58 
almost sure convergence, see con

vergence 
analytic function, 108 
aperiodicity, 90, 180, 181 
appreciation rate, 195 
area, 23 
axiom of choice, 3, 4, 200 

background, mathematical, 9,199, 
209 

Berry-Esseen theorem, 135 
binomial distribution, 141 
Black-Scholes equation, 194, 197 
bold play, 79 
Bolzano-Weierstrass theorem, 129, 

204 
Borel cr-algebra, 16 
Borel set, 16 
Borel-Cantelli Lemma, 35 
Borel-measurable, 30 
boundary conditions, 76 
boundary of set, 117 
bounded convergence theorem, 78 
bounded set, 204 
Brownian motion, 186^188 

properties, 187 

call option, 195 
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candidate density, 146 
Cantelli's inequality, 65 
Cantor set, 16, 81 
cardinality, 200 
Cartesian product, 199 
Cauchy sequence, 168 
Cauchy-Schwarz inequality, 58, 65 
central limit theorem, 134 

Lindeberg, 136 
martingale, 172 

Cesaro average, 90 
change of variable theorem, 67 
characteristic function, 125 
Chebychev's inequality, 57 
closed subset of a Markov chain, 

98 
CLT, see central limit theorem 
coin tossing, 20-22 

sequence waiting time, 166, 
175 

communicating states, 91, 97 
compact support, 122 
complement, 199 
complete metric space, 168 
complete probability space, 15, 16 
composition, 30 
conditional distribution, 151 

regular, 156 
conditional expectation, 152, 155 
conditional probability, 84, 152, 

155 
conditional variance, 157 
consistency conditions, 177, 178 
continuity of probabilities, 33 
continuity theorem, 132 
continuous sample paths, 188, 189 
continuum hypothesis, 4 
convergence, 202 

almost sure (a.s.), 47, 58-60, 
62, 103, 120 

in distribution, 120 
in probability, 59, 60, 64, 120 
of series, 204 

pointwise, 58 
to infinity, 203 
weak, 117, 120 
with probability one (w.p. 1), 

58 
convergence theorem 

bounded, 78 
dominated, 104, 165 
martingale, 169 
monotone, 46 
uniform integrability, 105, 165 

convex function, 58, 65, 173 
convolution, 112 
correlation (Corr), 45, 53, 65 
countable additivity, 2, 24 
countable linearity, 48, 111 
countable monotonicity, 10 
countable set, 200 
countable subadditivity, 8 
counting measure, 5, 182 
coupling, 92 
covariance (Cov), 45 
cumulative distribution function, 

67 

de Morgan's Laws, 199 
decomposable Markov chain, 101 
decreasing events, 33 
density function, 70, 144 
derivative 

financial, 194, 195 
Radon-Nikodym, 144, 148 

determined by moments, 137 
diagonalisation method, 129 
difference equations, 76 
difference of sets, 199 
diffusion, 190 

coefficient, 190 
Langevin, 192 
Ornstein-Uhlenbeck, 193, 194 

discrete measure, 69, 143, 144, 148 
discrete probability space, 9, 20 
disjoint set, 199 
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disjoint union, 8, 199 
distribution, 67 

binomial, 141 
conditional, 151 
exponential, 141 
finite-dimensional, 177 
function, 67 
gamma, 114 
initial, 179, 183 
normal, 1, 69, 70, 133, 134, 

141, 193 
Poisson, 1, 8, 69, 141, 185 
stationary, 89, 180, 184 
uniform, 2, 9, 16 

divergence, 203 
of series, 204 

domain, 200 
dominated convergence theorem, 

104, 165 
dominated measure (<§C), 143, 147 
double 'til you win, 78 
doubly stochastic Markov chain, 

100 
drift, 190 
drift (of diffusion), 190 
dyadic rational, 189 

Ehrenfest's urn, 84 
empty set, 199 
equivalence class, 3, 207 
equivalence relation, 3, 207 
equivalent martingale measure, 195 
European call option, 195 
evaluation map, 69 
event, 7 

decreasing, 33 
increasing, 33 

expected value, 1, 43, 45 
conditional, 152, 155 
infinite, 45, 49 
linearity of, 43, 46, 47, 50 
order-preserving, 44, 46, 49 

exponential distribution, 141 

fair price, 195 
Fatou's lemma, 103 
field, see algebra 
financial derivative, 194, 195 
finite additivity, 2 
finite intersection property, 22 
finite superadditivity, 10 
finite-dimensional distributions, 177 
first hitting time, 75, 180 
floor, 47 
fluctuation theory, 88 
Fourier inversion, 126 
Fourier transform, 125 
Fourier uniqueness, 129 
Fubini's theorem, 110 
function, 200 

analytic, 108 
convex, 58, 65, 173 
density, 70, 144 
distribution, 67 
identity, 201 
indicator, 43, 200 
Lipschitz, 188 
measurable, 29, 30 
random, 186 

gambler's ruin, 75, 175 
gambling policy, 78 

double 'til you win, 78 
gamma distribution, 114 
gamma function, 115 
generalised triangle inequality, 44 
generated <r-algebra, 16 
generator, 183, 190, 191 
greatest integer not exceeding, 47 
greatest lower bound, 204 

Hahn decomposition, 144 
Heine-Borel Theorem, 16 
Helly selection principle, 117, 129 
hitting time, 75, 180 

i.i.d., 62 
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i.o., 34, 86 
identically distributed, 62 
identity function, 201 
image, 200 

inverse, 200 
inclusion-exclusion, principle of, 8, 

53 
increasing events, 33 
independence, 31, 32 

of sums, 39 
indicator function, 43, 200 
inequality 

Cantelli's, 65 
Cauchy-Schwarz, 58, 65 
Chebychev's, 57 
Jensen, 65, 173 
Jensen's, 58 
Markov's, 57 
maximal, 171 

infimum, 204 
infinite expected value, 45, 49 
infinite fair coin tossing, 22 
infinitely divisible, 136 
infinitely often, 34, 86 
initial distribution, 83, 179, 183 
integers (Z), 200 

positive (N), 200 
integrable 

Lebesgue, 51 
Riemann, 50, 51 
uniformly, 105 

integral, 50 
ltd, 191 
iterated, 110 
Lebesgue, 51 
lower, 50 
Riemann, 50 
stochastic, 191 
upper, 50 

interest rate, 195 
intersection, 199 
interval, 9, 15 
inverse image, 200 

irreducibility, 88, 180 
ltd integral, 191 
Ito's lemma, 194 
iterated integral, 110 
iterated logarithm, 88 

Jensen's inequality, 58, 65, 173 
jump rate, 184 

Kolmogorov consistency conditions, 
177, 178 

Kolmogorov existence theorem, 178, 
182 

Kolmogorov zero-one law, 37 

Langevin diffusion, 192 
large deviations, 108, 109 
law, see distribution 
law of large numbers 

strong, 60, 62 
weak, 60, 64 

law of the iterated logarithm, 88 
least upper bound, 204 
Lebesgue decomposition, 143, 147 
Lebesgue integral, 51 
Lebesgue measure, 16, 50, 51 
liminf, 205 
limit, 202 

inferior, 205 
superior, 205 

limsup, 205 
Lindeberg CLT, 136 
linearity of expected values, 43, 

46, 47, 50 
countable, 48, 111 

Lipschitz function, 188 
lower bound, 204 

greatest, 204 
lower integral, 50 

M-test, 206 
Markov chain, 83, 179 

decomposable, 101 
Markov process, 183 
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Markov's inequality, 57 
martingale, 76, 161 

central limit theorem, 172 
convergence theorem, 169 
maximal inequality, 171 
sampling theorem, 163 

mathematical background, see back
ground, mathematical 

maximal inequality, 171 
mean, see expected value 
mean return time, 94 
measurable 

function, 29, 30 
rectangle, 22 
set, 4, 7 
space, 31 

measure 
a-finite, 52, 147, 182 
counting, 5, 182 
Lebesgue, 16, 50, 51 
outer, 11 
probability, 7 
product, 22, 23 
signed, 144, 146 

measure space, see probability space 
method of moments, 139 
mixture distribution, 143 
moment, 45, 108, 137 
moment generating function, 107 
monotone convergence theorem, 46 
monotonicity, 8, 11, 46 

countable, 10 

natural numbers, 200 
normal distribution, 1, 69, 70, 133, 

134, 141, 193 
null recurrence, 94 

option, 195 
optional sampling theorem, 163 
order statistics, 179 
order-preserving, 44, 46, 49 

Ornstein-Uhlenbeck process, 193, 
194 

outer measure, 11 

partition, 43, 199 
period of Markov chain, 90, 180 
periodicity, 90, 181 
permutation, 177, 179 
persistence, 86 
point mass, 69 
Poisson distribution, 1, 8, 69, 141, 

185 
Poisson process, 185 
policy, see gambling policy 
Polish space, 156 
positive recurrence, 94 
prerequisites, 8, 199 
price, fair, 195 
principle of inclusion-exclusion, 8, 

53 
probability, 1 

conditional, 84, 152, 155 
probability measure, 7 

defined on an algebra, 25 
probability space, 7 

complete, 15, 16 
discrete, 9, 20 

probability triple, 7 
process 

Markov, 183 
stochastic, 182 

process, stochastic, 73 
product measure, 22, 23 
product set, 199 
projection operator, 157 

Radon-Nikodym derivative, 144, 
148 

Radon-Nikodym theorem, 144,148 
random function, 186 
random variable, 29 

absolutely continuous, 1, 70 
discrete, 1, 69 
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simple, 43 
random walk, 75, 87, 97, 161, 166 
range, 43, 200 
rate, jump, 184 
rational numbers (Q), 200 
real numbers (R), 200 
recurrence, 86, 88 

null, 94 
positive, 94 

reducibility, 88 
reflexive relation, 207 
regular conditional distribution, 156 
relation, 207 

equivalence, 207 
reflexive, 207 
symmetric, 207 
transitive, 207 

return time, 94 
reversibility, 89, 184, 192 
Riemann integrable, 50, 51 
right-continuous, 67 
risk-free interest rate, 195 
risk-neutral measure, 195 
Russell's paradox, 199 

sample paths, continuous, 188, 189 
sample space, 7 
semialgebra, 9, 10 
semigroup, 183 
set, 199 

Borel, 16 
boundary, 117 
Cantor, 16, 81 
cardinality, 200 
complement, 199 
countable, 200 
difference, 199 
disjoint, 8, 199 
empty, 199 
finite, 200 
intersection, 199 
measurable, 4, 7 
product, 199 

uncountable, 200 
union, 199 

disjoint, 8, 199 
universal, 199 

shift, 3 
sigma-algebra, see c-algebra 
sigma-field, see cr-algebra 
sigma-finite measure, see cr-finite 

measure 
sign(0), 127 
signed measure, 144, 146 
simple random variable, 43 
simple random walk, 75, 97 

symmetric, 87, 161 
singular measure, 143, 144, 148 
Skorohod's theorem, 117 
state space, 83, 179 
stationary distribution, 89, 180, 

184 
Sterling's approximation, 87 
stochastic integral, 191 
stochastic process, 73, 177, 182 

continuous time, 182 
stock, 195 
stock options, 194, 195 

value of, 195 
stopping time, 162 
strong law of large numbers, 60, 

62 
sub-cr-algebra, 152 
subadditivity, 8, 11 
submartingale, 161 

convergence theorem, 169 
sampling theorem, 163 

subsequence, 204 
subset, 199 
superadditivity, 10 
supermartingale, 161 
supremum, 204 
symmetric relation, 207 

tightness, 130 
Tonelli's theorem, 110 



total variation distance, 181 
transience, 86 
transition matrix, 83, 84, 89 
transition probabilities, 83, 179 

nth order, 85 
transitive relation, 207 
triangle inequality, 44 
triangular array, 136 
truncation argument, 62 
Tychonov's Theorem, 21 

uncountable additivity, 2, 24 
uncountable set, 200 
uniform distribution, 2, 9, 16 
uniform integrability, 105 

convergence theorem, 105, 165 
uniformly bounded, 78 
union, 199 

disjoint, 8, 199 
universal set, 199 
upcrossing lemma, 169 
upper bound, 204 

least, 204 
upper integral, 50 

value of stock option, 195 
vanishing at infinity, 117, 122 
variable, random, see random vari

able 
variance (Var), 44 

conditional, 157 
volatility, 190, 195 
volume, 23 

w.p. 1, see convergence 
Wald's theorem, 166, 175, 176 
weak convergence, 117, 120 
weak law of large numbers, 60, 64 
weak* topology, 117 
Wiener process, 186 

zero-one law, Kolmogorov, 37 



A FIRST LOOK AT 
RIGOROUS PROBABILITY THEORY 

"This book is certainly well placed to establish itself as a core 

reading in measure-theoretic probability... [it is] delightful reading 

and a worthwhile addition to the existing literature." 

Mathematical Reviews 

'his textbook is an introduction to probability theory using 

''measure theory. It is designed for graduate students in a variety 

of fields (mathematics, statistics, economics, management, finance, 

computer science, and engineering) who require a working knowledge 

of probability theory that is mathematically precise, but without excessive 

technicalities. The text provides complete proofs of all the essential 

introductory results. Nevertheless, the treatment is focused and 

accessible, with the measure theory and mathematical details presented 

in terms of intuitive probabilistic concepts, rather than as separate, 

imposing subjects. In this new edition, many exercises and small 

additional topics have been added and existing ones expanded. The 

text strikes an appropriate balance, rigorously developing probability 

theory while avoiding unnecessary detail. 

World Scientific 
www.worldscientific.com 
6300 he 

ISBN 981-270-370-5 

9 "789812 703705" 

http://www.worldscientific.com

	Contents���������������
	Preface to the First Edition�����������������������������������
	Preface to the Second Edition������������������������������������
	1 The need for measure theory������������������������������������
	1.1 Various kinds of random variables��������������������������������������������
	1.2 The uniform distribution and non-measurable sets�����������������������������������������������������������
	1.3 Exercises��������������������
	1.4 Section summary��������������������������

	2 Probability triples����������������������������
	2.1 Basic definition���������������������������
	2.2 Constructing probability triples�������������������������������������������
	2.3 The Extension Theorem��������������������������������
	2.4 Constructing the Uniform[0 1] distribution�����������������������������������������������������
	2.5 Extensions of the Extension Theorem����������������������������������������������
	2.6 Coin tossing and other measures������������������������������������������
	2.7 Exercises��������������������
	2.8 Section summary��������������������������

	3 Further probabilistic foundations������������������������������������������
	3.1 Random variables���������������������������
	3.2 Independence�����������������������
	3.3 Continuity of probabilities��������������������������������������
	3.4 Limit events�����������������������
	3.5 Tail fields����������������������
	3.6 Exercises��������������������
	3.7 Section summary��������������������������

	4 Expected values������������������������
	4.1 Simple random variables����������������������������������
	4.2 General non-negative random variables������������������������������������������������
	4.3 Arbitrary random variables�������������������������������������
	4.4 The integration connection�������������������������������������
	4.5 Exercises��������������������
	4.6 Section summary��������������������������

	5 Inequalities and convergence�������������������������������������
	5.1 Various inequalities�������������������������������
	5.2 Convergence of random variables������������������������������������������
	5.3 Laws of large numbers��������������������������������
	5.4 Eliminating the moment conditions��������������������������������������������
	5.5 Exercises��������������������
	5.6 Section summary��������������������������

	6 Distributions of random variables������������������������������������������
	6.1 Change of variable theorem�������������������������������������
	6.2 Examples of distributions������������������������������������
	6.3 Exercises��������������������
	6.4 Section summary��������������������������

	7 Stochastic processes and gambling games������������������������������������������������
	7.1 A first existence theorem������������������������������������
	7.2 Gambling and gambler's ruin��������������������������������������
	7.3 Gambling policies����������������������������
	7.4 Exercises��������������������
	7.5 Section summary��������������������������

	8 Discrete Markov chains�������������������������������
	8.1 A Markov chain existence theorem�������������������������������������������
	8.2 Transience recurrence and irreducibility���������������������������������������������������
	8.3 Stationary distributions and convergence���������������������������������������������������
	8.4 Existence of stationary distributions������������������������������������������������
	8.5 Exercises��������������������
	8.6 Section summary��������������������������

	9 More probability theorems����������������������������������
	9.1 Limit theorems�������������������������
	9.2 Differentiation of expectation�����������������������������������������
	9.3 Moment generating functions and large deviations�����������������������������������������������������������
	9.4 Fubini's Theorem and convolution�������������������������������������������
	9.5 Exercises��������������������
	9.6 Section summary��������������������������

	10 Weak convergence��������������������������
	10.1 Equivalences of weak convergence��������������������������������������������
	10.2 Connections to other convergence��������������������������������������������
	10.3 Exercises���������������������
	10.4 Section summary���������������������������

	11 Characteristic functions����������������������������������
	11.1 The continuity theorem����������������������������������
	11.2 The Central Limit Theorem�������������������������������������
	11.3 Generalisations of the Central Limit Theorem��������������������������������������������������������
	11.4 Method of moments�����������������������������
	11.5 Exercises���������������������
	11.6 Section summary���������������������������

	12 Decomposition of probability laws�������������������������������������������
	12.1 Lebesgue and Hahn decompositions��������������������������������������������
	12.2 Decomposition with general measures�����������������������������������������������
	12.3 Exercises���������������������
	12.4 Section summary���������������������������

	13 Conditional probability and expectation�������������������������������������������������
	13.1 Conditioning on a random variable���������������������������������������������
	13.2 Conditioning on a sub-o-algebra�������������������������������������������
	13.3 Conditional variance��������������������������������
	13.4 Exercises���������������������
	13.5 Section summary���������������������������

	14 Martingales���������������������
	14.1 Stopping times��������������������������
	14.2 Martingale convergence����������������������������������
	14.3 Maximal inequality������������������������������
	14.4 Exercises���������������������
	14.5 Section summary���������������������������

	15 General stochastic processes��������������������������������������
	15.1 Kolmogorov Existence Theorem����������������������������������������
	15.2 Markov chains on general state spaces�������������������������������������������������
	15.3 Continuous-time Markov processes��������������������������������������������
	15.4 Brownian motion as a limit��������������������������������������
	15.5 Existence of Brownian motion����������������������������������������
	15.6 Diffusions and stochastic integrals�����������������������������������������������
	15.7 Ito's Lemma�����������������������
	15.8 The Black-Scholes equation��������������������������������������
	15.9 Section summary���������������������������

	A. Mathematical Background���������������������������������
	A.1 Sets and functions�����������������������������
	A.2 Countable sets�������������������������
	A.3 Epsilons and Limits������������������������������
	A.4 Infimums and supremums���������������������������������
	A.5 Equivalence relations��������������������������������

	B. Bibliography����������������������
	B.1 Background in real analysis��������������������������������������
	B.2 Undergraduate-level probability������������������������������������������
	B.3 Graduate-level probability�������������������������������������
	B.4 Pure measure theory������������������������������
	B.5 Stochastic processes�������������������������������
	B.6 Mathematical finance�������������������������������

	Index������������



