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General Preface 

This three-volume series grew out of a three-quarter course in probability, 
statistics, and sto�chastic processes taught for a number of years at UCLA. �Ve felt 
a need for a seri(�s of books that would treat these subjects in a way that is well 
coordinated, but 'which would also give adequate emphasis to each subject as being 
interesting and useful on its own merits. 

The first volunle, Introduction to Probability Theory, presents the fundalnental 
ideas of probability theory and also prepares the student both for courses in 
statistics and for further study in probability theory, including stochastic pro�cesses. 

The second volume, Introduction to Statistical Theory, develops the basic 
theory of mathernatical statistics in a systematic, unified manner. Togeth(�r, the 
first two volumes Icontain the material that is often covered in a two-semester �course 
in mathematical s.tatistics. 

The third volu:me, Introduction to Stochastic Processes, treats Markov c:hains, 
Poisson processes, birth and death processes, Gaussian processes, Brownian 
motion, and pro�cesses defined in terms of Brownian motion by means of ele
mentary stochastic differential equations. 

v 





Preface 

This volume is intended to serve as a text for a one-quarter or one-se:mester 
course in probability theory at the junior-senior level. The material has been 
designed to give the reader adequate preparation for either a course in statistics or 
further study in probability theory and stochastic processes. The prerequisite for 
this volume is a (�ourse in elementary calculus that includes multiple integration. 

We have endeavored to present only the more important concepts of probability 
theory. We have attempted to explain these concepts and indicate their usefulness 
through discussion, examples, and exercises. Sufficient detail has been included in 
the examples so that the student can be expected to read these on his own, thereby 
leaving the instructor more time to cover the essential ideas and work a numtber of 
exercises in class. 

At the conclusion of each chapter there are a large number of exercises, arranged 
according to the order in which the relevant material was introduced in the text. 
Some of these exercises are of a routine nature, while others develop ideas intro
duced in the text a little further or in a slightly different direction. The more difficult 
problems are supplied with hints. Answers, when not indicated in the problems 
themselves, are given at the end of the book. 

Although most of the subject matter in this volume is essential for further study 
in probability and statistics, some optional material has been included to provide 
for greater flexibility. These optional sections are indicated by an asterisk. The 
material in Section 6.2.2 is needed only for Section 6.6; neither section is required 
for this volume:, but both are needed in Introduction to Statistical 11zeory. 
The material of Section 6.7 is used only in proving Theorem 1 of Chapter 9 in this 
volume and Theorem 1 of Chapter 5 in Introduction to Statistical Theor)'. The 
contents of Chapters 8 and 9 are optional ; Chapter 9 does not depend on Chapter 8. 

We wish to thank our several colleagues who read over the original manuscript 
and made suggestions that resulted in significant improvements. We also would 
like to thank N(�il Weiss and Luis Gorostiza for obtaining answers to all the 
exercises and Mrs. Ruth Goldstein for her excellent job of typing. 
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1 

Probability Spaces 

Probability the:ory is the branch of mathematics that is concerned with random 
(or chance) phenomena. It has attracted people to its study both becausc� of its 
intrinsic interest and its successful applications to many areas within the physical, 

• 
biological, and social sciences, in engineering, and in the business world. 

Many phenomlena have the property that their repeated observation under a 
specified set of conditions invariably leads to the same outcome. For exal1nple, if 
a ball initially at rest is dropped from a height of d feet through an evacuated 
cylinder, it will invariably fall to the ground in t = J2d/g seconds, where 
g = 32 ft/sec2 is the constant acceleration due to gravity. There are other 
phenomena whose repeated observation under a specified set of conditions does not 
always lead to the� same outcome. A familiar example of this type is the tossing of a 
coin. If a coin is tossed 1000 times the occurrences of heads and tails alternate in a 
seemingly erratic and unpredictable manner. It is such phenomena that w(� think 
of as being random and which are the object of our investigation. 

At first glance it might seem impossible to make any worthwhile statc�ments 
about such random phenomena, but this is not so. Experience has sho\vn that 
many nondeterministic phenomena exhibit a statistical regularity that makes them 
subject to study. This may be illustrated by considering coin tossing again. For 
any given toss of the coin we can make no nontrivial prediction, but observations 
show that for a large number of tosses the proportion of heads seems to fluctuate 
around some fixed number p between 0 and I (p being very near 1/2 unless the coin 
is severely unbalanced). It appears as if the proportion of heads in n tosses would 
converge to p if v�e let n approach infinity. We think of this limiting proportion p 
as the "probabili1ty" that the coin will land heads up in a single toss. 

More generally the statement that a certain experimental outcome has probability 
p can be interpret�ed as meaning that if the experiment is repeated a large nUIIlber of 
times, that outco:me would be observed "about" lOOp percent of the time .. This 
interpretation of 'probabilities is called the relative frequency interpretation. It is 
very natural in Illany applications of probability theory to real world problems, 
especially to those involving the physical sciences, but it often seems quite 
artificial. How, �or example, could we give a relative frequency interpretation to 

1 



2 P,obabni�' Spaces 

the probability that a given newborn baby will live at least 70 years ? 'various 
attempts have been made, none of them totally acceptable, to give alte:mative 
interpretations to such probability statements. 

For the mathlematical theory of probability the interpretation of probabilities 
is irrelevant, just as in geometry the interpretation of points, lines, and planes is 
irrelevant. We ",ill use the relative frequency interpretation of probabilities only as 
an intuitive motivation for the definitions and theorems we will be dev1eloping 
throughout the book. 

1 .1 .  Ex:amples o f  random phenomena 

In this section we will discuss two simple examples of randolm phe
nomena in order to motivate the formal structure of the theory. 

Examlple 1 .  A box has s balls, labeled 1, 2, . . .  , s  but otherwise 
identical. Consider the following experiment. The balls are mixed up well 
in the box and a person reaches into the box and draws a ball. The 
number of the ball is noted and the ball is returned to the box. The out
come of the experiment is the number on the ball selected. About this 
experiment we can make no nontrivial prediction. 

Suppose we repeat the above experiment n times. Let NlI{k) denote the 
number of times the ball labeled k was drawn during these n trials of the 
experiment. Assume that we had, say, s = 3 balls and n = 201 trials .  
The outcomes of these 20 trials could be described by listing the numbers 
which appeared in the order they were observed. A typical result mdght be 

1, 1, 3, 2, 1, 2, 2, 3, 2, 3, 3, 2, 1, 2, 3, 3, 1, 3, 2, 2, 
in which case 

and 

The relative frequencies (Le. , proportion of times) of the outcomles 1, 2, 
and 3 are then 

N 20(2) = .40, 
20 

and N 20(3) = .35. 
20 

As the number of trials gets large we would expect the relative fre
quencies NlI{I)/n, . . .  , NlI{s)/n to settle down to some fixed numbers 
PI' P2, · . .  ,Ps (which according to our intuition in this case should all 
be l/s). 

By thle relative frequency interpretation, the number p, would bf� called 
the prolbability that the ith ball will be drawn when the experiInent is 
performed once (i = 1, 2, . . .  , s). 
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We wil]l now make a mathematical model of the experiment of drawing 
a ball frolm the box. To do this, we first take a set a having s points that 
we place into one-to-one correspondence with the possible outconles of 
the experiment. In this correspondence exactly one point of a wrill be 
associated with the outcome that the ball labeled k is selected. Call that 
point rok. To the point rok we associate the number Pk = lIs and call it the 
probability of rok. We observe at once that 0 < Pk < 1 and that 

PI + · · · ,+ Ps = 1. 
Suppos1e now that in addition to being numbered from 1 to s the first r 

balls are colored red and the remaining s - r are colored black" We 
perform the experiment as before, but now we are only interested iln the 
color of the ball drawn and not its number. A moment's thought shows 
that the r1elative frequency of red balls drawn among n repetitions of the 
experiment is just the sum of the relative frequencies N,.(k)ln over those 
values of k that correspond to a red ball. We would expect, and expe
rience shows, that for large n this relative frequency should settle do'wn to 
sOll}e fixed number. Since for large n the relative frequencies N,.(k)/n are 
expected to be close to Pk = lIs, we would anticipate that the relative 
frequency of red balls would be close to rls. Again experience verifies this. 
According to the relative frequency interpretation, we would then c4all rls 
the probability of obtaining a red ball. 

Let us see how we can reflect this fact in our model. Let A be the subset 
of n consisting of those points rok such that ball k is red. Then.t4. has 
exactly r points . We call A an event. More generally, in this situation we 
will call any subset B ofa an event. To say the event B occurs means that 
the outcolme of the experiment is represented by some point in B. 

Let A alnd B be two events. Recall that the union of A and B, A u B, 
is the set of all points ro E n such that ro E A or ro E B. N ow the points in 
n are in c:orrespondence with the outcomes of our experiment. The event 
A occurs if the experinient yields an outcome that is represented by some 
point in it, and similarly the event B occurs if the outcome of the experi
ment is rc�presented by some point in B. The set A u B then reprc�sents 
the fact that the event A occurs or the event B occurs. Similarly the inter
section A (l B of A and B consists of all points that are in both A and B. 
Thus if a) E A (l B then ro E A and ro E B so A (l B represents thle fact 
that both the events A and B occur. The complement AC (or A') of A is the 
set �f points in n that are not in A. The event A does not occur if the ex
periment yields an outcome represented by a point in AC• 

Diagralmmatically, if A and B are represented by the indicated re:gions 
in Figure la, then A u B, A (l B, and AC are represented by the shaded 
regions in Figures 1 b, 1 c, and 1 d, respectively. 
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1a 1b ...--------------., 0 

AUB 

1c 1d 

( 
AnB 

Figule 1 

To illustrate these concepts let A be the event "red ball selected" and 
let B be the event "even-numbered ball selected." Then the union A u B 
is the eVlent that either a red ball or an even-numbered ball was se:lected. 
The intersection A n B is the event "red even-numbered ball sel c�cted." 
The event AC occurs if a red ball was not selected. 

We now would like to assign probabilities to events. Mathematically, 
this just means that we associate to each set B a real number. A prilori we 
could do this in an arbitrary way. However, we are restricted if w�e want 
these probabilities to reflect the experiment we are trying to model. How 
should �(e make this assignment? We have already assigned eachl point 
the number s -1. Thus a one-point set {ro} should be assigned the number 
s -1 • N ow from our discussion of the relative frequency of the event 
"drawing a red ball," it seems that we should assign the event A the: prob
ability P(A) = rls. More generally, if B is any event we will define P(B) 
by P(B) = jls if B has exactly j points. We then observe that 

P(B) = � p", 
(l)rc e B 

where Llwrc e B Pk means that we sum the numbers Pk over those valuc�s of k 
such that rok E B. From our definition of P(B) it easily follows tllat the 
following statements are true. We leave their verification to the reader. 

Let 0 denote the empty set ; then P(0) = 0 and P(o') = 1. If A and B 
are any two disjoint sets, i.e., A n B = 0, then 

P(A u B) = P(A) + P(B). 

Examplle 2. It is known from physical experiments that an isotol>e of a 
certain substance is unstable. In the course of time it decays by the: emis
sion of neutrons to a stable form. We are interested in the time that it -
takes an atom of the isotope to decay to its stable form. According to the 
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laws of physics it is impossible to say with certainty when a specified atom 
of the iSOltope will decay, but if we observe a large number N of atoms 
initially, then we can make some accurate predictions about the number of 
atoms N(t) that have not decayed by time t. In other words we can rather 
accurately predict the fraction of atoms N(t)/N that have not decayed by 
time t, but we cannot say which of the atoms will have done so. Since all 
of the atoms are identical, observing N atoms simultaneously should be 
equivalent to N repetitions of the same experiment where, in this case, 
the experiment consists in observing the time that it takes an atom to decay. 

Now tOl a first approximation (which is actually quite accurate) th,e rate 
at which the isotope decays at time t is proportional to the number of 
atoms pre:sent at time t, so N(t) is given approximately as the solution of 
the differe�ntial equation 

df 
dt 

= -).f(t), f(O) = N, 

where A. :> 0 is a fixed constant of proportionality_ The unique solution 
of this equation is f(t) = Ne

- lt
, and thus the fraction of atoms that have 

not decayed by time t is given approximately by N(t)/N = e
-�tt

_ If 
o < to < t1, the fraction of atoms that decay in the time interval [to, t1] 
is (e

- lto -- e
- lt1) . Consequently, in accordance with the relative frequency 

interpretation of probability we take (e
- lto 

- e
- lt1) as the probability 

that an atom decays between times to and t1-
To make a mathematical model of this experiment we can try to proceed 

as in the previous example. First we choose a set 0 that can be put into a 
one-to-onte correspondence with the possible outcomes of the experiJnent. 
An outcoIne in this case is the time that an atom takes to decay. This can 
be any positive real number, so we take 0 to be the interval [0, (0) on the 
real line. From our discussion above it seems reasonable to assign to 
the interval [to , t1] the probability (e

- lto 
- e

- lt1). In particular if 
to = tl = t then the interval degenerates to the set {t} and the prob
ability assigned to this set is O. 

In our previous example 0 had only finitely many points ; however" here 
n has a (noncountable) infinity of points and each point has probability o. 
Once again we observe that P(O) = 1 and P(0) = o. Suppose A a.nd B 
are two disjoint intervals. Then the proportion of atoms that decay in the 
time interval A u B is the sum of the proportion that decay in the time 
interval A and the proportion that decay in the time interval B. In light 
of this adlditivity we demand that in the mathematical model, A u B 
should have probability P(A ) + P(B) assigned to it. In other words, in 
the mathelmatical model we want 

P(A u B) = P(A) + P(B) 

whenever .A and B are two disjoint intervals. 
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1 .2. Pr10babi l ity spaces 

Our purpose in this section is to develop the formal mathelnatical 
structurc�, called a probability space, that forms the foundation for the 
mathematical treatment of random phenomena. 

Envision some real or imaginary experiment that we are trying to model. 
The first thing we must do is decide on the possible outcomes of the 
experimc�nt. It is not too serious if we admit more things into our con
sideration than can really occur, but we want to make sure that we do not 
exclude things that might occur. Once we decide on the possible out
comes, 'we choose a set n whose points (JJ are associated with these 
outcome:s . From the strictly mathematical point of view, however, n is 
just an abstract set of points. 

We next take a nonempty collection d of subsets of n that is to 
represent the collection of "events" to which we wish to assign prob
abilities. By definition , now, an event means a set A in .9l. The statement 
the event A occurs means that the outcome of our experiment is repre�sented 
by some point (JJ E A. Again, from the strictly mathematical point of view, 
d is just a specified collection of subsets of the set Q. Only sets j� E .91, 

i .e. , events, will be assigned probabilities. In our model in Exanlple 1 ,  
d consisted of all subsets of Q. In the general situation when Q does not 
have a finite number of points, as in Example 2, it may not be possible to 
choose J'I in this manner. 

The next question is, what should the collection d be? It is quite 
reasonable to demand that d be closed under finite unions and finite 
intersections of sets in d as well as under complementation. For example, 
if A and B are two events, then A u B occurs if the outcome of our 
experim��nt is either represented by a point in A or a point in B. Clearly, 
then, if it is going to be meaningful to talk about the probabilities that A 
and B oc:cur, it should also be meaningful to talk about the probability that 
either A or B occurs, i .e . ,  that the event A u B occurs. Since only sets in 
d will ble assigned probabilities, we should require that A u B E d when
ever A and B are members of d. Now A (\ B occurs if the outcome of 
our expe:riment is represented by some point that is in both A and B. A 
similar line of reasoning to that used for A u B convinces us that we 
should have A (\ B E d whenever A, B E d. Finally, to say that the 
event A does not occur is to say that the outcome of our experiment is not 
represented by a point in A, so that it must be represented by some: point 
in AC• It would be the height of folly to say that we could talk about the 
probability of A but not of AC. Thus we shall demand that whenev�er A is 
in d so is AC• 

We have thus arrived at the conclusion that d should be a nonempty 
collection of subsets of Q having the following properties : 
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(i) If ,4 is in .91 so is AC• 
(ii) If ,4 and B are in .91 so are A u B and A (l B. 

An easy induction argument shows that if A1, A2, • • • , All are sets in .91 
then so are Ui= 1 At and ni= 1 At. Here we use the shorthand notation 

and 

,. 
U Ai = A1 U A2 U • · • u A,. 
i= 1 
,. 
n Ai = A1 (l A2 ("\ · · · n A,.. 
i= 1 

Also, since A (l AC = 0 and A u AC = n, we see that both the tempty 
set 0 and the set n must be in .91. 

A nonc�mpty collection of subsets of a given set n that is closed under 
finite set theoretic operations is called a field of subsets of n. It therefore 
seems we should demand that .91 be a field of subsets. It turns out, how
ever, that: for certain mathematical reasons just taking .91 to be a field of 
subsets of n is insufficient. What we will actually demand of the coll�ection 
.91 is more stringent. We will demand that .91 be closed not only under 
finite set theoretic operations but under countably infinite set the:oretic 
operations as well. In other words if {All}' n > 1, is a sequence of sets in 
.91, we will demand that 

ex> ex> 

U A,. E d 
,.=1 

and n A,. E d. 
,.=1 

Here we are using the shorthand notation 
ex> 

U A,. = A1 U A2 U · • • 
,.=1 

to denote the union of all the sets of the sequence, and 
ex> 

n A,. = A 1 (l A2 (l • • • 
,.=1 

to denote: the intersection of all the sets of the sequence. A collection of 
subsets of a given set n that is closed under countable set theory operations 
is called a O'-field of subsets of n. (The 0' is put in to distinguish such a 
collection from a field of subsets.) More formally we have the following : 

_Djefinition 1 A nonempty collection of subsets .91 of a set r.t is 
called a O'-:field of subsets ofn provided that the following two properties 
hold: 

(i) If A is in .91, then A C is also in .91. 

(ii) If All is in .91, n = 1, 2, . . .  , then u:: 1 All and n:: 1 All are 
both in d. 
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We now come to the assignment of probabilities to events. As was 

made cllear in the examples of the preceding section, the probability of an 
event is a nonnegative real number. For an event A, let P(A) denote this 
number.. Then 0 � peA) < 1 .  The set n representing every possible 
outcome should, of course, be assigned the number 1 ,  so pen) = 1 .  In our 
discussion of Example 1 we showed that the probability of events satisfies 
the property that if A and B are any two disjoint events then peA lJ B) = 
peA) + PCB). Similarly, in Example 2 we showed that if A and B are two 

disjoint intervals, then we should also require that 

peA u B) = peA) + PCB). 

It no'w seems reasonable in general to demand that if A and. B are 
disjoint eveQts then peA u B) = peA) + PCB). By induction, it would 
then foUow that if A1, A2, • • • , All are any n mutually disjoint sets (that is, 
if Ai (\ Aj = 0 whenever i � j), then 

P CVl Ai) = itl P(Ai}· 

Actually, again for mathematical reasons, we will in fact demand that this 

additivity property hold for countable collections of disjoint events. 

Definition 2 A probability measure P on a u-field of subsets d 
of a set 0 is a real-valued function having domain d satisfying the 
following properties: 

(i) P(O) = 1 .  
(ii) peA) > 0 for all A E d. 

(iii) If All, n = 1, 2, 3, . .. , are mutually disjoint sets in d, then 

P (91 A,,) = "�l P(A,,). 

A probability space, denoted by (0, .91, P), is a set 0, a u-field of 
subsets .91, and a probability measure P defined on d. 
It is quite easy to find a probability space that corresponds to the 

experim1ent of drawing a ball from a box. In essence it was already given 

in our discussion of that experiment. We simply take 0 to be a finite set 
having S' points, d to be the collection of all subsets of n, and P to be the 
probability measure that assigns to A the probability peA) = j/s if A has 

, 

exactly j points. 
Let us now consider the probability space associated with the ilsoiope 

disintegration experiment (Example 2). Here it is certainly clear that 
o = [0, (0), but it is not obvious what d and P should be. Indeed, as we 

will indicate below, this is by no means a trivial problem, and one that in 

all its ramifications depends on some deep properties of set theory t.hat are 
beyond the scope of this book. 
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One thing however is clear; whatever ,s;I and P are chosen to be, .91 must 
contain all intervals, and P must assign probability (e-lto - e-lt1) to the 
interval [to , t1] if we want the probability space we are constructing to 
reflect the physical situation. The problem of constructing the space now 
becomes the following purely mathematical one. Is there a a-field d that 
contains all intervals as members and a probability measure P defined on 
d that assigns the desired probability P(A) to the interval A? Qu€�stions 
of this type are in the province of a branch of advanced mathematics 

called measure theory and cannot be dealt with at the level of this book. 

Results from measure theory show that the answer to this particular 
question and others of a similar nature is yes, so that such constructions 
are always possible. 

We will not dwell on the construction of probability spaces in general. 

The mathematical theory of probability begins with a� abstract probability 
space and develops the theory using the probability space as a basis of 
operation. Aside from forming a foundation for precisely defining; other 

concepts in the theory, the probability space itself plays very little role in 
the further development of the subject. Auxiliary quantities (especially 

random variables, a concept taken up in Chapter 3) quickly become the 

dominant theme of the theory and the probability space itself fad€�s into 

the background. 
We will conclude our discussion of probability spaces by constructing 

an important class of probability spaces, called uniform probability spaces. 
Some of the oldest problems in probability involve the idea of picking a 

point "at random" from a set S. Our intuitive ideas on this notion show 
us that if A and B are two subsets having the same "size" then the c;hance 

of picking a point from A should be the same as from B. If S has only 
finitely many points we can measure the "size" of a set by its cardinality_ 
Two sets are then of the same "size" if they have the same number of 

points. It is quite easy to make a probability space corresponding to the 
experiment of picking a point at random from a set S having a. finite 
number s of points. We take n = S and d to be all subsets of S, and 
assign to the set A the probability P(A) = j/s if A is a set having exactly j 
points. Such a probability space is called a symmetric probability space 
because leach one-point set carries the same probability S-l. W€� shall 

return to the study of such spaces in Chapter 2. 
Suppose now that S is the interval [a, b] on the real line where - 00 < 

a < b < + 00 . It seems reasonable in this case to measure the "size" of a 
subset A of [a, b] by its length. Two sets are then of the same size :if they 
have the same length. We will denote the length of a set A by IA I. 

To construct a probability space for the experiment of "choosing a 
point at random from S," we proceed in a manner similar to that used for 
the isotope experiment. We take n = S, and appeal to the results of 
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measure: theory that show that there is a a-field .91 of subsets (jf S, and a 
probability measure P defined on .91 such that P(A) = IAI/ISI whenever A 
is an interval. 

More generally, let S be any subset of r-dimensional Euclidean space 
having finite, nonzero r-dimensional volume. For a subset A of S denote 
the volume of A by IAI. There is then a a-field .91 of subsets of S that 

contains all the subsets of S that have volume assigned to thel1n as in 
calculus, and a probability measure P defined on .91 such that l'(A) = 
IAI/ISI for any such set A. We will call any such probability space, 
denoted by (S, .91, P), a uniform probability space. 

1 .3. Pr'operties of probabilities 

In this section we will derive some additional properties of a probability 
measure: P that follow from the definition of a probability measure. These 

properties will be used constantly throughout the remainder of thc� book. 
We assume that we are given some probability space (0, .91, P) and that 
all sets under discussion are events, i.e. , members of .91. 

For any set A, A u AC = 0 and thus for any two sets A and B vve have 
the decomposition of B: 

(1) B = 0 n B = (A u Aj n B = (A n B) u (AC n B). 

Since A n B and AC n B are disjoint, we see from (iii) of Definition 2 
that 

(2) P(B) = P(A n B) + P(AC n B). 

By setting B = 0 and recalling that P(O) = 1 ,  we conclude from (2) that 

(3) P(Aj = 1 - P(A). 

In parti1cular P(0) = 1 - P(O), so that 

(4) P(0) = o. 

As a second application of (2) suppose that A c B. Then A n B = A 
and hence 

(5) P(B) = P(A) + P(AC n B) if A c B. 

Since P(AC n B) � 0 by (ii), we see from (5) that 

(6) P(B) � P(A) if A c B. 

De M[organ's laws state that if {All}' n � 1, is any sequence of sets, then 

(7) 



1.3. Properties of prQbabilities 1 1  

and 

(8) 

To see that (7) holds, observe that (JJ E (Un� 1 An)C if and only if (0 ¢ An 
for any n; that is, (JJ E A� for all n > 1 ,  or equivalently, (JJ E nn A!�. To 
establish (8) we apply (7) to {A�}, obtaining 

and by taking complements, we see that 

A useful relation that follows from (7) and (3) is 

(9) 

Now Un An is the event that at least one of the events An occurs, while 

nn A� is the event that none of these events occur. In words, (9) asserts 

that the probability that at least one of the events An will occur is 1 minus 
the probability that none of the events An will occur. The advantage� of (9) 
is that in some instances it is easier to compute P(nn A� than to compute 
P(Un An). [Note that since the events An are not necessarily disjoint it is 

not true that P<Un An) = Ln P(An).] The use of (9) is nicely illustrated 
by means of the following. 

Examp,le 3. Suppose three perfectly balanced and identical coins are 
tossed. ]�ind the probability that at least one of them lands heads. 

There are eight possible outcomes of this experiment as follows: 

Coil 1 1 H H H H T T T T 

Coil 1 2 H H T T H H T T 

Coil 1 3 H T H T H T H T 

Our intuitive notions suggest that each of these eight outcomes should 
have the: probability 1 /8. Let At be the event that the first coin lands 
heads, A'2 the event that the second coin lands heads, and A3 thf� event 

that the third coin lands heads. The problem asks us to compute 
P(At u .A2 U A3). Now Ai n A� n A3 = {T, T, T} and thus 

P(A f n A2 n AD = 1/8; 
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hence (9) implies that 

P(At u A2 U A3) = 1 - P(A f () A2 () AD = 7/8. 

Our basic postulate (iii) on probability measures tells us that for dis
joint sets A and B, P(A u B) = P(A) + P(B). If A and B are not 
necessarily disjoint, then 

(10) P(A u B) = P(A) + P(B) - P(A () B) 

and consequently 

(1 1)  P(A u B) � P(A) + P(B). 

To see: that (10) is true observe that the sets A () BC, A () B, and �(C () B 
are mutually disjoint and their union is just A u B (see Figure 2). 1rhus 

( 12) P(A u B) = P(A () BC) + P(AC () B) + P(A () B). 

By (2), however, 

P(A () BC) = P(A) - P(A () B) 
and 

P(AC () B) = P(B) - P(A () B). 

By substituting these expressions into (12), we obtain ( 10). 

Ansc 

Figure 2 

Equations (10) and (1 1) extend to any finite number of sets. The 
analogue: of the exact formula (10) is a bit complicated and will be dis

cussed in Chapter 2. Inequality (1 1), however, can easily be extended by 
induction to yield 

II 

(13) P(At u A2 U • • • u All) � I: P(A,). 
i= t 

To prove this, observe that if n > 2, then by (11) 

P(At U ·  · • u AJ = P«At u · .. u A.-t) u AJ 

< P(At u · · · u A.-t) + P(A,.). 

Hence if (13) holds for n - 1 sets, it holds for n sets. Since (13) �clearly 
holds for n = 1, the result is proved by induction. 



1.3. Properties of probabilities 1 3  

So far we have used only the fact that a probability measure is finitely 
additive. Our next result will use the countable additivity. 

jrheorem 1 Let An, n > 1, be events. 
(i) If Al C A2 c · · ·  and A = U:':1 An, then 

(14) lim P{AJ = P{A). 
n .... CX) 

(li) ,if Al ::::> A2 ::> • • • and A = n:':1 An, then (14) again ho/(Js. 

Proof of (i). Suppose Ale A 2 c · · ·  and A = U:': 1 An. Set 
Bl = A1 ,1 and for each n � 2, let Bn denote those points which are in An 
but not in An-I, i.e., Bn = An (l A�-I. A point ro is in Bn if and only if 
ro is in A and An is the first set in the sequence AI' A2, • • •  containing ro. 

By definition, the sets Bn are disjoint, 

and 

Conseque:ntly, 

and 

Now 

(1 5) 

CX) 

A = U B,. 
,= 1 

n 
P(An) = r PCB,) 

,= 1 

CX) 
peA) = r PCB,). 

i= 1 

n CX) 
lim r P(B,} = r PCB,) 
n .... CX) '=1 '=1 

by the de1inition of the sum of an infinite series. It follows from (1 5) that 

so that (14) holds. 

n 
lim P(An} = lim r PCB,) 
n .... CX) n .... CX) ,= 1 

CX) 
= r P(B,} = P(A} , 

,= 1 

Proof of (ii). Suppose AI::::> A 2 ::::> • • •  and A = n:,: 1 An. Then 

Ai c A2 c · · · and by (8) 
CX) 

A� = U A�. 
n=1 

Thus by (i) of the theorem 

(16) 
n .... CX) 
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Since P(A� = 1 - P{An) and P{AC) = 1 - P{A), it follows from (16) 
that 

lim P{An) = lim (1 - P{A�)) 
n .... ex> n .... ex> 

= 1 - lim P{A�) 
n .... ex> 

= 1 - P{AC) = P{A) , 

and agai.n ( 14) holds. 

1 .4. Conditional probabi l ity 

I 

Suppose a box contains r red balls labeled 1 ,  2, . . .  , r and b black balls 
labeled 1 ,  2, . . .  , b. Assume that the probability of drawing any particular 
ball is (b + r) -1. If the ball drawn from the box is known to be red, what 
is the p1robability that it was the red ball labeled I?  Another 'Nay of 
stating this problem is as follows. Let A be the event that the s,elected 
ball was red, and let B be the event that the selected ball was labeled 1 .  
The problem is then to determine the "conditional" probability that the 
event B occurred, given that the event A occurred. This problem Icannot 
be solved until a precise definition of the conditional probability of one 
event given another is available. This definition is as follows : 

l)ejinition 3 Let A and B be two events such that P{A) :::> O. 
Then the conditional probability of B given A, written P{B I A), is 
define1d to be 

(17) P{B I A) = 
P{B (l A) 

. P{A) 

If P{)t) = 0 the conditional probability of B given A is undefined" 

The above definition is quite easy to motivate by the relative frequency 
interpretation of probabilities. Consider an experiment that is repeated 
a large number of times. Let the number of times the events A, JB, and 
A (l B occur in n trials of the experiment be denoted by Nn{A), Nn{lf), and 
Nn{A (l .B), respectively. For n large we expect that Nn{A)/n, N.,.{B)/n, 
and Nn{L4. (l B)/n should be close to P{A), P{B), and P{A (l B), lrespec
tively. If now we just record those experiments in which A occurs then we 
have Nn{A) trials in which the event B occurs Nn{A (l B) times. Thus the 
proportion of times that B occurs among these Nn{A) experim��nts is 
Nn{A (l .B)/Nn{A). But 

Nn{A (l B) 
= 

Nn{A (l B)/n 
Nn(A) Nn{A)/n 
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and thus for large values of n this fraction should be close to 

P(A n B)/P(A). 

As a first example of the use of (17) we will solve the problem posed at 
the start of this section. Since the set 0 has b + r points each of 'which 
carries the probability (b + r) -1, we see that P(A) = r(b + r) -:1 and 
peA n B) = (b + r)-1. Thus 

1 
P(B I A) = - .  

r 

This should be compared with the "unconditional" probability of B, 
namely P(B) = 2(b + r)-I. 

Exampl �a 4. Suppose two identical and perfectly balanced coins are 
tossed on ce. 

(a) Find the conditional probability that both coins show a head given 
that the fi,rst shows a head. 

(b) Find the conditional probability that both are heads given that at 
least one of them is a head. 

To solve these problems we let the probability space n consist of the 
four points HH, HT, TH, TT, each carrying probability 1/4. Let A be 
the event that the first coin results in heads and let B be the event that the 
second coin results in heads. To solve (a) we compute 

P(A n B I A) = P(A n B)/P(A) = (1/4)/(1/2) = 1/2. 

To answer (b) we compute 

P(A () B I A u B) = P(A n B)/P(A u B) = (1/4)/(3/4) = 1/3. 

In the above two examples the probability space was specified, and we 
used (17) to compute various conditional probabilities. In many problems 
however, we actually proceed in the opposite direction. We are given in 
advance ",hat we want some conditional probabilities to be, and we use this 
information to compute the probability measure on O. A typical example 
of this situation is the following. 

Exampl�a 5. Suppose that the population of a certain city is 40% male 
and 60% female. Suppose also that 50% of the males and 30% of the 
females srnoke. Find the probability that a smoker is male. 

Let M denote the event that a person selected is a male and let F d.enote 
the event that the person selected is a female. Also let S denote the event 
that the pc�rson selected smokes and let N denote the event that he doc�s not 
smoke. The given information can be expressed in the form P(S I M) = .5, 



1 6  Probability Spaces 

P(S I F) = .3, P(M) = .4, and P(F) = .6. The problem is to compute 
P(M J 5'). By (17), 

P(M I S) = P(M ('\ S) . 
P(S) 

Now P(.M n S) = P(M)P(S I M) = (.4)(.5) = .20, so the numera.tor can 
be computed in terms of the given probabilities. Since S is the union of the 
two disjoint sets S n M and S n F, it follows that 

Since 

we see that 

Thus 

P(S) = P(S (l M) + P(S n F). 

P(S (l F) = P(F)P(S I F) = (.6)(.3) = .18, 

P(S) = .20 + .1 8 = .38. 

P(M I S) = .20 � .53 . 
. 38 

The rteader will notice that the probability space, as such, was never 
explicitly mentioned. This problem and others of a similar type are solved 
simply by using the given data and the rules of computing probabilities 
given in Section 3 to compute the requested probabilities. 

It is quite easy to construct a probability space for the above ex.ample. 
Take the: set n to consist of the four points SM, SF, NM, and NF that are, 
respectively, the unique points in the sets S (l M, S (l F, N (l }'Id, and 
N (l F. The probabilities attached to these four points are not directly 
specified, but are to be computed so that the events P(S 1M), P(S I F), 
P(M), and P(F) have the prescribed probabilities. We have already 
found that P(S (l M) = .20 and P(S n F) = .18. We leave it as an 
exercise to compute the probabilities attached to the other t'r0 points. 

The problem discussed in this example is a special case of the following 
general situation. Suppose A l' A 2, . . .  , A,. are n mutually disjoint events 
with union n. Let B be an event such that P(B) > 0 and suppose P(B I A,,) 
and P(Aj,, ) are specified for 1 S k S n. What is P(A, I B)? To solve this 
problem note that the A" are disjoint sets with union n and consequently 

Thus 

But 

B = B ('\ COl A.) = "Vl (B ('\ AJ. 

,. 
P(B) = � P(B n At). 

"=1 
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so we can write 

( I S) P(AI I B) = P(AI () B) = P(Ai)P(B I AI) 
P(B} Lk= t P(A,,}P(B I At} 

1 7  

This formula, called Bayes' rule, finds frequent application. Onle way 
of looking at the result in ( 1 8) is as follows. Suppose we think of the c�vents 
A" as being the possible "causes" of the observable event B. Then P(�(t I B} 
is the probability that the event At was the "cause" of B given that B 
occurs. I�ayes' rule also forms the basis of a statistical method called 
Bayesian procedures that will be discussed in Volume II, Introduction to 
Statistical Theory. 

As an illlustration of the use of Bayes' rule we consider the following 
(somewhat classical) problem. 

Exa�pl,e 6. Suppose there are three chests each having two drawers. 
The first (;hest has a gold coin in each drawer, the second chest has a gold 
coin in one drawer and a .silver coin in the other drawer, and the third 
chest has a silver coin in each drawer. A chest is chosen at random and a 
drawer opened. If the drawer contains a gold coin, what is the probability 
that the other drawer also contains a gold coin? We ask the reader to 
pause and guess what the answer is before reading the solution. Often in 
this probl�em the erroneous answer of 1 /2 is given. 

This problem is easily and correctly solved using Bayes' rule once the 
description is deciphered. We can think of a probability space being 
constructe�d in which the events At ,  A2, and A3 correspond, respectively, 
to the first, second, and third chest being selected. These events are dis
joint and their union is the whole space n since exactly one chest is seh�cted. 
Moreover, it is presumably intended that the three chests are equally 
likely of being chosen so that P(At) = 1 /3, i = 1, 2, 3. Let B be the event 
tha. the coin observed was gold. Then, from the composition of the (�hests 
it is clear that 

and 

The problem asks for the probability that the second drawer has a. gold 
coin given that there was a gold coin in the first. This can only happen if 
the chest selected was the first, so the problem is equivalent to finding 
P(A t I B) .. We now can apply Bayes' rule ( 18) to compute the answer, 
which is 2/3. We leave it to the reader as an exercise to compute the 
probability that the second drawer has a silver coin given that th�� first 
drawer had a gold coin. 

For our next example we consider a simple probability scheme due to 
Polya. 
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Example 7. Palya 's urn scheme. Suppose an urn has r red balls and 
b black balls. A ball is drawn and its color noted. Then it together 
with c :> 0 balls of the same color as the drawn ball are added to the urn. 
The procedure is repeated n - 1 additional times so that thle total 
number of drawings made from the urn is n. 

Let Rj, 1 S j < n, denote the event that the jth ball drawn is red and let 
BJ, 1 < j  < n, denote the event that the jth ball drawn is black. Of course, 
for each j, RJ and BJ are disjoint. At the kth draw there are b + r + 

(k - I)c balls in the urn and we assume that the probability of drawing 
any particular ball is (b + r + (k - I )c) - t . To compute P(Rt (\ R2) we 
write 

Now 

and thus 

Similarly 

and thus 

P(Rt (\ R2) = ( r ) ( r + c ) . 
b + r  b + r + c  

P(Bt (\ R2) = ( b ) ( r ) 
b + r b + r + c 

r 
- --

b + r 

Consequently, P(R2) = P(Rt). Since 

P(Bz) = 1 - P(Rz) = b 
, 

b + r 

P(B2) =: P(Bt). Further properties of the Polya scheme will be developed 
in the exercises. 

1 .5. Inclependence 

Consider a box having four distinct balls and an experiment consisting 
of selecting a ball from the box. We assume that the balls are ��qually 
likely to be drawn. Let n = { I ,  2, 3, 4} and assign probability 1/4 to 
each point. 
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Let A �ind B be two events. For some choices of A and B, kno,.vledge 
that A oocurs increases the odds that B occurs. For example, if A = { I , 2} 
and B = { I } , then P(A ) = 1/2, P(B) = 1/4, and P(A () B) = 1/4. Con
sequently, P(B I A) = 1/2, which is greater than P(B). On the other hand, 
for other choices of A and B, knowledge that A occurs decreases thc� odds 
that B will occur. For example, if A = { I ,  2, 3} and B = { I ,  2, 4} , then 
P(A) = 3/4, P(B) = 3/4, and P(A () B) = 1/2. Hence P(BIA) := 2/3, 
which is less than P(B). 

A very interesting case occurs when knowledge that A occurs does not 
change tbe odds that B occurs. As an example of this let A = { I ,  2} and 
B = { I ,  3} ; then P(A) = 1/2, P(B) = 1 /2, P(A () B) = 1/4, and there
fore P(B I A) = 1 /2. Events such as these, for which the conditional 
probability is the same as the unconditional probability, are said to be 
independ,ent. 

Let A and B now be any two events in a general probability spac1e, and 
suppose that P(A) =F o. We can then define A and B to be independent if 
P(B I A) = P(B). Since P(B I A) = P(B () A)/P(A) we see that if .A and 
B are independent then 

(19) P(A () B) = P(A)P(B). 

Since (19) makes sense even if P(A) = 0 and is also symmetric in the letters 
A and B, it leads to a preferred definition of independence. 

Definition -I Two events A and B are independent if and on�y if 

P(A () B) = P(A)P(B). 

We can consider a similar problem for three sets A, B, and C. Take 
n = { I ,  2, 3, 4} and assign probability 1/4 to each point. Let A = { I , 2}, 
B = { I ,  3}, and C = { I , 4} . Then we leave it as an exercise to sho'w that 
the pairs of events A and B, A and C, and B and C are independent. We 
say that the events A, B, and C are pairwise independent. On the other 
hand, P(�C) = 1 /2 and 

P(C I A () B) = 1 .  

Thus a knowledge that the event A () B occurs increases the odds that C 
occurs. In this sense the events A, B, and C fail to be mutually independent. 
In general, three events A, B, and C are mutually independent if th,ey are 
pairwise independent and if • 

P(A () B () C) = P(A)P(B)P(C). 

We leave it as an exercise to show that if A, B, and C are mutually inde
pendent and P(A () B) =F 0, then P(C I A () B) = P(C). 
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More� generally we define n � 3 events Al , A2, • • •  , A,. to be filutually 
indepenldent if 

P(Al n · · · n A,.) = P(Al) · • • P(A,.) 

and if any subcollection containing at least two but fewer than n eVlents are 
mutually independent. 

Exam,ple 8. Let S be the square 0 < x � 1 ,  0 < y < 1 in thc� plane. 
Consid(�r the uniform probability space on the square, and let A. be the 
event 

{(x, y) : 0 < x < 1/2, 0 < y < I }  

and B be the event 

{(x, y) : 0 < x < 1 ,  0 < y < 1/4} . 

Show that A and B are independent events. 

To show this, we compute P(A), P(B), and P(A n B), and show that 
P(A n B) = P(A)P(B). Now A is a subrectangle of the square 5� having 
area 1 /2 and B is a subrectangle of the square S having area 1 /4, so 
P(A) = 1/2 and P(B) = 1 /4. Since 

A n B = {(x, y) : 0 < x < 1 /2, 0 < y < 1/4} 

is a subrectangle of the square S having area 1/8, P(A n B) = 1/8 and 
we see that A and B are independent events as was asserted. 

The notion of independence is frequently used to construct probability 
spaces corresponding to repetitions of the same experiment. This matter 
will be dealt with more fully in Chapter 3. We will be content here to 
examin�� the simplest situation, namely, experiments (such as tossing a 
possibly biased coin) that can result in only one of two possible out
comes--success or failure. 

In an experiment such as tossing a coin n times, where success and 
failure at each toss occur with probabilities p and 1 - p respectively, we 
intuitiv��ly believe that the outcome of the ith toss should have no influence 
on the outcome of the other tosses. We now wish to construct a probability 
space corresponding to the compound experiment of an n-fold repetition 
of our s.imple given experiment that incorporates our intuitive beli��fs. 

Since: each of the n trials can result in either success or failure, tbere is a 
total of 2" possible outcomes to the compound experiment. These may be 
represented by an n-tuple (Xl ' . . .  , X,.), where Xi = 1 or 0 according as the 
ith trial yields a success or failure. We take the set n to be the cOlllection 
of all such n-tuples. The a-field .91 is taken to be all subsets of o. 

We now come to the assignment of a probability measure. To do 
this it lis only necessary to assign probabilities to the 2" one-pOlint sets 
{(Xl ' . . .  , x.)} .  Suppose the n-tuple (Xl ' . . .  , X,.) i s  such that exac�tly k of 
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the xt's have the value 1 ;  for simplicity, say X l = X2 = · · · = Xk = 1 and 
the other xt's have the value O. Then if A, denotes the event that the ith 
trial, 1 < i < n, is a success, we see that 

{(1 , 1 , . . .  , 1 , 0, . . .  , O)} = A l () · · · () Ak () A�+  1 () • • • () A�'. 
"--.... ." "- � 

k n - k 

According to our intuitive views, the events AI ' . . .  , Ak, A�+ l '  . . .  , �4� are 
to be mutually independent and peA,) = p, 1 < i < n. Thus we should 
assign P so that 

P({(l ,  1 , . . .  , 1 ,  0, . . .  , O)}) = P(AI) · • • P(Ak)P(A�+  1 ) · · · P(A�;) 

= pk(1 _ p),,- k. 

By the same reasoning, we see that if the n-tuple (Xl ' . . .  , x,,) is such that 
exactly k of the X, 's have the value 1 ,  then P should be such that 

P({(Xb ' . .  , x,,)}) = pk(1  _ p),,- k. 

Let us now compute the probability that exactly k of the n trials result 
in a succc�ss. Note carefully that this differs from the probability that k 
specified trials result in successes and the other n - k trials result in 
failures. lLet Bk denote the event that exactly k of the n trials are successes . 
Since every choice of a specified sequence having k successes has probability 
pk(1  - p),, - k, the event Bk has probability P(Bk) = C(k, n)pk(1  _ .p),,- k, 
where C(l", n) is the number of sequences (Xl ' . . .  , x,,) in which exactly k 
of the x/s have value 1 . The computation of C(k, n) is a simple com
binatorial problem that will be solved in Section 2.4. There it "rill be 
shown that 

(20) C(k n) = 
n ! , 

k ! (n - k) !
' o < k < n. 

Recall that O !  = 1 and that, for any positive integer m, 

m ! = m(m - 1 ) · · · 1 . 

The quantity n !/k !(n - k) ! is usually written as (�) (the binomial 
coefficient). Thus 

(2 1) P(Bk) = (�) P"(1 - p),, -k. 

Various applied problems are modeled by independent success-failure 
trials. Typical is the following. 

Example 9. Suppose a machine produces bolts, 1 0% of whic:h are 
defective. Find the probability that a box of 3 bolts contains at most one 
defective bolt. 
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To solve the problem we assume that the production of bolts constitutes 
repeated independent success-failure trials with a defective bolt being a 
success. The probability of success in this case is then . 1 .  Let Bo be the 
event that none of the three bolts are defective and let Bl be the ev�ent that 
exactly one of the three bolts is defective. Then Bo u Bl is the ev�ent that 
at most one bolt is defective. Since the events Bo and B1 are clearly 
disjoint, it follows that 

P(Bo u B1) = P(Bo) + P(B1) 

= (�) (.1)°(.9)3 + (n (.W(.9)2 

= (.9)3 + 3(.1)(.9)2 

= .972. 

Exercises 

1 Let (0, .91, P) be a probability space, where .91 is the a-field of all 
subsets of 0 and P is a probability measure that assigns probability 
p > 0 to each one-point set of O. 
(a) Show that 0 must have a finite number of points. Hint : show that 

lQ can have no more than p- 1 points. 
(b) Show that if n is the number of points in n then p must be n - 1 . 

2 A nrlodel for a random spinner can be made by taking a uniform 
probability space on the circumference of a circle of radius 1 ,  so that the 
probability that the pointer of the spinner lands in an arc of length s is 
s/2n . Suppose the circle is divided into 37 zones numbered 1 ,  2, . . .  , 37. 
Conrlpute the probability that the spinner stops in an even zone. 

3 Let a point be picked at random in the unit square. Compute the 
probability that it is in the triangle bounded by x = 0, y = 0, and 
x + y = 1 .  

4 Let a point be picked at random in the disk of radius 1 .  F'ind the 
probability that it lies in the angular sector from 0 to n/4 radians. 

5 In E�xample 2 compute the following probabilities : 
(a) :No disintegration occurs before time 10. 
(b) 'There is a disintegration before time 2 or a disintegration between 

times 3 and 5. 
6 A box contains 10 balls, numbered 1 through 10. A ball is drav�n from 

the box at random. Compute the probability that the number on the 
ball was either 3, 4, or 5. 

7 Suppose two dice are rolled once and that the 36 possible outcomes are 
equally likely. Find the probability that the sum of the numbers on the 
two faces is even. 
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8 Suppose events A and B are such that P(A) = 2/5, P(B) = 2/5, and 
P(A L) B) = 1 /2. Find P(A () B). 

9 If P().() = 1/3, P(A u B) = 1/2, and P(A () B) = 1/4, find P(B). 

10 Suppose a point is picked at random in the unit square. Let A be the 
event that it is in the triangle bounded by the lines y = 0, x = l ,  and 
x = }', and B be the event that it is in the rectangle with v(�rtices 
(0, 0), (1 , 0), ( 1 ,  1/2), (0, 1/2). Compute P(A u B) and P(A () 1�). 

1 1  A box. has 10 balls numbered 1, 2, . . .  , 10. A ball is picked at random 
and then a second ball is picked at random from the remaining nine 
balls. Find the probability that the numbers on the two selected balls 
differ by two or more. 

1 2  If a point selected at random in the unit square is known to be .in the 
triangle bounded by x = 0, y = 0, and x + y = 1 ,  find the prob
ability that it is also in the triangle bounded by y = 0, x = 1 ,  and 
x = )'. 

1 3  Suppose we have four chests each having two drawers. Chests 1 and 2 
have a gold coin in one drawer and a silver coin in the other drawer. 
Chest 3 has two gold coins and chest 4 has two silver coins. A chest is 
selecte�d at random and-a drawer opened. It is found to contain a gold 
coin. Find the probability that the other drawer has 
(a) a silver coin ; 
(b) a gold coin. 

1 4  A box has 10 balls, 6 of which are black and 4 of which are 'white. 
Three balls are removed from the box, their color unnoted. Find the 
probability that a fourth ball removed from the box is white. Assume 

,that the 10 balls are equally likely to be drawn from the box. 
1 5  With the same box composition as in Exercise 14, find the probability 

that an three of the removed balls will be black if it is known that at 
least one of the removed balls is black. 

1 6  Suppose a factory has two machines A and B that make 60% and 40% 
of the: total production, respectively. Of their output, machine A 
produ1ces 3% defective items, while machine B produces 5% de�ective 
items. Find the probability that a given defective part was produced by 
machine B. 

1 7  Show by induction on n that the probability of selecting a red ball at 
any trial n in Polya's scheme (Example 7) is r(b + r)-1 . 

1 8  A student is taking a multiple choice exam in which each question has 
5 possible answers, exactly one of which is correct. If the student knows 
the answer he selects the correct answer. Otherwise he selects one 
answer at random from the 5 possible answers. Suppose that the 
student knows the answer to 70% of the questions. 
(a) What is the probability that on a given question the student gets 

thc� correct answer? 
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(b) If the student gets the correct answer to a question, what is the 
probability that he knows the answer? 

1 9  Suppose a point is picked at random in the unit square. If it is known 
that the point is in the rectangle bounded by y = 0, y = 1 ,  x == 0, and 
x == 1/2, what is the probability that the point is in the triangle 
bounded by y = 0, x = 1/2, and x + y = I ?  

20 Suppose a box has r red and b black balls. A ball is chosen at random 
froln the box and then a second ball is drawn at random from the 
remlaining balls in the box. Find the probability that 
(a) both balls are red ; 
(b) the first ball is red and the second is black ; 
(c) the first ball is black and the second is red ; 
(d) both balls are black. 

21 A box has 1 0  red balls and 5 black balls. A ball is selected firom the 
box.. If the ball is red, it is returned to the box. If the ball is black, it 
and 2 additional black balls are added to the box. Find the probability 
that a second ball selected from the box is 
(a) red ; (b) black. 

22 Two balls are drawn, with replacement of the first drawn ball, from a 
box. containing 3 white and 2 black balls. 
(a) Construct a sample space for this experiment with equally likely 

sample points . 
(b) Calculate the probability that both balls drawn will be the same 

color. 
(c) Calculate the probability that at least one of the balls drawn will be 

white. 
23 Work Exercise 22 if the first ball is not replaced. 
24 Work Exercise 22 by constructing a sample space based on 4. sample 

points corresponding to white and black for each drawing. 
25 Box I contains 2 white balls and 2 black balls, box II contains 2 white 

balls and 1 black ball, and box III contains 1 white ball and 3 black 
balls. 
(a) One ball is selected from each box. Calculate the probability of 

getting all white balls. 
(b) One box is selected at random and one ball drawn from it. Cal

culate the probability that it will be white. 
(c) In (b), calculate the probability that the first box was selected 

given that a white ball is drawn. 
26 A box contains 3 white balls and 2 black balls. Two balls arc� drawn 

frOl1n it without replacement. 
(a) Calculate the probability that the second ball is black given that the 

first ball is black. 
(b) Calculate the probability that the second ball is the same ,color as 

the first ball. 
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(c) Calculate the probability that the first ball is white given that the 
sec:ond ball is white. 

27 A collf�ge is composed of 70% men and 30% women. It is known that 
40% of the men and 60% of the women smoke cigarettes. What is the 
probability that a student observed smoking a cigarette is a man? 

28 Assume that cars are equally likely to be manufactured on Monday, 
Tuesday, Wednesday, Thursday, or Friday. Cars made on Monday 
have a 4% chance of being "lemons" ; cars made on Tuesday, 
Wednesday or Thursday have a 1 �o chance of being lemons ;; and 
cars m.ade on Friday have a 2% chance of being lemons. If you 
bought a car and it turned out to be a lemon, what is the prob
ability it was manufactured on Monday? 

29 Suppose there were a test for cancer with the property that 90% of 
those 

"
'with cancer reacted positively whereas 5% of those without 

cancer react positively. Assume that 1 % of the patients in a hospital 
have cancer. What is the probability that a patient selected at random 
who re:acts positively to this test actually has cancer? 

30 In the three chests problem discussed in Example 6, comput�e the 
probability that the second drawer has a silver coin given that the 
first drawer has a gold coin. 

31 In Polya's urn scheme (Example 7) given that the second ball was red, 
find the probability that 
(a) the: first ball was red ; 
(b) the: first ball was black. 

32 Suppose three identical and perfectly balanced coins are tossed once. 
Let Ai be the event that the ith coin lands heads. Show that the events 
A h  A2, and A3 are mutually independent. 

33 Suppose the six faces of a die are equally likely to occur and that the 
successive die rolls are independent. Construct a probability spa(;e for 
the C01111pound experiment of rolling the die three times. 

34 Let A and B denote two independent events. Prove that A and BC, 
AC and B, and AC and BC are also independent. 

35 Let n = { I ,  2, 3, 4} and assume each point has probability 1 /4. Set 
A = { 1 , 2} , B = { 1 , 3}, C = { 1 , 4} . Show that the pairs of events 
A and B, A and C, and B and C are independent. 

36 Suppose A, B, and C are mutually independent events and P(A (l .J8) :F 
O. Show that P( C f A (l B) = P( C). 

37 Experi,ence shows that 20% of the people reserving tables at a Cf,rtain 
restaurant never show up. If the restaurant has 50 tables and takes 
52 rese:rvations, what is the probability that it will be able to accorDDlO
date everyone? 

38 A circular target of unit radius is divided into four annular zones with 
outer radii 1/4, 1 /2, 3/4, and I ,  respectively. Suppose 10 shots are fired 
independently and at random into the target. 
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(a) Compute the probability that at most three shots land in the zone 
bounded by the circles of radius 1 /2 and radius 1 .  

(b) If 5 shots land inside the disk of radius 1 /2, find the probability 
that at least one is in the disk of radius 1 /4. 

39 A rnachine consists of 4 components linked in parallel, so that the 
ma(;hine fails only if all four components fail. Assume cOIJnponent 
failures are independent of each other. If the components have 
probabilities . 1 ,  .2, .3, and .4 of failing w�en the machine is turned on, 
what is the probability that the machine will function when turned on ? 

40 A clertain component in a rocket engine fails 5% of the time ,"hen the 
engine is fired. To achieve greater reliability in the engine v�orking, 
this component is duplicated n times. The engine then fails only if all 
of these n components fail . Assume the component failures are 
ind€�pendent of each other. What is the smallest value of n that can be 
used to guarantee that the engine works 99% of the time ? 

41 A symmetric die is rolled 3 times. If it is known that face 1 app1eared at 
least once what is the probability that it appeared exactly oncle ? 

42 In a deck of 52 cards there are 4 kings. A card is drawn at random 
frorn the deck and its face value noted ; then the card is returne:d. This 
procedure is followed 4 times. Compute the probability that there are 
exa<:tly 2 kings in the 4 selected cards if it is known that there is at least 
one king in those selected. 

43 Show that if A, B, and C are three events such that P(A n B n C) :F 0 
and P(C I A n B) = P(C I B), the� P(A I B n C) = P(A I lJr). 

44 A mtan fires 12 shots independently at a target. What is the probability 
that he hits the target at least once if he has probability 9/10 of hitting 
the target on any given shot ? 

45 A die is rolled 12  times. Compute the probability of getting 
(a) 2 sixes ; 
(b) at most two sixes. 

46 Suppose the probability of hitting a target is 1/4. If eight shots are 
fired at the target, what is the probability that the target is hit at least 
twice? 

47 In E:xercise 44, what is the probability that the target is hit at least twice 
if it is known that it is hit at least once? 
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Combinatorial 
Analysis 

Recall from Se(�tion 1 .2 that a symmetric probability space having s points is the 
model used for choosing a point at random from a set S having s points. Ifence
forth when we speak of choosing a point at random from a finite set S, wc� shall 
mean that the probability assigned to each one-point set is s -1 , and hen.ce the 
probability assigned to a set A havingj points is j/s. 

Let N(A) denote the number of points in A.  Since peA) = N(A)/s, the problem 
of computing P(�4.) is equivalent to that of computing N(A). The procedure for 
finding peA) is to "count" the number of points in A and divide by thc� total 
number of points s. However, sometimes the procedure is reversed. If by some 
means we know peA), then we can find N(A) by the formula N(A) = sP(A). 
This reverse proctedure will be used several times in the sequel. 

The computation of N(A) is easy if A has only a few points, for in that case we 
can just enumerate all the points in A.  But even if A has only a moderate number 
of points, the m€�thod of direct enumeration becomes intractable, and so some 
simple rules for counting are desirable. Our purpose in this chapter is to prf�sent a 
nontechnical systematic discussion of techniques that are elementary and of 
wide applicability. This subject tends to become difficult quite rapidly, so wle shall 
limit our treatment to those parts of most use in probability theory. The first four 
sections in this chapter contain the essential material, while the last four se�ctions 
contain optional and somewhat more difficult material. 

2.1 . Ordered samples 

Suppose we have two sets S and T. If S has m distinct points SI ' S2 ' . • .  , 
Sm and J� has n distinct points t1 , t2 , . . .  , tn, then the number of pairs 
(s" tJ) that can be formed by taking one point from the set S and a second 
from the set T is mn. This is clear since any given element of the set S can 
be associated with any of the n elements from the set T. 

Example 1 .  If S = { I ,  2} and T = { I ,  2, 3}, then there are six pairs : 
( 1 ,  1), (1 , 2), ( 1 ,  3), (2, 1), (2, 2), (2, 3). Note carefully that the pair ( 1 ,  2) 
is distinct from the pair (2, 1 ). 

27 
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More generally, suppose we have n sets Sl '  S2, • • •  , S,. having Sl , S2 ' • • •  , 
s,. distin(�t points, respectively. Then the number ofn-tuples (Xl ' X2, .. . .  , X,.) 
that can. be formed where Xl  is an element from Sl ' X2 an element from 
S2' . .  • , and X,. an element from S,. is SlS2 • • • s,.. This is a quite obvious 
extension of the case for n = 2 discussed above. (A formal proof that the 
number of n-tuples is 91S2 • • •  s,. could be carried out by induction on n.) 

An inlportant special case occurs when each of the sets S" 1 < i < n, 
is the same set S having 9 distinct points. There are then 9" n-tuples 
(Xl ' X2, .. . .  , X,.) where each Xi is one of the points of S. 

Exam l)le 2. S = { 1 , 2} and n = 3 .  Then there are eight n-tuples : 
( 1 ,  1, 1 ), ( 1 ,  1 ,  2), ( 1 , 2, 1 ), ( 1 ,  2, 2), (2, 1 ,  1 ), (2, 1 ,  2), (2, 2, 1), (2, 2" 2). 

The special case when the sets S" 1 < i < n, are the same set can be 
approached from a different point of view. Suppose a box has s distinct 
balls labeled 1 ,  2, . . . , s. A ball is drawn from the box, its number noted 
and the ball is returned to the box. The procedure is repeated n: times. 
Each of the n draws yields a number from 1 to s. The outcome of the n 
draws can be recorded as an n-tuple (Xl ' X2' • • •  , X,.), where Xl is the 
number on the 1 st ball drawn, X2 that on the 2nd, etc. In all, then� are s" 
possible n-tuples. This procedure is called sampling with replacement from 
a population of s distinct objects. The outcome (Xl ' X2' • • . , X,.) is called a 
sample of size n drawn from a population of 9 objects with replac:ement. 
We speak of random sampling with replacement if we assume that all of the 
s
,. possible samples possess the same probability or, in traditional language, 

are equally likely to occur. 

Examl)le 3. A perfectly balanced coin is tossed n times. Find the 
probability that there is at least one head. 

Presu1tIlably the statement that the coin is perfectly balanced implies 
that the probability of getting a head on a given toss is 1/2. If thi.s is so, 
and if we assume that flipping the coin n times is equivalent to drawing a 
random sample of size n from a population of the two objects {H, T}, 
then each of the 2" possible outcomes is equally likely. Let A be th,e event 
that there is at least one head, and let A i be the event that the ith toss 
results in a head. Then A = u�= 1 Ai .  But 

P(A) = 1 - P(AC) 

and ni=: 1 A� occurs if and only if all of the n tosses yield tails.. Thus 
p(ni= l Ai) = 2-", so P(A) = 1 - 2-". 
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Let S denote a set having s distinct objects. We select an object from S 
and note 'which object it is, but now suppose we do not return it to the set. 
If we repe:at this procedure we will then make a selection from the remain
ing (s - 1) objects. Suppose the procedure is repeated n - 1 additional 
times, so that altogether n objects are selected. (Obviously we must have 
n < s in this case.) Once again we may record the outcome as an n,·tuple 
(Xl ' X2' • •  • , xn), but this time the numbers Xl , X2, . • •  , Xn must be distinct ; 
there can be no duplications in our sample. The first object selected c:an be 
any one of s objects, the second object can be any one of the remaining 
s - 1 objects, the third can be any one of the remaining s - 2 objects, 
etc. , so in all there are (s)n = s(s - 1) · · ·  (s - n + 1 )  different possible 
outcomes to the experiment. This procedure is referred to as san'1pling 
without replacement n times from a population of s distinct objects . We 
speak of a random sample of size n drawn from a population of s objects 
without re.placement if we assume that each of these (s)n outcomes is equally 
likely. 

We have denoted the product s(s - 1) · · ·  (s - n + 1 )  by the symbol 
(s)n. In particular, (s)s = s(s - 1) · · ·  1 = s !  Now drawing a sample of 
size s frOntl a population of s distinct objects is equivalent to writing down 
the numb��rs, 1 ,  2, . . .  , s in some order. Thus s !  represents the number of 
different orderings (or permutations) of s objects . 

SUppOSI� a random sample of size n is chosen from a set of s objects with 
replaceme:nt. We seek the probability of the event A that in the sample no 
point appc�ars twice. The problem is easily solved. The number of sanIples 
of size n \vith replacement is sn. Of these sn random samples the nUlmber 
in which no point appears twice is the same as the number of samples of 
size n dravvn from s objects }vithout replacement, i .e . , (s)n. Thus since all the 
s
n samples are equally likely, we find that the required probability is 

( 1 ) 
(s )n 

= 
s( S - 1) · · ·  (s - n + 1) 

s
n 

sn 

Examph� 4. A novel and rather surprising application of ( 1 )  is the 
so-called birthday problem. Assume that people's birthdays are equally 
likely to o�ccur among th� 365 days of the year. (Here we ignore leap years 
and the fact that birth rates are not exactly uniform over the year.) Find 
the probability p that no two people in a group of n people will have a 
common birthday. 

In this problem s = 365, so by applying (1) we see that 
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The nU1rnericai consequences are quite unexpected. Even for n as small as 
23, p < 1 /2, and for n = 56, p = .01 . That is, in a group of 23 people the 
probability that at least two people have a common birthday exce�eds 1/2. 
In a group of 56 people, it is almost certain that two have the same 
birthday. 

If we have a population of s objects, there are s" samples of si�e n that 
can be drawn with replacement and (s),. samples of siu n that can bc� drawn 
without replacement. If s is large compared to n, there is little diJfference 
between random sampling by these two methods. Indeed, we see from (1) 
that for any fixed n, 

(2) lim (��n = lim (1 - !) · · · (1 _ n - 1) = 1 . 
s-+ ex> S s-+ ex> S S 

(F or more precise estimates see Exercise 12.) 

2.2. PEtrmutations 

Suppose we have n distinct boxes and n distinct balls . The total number 
of ways of distributing the n balls into the n boxes in such a manner that 
each bOJ( has exactly one ball is n ! . To say that these n balls are distributed 
at random into the n boxes with one ball per box means that we� assign 
probability l/n !  to each of these possible ways. Suppose this is the case . 
What is the probability that a specified ball, say ball i, is in a specified box, 
say box j? If ball i is in box j, this leaves (n - 1) boxes and (n - 1) balls 
to be distributed into them so that exactly one ball is in each box. This 
can be done in (n - I) ! ways, so the required probability is (n - 1) !/n !  = 
l /n. 

Another way of looking at this result is as follows. If we have n distinct 
objects and we randomly permute them among themselves, then the 
probability that a specified object is in a specified position has probability 
l /n. Indeed, here the positions can be identified with the boxes and the 
objects 'with the balls . 

The above considerations are easily extended from 1 to k > 1 objects. 
If n objects are randomly permuted among themselves, the probability 
that k specified objects are in k specified positions is (n - k) !/n ! .  We 
lea ve thc� proof of this fact to the reader. 

Problt�ms involving random permutations take on a variety of forms 
when stated as word problems. Here are two examples : 

(a) A deck of cards labeled 1 ,  2, . . .  , n is shuffled, and the cards are 
then dealt out one at a time. What is the probability that for some 
specified i, the ith card dealt is the card labeled i? 
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(b) Suppose 10 couples arrive at a party. The boys and girls arte then 
paired ofr at random. What is the probability that exactly k specified boys 
end up with their own girls ? 

A morf� sophisticated problem involving random permutations is to find 
the probability that there are exactly k "matches." To use our usual 
picturesque example of distributing balls in boxes, the problem is to find 
the probability that ball i is in box i for exactly k different values of i. 

The problem of matchings can be solved in a variety of ways. We 
postpone discussion of this problem until Section 2.6. 

2.3. Connbi nations (unordered samples) 

A pok(�r hand consists of five cards drawn from a deck of 52 Icards. 
From the: point of view of the previous discussion there would be (52)5 
such hands. However, in arriving at this count different orderings of the 
same five cards are considered different hands. That is, the hand 2, 3, 4, 5, 6 
of spades in that order is considered different from the hand 2, 4, 3, 5, 6 of 
spades in that order. From the point of view of the card game, these bands 
are the same. In fact all of the 5 !  permutations of the same five cards are 
equivalent. Of the (52)5 possible hands, exactly 5 !  of them are just per
mutations of these same five cards. Similarly, for any given set of five 
cards there are 5 !  different permutations. Thus the total number of poker 
hands, disregarding the order in which the cards appear, is (52)5/5 ! .  In this 
new count two hands are considered different if and only if they dHfer as 
sets of o�jects, i.e. , they have at least one element different. For exa.mple, 
among the (52)5/5 ! poker hands, the hands (2, 3, 4, 5, 6) of spades and 
(3, 2, 4, 5'1 6) of spades are the same, but the hands (2, 3, 4, 5, 7) of spades 
and (2, 3, 4, 5, 6) of spades are different. 

More generally, suppose we have a set S of s distinct objects . Th�en, as 
previously explained, there are (s)r distinct samples of size r that can be 
drawn from S without replacement. Each distinct subset {Xl ' . . .  , .xr} of 
r objects from S can be ordered (rearranged) in r !  different ways. If we 
choose to ignore the order that the objects appear in the sample, then these 
r !  reorderings of Xl ' . . .  , Xr would be considered the same. There are 
therefore (s)r/r ! different samples of size r that can be drawn without 
replacement and without regard to order from a set of s distinct objects. 

The quantity (s)r/r ! is usually written by means of the binomial co
efficient symbol 

(S)r = (s) . 
r ! r 
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Observe that for r = 0, 1 ,  2, . . . , s 
(s) (s� s !  
r = 

r !  
= 

r !  (s - r) ! · 

We point out here for future use that (�) is well defined for any real 

number a and nonnegative integer r by 

(3) (a) = (a )r = a( a - 1) · · · (a - r + 1) 
, r r !  r !  

where O !  and (a)o are both defined to be 1 .  

Examp�le 5. 

= ( -n)( - � - 1)( - 1t  - 2) 
3 !  

n(n + l)(n + 2) 
3 ! 

Observe that if a is a positive integer then (�) = 0 if r > a. We adopt 

the convention that (�) = 0 if r is a negative integer. Then (�) is defined 

for all real numbers a and all integers r. 
As pr€�viously observed, when s is a positive integer and r is a non-

negative integer, it is useful to think of (;) as the number of ways we can 

draw a sample of size r from a population of s distinct elements writhout 
replacem.ent and without regard to the order in which these r objects were 
chosen. 

Exa m pl le 6. Consider the set of numbers { I ,  2, . . .  , n} .  Then if 

I < r < n, there are exactly (�) choices of numbers iI ' i
2
, . . .  , ir such that 

1 < il <: i
2 

< · · · < ir < n. Indeed, each of the (n)r choices of r (listinct 

numbers from 1 to n has r !  reorderings exactly one of which satisfies the 
requirement. Thus the number of distinct choices of numbers sati[sfying 
the requirement is the same as the number of distinct subsets of size r 
that can be drawn from the set { I ,  2, . . .  , n} . 

Example 7. Committee membersh i p . The mathematics depal1ment 
consists of 25 full professors, 1 5  associate professors, and 35 assistant 
professors. A committee of 6 is selected at random from the faculty of 
the department. Find the probability that all the members of the com
mittee are assistant professors. 
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In all, there are 75 faculty members. The committee of 6 can be c:hosen 

from the 75 in C�) ways. There are 35 assistant professors, and the 6 that 

are on the committee can be chosen from the 35 in e�) ways. Thus the 

required probability is e�) I C�) · Calculations yield the approximate 

value of .01 ; therefore the tenure staff (associate and full professors) need 
not worry unduly about having no representation. 

Example 8. Consider a poker hand of five cards. Find the probability 
of getting: four of a kind (i .e. , four cards of the same face value) assuming 
the five cards are chosen at random. 

We may solve the problem as follows. 

There are e;) different hands, which are to be equally likely. Thus n 

will have e;) points. For the desired event to occur we must have four 

cards of the same face value. There are 1 3  different choices for the value 
that the four of a kind is to have, namely 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A. 
For each such choice (which determines four of the five cards in the desired 
hand) the:re are 48 other cards from which to choose the 5th card of the 
hand. Since any of the 1 3  choices of the four of a kind can be paired with 
any of the 48 choices remaining for the 5th card, in all there are ( 1 3)(48) 
possible ways of getting a poker hand with four of the five cards equal. 
The desirled probability is therefore 

(13)(48) � 2.40 x 10-4• 

e;) 
Exampl 18 9. Suppose n balls are distributed into n boxes so that all of 

the nft possible arrangements are equally likely. Compute the probability 
that only box 1 is empty. 

The probability space in this case consists of nft equally likely points . 
Let A be the event that only box 1 is empty. This can happen only if the 
n balls arte in the remaining n - 1 boxes in such a manner that no box is 
empty. Thus, exactly one of these (n - 1) boxes must have two balls, and 
the remaining (n - 2) boxes must have exactly one ball each. Let B) be the 
event that box j, j = 2, 3, . . .  , n, has two balls, box 1 has no balls, and 
the remaining (n - 2) boxes have exactly one ball each. Then the 1J) are 
disjoint and A = Uj= 2 

B). To compute P(B)) observe that the two balls 

put in box j can be chosen from the n balls in (�) ways. The (n - 2) 

balls in the remaining (n - 2) boxes can be rearranged in (n - 2) ! ways. 
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Thus the number of distinct ways we can put two balls into boxj, no ball in 

box 1 ,  and exactly one ball in each of the remaining boxes is (;) (n - 2) ! '  
Hence 

and consequently 

(;) (n - 2) ! 
P(B .) = �--J n" 

(n - 1) (n) (n - 2) ! (n) (n - 1) ! 
P(A) = 2 = --,--2� __ 

n" n" 

2.4. P�lrtitions 

A large variety of combinatorial problems involving unordered samples 
are of the following type. A box has r red balls and b black balls. A 
randoml sample of size n is drawn from the box without repla1cement. 
What is the probability that this sample contains exactly k red balls (and 
hence n - k black balls) ? 

To solve the problem we argue as follows. We are interested only in the 
total number of red balls and black balls in the sample and not in the order 
in which these balls were drawn. That is, we are dealing with sampling 
without replacement and without regard to order. We can, therefore, take 

our probability space for this problem to be the collection of all (b ! r) 
samples of size n that can be drawn in this manner from the b + r balls 

in the population. ��h of these e ! r) samples is assigned the same 

probability e ! r) . We must now compute the number of ways in 

which a sample of size n can be drawn so as to have exactly k red balls. 

The k red balls can be chosen from the r red balls in (�) ways without 

regard to order, and the n - k black balls can be chosen from the b black 

balls without regard to order in (n � k) ways. Since each choice of k red 

balls could be paired with each choice of n - k black balls th(�re are, 

therefore, a total of (�) (n b k) possible choices. Thus the desired 

pro bability is 



2.4. Partitions 35 

The essence of this type of problem is that the population (in this case 
the balls) is partitioned into two classes (red and black balls). A random 
sample of a certain size is taken and we require the probability that the 
sample "rill contain a specified number of items in each of the two c�lasses. 

In somte problems of this type the two classes are not explicitly spc�cified, 
but they can be recognized when the language of the problem is analyzed. 

Example 1 0. A poker hand has five cards drawn from an ordina�y deck 
of 52 cards. Find the probability that the poker hand has exactly 2 kings. 

To solve the problem note that there are e1) poker hands. In the 

deck there are 4 kings and 48 other cards. This partitions the cards into 
two classes, kings and non-kings, having respectively 4 and 48 objects 
each. The poker hand is a sample of size 5 drawn without replac:ement 
and without order from the 52 cards. The problem thus is to find the 
probability that the sample has 2 members of the first class and 3 me:mbers 
of the sec;ond class. Hence the required probability is 

Examplle 1 1 . A deck of playing cards has 4 suits of 1 3  cards each, 
namely c1lubs, diamonds, hearts, and spades. 

(a) What is the probability that in a hand of 5 cards exactly 3 are c�lubs ? 
(b) What is the probability that in a hand of 5 cards exactly 3 are of the 

same suit ? 

To solve problem (a) we note that the conditions of the problena par
tition the deck of 52 cards into 2 classes. Class one is the "clubs" baving 
1 3  membc�rs, and class two is "other than clubs" having 39 members. The 
5 cards constitute a sample of size 5 from the popUlation of 52 cards, and 
the problc�m demands that 3 of the 5 be from class one. Thus the required 
probability is 

To solve (b) let A t  be the event that exactly 3 cards are clubs, il2 the 
event that exactly 3 cards are diamonds, A3 the event that exactly 3 cards 
are hearts, and A4 the event that exactly 3 cards are spades. Then since 
there are only 5 cards in the hand, the events At , A2, A3 ,  A4 are mutually 
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disjoint. Their union, Al U A2 U A3 U A4, is just the event that of the 5 
cards exactly 3 are of the same suit. Thus the required probability is 4p. 

Example 1 2. Consider again a poker hand of 5 cards. What is the 
probability that it is a full house (i .e., one pair of cards with equal face 
value and one triple of cards with equal face value), assuming that the cards 
are drav{n at random from the deck? 

To solve the problem we again note that there are eff) poker hands 

each of which is equally likely. Of these we must now compute the number 
of ways in which we can have one pair and one triple. Consider the number 
of ways we can choose a particular triple, say 3 aces, and a particular pair, 
say 2 kings. The triple has 3 cards that are to be chosen without re:gard to 

order from the four aces and this can be done in (�) ways. The pair has 

two cards to be drawn without regard to order from the four kings. This 

can be done in G) ways. The total number of ways then of drawing a 

hand having a triple of aces and a pair of kings is (j) (�) . Thus the 

probability of getting a poker hand that has a triple of aces and a pair of 

kings is (�) (�) I en = p. Of course, this probability would be the 

same for any specified pair and any specified triple. Now the fa(;e value 
of the cards on the triple can be any of the possible 13, and the face value 
of the cards in the pair can be any of the 12 remaining possible face: values. 
Since each of the 13 values for the triple can be associated with each of the 
12 values for the pair, there are (13)(12) such choices. Each of these 
choices constitutes a disjoint event having probability p, so the required 
probability is 

(13)(12)p = (13)(12)(4)(6) � 1 .44 x to-3
• eff) 

Exam ple 1 3. In a poker hand what is the probability of getting exactly 
two pairs ? Here, a hand such as (2, 2, 2, 2, x) does not count as t�{O pairs 
but as a 4-of-a-kind. 

To solve the problem we note that if the hand has two pairs, then two of 
the cards have the same face value x, two of the cards have the sa:me face 
value y #: x, and the fifth card has a different face value from x or y. 
Now there are 13 different face values. The face values of the t,,'o pairs 

can be chosen from them in C;) ways. The other card can be any one of 

1 1 face values. The two cards of value x can be chosen from the four of 
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that value in (�) ways and likewise for the 2 of value y. The remaining 

card of value z can be chosen from the four of that value in (�) = 4 ways. 

Thus t�� �umber of choices is e;) (1 1) (�) (�) (4) so the desired 
probabIlIty IS 

en (1 1)(6)(6)(4) 
� 4.75 x 10- 2

• e;) 
In som�e problems involving partitioning, the classes are imagined as in 

the follo\ving. 

Example 1 4. Suppose we have a box containing r balls num.bered 
1 ,  2, . . .  , r. A random sample of size n is drawn without replacement and 
the numbers on the balls noted. These balls are then returned to thc� box, 
and a second random sample of size m is then drawn without replacement. 
Find the probability that the two samples had exactly k balls in COlllmon. 

To solve this problem we can argue as follows. The effect of the first 
sample is to partition the balls into two classes, viz., those n selected and 
those r _. n not selected: (We can imagine that the n balls selected in the 
first sample are painted red before being tossed back). The problem is 
then of finding the probability that the sample of size m contains exactly 
k balls from the first class, so the desired probability is 

If the argument were done in reverse, and we thought of the s�econd 
sample as marking the balls, then we would find that the probability is 

We leave it as an exercise to show that these two are equal. 
We can easily extend our consideration of partitioning a population into 

two classc�s to partitioning it into m > 2 classes. Suppose -we have a set of 
r objects such that each object is one of m possible types. The popUlation 
consists of r1 objects of type 1 ,  r2 objects of type 2, . . .  , rm objects of type 
m, where r1 + r2 + · · · + r". = r. If a random sample of size n is drawn 
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without replacement from the population of these r objects, what is the 
probabi1lity that the sample contains exactly k 1 objects of type 1 ,  ., . .  , km 
objects of type m, where kl  + · · · + km = n?  

Once again the probability space i s  the collection of all (:) equally 

likely samples of size n that can be drawn without replacement and vvithout 
regard to order from the r objects in the population. The ki objects of 
type i in the sample can be chosen from the ri objects of that type vvithout 

regard to order in (�:) ways. Thus the probability of choosing the 

sample ,�ith the specified composition is 

Examl)le 1 5. In a hand of 1 3  cards chosen from an ordinary deck, 
find the probability that it is composed of exactly 3 clubs, 4 dia1nonds, 
4 hearts,. and 2 spades. 

In this problem r = 52, n = 1 3 . Let class 1 be clubs, class 2 dia1nonds, 
class 3 hearts, and class 4 spades. Then m = 4, kl = 3, k2 = 4, k3 = 4, 
and k4 := 2, so the desired probability is 

Examl)le 1 6. Committee prob lem.  In the committee proble:m dis
cussed earlier, find the probability that the committee of 6 is composed of 
2 full professors, 3 associate professors, and 1 assistant professor. 

Using the same method as above, we find the answer to be 

2.5. U nl ion of events· 

Consider again the random permutation of n distinct objects . 'Ne say 
a match occurs at the ith position if the ith object is in the ith position. Let 
Ai  be thle event that there is a match at position i. Then A = Ui=: 1 Ai is 
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the event that there is at least one match. We can compute P(Ui:= t A i) 
for n = 2 by Equation ( 10) of Chapter 1 which states that 

P(A t u A2) = P(A t)  + P(A2) - P(A t n A2)' 

It is possible to use this formula to find a similar formula for n = 3. Let 
A t ,  A2, and A3 be three events and set B = A t  U A2.  Then 

Now 

(4) jP(B) = P(A t U A2) = P(A t)  + P(A2) - P(A t n A2)' 

Since B fl A3 = (A t U A2) n A3  = (A t  n A3) U (A2 n A3), it follows 
that 

(5) PCB n A3) = P(A t n A3) + P(A2 n A3) - P(A t (l A2 n A �I)' 

Substituting (4) and (5) into the expression for P(A t U A2 U A3), 'Ne see 
that 

P(A t U A�2 U A3) = [P(A t) + P(A�) - P(A t n A2)] + P(A3) 

- [P(A t n A3) + P(A2 n A3) - P(A t n A2 ('\ A3)] 

= [P(A t) + P(A2) + P(A 3)] 

- [P(A t n A2) + P(A t n A3) + P(A2  n A3)] 

+ P(A t n A 2  n A3)' 

In order to express this formula more conveniently, we set 

and 

Then 

(6) 

St = P(A t) + P(A2) + P(A 3), 

S2 = P(A t n A2) + P(A t n A3) + P(A2 n A 3), 

S3 = P(A t n A2 n A3)' 

There iis a generalization of (6) that is valid for all positive integers n. 
Let A t ,  . " . , An be events. Define n numbers Sr, 1 < r < n, by 

Sr = � P(Aft n · · · n Air)' 

Then in J)articular 
1 � ' 1  < . . .  < ir � n 

Sl = P(A 1) + 
.- . · + P(An), 

n- t n 
S2 = � � peA, n Aj), 

1= 1 j= l + 1 
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and 
S,. = P(A 1 (l • • • (l A,.). 

Combinatorial Analysis 

The desired formula for P(U�= 1 A,) is given by : 

(7) P CVl AI) = ,tl (- 1),- 18, 
= SI - S

2 
+ · · · + (_ l)" - IS .. . 

The reader can easily check that this formula agrees with (6) if n = 3 and 
with Equation (10) of Chapter 1 if n = 2. The proof of (7) procc;,eds by 
induction, but is otherwise similar to that of (6). We will omit the details 
of the proof. 

The sum $1 has n terms, the sum 8
2 

has (;) terms, and in general the 

sum 8, has (;) terms. To see this, note that the rth sum is just the sum 

of the numbers P(A't (l • • • (l Air) over all the values of the indices 
ii ' i

2
, · . · , ir such that il < i

2 
< · · · < ire The indices take values between 

1 and n. Thus the number of different values that these indices can take is 
the same as the number of ways we can draw r distinct numbers from n 
numbers without replacement and without regard to order. 

2.6. M atching problems· 

We now may easily solve the problem of the number of match�es. Let 
Ai denote the event that a match occurs at the ith position and let p,. 
denote the probability that there are no matches. To compute 1 - p,. = 
P(Ui= 1 Ai), we need to compute P(Ai t (\ A'l (\ · · · (l Ai,) where ii ' 

i
2
, · . .  , ir are r distinct numbers from { I ,  2, . . .  , n} . But this probability 

is just the probability of a match at positions ii ' i
2
, • • •  , ir, and \ve have 

already found that the probability of this happening is (n - r) !/n ! . Since 

the rth sum 8, has exactly (;) terms we see that 

that is, 

(8) 

P(A1 u . . .  u A,,) = f (n) (n - r) ! (_ l),- l r= 1 r n ! 
= f (_ 1),- 1 n !  (n - r) ! 

r= 1 r !(n - r) ! II ! 
.. (_ I)r- l = � ; r= 1 r !  

1 1 (- lr- 1 (1 - p,.) = 1 - - + - - · · · + . 
2 !  3 !  n !  
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Using (8) we see that the probability, p,., that there are no matche�s is 

(9) 1 1 ( 1 )" " ( 1 )k 

p" = 1 - 1 + - - - + · · · + 
- = � - . 

2 !  3 !  n !  k = O  k !  

41 

Now the right-hand side of (9) is just the first n + 1 terms of the 1raylor 
expansion of e - 1 . Therefore, we can approximate p" by e - 1 and get 
1 - e - 1 = .6321 . . .  as an approximation to (1 - p,,). It turns out that 
this approximation is remarkably good even for small values of n. In the 
table below we compute the values of (1 - p,,) for various values of n. 

n 3 4 5 6 

1 - p" .6667 .6250 .6333 .6320 

We thus have the remarkable result that the probability of at least one 
match arnong n randomly permuted objects is practically independent of n. 

The problem of matches can be recast into a variety of different forms. 
One of the most famous of these is the following. 

Two equivalent decks of cards are well shuffled and matched against 
each othe:r. What is the probability of at least one match ? 

To solve the problem we need only observe that the first deck c:an be 
used to d€�termine positions (boxes). With no loss of generality then vve can 
assume the cards in the first deck are arranged in the order 1, 2, . . .  , n. 
The cards in the second deck (the balls) are then matched against the 
positions determined by the first deck. A match occurs at position i if and 
only if thle ith card drawn from the second deck is card number i. 

Now that we know how to compute the probability p" of no matches, we 
can easily find the probability p,,(r) that there are exactly r matches. To 
solve the problem we first compute the probability that there are exactly 
r matches; and that these occur at the first r places. This can happen only 
if there are no matches in the remaining (n - r) places. The probability 
that therle are no matches among j randomly permuted objects is Pj. 

Hence j! JP j is the number of ways that j objects can be permuted a.mong 
themselve�s so that there are no matches. (Why?) Since there is only pne 
way of having r matches at the first r positions, the number of ways we 
can have exactly r matches at the first r positions and no matches at 
the remaining (n - r) positions is (n - r) ! p,,_ ,. Thus the required 
probability is 

(n - r) ! 
a" = p,,_ ,. 

n !  

The probability that there are exactly r matches and that these occur at 
any specified r positions is the same for all specifications, namely, oc,. 
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To solve the problem that there are exactly r matches, all that is now 
necessary is to realize that the events "exactly r matches occurring at 
positions it , i2 , • • •  , ir, " are disjoint events for the various choices of 

i1 > i2, • • •  , ir • The number of such choices is (�) . Thus the required 

probability is (�) (Lr' Hence, if PII(r) is the probability of exactly r matches 

among 1:l randomly permuted objects, we find that 

( 10) P ( ) n !  a,r n r = ' ( _ ) ' r . n r . 

n ! (n - r) ! Pn- r - r ! (n - r) !  n !  

= p,.- r 
r ! 

= - 1 - 1 + - + · · · + . 
1 [ 1 ( 1)n- r ] 
r ! 2 !  (n - r) ! 

Using the approximation that Pn- r is approximately e- 1 (which is very 
good evc�n for n - r moderately large) we find that 

( 1 1) 

As a jrinal illustration of these ideas, we compute the probability that 
there is a match in the jth place given that there are exactly r matches . 

To solve this problem let A j be the event that a match occurs at the jth 
place and let Br be the event that there are exactly r matches. The desired 
probability is P(Aj I Br). From (10), P(Br) = Pn- r/r ! , so we need to 
compute� P(Aj n Br). Now the event Aj n Br occurs if and only if there is 
a match in thejth place and exactly (r - 1) matches among the renlaining 
(n - 1) places. The number of ways in which we can have exactly (r - 1) 
matches in the remaining (n - 1) places is (n - I ) ! Pn- t(r - 1). �rhus 

Hence 

P(A . n B ) = (n - 1) ! Pn- t(r - 1) 
J r , n .  

Pn- r - ----
(r - 1) ! n 

P(Aj I Br) = PII-r 
, 
� - !. 

n(r - 1) .  Pn-r n 
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2.7. Occu pancy problems· 

A large variety of combinatorial probability problems are equivalc�nt to 
the problc�m of distributing n distinct balls into , distinct boxes. Since 
each of the n balls can go into any one of the , boxes, in all there are ," 
different vvays of distributing the balls into the boxes. Assuming the: balls 
are distributed at random into the boxes, each of these ," ways has prob
ability , - It. The underlying probability space n therefore has ," equally 
likely points. In the problems involving this distribution of balls, we 
impose various conditions on the occupancy of the boxes and ask for 
the proba.bility that our stipulated situation occurs. As a first example 
consider the following problem. 

If n bans are distributed at random into , boxes, what is the probability 
that no box has more than one ball ? 

To solve the problem note first of all that the required probability is 0 if 
n > " so assume n < ,. Then (thinking of distributing the balls one by 
one) the first ball can go in any one of , boxes, the second into any one of 
the remaining (, - 1) boxes, etc. , so in all there are (,),. different ways. 
The required probability is then (,),.1'''. 

This probabilitiY is exactly the same as that of drawing a sample of size 
n with replacement from a population of , objects and having all elenlents 
in the sarrlple distinct. Also note that ,,. is the number of samples of size n 
from a population of , distinct objects. This is no accident. Random 
sampling n times with replacement is formally the same as the random 
distribution of n balls into , boxes. To see this, just think of distributing 
the balls into the boxes as follows. We first draw a random sample of size 
n from a :set of , objects, and if the ith element in the sample was the jth 
object we place ball i in box j. It is sometimes useful to think of random 
sampling with replacement in this manner, i.e. , as the random distribution 
of balls into boxes (see the coupon problem at the end of the chapter). 

Considler the random distribution of n balls into , boxes. What is the 
probability that a specified ball, say ball j, is in a specified box, say box i? 
If ball j is� in box i, then we have (n - 1) more balls to distribute in the , 
boxes with no restrictions on where they go. Ball j can be placed in box i 
in only one way, and the (n - 1) remaining balls can be placed in1to the 
, boxes in ,,,- 1 ways. Thus the required probability is ,,,- 1/'" = II'. 

Translated into the language of random sampling we see that in a random 
sample of size n drawn with replacement from a population of , objects, 
it is equally likely that the jth element in the sample is any one of the 
, objects. 

The above considerations extend easily from one specified box to k 
boxes, 1 :s: k < ,. We leave it as an exercise to show that the probability 
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that k specified balls are in k specified boxes is just r - k. In the language of 
random sampling this says that if a sample of size n is drawn with replace
ment from a population of r objects, then the probability that the .ilth, 
j2th, . . .  , ikth elements in the sample are any k prescribed objects is r -k• 

Let A .J(i) be the event that thejth element in the sample is the ith object. 
Then we� have just said that for any choice jl < j2 < · · · < jk, 1 < k < n, 
of elenle:nts in the sample (i .e. , balls) and any choice ii ' i2 , • • •  , ik of objects 
(i.e. , boxes) , 

P(Ai1(i 1) n Ail(i2) n · · · n Aik(ik)) = r- k• 

Since P(A .Ai)) = r - 1 for any j and i, we see that 

(12) P(Ai1(i 1)  n · · · n Aik(ik)) = P(Ai1(i 1)) · • • P(Aik(ik)). 

Since this is true for all k and all choices of j 1 , . • • , jk, we see that for any 
ii ' i2 , • • •  , in the events A 1(i1), • • •  , An(in) are mutually independent. 

If we think of drawing a random sample of size n from a set of r distinct 
objects as an n-fold repetition of the experiment of choosing one object at 
random from that set of r distinct objects, then we see that the statement 
that the events A l  (i1), • • •  , An(in) are independent says that the outc:ome of 
one expteriment has no influence on the outcome of the other experiments. 
This, of course, is in good accord with our intuitive notion of random 
sampling. 

Examlple 1 7. Suppose n balls are distributed at random into r boxes. 
Find thc� probability that there are exactly k balls in the first rl boxes. 

To solve the problem observe that the probability that a given ball is in 
one of the first r1 boxes is rl/r. Think of the distribution of the n balls as 
an n-fold repetition of the experiment of placing a ball into one of the 
r boxes. Consider the experiment a success if the ball is placed in one of the 
first r 1 boxes, and otherwise call it a failure. Then from our results in 
Section 1 . 5, we see that the probability that the first r 1 boxes have exactly 
k balls is 

2.8. N um ber of empty boxes· 

W e rc�turn again to consider the random distribution of n balls into r 
boxes and seek the probability Pk(r, n) that exactly k boxes are empty. 

To be�gin solving the problem, we let Ai be the event that the ith box is 
empty. For this event to occur, all of the n balls must be in the rennaining 
(r - I)  boxes, and this can happen in (r - I)n ways. Thus P·(Ai) = 
(r - I)'I/rn = ( I  - l /r)n. 
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Similarly, if 1 < il < i2 < · · · < ik < r, then the event Ail  fl Ail fl ·  · · 

fl Ailc occ:urs if and only if all of the balls are in the remaining Jr - k 
boxes. Consequently, P(A'1  fl · · · fl Aik) = (r - k)ft/rft = ( I  - k/r)ft. 
We can now apply (7) to compute the probability of A l U • · · U Aft, 
which is just the event that at least one box is empty. In this situation 

St = (�) ( l  - klr)", so using (7) we find that 

r 
P(A I U · · ·  U Ar) = � (- 1)k- ISk k = 1  

= ± (_ 1)k - l (
r
) (I _ �)

ft. k = 1  k r 

Thus the probability po(r, n) that all boxes are occupied is 

( 13) poe r, n) = 1 - P( A I U • • 
• u Ar) 

= 1 - .± (_ 1)i- 1 (�) (1 _ i)ft ) = I ] r 

= 
ito 

(_ 1)i (;) (1 - �r 
As a next step, let us compute the probability fXt(r, n) that exatctly k 

specified boxes (say the first k) are empty. This event can occur only if the 
n balls are all in the remaining r - k boxes and if none of these r - k 
boxes are empty . .  The number of ways we can distribute n balls into 
r - k boxes in such a manner that no box is empty is (r - k)ftpo(r - k, n). 
Thus the required probability is 

(14) ( ) (r - k)ftpo(r - k, n) fXk r, n = --------------
' r"  

= (1 - ;)
" po(r - k, n). 

We may now easily compute the probabilities Pk(r, n). For each choice 
of k distinct numbers ii , i2 , • • • , it from the set of numbers { I ,  2, . . . , n} , 
the event {exactly k boxes ii , i2, • • •  , it empty} has probability fXk(r, n) and 

these events are mutually disjoint. There are (�) such events and their 

union is just the event {exactly k boxes empty} . Thus 

(1 5) pt(r, n) = (�) (1 - ;)
" po(r - k, n). 

Using the: expression for po(r, n) given in (1 3) we see that 

( ) 
r-k 

(
k
) ( 

. + k
)
ft (16) pir, n)- = � i�O (_ 1)1 r j 1 - ] r · 
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As does the problem of matches, occupancy problems have various 
reformulations. We mention below one of the more famous of these. 

Cou pon prob lem. Coupons or, in the present day, toys are placed in 
cereal boxes to entice young purchasers. Suppose that there are r different 
types of coupons or toys, and that a given package is equally likely to 
contain any one of them. If n boxes are purchased, find the proba.bility of 

(a) baving collected at least one of each type, 
(b) of missing exactly k of the n types. 

Exercises 

1 The: genetic code specifies an amino acid by a sequence of three 
nucleotides. Each nucleotide can be one of four kinds T, A, �C, or G, 
with repetitions permitted. How many amino acids can be c:oded in 
this manner? 

2 The: Morse code consists of a sequence of dots and dashes with repe
titions permitted. 
(a) How many letters can be coded for using exactly n symbols ?  
(b) What is the number of letters that can be coded for using n or 

fewer symbols ? 
3 A nlan has n keys exactly one of which fits the lock. He tries the keys 

one at a time, at each trial choosing at random from the keys that were 
not tried earlier. Find the probability that the rth key tried is the 
correct key. 

4 A bus starts with 6 people and stops at 10 different stops. Assuming 
that passengers are eq ually likely to depart at any stop, jfind the 
probability that no two passengers leave at the same bus stop. 

5 Suppose we have r boxes. Balls are placed at random one at a time 
into the boxes until, for the first time, some box has two balls. Find 
the probability that this occurs with the nth ball. 

6 A box has r balls labeled 1 ,  2, . . .  , r. N balls (where N �;; r) are 
selected at random from the box, their numbers noted, and the: N balls 
are then returned to the box. If this procedure is done r times,. what is 
the probability that none of the original N balls are duplicated ? 

7 If Sam and Peter are among n men who are arranged at random in a 
line, what is the probability that exactly k men stand between them? 

8 A domino is a rectangular block divided into two equal subre:ctangles 
as illustrated below. Each subrectangle has a number on it ; let these 

x y 

be .x and y (not necessarily distinct). Since the block is syrnmetric, 
dOI]nino (x, y) is the same as (y, x). How many different domino 
bloc�ks can be made using n different numbers? 
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9 Consider the problem of matching n objects, and let i and r denote 
distin��t specified positions. 
(a) Wrhat is the probability that a match occurs at position i and no 

match occurs at position r? 
(b) Given that there is no match at position r what is the probability 

of a match in position ;? 

10 Suppose n balls are distributed in n boxes. 
(a) Wrhat is the probability that exactly one box is empty? Hint : use 

the result of Example 9. 
(b) Given that box 1 is empty, what is the probability that only one 

box is empty? 
(c) Given that only one box is empty, what is the probability that box 1 

is empty? 

1 1  If n balls are distributed at random into r boxes, what is the probability 
that box 1 has exactly j balls, ° < j  < n?  

1 2  Show that ( n - 1) .. - 1 (s).. ( 1) " - 1 1 - < - < 1 - - . 
s s" s 

1 3  A box has b black balls and r red balls. Balls are drawn from the 
box one at a time without replacement. Find the probability that 
the first black ball selected is drawn at the nth trial. 

The following problem pertains to poker hands. A deck has 52 
cards. These cards consist of 4 suits called clubs, diamonds, hearts, 
and spades. Each suit has 1 3  cards labeled 2, 3, . . .  , 10, J, Q, K, A. 
A poker hand consists of 5 cards drawn without replacement and 
without regard to order from the deck. Poker hands of the following 
types are considered to be in sequence : A, 2, 3, 4, 5 ;  2, 3, 4, 5, 6 ;  . . . .  ; 
10, J, Q, K, A. 

1 4  Compute the probability of each of the following poker hands 
occunrlng : 
(a) Royal flush « 10, J, Q, K, A) of the same suit) ; 
(b) Straight flush (five cards of the same suit in a sequence) ; 
(c) Four ofa kind (face values of the form (x, x, x, x, y) where x and y 

are distinct) ; 
(d) Full house (face values of the form (x, x, x, y, y) where x and y are 

distinct) ; 
(e) Flush (five cards of the same suit) ; 
(f) Straight (five cards in a sequence, regardless of suit) ; 
(g) Three of a kind (face values of the form (x, x, x, y, z) where x, y, 

and z are distinct) ; 
(h) T'NO pairs (face values of the form (x, x, y, y, z) where x, y, and z 

are distinct) ; 
(i) One pair (face values of the form (w, w, x, y, z) where w, x, y, and z 

are distinct}. 
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1 5  A box has 10 balls labeled 1 ,  2, . . . , 10. Suppose a random sanlple of 
size 3 is selected. Find the probability that balls 1 and 6 are among 
the three selected balls . 

1 6  Cards are dealt from an ordinary deck of playing cards one at a time 
until the first king appears. Find the probability that this occurs with 
the nth card dealt. 

1 7  Suppose in a population of r elements a random sample of size n is 
taken. Find the probability that none of k prescribed elements is in the 
sample if the method used is 
(a) sampling without replacement ; 
(b) sampling with replacement. 

1 8  Suppose a random sample .of size n is drawn from a population of r 
objects without replacement. Find the probability that k given objects 
are included in the sample. 

1 9  Suppose n objects are permuted at random among themselves . Prove 
that the probability that k specified objects occupy k specified positions 
is (n - k) !/n ! .  

20 With reference to Example 14, show that 

21 A box contains 40 good and 10 defective fuses . If 10 fuses are sellected, 
what is the probability they will all be good? 

22 What is the probability that the bridge hands of north and south 
together (a total of 26 cards) contain exactly 3 aces? 

23 What is the probability that if 4 cards are drawn from a deck, 2 will be 
black and 2 will be red? 

24 Find the probability that a poker hand of 5 cards will contain no card 
smaller than 7, given that it contains at least 1 card over 10, where aces 
are treated as high cards. 

25 If you hold 3 tickets to a lottery for which n tickets were sold and 
5 prizes are to be given, what is the probability that you will ,win at 
least 1 prize? 

26 A box of 100 washers contains 5 defective ones. What is the prob
ability that two washers selected at random (without replacement) 
from the box are both good? 

27 Two boxes each have r balls labeled 1 ,  2, . . . , r. A random samlple of 
size n < r is drawn without replacement from each box. Find the 
probability that the samples contain exactly k balls having the same 
numbers in common. 
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Discrete Random 
Variables 

Consider the experiment of tossing a coin three times where the probability of a 
head on an individual toss is p. Suppose that for each toss that comes up heads we 
win $1 , but for each toss that comes up tails we lose $ 1 .  Clearly, a quantity of 
interest in this situation is our total winnings. Let X denote this quantity. It is 
clear that X can only be one of the values $3, $1 , - $1 ,  and - $3. We cannot with 
certainty say whi(�h of these values X will be, since that value depends on the out
come of our random experiment. If for example the outcome is HHH, then X will 
be $3 ; while for the outcome HTH, X will be $1 .  In the following table we list the 
values of X (in dollars) corresponding to each of the eight possible outcomes. 

ro X(ro) P{ro} 

HHH 3 p
3 

HHT 1 p
2
(1 - p) 

HTH 1 p
2
(1 _ p) 

THH 1 p
2
(1 _ p) 

HTT - I p(1 _ p)
2 

THT - I  p(1 _ p)
2 

TTH - I  P(1 _ p)
2 

TIT - 3  (I _ p)3 

We can think of X as a real-valued function on the probability space correspond
ing to the experiment. For each ro E 0, X(ro) is then one of the values, 3, I ,  - I , - 3. 

Consider, for example, the event {ro : X( ro) = I}. This set contains the three points 
ro2, ro3' and ro4 corresponding to the outcomes HHT, HTH, and THH, respectively. 
The last column in the table gives the probabilities associated with the: eight 
possible outcome�s of our experiment. From that table we see that the event 
{ro : X(ro) = I }  has probability 3p2

(1 - p). We usually abbreviate this by saying 
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that {X = I }  has probability 3p2(1 - p). Similar considerations, of course, apply to 
the other values that X assumes. We see, therefore, that for each possible value 
of X, there is a precisely defined probability for X assuming that value. As we 
shall see in the next section, the quantity X is an example of what is called a 
discrete random variable. 

3.1 . D efinitions 

Let (0, .91, P) be an arbitrary probability space, and let X be a real
valued function on n taking only a finite or countably infinite number of 
values ;(1 ' X2' • . . • As in the example just given, we would certainly like to 
be able to talk about the probability that X assumes the value x" for each i. 
For this to be the case we need to know that for each i, {ro E O : X(ro} = Xi} 
is an event, i .e. , is a member of .91. If, as in the previous example, d is the 
a-field of all subsets of n then this is certainly the case. For in that case, 
no matter what Xi might be, {ro : X(ro) = Xi} is a subset of 0 and hence a 
member of .91, since .91 contains every possible subset of n. Howrever, as 
was indicated in Section 1 .2, in general .91 does not consist of all subsets of 
0, so we have no guarantee that {ro E 0 :  X(ro) = Xi} is in .9l. The only 
reasonable way out is to explicitly assume that X is a function on. n such 
that this desired property holds. This leads us to the following. 

Definition 1 A discrete real-valued random variable X on a 
probability space (0, .91, P) is a function X with domain 0 and range a 
finite or countably infinite subset {Xl ' X2, • • •  } of the real numbers R 
such that {ro : X(ro} = x,} is an event for all i. 

By definition, then, {ro : X (ro) = X I} is an event so we can talk about its 
probability. For brevity we usually write the event {ro : X(ro) = x,} as 
{X = x,} and denote the probability of this event as P(X = x,) rather than 
P({ ro :  .X(ro) = x,}). 

Let .;r be a discrete real-valued random variable. Then for any real 
number x, {ro : X(ro) = x} is an event. Indeed, if Xl'  X2, • • •  are the values 
that X can assume, then {ro : X(ro) = x,} is an event by the definition of a 
discrete real-valued random variable. If X is not one of these numbers, 
then {co : X(ro) = x} = 0, which is also an event. 

If th,e possible values of a discrete random variable X consist only of 
integers or of nonnegative integers, we say that X is respectively an 
integer-valued random variable or a nonnegative integer-valued random 
variable. Most of the discrete random variables that arise in applications 
are nonnegative integer-valued. 

Definition 2 The real-valued function f defined on R by f(x) = 
P(X = x) is called the discrete density function of X. A number X is 
called a possible value of X if f(x) > o. 
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Whene:ver necessary, we will denote the density function of X by Ix to 
show that it is the density function for the random variable X. 

Example 1 .  Let X be the random variable introduced at the beginning 
of this chapter in our discussion of tossing a coin three times with, say, 
p = .4. 'Then X has the discrete density I given by 

I( - 3) = .2 16, I( - 1 ) = .432, 1(1) = .288, 1(3) = .064, 

and I(x) = ° if x ¥= - 3, - 1 , 1 , 3 .  This density can be represented in 
terms of a diagram as illustrated in Figure 1 . 

. 432 

.288 
. 2 1 6 

.064 

-3 - 2  -1  o 1 2 3 

Figure 1 

Example 2. B i nomia l  d istri bution .  Consider n independent repeti
tions of the simple success-failure experiment discussed in Section 1 .5 .  
Let S,. de:note the number of successes in the n trials. Then S,. is a random 
variable that can only assume the values 0, 1 ,  2, . . .  , n. In Chapter 1 we 
showed that for the integer k, ° < k < n, 

P(S" = k) = (�) ]1(1 - p)"-" ;  

hence th(� density I of S,. is given by 

[(x) = ( (:) y(1 - p)"-X, 

0, 

x = 0, 1 ,  2, . . .  , n, 

elsewhere. 

This d�ensity, which is among the most important densities that occur in 
probabililty theory, is called the binomial density with parameters n and p. 
The density from Example 1 is a binomial density with parameters n = 3 
and p = .4. 

One often refers to a random variable X having a binomial density by 
saying that X has a binomial distribution (with parameters n and p if one 
wants to be more precise) . Similar phraseology is also used for other 
random variables having a named density. 

As explained in Chapter 2, the binomial distribution arises in random 
sampling with replacement. For random sampling without replacement 
we have the following. 
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Examille 3. Hypergeometric d istri bution .  Consider a population of 
, objects, of which 'l are of one type and '2 = , - '1 are of a second 
type. Suppose a random sample of size n � , is drawn from the popula
tion. l,et X be the number of objects of the first type in the s:ample. 
Then X is a random variable whose possible values are 0, 1 ,  2, . . .  , n. 
From the results in Section 2.4 we know that 

P(X = x) = 

Now we: can write 

x = 0, 1 ,  2, . . .  , n. 

= (n) (r1}x(r - r1)n-x . x (r)n 
Thus th�� density f of X can be written in the two forms 

f(x) = 

0, 
or 

x = 0, 1, 2, . . .  , n, 
elsewhere 

x = 0, 1 ,  2, . . .  , n, 

elsewhere. 

This density is called the hypergeometric density. 
Here are a few more examples of random variables. 

Examl)le 4. Constant ra ndom variab le .  l,et c be a real number. Then 
the func:tion X defined by X(ro) = c for all ro is a discrete random 
variable" since the set {ro : X(ro) = c} is the entire set n and n is an event. 
Clearly, P(X = c) = 1 ,  so the density f of X is simply f(c) = 1 and 
f(x) = 0, x :1= c. Such a random variable is called a constant random 
variable., It is from this point of view that a numerical constant is consid
ered a ra.ndom variable. 

ExamJ,le 5. I nd icator random variable .  Let A be an event. Set 
X(ro) = 1 if ro E A and X(ro) = 0 if ro ¢ A. Then the event A oc:curs if 
and only if X = 1 .  This random variable is called the indicator random 
variable of A because the value of X tells whether or not the event A occurs. 
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Conversely, if X is a random variable on a probability space (0, �(, P) 
taking thf� values 1 or 0, then X is the indicator random variable of the 
event 

A = {ro : X(ro) = I } . 

Let P = l'(X = 1) . The density f of X is then given by 

f(O) = 1 - p, f( l) = p, and f(x) = 0, x =F ° or 1 . 

Examph:. 6.  Consider the following game of chance. A circular target 
of radius 1 is zoned into n concentric disks of radius I /n, 2/n, . . .  , n/n = 1 ,  
as illustrated in Figure 2 for the case n = 5 .  A dart is tossed at random 
onto the circle, and if it lands in the annula� zone between the circlest with 
radii i/n and (i + 1 )/n, n - i dollars are won, i = 0, 1 ,  2, . . .  , n  - 1 .. Let 
X denote the amount of money won. Find the density of X. 

Figure 2 

The probability space for this experiment will be chosen to b�e the 
uniform probability space on the disk of radius 1 .  Clearly X is a discrete 
random variable on this space with the possible values 1 ,  2, . . .  , n. The 
event A = {X = n - i} occurs if and only if the dart lands in the rc�gion 
bounded by the circles of radii i/n and (i + 1)/n . According to our 
discussion in Section 1 .2 the probability of A is the area of A dividf�d by 
the area of the unit disk. Thus for i = 0, 1 ,  2, . . .  , n  - 1 

P(X = n - i) = P(A) 

n [e : 1 r - (�r] 2i + 1 -------------- - ----
1C 

Setting n -- i = x we see that the density of X is 
• 

(2(n - x) + 1 
, f(x) = n2 

0, 

x = 1 ,  2, . . .  , n, 

elsewhere. 

The density f of a discrete random variable X has the following three 
important properties : 
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(i) f(x) > 0, X E R. 
(ii) {x : f(x) =F O} is a finite or countably infinite subset of R. Let 

{Xl '  X2, • • •  } denote this set. Then 
(iii) Li f(X,) = 1 . 

Properties (i) and (ii) are immediate from the definition of the discrete 
density function of X. To see that (iii) holds, observe that tbe events 
{ro : X(ro) = Xi} are mutually disjoint and their union is o. Thus 

� f(Xi) = � P(X = x,) i I 

= P (y {X = Xl}) = P(O) = 1 .  

Definition 3 A real-valued function f defined on R is called a 
discrete density function provided that it satisfies properties (i), (ii), 
and (iii) stated above. 

It is c�asy to see that any discrete density functionfis the density function 
of some random variable X. In other words, given f we can construct a 
probability space (0, .91, P) and a random variable X defined on !r! whose 
discretc� density is/. Indeed, letfbe given and suppose {Xl '  X2, • • •  } is the 
set of values where f(x) =F o. Take 0 = {Xl '  X2, • • •  } , .91 all subsets 
of 0, and P the probability measure defined on .91 by P({ro}) = f(Xi) if 
ro = Xi. The random variable X defined by X(ro) = x, if ro = Xi is then 
such a random variable. To see this note that {ro : X(ro) = Xi} = {Xi} and 
thus 

P(X = Xi) = P({x,}) = f(Xi). 

The above result assures us that statements like "Let X be a random 
variabl,e with discrete density f" always make sense, even if we: do not 
specify directly a probability space upon which X is defined. ITo save 
writing we will henceforth use the term density instead of discrete� density 
througbout the remainder of this chapter. 

The notion of a discrete random variable forms a convenient way of 
describing a random experiment that has a finite or countably infinite 
number of possible outcomes. We need not bother to set up a probability 
space for the experiment. Instead we can simply introduce a random 
variablle X taking values Xl '  X2' . . .  such that X = Xi if and only if the 
experinrlent results in the ith outcome. Thus, for example, in drawing a 
card at random from a deck of n cards, we can let X = i if the ith c:ard was 
drawn. Then P(X = i) = n-1, so we could describe the experiltllent by 
saying we observe a random variable X taking integer values 1 ,  2, . . .  , n 
and having f(x) = n- l for X = 1 ,  2, . . .  , n, andf(x) = 0 elsewhelre for its 
density function. 
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In ge�neral, conducting an experiment which has a finite or countably 
infinite number of possible outcomes can be described as observing the 
value of a discrete random variable X. Many times, in fact, this is how 
the experiment already appears to us, and often it is easier to think of the 
experiment in these terms rather than in terms of a probability spa��e. 

As an illustration of this idea consider the experiment of picking a point 
at randorn from the finite subset S of R consisting of the distinct points 
Xl ' X2' . . .  , Xs• Then the function f defined by 

f(x) = { OS-, I , X = Xl ' X2' • • • , XS' 

elsewhere 

is clearly a discrete density function. A random variable X having this 
density is said to be uniformly distributed on S. Observing a value: of X 
corresponds to our intuitive notion of choosing a point at random from S. 

We will now introduce two more discrete densities that are very useful 
for solving certain classes of problems whose importance will bf�come 
apparent later. 

Example 7. G eometr ic dens i t ies .  

valued function f defined on R by 
Let ° < p < 1 .  Then the real-

f(x) = {P(1 - p)X, 
0, 

X = 0, 1 ,  2, . . .  , 
elsewhere 

is a discrete density function called the geometric density with paramf�ter p. 

To see that f is a density, all that needs to be checked is that condition 
(iii) holds, for here conditions (i) and (ii) are obviously satisfied. But (iii) 
follows from the familiar fact that the sum of the geometric series 
L:= O (1  -- p)X is just p- l . 

ExampllB 8. Negative b i nom i a l  dens it ies .  Let C( be any positivc� real 
number and let 0 < p < 1 .  A density closely related to the geornetric 
is the negative binomial density with parameters C( and p defined by 

(1) Jf(x) = (P« ( -�) (- It(1 - pt, 

0, 

X = 0, 1 ,  2, . . . , 
elsewhere. 

To sho�w that this .is a density we must verify that properties (i)-(iii) 
hold. Here property (ii) is obviously true. That (i) holds may be se:en as 
follows. I:;'or X a nonnegative integer, 

= ( - C()( - C( - 1) · · · ( - et - X + 1) 
" x . 
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= ( - l)%(Ct)(Ct + 1) · · ·  (Ct + X - 1) 
x ! 

= (- 1)% (Ct + X - 1)% 
x ! 

(2) pll. (�a) (- 1)"'(1 _ p)" = pll. (a + � - 1) (1 _ p)". 

Since the right-hand side of (2) is clearly nonnegative we see that (i) holds . 
To verify (iii), recall that the Taylor series of (1 - t) -tz for - 1  < t < 1 is 

(3) 

From (3) with t = 1 - p, we see that 

p-II. = f (-Ct) (- 1)%(1 - p)% 
%=0  X 

and hence that L% f(x) = 1 . 
FrOITl (2) we see that we can write the negative binomial density in the 

alternate form 

(4) 
( tz (Ct + X - I ) (1 )% 

f(x) = p x - p , 

0, 

x = 0, 1, 2, . . . , 
elsewhere. 

For sonrle purposes this form is more useful than that given in (1). ()bserve 
that the: geometric density with parameter p is a negative binomial density 
with parameters Ct = 1 and p. 

Example 9. Po isson dens it ies.  Let A be a positive number. The 
Poisson density with parameter A is defined as 

x = 0, 1 ,  2, . . .  , 

elsewhere. 

It is obvious that this function satisfies properties (i) and (ii) in thf� defini
tion of a discrete density function. Property (iii) follows immediate:ly from 
the Taylor series expansion of the exponential function, namely, 

ex> A% 
e). = � - .  %=0  x ! 

Many counting type random phenomena are known from experience 
to be approximately Poisson distributed. Some examples of such phenom-
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ena are the number of atoms of a radioactive substance that disintegrate in 
a unit tilme interval, the number of calls that come into a telephone 
exchange in a unit time interval, the number of misprints on a page of a 
book, and the number of bacterial colonies that grow on a petri dish that 
has been smeared with a bacterial suspension. A full treatment of these 
models re�quires the notion of a Poisson process, which will be discussed in 
Chapter 9. 

3.2. Computations with densities 

So far we have restricted our attention to computing P(X = x). Often 
we are interested in computing the probability of {co : X(co) E A} where A 
is some subset of R other than a one-point set. 

Let A be any subset of R and let X be a discrete random variable having 
distinct possible values Xl ' X2 ' • • • • Then {co : X{co) E A} is an event. To 
see this, observe that 

(5) {co I X(co) E A} = U {co I X(co) = Xi} , 

Xi E A 

where by UXt E A we mean the union over all i such that Xi E A .  U·sually 
the event {co : X(co) E A}  is abbreviated to {X E A }, and its probability is 
denoted by P(X E A). If - 00 < a < b < 00 and A is an interval with 
end points a and b, say A = (a, b], then we usually write Pea < X < b) 
instead of P(X E (a, b ]). Similar notation is used for the other intervals 
with thes�e endpoints. 

An abbreviated notation is also used for conditional probabilities. Thus, 
for example, if A and B are two subsets of R we write P(X E A I X E B) 
for the conditional probability of the event {X E A }  given the event 
{X E B }. 

Letlbe the density of X. We can compute P(X E A) directly from the 
density I by means of the formula 

(6) P(X E A) = � I(x,) , 
Xf E A 

where by LXi E A we mean the sum over all i such that Xi E A.  This formula 
follows immediately from (5) since the events {co I X{co) = Xi} , i = 
1 ,  2, . . .  , are disjoint. The right side of (6) is usually abbreviated as 
LXE A I(x). In terms of this notation (6) becomes 

(7) P(X E A) = � I(x). 
X E A 

The function F(t), - 00 < t < 00 , defined by 

F(t) = .P(X � t) = � I(x) , - 00 < t < 00, 
XSt 
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is called the distribution function of the random variable X or of the 
density f It follows immediately from the definition of the distribution 
function that 

Pea < X < b) = P(X < b) - P(X < a) = F(b) - F(a). 

If X is an integer-valued random variable, then 
[t] 

F(t) = � f(x), 
x= - 00 

where [t] denotes the greatest integer less than or equal to t (e.g. , 
[2.6] =: [2] = 2). We see that F is a nondecreasing function and that, 
for any integer x, Fhas a jump of magnitudef(x) at x and F is constant on 
the interval [x, x + 1 ) . Further properties of distribution functions will be 
obtained, from a more general viewpoint, in Chapter 5. 

Example 1 0. Set S = { I ,  2, . . .  , 10} and let X be uniformly distributed 
on S. 'Then f(x) = 1 / 10  for x = 1 ,  2, . . .  , 10 and f(x) = 0, elsewhere. 
The distribution function of Xis given by F(t) = 0 for t < 1 ,  F(t) = 1 for 
t > 10  and 

[t] [t] F(t) = � f(x) = - , 
x = 1 10 

1 < x < 10. 

A graph of this distribution function is given in Figure 3 .  The probability 
P(3 < X < 5) can be calculated either as 

P(3 < X < 5) = f(4) + /(5) = 2/ 10 
or as 

P(3 < X < 5) = F(5) - F(3) = 5/ 10 - 3/10  = 2/ 10. 

Similarly P(3 < X < 5) is obtained as 

P(3 < X < 5) = f(3) + f(4) + f(5) = 3/ 10 
or as 

P(3 < }{ < 5) = P(2 < X < 5) = F(5) - F(2) = 5/ 10 - 2/10 = 3/ 10. 

Figure 3 1 • 
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Examplle 1 1 . Let X have a geometric distribution with parame�ter p. 
Find the distribution function of X and find P(X > x) for the nonnegative 
integer x. 

The density of X, according to Example 7, is 

f(x) = {P(1 - p)X, 
0, 

x = 0, 1 , 2, . . . , 
elsewhere. 

Thus F(t)  = 0 for t < 0 and 
[t] 

F(r) = � P(1 - p)", t > o. 
,, = 0  

Using th�e formula for the sum of a finite geometric progression we 
conclude that 

F(t) = 1 - (1 _ p)[t] + l , t � o. 
In particular, for x a nonnegative integer, F(x - 1) = 1 - (1 - p)X and 
hence 

P(X > x) = 1 - P(X < x) = 1 - P(X < x - I) 

= 1 - F(x - 1) = (1 - p)x. 

Geometrically distributed random variables arise naturally in applica
tions. Suppose we have a piece of equipment, such as an electrical fuse, 
that neither deteriorates nor improves in the course of time but ca.n fail 
due to sporadic chance happenings that occur homogeneously in time�. Let 
the object be observed at fixed time periods such as hours or days, and let 
Xbe the number of time units up to and including the first failure, assuming 
that the object is new at time o. Clearly X is a discrete random variable 
whose possible values are found among the integers 1 ,  2, 3, . . . .  The 
event {X = n} occurs if and only if the object first fails at the nth time 
period. C)ur intuitive notion that the object neither deteriorates nor im
proves with time can be precisely formulated as follows. If we kno�{ that 
the object has not failed by time n, i .e., the first failure is after time� n so 
X > n, then the probability that it does not fail until after time n + nz, i .e. , 
P(X > n + m I X > n), should be the same as the probability of starting 
with an object which is new at time n and having it not fail until after time 
n + m. l�he fact that the failure causes occur homogeneously in time can 
be taken to mean that this probability depends only on the number of time 
periods th.at elapse between n and n + m, namely m, but not on n. Thus 
P(X > n) should satisfy the equation 

(8) 

Since 

P(X > n + m I X > n) = P(X > m) . 

P(X "> n + m I X > n) = P(X > n + m) 
, P(X > n) 
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we can rewrite (8) as 

(9) P(X > n + m) = P(X > n)P(X > m), n, m = 0, 1 ,  2, . . . . 
Setting n = m = 0 we see that P(X > 0) = P(X > 0)2, so P(X > 0) 
equals 1 or O. If P(X > 0) = 0, then P(X = 0) = 1 ,  which is impossible 
in our c:ase since X can assume only values that are positive integers . 
Therefore P(X > 0) = 1 .  

Set p = P(X = I ) . Then P(X > 1 )  = 1 - p and from (9) we see that 

P(X > n + 1) = (1 - p)P(X > n) . 
By iteration on n it follows that P(X > n) = (1 - p)". Thus for 
n = 1 ,  2, . . .  , 

(10) P(X = n) = P(X > n - 1) - P(X > n) = (1 - p )11 - I _ (1 _ p)1I = p( 1 _ P )11 - I . 

Ifp = 0 then P(X = n) = 0 for all n = 1 , 2, . . .  and thus P(X =: + (0) 
= I ,  i .e . , the object never fails. We exclude this case from consideration. 
Likewise p = 1 is excluded because then P(X = 1) = 1 ,  so the object 
always fails . 

Let Y' = X - I .  Then Y assumes the values 0, 1 ,  2, . . .  with prob
abilities JP(Y = n) = p( 1  - p)lI. We see therefore that Yhas the geometric 
distribution with parameter p. 

As we have just shown, the random variable Y = X - I is geometrically 
distributled. This example is typical in the sense that geometrically 
distributled random variables usually arise in connection with the vvaiting 
time for some event to occur. We shall discuss this in more detail after we 
treat independent trials in Section 3.4. 

3.3. Dh;crete random vectors 

It oftf�n happens that we are interested in studying the relationship 
between two or more random variables. Thus, for example, in drawing a 
random sample of size n from a box of r balls labeled 1 ,  2, . . .  , r, we might 
want to know the largest number Y on the balls selected as well as the 
smallest number Z on the selected balls. 

Let (0, .>4, P) be a probability space and let Xl '  X2, . . .  , Xr be r discrete 
random variables defined on this space. Then for each point OJ E n each 
of the random variables Xl ' . . .  , Xr takes on one of its possible values, 
which will be indicated by writing 

XI(OJ) = Xl '  X2(OJ) = X2, . · · , Xr(OJ) = Xr· 

Instead of thinking of observing r real numbers Xl ' X2' . . .  , Xr we can 
think of observing one r-tuple x = (Xl ' X2, . . .  , xr), where for each index 
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i, Xi is one of the finite or countably infinite number of values that the 
random variable Xi can assume. 

Let Rr denote the collection of all r-tuples of real numbers. A point 
x = (Xl ' . . .  , xr) - of Rr is usually called an r-dimensional vector. Thus for 
each ro E n, the r values XI(ro), . . .  , Xr(ro) define a point 

of Rr. "fhis defines an r-dimensional vector-valued function on n, 
X :  n � JRr, which is usually written X = (Xl ' X2, • • •  , Xr) .  The function 
X is called a discrete r-dimensional random vector. 

We have just defined an r-dimensional random vector in terms of r real
valued random variables. Alternatively, an r-dimensional random vector 
can be defined ,directly as a function X :  n � R

r by extending the definition 
of a real-valued random variable almost verbatim. 

D1ejinition 4. A discrete r-dimensional random vector X i.s a 
function Xfrom n to Rr taking on afinite or countably infinite number 
of values Xl ' X2' . . .  such that 

is an event for all i. 

The discrete density function 1 for the random vector X is defined by 

f(xl, • · · , xr) = P(XI = Xl ' · · . , Xr = xr) 

or equivalently 
I(x) = P(X = x), 

The probability that X belongs to the subset A of Rr can be found by using 
the analog of (7), namely, 

P(X E A) = I: f(x). 
x e A 

As in th€� one-dimensional case, this function 1 has the following three 
properties :  

(i) f(:") � 0, X E Rr. 
(ii) {x : f(x) =F O} is a finite or countably infinite subset 01 Rr, which 

will be denoted by {Xl ' X2, . . .  } . 
(iii) Lj: f(x,) = 1 .  

Any real-valued function 1 defined on Rr having these three properties 
will be called a discrete r-dimensional density function. The argument 
given in the one-dimensional case applies verbatim to show that any r
dimensional discrete density function is the density function of some 
r-dimensional random vector. 
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There is a certain amount of traditional terminology that goes along 
with random vectors and their density functions. Let X = (Xl ' X2, • • •  , X,) 
be an r-dimensional random vector with density f. Then the functionlis 
usually �ca1led the joint density of the random variables Xl ' X2, • • • , X,. 
The deIllsity function of the random variable Xi is then called the ith 
marginal density of X or off. 

Let X and Y be two discrete random variables. For any real nunlbers x 
and y the set {(JJ I X «(JJ) = x and Y «(JJ) = y} is an event that ,�e will 
usually denote by {X = x, Y = y} . Suppose that the distinct possible 
values of X are Xl ' x2, • • •  , and that the distinct possible values of Y are 
Yl '  Y2, · ., . .  For each x, the events- {X =- x, Y = YJ}' j = 1 ,  2, . .. .  , are 
disjoint :and their union is the event {X = x } . Thus 

P(X = x) = P (y {X = x, Y = Yj}) 
= � P(X = x, Y = Yj) = � P(X = x, Y = y). 

j , 

This last expression results from using the same notational convention 
that was introduced for random variables in Section 3.2. Similarly, 

P(Y = y) = P (y {X = Xi> Y = y}) 
= � P(X = Xi' Y = y) = � P(X = x, Y = y). 

i % 

In other words, if we know the joint density of two discrete random 
variables X and Y then we can compute the density Ix of X by su:mming 
over y and the density Iy of Y by summing ·over x. Thus, in terms of 
densities, if 1 is the joint density of X and Y, then 

(1 1) IX<x) = � I(x, y) 
y 

and 

(12) Iy(y) = � I(x, y) . 
% 

ExamJ)le 1 2. Suppose two cards are drawn at random without r�eplace
ment from a deck of 3 cards numbered 1 ,  2, 3 .  Let X be the number on the 
first card and let Y be the number on the second card. Then the joint 
density j( of X and Y is given by 1(1 ,  2) = 1(1 ,  3) = 1(2, 1) = 1(2, 3) = 
1(3, 1) == 1(3, 2) = 1 /6 and I(x, y) = 0 elsewhere. The first marginal 
density, that is, the density of X is given by 

Ix{l) = I{I , 1 )  + 1(1 ,  2) + 1(1 ,  3) = 0 + 1 /6 + 1/6 = 2/6 = 1 /3 

and similarly for x = 2 and 3. Therefore Ix(x) = 1 /3, x = 1 ,  2, 3, and 
Ix(x) = 0 elsewhere, as it should be. 
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Exam�.le 1 3. Suppose X and Y are random variables that assu:me the 
values x and y, where x = 1 or 2 and y = 1 ,  2, 3, 4, with probabilities 
given by the following table. 

� 1 2 3 4 

1 1 /4 1/8 1 / 16  1 / 16  

2 1 / 16  1 / 16  1 /4 1 /8 

Then 1({I) = :L;= l 1(1 ,  y) = 1 /4 + 1/8 + 1 / 16  + 1 / 16  = 1 /2, and 
Ix(2) = 1 - Ix(l) = 1 /2 so X has the uniform distribution on 1 ,  2. 
Similarly 

Iy{l) = 1/4 + 1 / 16  = 5/ 16, ly(2) = 3/ 16, ly(3) = 5/ 16, ly(4) == 3/ 16. 

3.4. Independent random variables 

Consider the experiment of tossing a coin and rolling a die. Intuitively, 
we believe that whatever the outcome of the coin toss is, it should have no 
influence: on the outcome of the die roll, and vice-versa. We now ,�ish to 
construct a probability model that reflects these views. Let X be a random 
variable that is 1 or 0 according as the coin lands heads or tails, i .e:. ,  such 
that the event {X = I } represents the outcome that the coin lands heads 
and the e�vent {X = O} represents the outcome that the coin lands tails .  In 
a similar way we represent the outcome of the die roll by a random variable 
Y that takes the value 1 ,  2, . . .  , or 6 according as the die roll results in the 
face nUlTtber 1 ,  2, . . .  , or 6. The outcome of the combined experim(�nt can 
then be given by the random vector (X, Y). Our intuitive notion that the 
outcome of the coin toss and die roll have no influence on each other can 
be stated precisely by saying that if x is one of the numbers 1 or 0 and y is 
one of the numbers 1 ,  2, . . .  , 6, then the events {X = x} and { ]( = y} 
should be independent. Thus, the random vector (X, Y) should have the 
joint density I{x, y) given by 

I(x, y) = {P(X = x)P(Y = y), 
0, 

x = 0, 1 ,  y = 1 ,  2 ,  . . .  , 6, 
elsewhere. 

In other words the joint density I of X and Y should be given by 

I(x, y) = Ix(x)fy(y)· 

L'efinition 5 Let Xl '  X2, • • •  , Xr be r discrete random variables 
havinIJ, densities 11 , 12' . · · , f,. respectively. These random variables 
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are sald to be mutually independent if their joint density function .f is 
given by 

(1 3) f(xt , X2' . · · , xr) = ft(xt)f2(X2) · · · f,.(xr)· 
The random variables are said to be dependent if they are not independent. 
As in the: case of the combined experiment of tossing a coin and rolling a 
die, the notion of independent random variables forms a convenient way 
to precisc�ly formulate our intuitive notions that experiments are indepen
dent of each other. 

Consider two independent discrete random variables having densities 
fx andfy', respectively. Then for any two subsets A and B of R 

(14) P(X E A, Y E B) = P(X E A)P(Y E B). 

To see tbis, note that 

P(X E A, Y E B) = I: I: fx,y(x, y) 
x e A  y e B  

= I: I: fx(x)fy(y) 
x e A  y e B  

= [ I: fx(x}] [ I: fY(Y}] x e A  , e B  

= P(X E A)P(Y E B). 

Formula (14) above extends easily from 2 to r independent random 
variables .. Thus if A t, A2, • • •  , Ar are any r subsets of R then 

(1 5) P(X t E At , · · · , Xr E Ar) = P(X t E A t) · · · P(Xr E Ar}. 

Examplle 1 4. Let X and Y be independent random variables each 
geometri(�ally distributed with parameter p. 

(a) Find the distribution of min (X, Y). 
(b) Find P(min (X, Y) = X) = P(Y > X). 
(c) Find the distribution of X + Y. 
(d) Find P(Y = y I X + Y = z) for y = 0, 1 ,  . . .  , z. 

To solve (a) we observe that for z a nonnegative integer 

P(min (X, Y) > z) = P(X > z, Y > z) = P(X > z) P(Y > z), 

so by Example 1 1  

P(min (X, Y) > z) = (1 - p)Z(1 - p)Z = (1 _ p)2z. 

It follows from Example 1 1  that min (X, Y) has a geometric distribution 
with parameter 

1 - (1 - p)2 = 2p _ p2 . 
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To solve (b) we observe that 

00 

P(Y � X) = � P(X = x, Y > X) 
%=0 

00 = � P(X = x, Y > x) 
%=0  

00 = � P(X = x)P(Y > x) 
%=0  

00 

= � p(1 - p)%(1 _ p)X 
% = 0  

00 = p � (1 _ p)2% 
x= O  

To solve (c) we let z be a nonnegative integer. Then 

% 

P(X + Y = z) = � P(X = x, X + Y = z) 
%=0  

.t. 

= � P(X = x, Y = z - x) 
%= 0 

% 
= � P(X = x)P(Y = z - x) 

%=0  

% = � p(l - p)%p(l _ p)%-% 
%=0  

The solution to (d) i s  given by 

P(Y = y I X + Y = z) = P(Y = y, X + Y = z) 
P(X + Y = z) 

= P(X = z - y, Y = y) 
P(X + Y = z) 

= P(X = z - y)P(Y = y) 
P(X + Y = z) 

_ P(1 - p)%-Yp(l - plY 
- (z + 1 )p2(1 - p)% 

1 
- --

z + 1 

65 
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Consider some experiment (such as rolling a die) that has only a fi.nite or 
countablly infinite number of possible outcomes. Then, as already ex
plained, we can think of this experiment as that of observing the value of a 
discrete random variable X. Suppose the experiment is repeated n times. 
The comtbined experiment can be described as that of observing the values 
of the random variables Xl '  X2, • • •  , X,., where Xi is the outcome of the 
ith expeliment. If the experiments are repeated under identical conditions, 
presumably the chance mechanism remains the same, so we should require 
that these n random variables all have the same density. The illtuitive 
notion that the repeated experiments have no influence on each other can 
now be formulated by demanding that the random variables Xl '  1�2' . . .  , 
X,. be mutually independent. Thus, in summary, n independent random 
variables Xl '  . . .  , X,. having a common discrete density f can be used to 
represent an n-fold independent repetition of an experiment having a finite 
or countably infinite number of outcomes. 

The simplest random experiments are those that have only two possible 
outcome:s, which we may label as success and failure. In tossing a coin, for 
examplel, we may think of getting a head as a success, while in drawing a 
card fronl a deck of r cards we may consider getting an ace as a success. 
Suppose we make n independent repetitions of our simple experiment. We 
can then describe the situation by letting Xl '  X2, • • •  , X,. be n independent 
indicator random variables such that Xi = 1 or 0 according as the ith trial 
of the experiment results in a success or failure. In the literature, trials that 
can result in either success or failure are called Bernoulli trials, and the 
above situation is described by saying we perform n Bernoulli trials with 
common probability p = P(Xi = 1) for success. In this context a r4andom 
variable that takes on the values 1 and 0 with probabilities p and 1 - P 

respectively is said to have a Bernoulli density with parameter p. 
The outcome of performing n Bernoulli trials can be given by the 

random vector X = (Xl '  X2, • • •  , X,.). The information conveyed in this 
vector te:lls exactly which trials were a success and which were a failure. 
Often, such precise information is not required, and all we want to know is 
the num.ber SrI of trials that yielded a success among the n trials. In 
Example: 2 we showed that SrI was binomially distributed with parameters 
n and p.. Observe that SrI = Xl + · · · + X,.. Any random variable Y 
that is binomially distributed with these same parameters can be thought of 
as the sum of n independent Bernoulli random variables Xl '  . . .  , .Jr,. each 
having parameter p. 

Let us now consider independent repetitions of an experiment that has a 
finite ,nulmber r > 2 of possible outcomes. 

3.4.1 . The multi nomial distri bution.  Consider an experiment, such as 
rolling a die, that can result in only a finite number r of distinct possible 
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outcomes. We may represent this experiment by saying we obs��rve a 
random variable Y that assumes the values 1 ,  2, . . .  , r, so that the event 
{ Y  = i} represents the fact that the experiment yielded the ith outcome. 
Let P, = P( Y = i). If we perform an n-fold independent repetition of the 
experiment, we can represent the outcome of these n trials as an n-dimen
sional random vector (Y1 ,  • • •  , YJ, where the random variable Yj corre
sponds to thejth trial. Here the random variables Y1 , • • •  , Y,. are mutually 
independ��nt and P(Yj = i) = Pi. 

The random vector (Y1 , • • •  , y") tells us the outcomes of these n trials. 
As in the: case of r = 2 outcomes we often are not interested in such a 
detailed account, but only would like to know how many of the n: trials 
resulted in each of the various possible outcomes. Let Xi' i = 1 ,  2, .. . . , r, 
denote the number of trials that yield the ith outcome. Then Xi == Xi if 
and only if exactly X, of the n random variables Y1 , • • •  , Yn assunrle the 
value i, i.e. , exactly X, of the n trials yield the ith outcome. 

For example, for r = 3, n = 5, if 

YI = 2, Y2 = 3, Y3 = 3, Y4 = 2, and Ys = 2, 
then 

Xl = 0, X2 = 3, and X3 = 2. 

We will now compute the joint density of Xl ' . . .  , Xr• To this end let 
Xl '  X2' • • •  , Xr be r nonnegative integers with sum Xl + · · · + Xr = n. A 
moment's thought shows that since the random variables YI , Y2, • • •  , Y,. 
are independent with a common density, every specified choice of Xl of 
them having value 1 ,  X2 of them having value 2, . . .  , Xr of them having 
value r, has the same probability, namely 

P%lp%2 • • • p%r I 2 r • 

Thus letting C(n ; X I , . . •  , xr) denote the number of possible choicc�s, we 
see that 

P'(X 1 = Xl ' . . .  , Xr = Xr) = C(n ; Xl ' . . .  , xr)p11 • • • p:r. 
The computation of C(n ; Xl ' . • •  , xr) is a problem in combinatorial 
analysis that can easily be solved by the methods of Chapter 2. The 
simplest �vay of doing this is to think of the r values 1 ,  2, . . .  , r as r boxes 
and the n trials as n balls. Then C(n ; Xl ' • • •  , xr) is the number of ways we 
can place the n balls into the r boxes in such a manner as to have exactly 
Xl balls in box 1 ,  . . .  , exactly Xr balls in box r. If this is so, then box 1 has 

Xl balls. These Xl balls can be chosen from the n balls in (:.) ways . The 

remaining n - x I balls must be placed into the r - 1 boxes 2, . . .  , , r in 
such a manner as to have X2 balls in box 2, . . .  , Xr balls in box r. Thus 

(16) C(n ;  Xl . • • • • X,} = (:.) C(n - Xl ; X2. • • • • X,}. 
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It now follows by induction on r that 
n !  ( 17) C(n ; Xl , 0 0 0 , x,) = 

( ')( ') 
. . . ( ')

. 
Xl · X2 . X, . 

Indeed, for r = 1 there is nothing to prove. Assume that ( 17) holds for 
r - 1 boxes. Then from (1 6) we see that 

as desired. 

n ! (n 
-

Xl) ! C(n ; Xl '  0 • 0 , X,) = ----� -----
(Xl !)(n - Xl) !  (X2 !) · · · (X, !) 

n ! 
- -----

(Xl  !) · · · (X, !) 

The joint density f of XI ' 0 0 0 , X, is therefore given by 

n ' 
( 

'
) .

... 
( ') 

1'11 • • •  p:r, 
( 1 8) f(x l , • •  0 , x,) = Xl · X, . 

Xi integers > 0 such that X I + · · · + x, = n, 
0, elsewhere. 

This density is called the multinomial density with parameters n and 
PI ' 0 0 • , J',. 

We observe at once that the r random variables XI ' 0 0 0 , X, a.re not 
independent. In fact, since XI + · · · + X, = n, any r 

- 1 of them deter
mine the� rtho This, plus the fact that P I + · · · + Pr = 1 ,  is sometimes 
used to express the multinomial distribution in a different forrrl. Let 
XI ' X2 ' 0 • 0 ' Xr- I be r 

- 1 nonnegative integers such that XI + · · · + 
X,_ I < 11. Then 

n ! - ---------------------
(x 1 !) · · · (X, - I !)( n - X I - • • • - X, - I) !. 
X pX1 • • •  pXr - l(l _ p _ . . .  _ p )n-Xl - . 0 .  -Xr- l  

I ,- 1 I r - I · 
This forlJn is convenient when we are interested in the first r - 1 outcomes 
and think of the rth outcome as the outcome which is "not one of the 
r - 1 outcomes." Thus in rolling a die we might be interested in only 
knowing if a 2, 4, or 6 appeared. The experiment would then have four 
possible outcomes "2," "4," "6," and "not (2, 4, 6)." 

Let k be a nonnegative integer, k < r. A simple probability argument 
shows that for X I ' X2' . . .  , Xk nonnegative integers such that X I + · · · 
+ Xk < n, 

n ! - ------------------
(Xl !) · · · (Xk !)[ n - (Xl  + · · · + Xk)] ! 

x p11 • • •  p:k(l - (PI + · · · + Pk))n-(Xt + ., . .  + Xk) . 
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To see this, observe that in performing the n trials we are now only inter
ested in the k + 1 outcomes " 1 ," "2," . . . , "k," and "not ( 1 ,  2, . . .  , k)." 
Thus in €�ssence we have n repeated trials of an experiment having k + 1 
outcomes, with Xi being the number of times that the ith outcome occurs, 
i = 1 ,  2, . . . , k. Equation (20) now follows from ( 19) with r - 1 == k. 

3.4.2. P.oisson approxi mation to the bi nomial d istri bution.  There is 
an important connection between the binomial distribution and the 
Poisson distribution. Suppose, for example, that we perform n Bernoulli 
trials with success probability prJ = )..,fn at each trial . Then the probability 
of having S" = k successes in the n trials is given by 

P(S" = k) = (�) (p,.Y'(1 - Pnt-k 

= 
)..,k (n)k ( 1 _ �) " ( 1 _ �) -k

. 
k ! nk n n 

Now as n � 00, (n)kfnk � 1 ,  ( 1  - )..,fn)" � e - ).
, and (1  - )..,fn) - j� � 1 .  

Consequ€�ntly , 

(21) 1 .  (n) ( )k(1 _ ),,-k = 
)..,k - ).  1m k PrJ prJ e · 

,, -. 00  k !  

In the derivation of (2 1 ) we had np" = ).., . Actually (2 1 ) holds wh��never 
np" � ).., as n � 00.  

Equation (2 1 ) i s  used in applications to approximate the binomial 
distribution by the Poisson distribution when the success probability p is 
smaIl and n is large. This is done by approximating the binomial prob
ability P(S" = x) by means of f(x) where f is the Poisson density with 
parameter ).., = np. The approximation is quite good if np2 is small . 
The following example illustrates the use of this technique. 

Examplle 1 5. A machine produces screws, 1 % of which are defc�ctive. 
Find the probability that in a box of 200 screws there are no defectives. 

Here 'we have n = 200 Bernoulli trials, with success probability 
p = .0 1 . The probability that there are no defective screws is 

(1 - .01 )200 = (.99)200 = . 1 340. 

The Poisson approximation to this is given by 

e - 200( .0 1 )  = e- 2 
= . 1 353. 

The fa(;t that the Poisson distribution can arise as a limit of binomial 
distributions has important theoretical consequences. It is one justific:ation 
for developing models based on Poisson processes, which will be disc;ussed 
in Chaptc�r 9. The use of the Poisson approximation as a labor-saving 
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device in computing binomial probabilities is of secondary importance, 
since the binomial probabilities themselves are readily computed. 

3.5. Infiinite seq uences of Bernoul l i  trials 

Consider repeatedly performing a success-failure experiment having 
probability p of success until the first success appears. For any prescribed 
number n of trials, there is the nonzero probability (1 - p)" that no s;uccess 
occurs. 11lus, in considering the number of trials until the first succc�ss, we 
cannot limit ourselves to any prescribed number of trials, but instead must 
consider an unending sequence of trials. 

A given finite number n of trials constitute n Bernoulli trials, represented 
by n indlependent Bernoulli random variables, Xl ' . . .  , X". To represent 
an infinite sequence of Bernoulli trials we consider an infinite sequence 
{X,,} , n �� 1 , of independent Bernoulli random variables having thc� same 
paramete�r p. 

In gen,eral, random variables Xl' X2, • • •  are said to be independent if 
for any positive integer n, the random variables Xl' . . .  , X" are mutually 
independent. It can be shown that, given any discrete density f, the�re is a 
probability space (0, .91, P) upon which are defined mutually indeplendent 
random variables Xl '  X2, • • •  each having the density f 

As our model for performing an unlimited sequence of Bernoulli trials, 
we therefore take an infinite sequence {X,,} , n > 1 , of mutually indepen
dent Bernoulli random variables such that P(X" = 1) = p, n > 1 .  We 
interpret X" = 1 as meaning that the nth trial results in success, and 
X" = ° aLS meaning that it results in failure. 

Consider the number of trials WI until the first success. The random 
variable WI can assume only the integer values 1 , 2, . . . .  The event 
{ WI = n} occurs if and only if the first n - 1 trials are failures and the 
nth trial is a success. Therefore 

{ WI = n} = {Xl = 0, . . . , Xn- l = 0, X" = I } . 

It follows that 

P( WI = n) = P(XI = 0, . . .  , X,,- l = 0, X" = 1) 
= P(XI = 0) · · · P(X"- l = O)P(X" = 1) 
= (1 _ p)n- Ip. 

Consequc�ntly 

(22) P( WI - 1 = n) = p( I - p)". 

1 is geometrically distributed with parameter p. 
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Let r ;� 1 be an integer and let Tr denote the number of trials until the 
rth success (so that the rth success occurs at trial T,). Then T, is a random 
variable that can assume only the integer values r, r + 1 , . . . . Th€� event 
{T, = n} occurs if and only if there is a success at the nth trial and during 
the first n - 1 trials there are exactly r - 1 successes . Thus 

{T,. = n} = {Xl + · · · + X,. _ 1 = r - I }  () {X,. = I } . 

Since the: two events on the right are independent and X I + · · · -t- X,. - I 

has a binomial distribution with parameters n - 1 and p, we see that for 
n = r, r + 1 ,  . . . 

. P(Tr = n) = P(XI + . . .  + X,.- 1 = r - 1)P(X" = 1) 

Consequc�ntly 

(23) 

- (� = D pr- l (l - p)"-rp 

- (� = D pr(1 - p)"-r, 

(r + n - 1) P(Tr - r = n) = 
r _ 1 

pr(1 - p)". 

We see from Equations (4) and (23) that T,. - r has the negative binomial 
distribution with parameters C( = r and p. 

Let To = 0 and for any integer r > 1 let T,. be as above. :Define 
Wi = Ti - Ti- I , i = 1 ,  2, . . . . Then Wi is the number of trials afiter the 
(i - l )st success until the ith success. We will now show that for any integer 
r > 1 thc� random variables WI - 1 ,  W2 - 1 ,  . . .  , w,. - 1 are mutually 
independ1ent and have the same geometric density with parameter i}. 

To see: this let nl ' n2' . . .  , nr be any r positive integers. Th€�n the 
event { »'1 = n I '  . . .  , w,. = nr} occurs if and only if among the first 
nl + · · · + nr trials all are failures except for trials 

which are successes. Since the trials are mutually independent with 
success probability p we see that 

P(WI = n1 ' . • . ' w,. = nr) = (1 - p)"t - 1p(1 - p),,"- lp . . . (1 - p)"r- 1p 
r 

= n [p(l - p)", - I ] . 
1 = 1 

Thus thc� random variables WI - 1 ,  . . .  , Wr - 1 are independent, 
geometric;ally distributed with parameter p. 

Now clearly T,. - r = (WI - 1) + · · · + (w,. - 1 ), so we see� that 
T,. - r is the sum of r independent, geometrically distributed random 
variables. We have previously found that T, - r is negative bino]mially 
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distributed with parameters r and p. We have thus established the interest
ing and important fact that the distribution of the sum of r independent, 
identically distributed geometric random variables with parameter p is 
negative binomially distributed with parameters r and p. 

Furthc�r properties of infinite sequence� of independent Bernoulli trials 
will be treated in the exercises. 

3.6. Sums of i ndependent random variables 

In this, section we discuss methods for finding the distribution of the sum 
of a finite number of independent discrete random variables. Let llS start 
by considering two such variables X and Y. 

We assume, then, that X and Y are independent discrete random 
variables. Let Xl ' X2' . • .  denote the distinct possible values of X. F�or any 
z, the evc�nt {X + Y = z} is the same as the event 

U {X = x" Y = Z - Xi} . i 

Since the: events {X = Xb Y = z - Xi} are disjoint for distinct values of i, 
it follows that 

P(X + Y = z) = � P(X = Xi' Y = z - X,) 
I 

= � P(X = Xi)P(Y = z - X,) 
i 

In other words 

(24) 

If X and Y are integer-valued random variables, then X + Y is also 
integer-valued. In this case we can interpret (24) as being valid when z is 
an integer and the variable x in the right-hand side of (24) ranges over the 
integers . One further specialization is useful. Suppose that X :and Y 
assume only nonnegative integer values. Then X + Y also assume�s only 
nonnegative integer values. If z is a nonnegative integer, then 
fx(x)fy(z - x) = 0 unless x is one of the values 0, 1 ,  . . .  , z. Thus under 
these assumptions (24) can be written as 

z 

(25) Ix+ Y(z) = � fx(x)fy(z - x). 
% = 0 

Although Equation (25) is useful for computing the density of X· + Y, 
it is usually simpler to use probability generating functions . We will next 
describe such functions and then give several important applications of 
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their use in computing the density of the sum of independent ra:ndom 
variables. 

Dl.ifinition 6 Let X be a nonnegative integer-valued random 
variabl.�. The probability generating function <l>x of X is defined as 

ex> ex> 

Wlr(t) = � P(X = x)r = � fx(x)r, - 1 < t < 1 . 
%= 0 x= O 

We will now calculate Wx(t) in three specific cases. 

Examph:t 1 6. B i nomia l  d istri bution .  Let X have a binomial distri
bution with parameters n and p. Then 

P(X = x) = (:) p"(l - p)"-" 

and hence: 
" " (n) (J)x(t) = *
0 

P(X = x)t'" = ,,�o x (pt)"'(1 - p)"-", 

From the binomial expansion formula 

(a + b)" = f (n) a%b"-%, 
%= 0 x 

we conclude that 

(26) <l>x(t) = (pt + 1 - p)". 

Exampht 1 7. Negative b inomia l  d istri bution .  Let X have a negative 
binomial distribution with parameters a. and p. Then 

and hence 

P(X = x) = pI¥. (�(X) (- 1 )"'(1 _ p)'" 

(J)X<t) = f pI¥. (-a.) (- 1)%(1 - p)%r 
%= 0 x 

= pI¥. f (-a.) ( - t(l - p))%. 
%= 0 X 

From the Taylor series expansion 

with s = - t(1 - p), it follows that 

(27) <l>x(t) = . ( P ) tZ 

1 - t(l - p) 
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Exam�.le 1 8. Poisson d i stri bution .  Let X have a Poisson distribution 
with parameter A. Then 

and hence 

By setting s = At in the Taylor series expansion 

we see that 

(28) 

Let X,. and Y be independent, nonnegative integer-valued random 
variables. Then 

(29) 

To see this, note that by (25) 

00 

<I>x+ y(t) = � fz(z)tZ 
z= o 

00 Z 
= � tZ � fx(x)fy{z - x) 

z = o x = o 
00 00 

= � fx(x)tX � fy{z - x)tZ - X  
x= o z=x 

00 00 

= � fx(x)r � fy{y)tY 
x= o y= o 

= <I>x{ t)<I>y( t), 

which is the desired result. 
It follows easily from (29) by induction that if Xl ' . . .  , Xr are indepen

dent, nonnegative integer-valued random variables, then 

(30) 

The conclusions of the next theorem can be proven most easily by the 
"generating function technique," which is based upon the fact that if 

00 00 

� axr = � bxtX, 
x= o x= o - 1 < t < .1 , 

then we may equate the coefficients of tX in the two power seric�s and 
conclude that ax = bx, x = 0, 1 ,  2, . . . .  This shows that if two non
negative integer-valued random variables have the same probability 
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generating function, they must have the same distribution. In other 'words, 
the probability generating function of a nonnegative integer-valued 
random variable uniquely determines the distribution of that random 
variable. 

T.heorem 1 Let Xl ' . . .  , Xr be independent random variables. 
(i) If Xi has the binomial distribution with parameters n, anti p, 

then Xl + · · · + Xr has the binomial distribution }<'vith 
parameters nl + · · · + nr and p. 

(ii) If X, has the negative binomial distribution with parameter,s a, 
and p, then Xl + · · · + Xr has the negative binomial distrlbu
tion with parameters al + · · · + ar and p. 

(iii) If Xi has the Poisson distribution with parameter Ab then 
Xl + · · · + Xr has the Poisson distribution with parameter 
Al + · · · + Ar• 

Proof of (i) . If the X,'s are as in (i), then by Example 16  

<I>Xl + . . . +xr(t) = <I>x1(t) ·  • • <I>xr(t) 
= (pt + 1 - p)fll • • • (pt + 1 - p)flr 

= (pt + 1 - p)fll + . . . +flr• 
Thus the probability generating function of Xl + · · · + Xr is the same as 
that of a random variable having a binomial distribution with paraJmeters 
n l + · · · + nr and p. This implies that Xl + · · · + Xr must have that 
binomial distribution. For let 

ax = (ni + .� · + nr) pX(l _ p)nl + . . .  +,...-x 

denote the corresponding binomial probabilities. Then 
00 

� P(Xl + . . .  + Xr = x)r = <I>xl +  . . .  +Xr(t) ;x = o  
= (pt + 1 - p)fl1 + · · · + flr 

Thus by lequating coefficients we see that 

P(X 1 + · · · + Xr = x) = ax 

and hence that Xl + · · · + Xr is binomially distri·buted as stated ill (i). 

Proof of (ii) . If the X/s are as in (ii), then by Example 1 7  

(�Xl + , . .  +xr(t) = <I>Xl(t) · • · <I>xr(t) 
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( P )Cll ( P )Clr = 
1 - t(1 - p) · • .  1 - t{1 - p) 

= 
(
1 _ tft _ p)fl 

+ 

.

. .  +rJ.r• 
Thus the: probability generating function of Xl + · · · + Xr is the same as 
that of a random variable having a negative binomial distribution with 
paramet��rs Ctl + · · · + Ctr and p. It now follows by the same argument 
used in proving (i) that Xl + · · · + Xr has that negative binomial 
distribution. 

The proof of (iii) is similar to that of (i) and (ii) and is left as an exercise 
for the r,eader. I 

Suppose Ct I = · · · = Ctr = 1 in statement (ii) of Theorem 1 .  Then 
Xl ' . . . , Xr are each geometrically distributed with parameter p, and (ii) 
states that Xl + · · · + Xr has a negative binomial distribution with 
paramet��rs r and p. This provides an alternative proof to the result 
obtained. in Section 3.5. 

The n��xt example illustrates the use of conditional probabilities. 

EX8mlJ�le 1 9  Let Xl ' X2, • • •  be independent nonnegative integer
valued random variables having a common density. Set So = 0 and 
S,. = Xl + · · · + X,., n > 1 .  Let N be a nonnegative integer-·valued 
random variable and suppose that N, Xl ' X2, • • •  are independent. Then 
S N = Xl + · · · + X N is the sum of a random number of random variables. 
For an interpretation of SN suppose that at time 0 a random nunlber N 
of bacteria enters a system and that by time 1 the colony started by the 
ith bactc�rium contains Xi members. Then SN is the total numlber of 
bacteria present at time 1 .  Show that the probability generating function 
of SN is given by 

(3 1) - 1  < t < 1 .  - -

To verify (3 1)  we observe first that 
00 

P{SN = x) = 1: P{SN = X, N = n) 
,. = 0  

00 

= 1: P{S,. = x, N = n) 
,. = 0  

00 

= 1: P{N = n)P(S,. = x I N = n). 
,. = 0  

Since N i s  independent of Xh X2, • • •  , X,., it is independent of ��,., and 
hence P(S,. = x I N = n) = P(S,. = x). Thus 

00 

(32) P(SN = x) = 1: P{N = n)P{S,. = x). 
,. = 0  
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Consequently for - 1 < t < 1 
00 

WSN(t) = � rP(SN = x) 
X = O  

00 00 

= � tX � P(N = n)P(S" = x) 
x = O  ,, = 0 

00 00 

= � P(N = n) � rP(S" = x) 
,, = 0  x = O  

00 

= � P(N = n) WSn(t) 
,, = 0  

00 

= � P(N = n)(<I>Xl(t ))
" = <I>N(<I>Xt(t )). 

,, = 0  

Exercises 

77 

1 Any point in the interval [0, 1) can be represented by its decimal 
expansion .XIX2 . • • •  Suppose a point is chosen at random froln the 
interval [0, 1 ). Let X be the first digit in the decimal expansion 
representing the point. Compute the density of X. 

2 Let X have the negative binomial density with parameters r:x = r 
(r an integer) and p. Compute the density of X + r. 

3 Suppose a box has 6 red balls and 4 black balls. A random sample of 
size n is selected. Let X denote the number of red balls selected. 
Compute the density of X if the sampling is (a) without replacement, 
(b) with replacement. 

4 Let N be a positive integer and let 

f( x) = { c 2% , X = 1 ,  2, . · · , N, 
0, elsewhere. 

Find the value of c such that f is a probability density. 
5 Suppose X is a random variable having density f given by 

1 

x II 
- 3  

I 
- 1  

I 
0 

I f(x) . 1  .2 . 1 5  .2 

Compute the following probabilities : 
(a) X is negative ; 
(b) X is even ; 

2 

. 1  

(c) X takes a value between 1 and 8 inclusive ; 
(d) P(X = - 3  I X < 0) ; 

(e) P(X > 3 I X > 0). 

6 Suppose X has a geometric distribution with p = . 8 .  Comput1e the 
probabilities of the following events : 
(a) X > 3 ;  
(b) 4 < X � 7 or X > 9 ;  
(c) 3 S X < 5 or 7 S X S 10. 
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7 Let X be uniformly distributed on 0, 1 ,  . . .  , 99. Calculate 
(a) l'(X > 25) ;  
(b) J)(2.6 < X < 12.2) ; 
(c) P(8 < X < 10 or 30 < X < 32) ; 
(d) P(25 < X < 30). 

8 Suppose a box has 12  balls labeled 1 ,  2, . . .  , 12. Two independent 
repetitions are made of the experiment of selecting a ball at random 
froml the box. Let X denote the larger of the two numbers on the balls 
selected. Compute the density of X. 

9 Suppose the situation is as in Exercise 8, except now the two balls are 
selected without replacement. Compute the density of X. 

1 0  Let ]t" be a geometrically distributed random variable having parameter 
p. l"et Y = X if X < M and let Y = M if X � M; that is, Y = 
Min (X, M). Compute the density of Y. 

1 1  Let X be geometrically distributed with parameter p. Compute the 
density of 
(a) )['2 ; 
(b) ]t" + 3. 

1 2  Suppose a box has r balls numbered 1 ,  2, . . .  , r. A random sample of 
size n is selected without replacement. Let Y denote the largest of the 
numbers drawn and let Z denote the smallest. 
(a) <:ompute the probability P(Y < y). 
(b) <:ompute the probability P(Z > z). 

1 3  Let X and Y be two random variables having the joint density given 
by the following table. 

� - 1  0 2 6 

- 2  1/9 1/27 1 /27 1/9 

1 2/9 0 1 /9 1 /9 

3 0 0 1 /9 4/27 

Compute the probability of the following events : 
(a) Y is even ; 
(b) XY is odd ; 
(c) J( > 0 and Y > o. 

1 4  Let X and Y be independent random variables each having the uniform 
density on {a, 1 ,  . . .  , N} . Find 
(a) P(X > Y) ;  
(b) P(X = Y). 

1 5  Let Jr and Y be as in Exercise 14. Find the densities of 
(a) Olin (X, y) ;  
(b) max (X, Y) ; 
(c) I Y - XI · 
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1 6  Let X and Y be independent random variables having geometric 
densities with parameters PI and P2 respectively. Find 
(a) P(X "?  Y) ; 
(b) P(X = Y). 

1 7  Let X and Y be as in Exercise 1 6. Find the density of 
(a) min (X, Y) ; 
(b) X + Y. 

1 8  Let X and Y be discrete random variables and let 9 and h be funlctions 
such that the following identity holds : 

P(X = x, Y = y) = g(x)h(y). 

(a) Express P(X = x) in terms of 9 and h. 
(b) Express P( Y = y) in terms of 9 and h. 
(c) Show that (Lx g(x» (Ly hey»� = 1 . 
(d) Show that X and Y are independent. 

1 9  Let X and Y be independent random variables each having a geometric 
density with parameter p. Set Z = Y - X and M = min (X, ](1. 
(a) Show that for integers z and m > 0 

P(M = m Z = z) = {P(X = m - z)P(Y = m), 
, 

. P(X = m)P(Y = m + z), 

(b) Conclude from (a) that for integers z and m > 0 

P(M = m, Z = z) = p2(1 _ p)2m(1 _ p)lzl . 

z < 0, 
z > o. 

(c) Use (b) and Exercise 18 to show that M and Z are independent. 
20 Suppose a circular target is divided into three zones bounded by con

centric: circles of radius 1 /3, 1 /2, and 1 ,  as illustrated in the following 
diagram. 

3 

Figure 4 

If thr��e shots are fired at random at the target, what is the probability 
that exactly one shot lands in each zone? 

21 Suppose 2r baIls are distributed at random into r boxes. Let Xi denote 
the number of balls in box i. 
(a) Find the joint density of Xl' . . .  , Xr• 
(b) Find the probability that each box contains exactly 2 balls. 

22 Consider an experiment having three possible outcomes that occur with 
probabilities PI'  P2' and P3 , respectively. Suppose n independent 
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repetitions of the experiment are made and let Xi denote the nurnber of 
times the ith outcome occurs . 
(a) 'N"hat is the density of Xl + X2 ? 
(b) ]�ind P(X2 = Y I Xl + X2 = z), y = 0, 1 ,  . . .  , z. 

23 Use the Poisson approximation to calculate the probability that at 
most 2 out of 50 given people will have invalid driver's lic��nses if 
norn[lally 5% of the people do. 

24 Use the Poisson approximation to calculate the probability that a box 
of 1 ()() fuses has at most 2 defective fuses if 3% of the fuses made are 
defective. 

25 A di,e is rolled until a 6 appears. 
(a) 'N"hat is the probability that at most six rolls are needed? 
(b) lIow many rolls are required so that the probability of getting 6 is 

at least 1 /2? 
Exercises 26-30 are related problems concerning an infinite se:quence 

of B1emoulli trials as discussed in Section 3.5. 
26 Let �ri be the number of trials up to and including the ith success. Let 

o < Xl < · · · < Xr be integers. Compute the probability 

P(Tl = Xl ' T2 = X2' · · · , T, = xr)· 
Hint : Let w,. = T,. - T,.- l ,  r > 2, and let Wl = Tl ; then 
P(Tl. = Xl , · . · , T,. = xr) = P(Wl = Xl '  W2 = X2 - Xl' · · . , w,. = Xr -, Xr- l)· 

No,,' use the fact that the random variables WI - 1 ,  . . .  , w,. -- 1 are 
mutually independent random variables, each having a geometric 
distribution with parameter p. 

27 Let lV',. be the number of successes in the first n trials. Show that 

1 P(Tl = x I N,. = 1) = - , 
n 

28 Mor,e generally, show that 

x = 1 , 2, . . . , n . 

P(Tl = Xl '  T2 = X2' . . .  , Tr = Xr I N" = r) = (�) - 1 , 

o < Xl < X2 < · · · < Xr :s: n. 
This shows that given there are r successes during the first n trials, the 
trials at which these successes occur constitute a random sample: of size 
r (without replacement) from the "population" of possible positions. 

29 Let l� be a positive integer, k < r. From Exercise 28 we may readily 
compute that (X - 1) (n - x) 

P(1k = X I N" = r) = k - 1 (�)r - k . 
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Indeed, if � = x then the kth success is at position x. In thte first 
x - I positions there must be exactly k - 1 successes, and in the last 
n - x' positions there must be exactly r - k successes. Since, given 
N" = r, the positions of the r successes are a random sample of size r 
from the "population" of n positions, the result follows. Verify that 
this is in fact so, by computing directly P(Tk = x I N" = r). 

30 Let 1 < i < j � r be nonnegative integers. Compute 

P(Ti = x, 1j = y i N" = r) 

for 0 .< x < y � n. 
31 Suppose X and Yare independent random variables having the uniform 

density on 1 ,  2, . . .  , N. Compute the density of X + Y. 
32 Let X be uniformly distributed on {O, 1 ,  2, . . .  , N}. Find <llx(t). 
33 Let l� be a nonnegative integer-valued random variable ,whose 

probability generating function is given by <llx(t) = e).(tl - l ), 'where 
A > o. Find Ix. 

34 Prove (iii) of Theorem 1 .  
35 Let X and Y be independent random variables having Poisson densities 

with parameters Al and A2 respectively. Find P(Y = y I X + Y' = z) 
for y := 0, . . .  , z. Hint : Use (iii) of Theorem 1 .  

36 Let X� Y, and Z be independent random variables having Poisson 
densities with parameters Al ' A2' and A3 respectively. Find 

P(X = x, Y = y, Z = z I X + Y + Z = x + y + z) 
for nonnegative integers x, y, and z. Hint : Use (iii) of Theorem 1 .  

37 In Ex:ample 19  suppose that Xl takes on the values 1 and 0 with 
respective proQabilities p and 1 - p, where 0 < p < 1 .  Suppos1e alsO' 
that �r has a Poisson density with parameter l. 
(a) Use Equation (3 1)  to find the probability generating function of SN. 
(b) Use (a) to find the density of SN. 
For an interpretation of SN suppose a random number N of c:ancer 
cells is introduced at time 0 and that each cell, independently of the other 
cells and independently of N, has probability p of surviving a treatment 
of radiation. Let Xi = 1 if the ith cell survives and let Xi = 0 other
wise. Then SN is the number of cells that survive the treatment. 

38 Solve (b) of Exercise 37 without using probability generating functions, 
but using instead Equation (32) and the fact that Xl + · · · + X" has a 
binomlial density. 
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Expectation of 
Discrete Random 
Variables 

Let us consid,er playing a certain game of chance. In order to play the game, we 
must pay a fee of a dollars. As a result of playing the game we receive X dollars, 
where X is a random variable having possible values Xl ' X2, . . .  , Xr• The question 
is, should we play the game? If the game is to be played only once, then this 
question is quitle difficult. However, suppose we play the game a large number of 
times. After n plays we would pay na dollars and receive Xl + · · · + X,. dollars. 
If we assume that the successive plays of the game constitute independent repeti
tions of the sam,e experiment (observing a value of X), then we can take the random 
variables Xl ' X2, • • • , X,. as mutually independent and having the common density 
! of X. Let N,.(x,) denote the number of games that yielded the value X" i.e. , the 
number of X,'s that assume the value X, . Then we can write 

r 
Xl + · · · + X,. = � XiN,.(x,). 

i = 1 

The average amlount received is then 

Xl + . . · + X,. _ f [N,.(x,)] ------"'------ - i..J X, • 
n ' = 1 n 

According to the relative frequency interpretation of probabilities, if n is large, 
the numbers N,.(x,)/n should be approximately equal to !(x,), and thus the sum on 
the right should be approximately equal to Jl = Ll= 1 x,!(x,). Thus it see�ms rea
sonable to anticipate a net gain in playing the game if Jl > a and to expe:ct a net 
loss if Jl < a. If Jl = a we would anticipate just about breaking even. 

The quantity Ll= 1 x,!(x,) is called the expectation of the random variable X. 
More generally, let X be any discrete random variable that assumes a finite number 
of values Xl ' . . .  , Xr• Then the expected value of X, denoted by EX or �t, is the 
number 

r 
(1 ) EX = � xJ(x,), 

, =  1 

where .f is the dc�nsity of X. 
Suppose X has the uniform distribution on the set {Xl ' • • . , xr} . Then �f(x,) = 

P(X = x,) = , "- 1 , and from (1) we see that EX = (Xl + . . .  + X,), - l
, so in this 
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case EX is just the arithmetic average of the possible values of X. In g�eneral, 
(1) shows that E.K is a weighted average of the possible values of X; the 'weight 
attached to the ith value x, is its probability f(x,). 

The expected value EX is also called the mean of X (or of the density j' of X) 
and is -·customarily denoted by Jl. The mean is one way of trying to summarize a 
probability distribution by a single number that is supposed to represent a "typical 
value" of X. Hovv good this is depends on how closely the values of X are clustered 
about the value p�. We will examine this question in more detail when we discuss 
the variance of X in Section 4.3. 

Example 1 .  B ii nomia l  d istri bution .  Let X have the binomial distribution with 
parameters n and p. Find EX. 

For n = 1 ,  X assumes the two values 0 and 1 with probabilities (1 - p) and p 
respectively. Hence 

EX = o ·  P(X = 0) + 1 · P(X = 1 ) = p. 

Since a random variable having a binomial density with parameters 1 and p is just 
an indicator random variable, we see that we can find the probability of the event A 
that X = 1 by computing the expectation of its indicator. 

We now compute EX for any n � 1 .  In this case X assumes the values 0, 1 ,  2, . . .  , 
n, and 

EX = t j (�) pi(l - py,-i. 
) = 0  J 

To calculate this quantity we observe that 

j (J�) - jn ! 
j ! (n - j) ! 

n(n - 1) ! - ------'---------
(j - l) ! [(n - 1) - (j - 1)] ! 

Thus 
= n (; = !) . 

EX = n t (� - 1
1) pi(1 - p),,-i. J= l J -

Making the change of variable i = j - 1 we see that 

EX = np "f (n � 1) pi(1 _ p),,- i- l . 
i = O  J 

By the binomial theorem 

"f ('n -: 1) pi(1 _ p),,- i- l = [p + (1 _ p)],,- l  = 1 ,  
1 = 0 . J 

so we see that 
EX = np. 



84 Expectation of Discrete Random Variables 

4.1 . D�9finition of expectation 

Suppose now that X is any discrete random variable having possible 
values ,Xl ' X2 , • • • •  We would like to define the expectation of X as 

ex> 
(2) EX = I: xjf(xj) . j= l 

If X has only a finite number of possible values Xl ' • • •  , Xr, the:n (2) is 
just our previous definition. In the general discrete case, this definition is 
valid provided that the sum Lj xjf(xj) is well defined. For this to be the 
case we require that Lj Ixj lf(xj) < 00.  This leads to the following . 

. Definition 1 Let X be a discrete random variable having density 
f. If' Lj Ixj lf(xj) < 00, then we say that X has finite expectation and 
we d�ifine its expectation by (2). On the other hand if LJ= 1 Ixj lf(X'j) = 
00, then we say X does not have finite expectation and EX is undejined. 

If X is a nonnegative random variable, the fact that X has finite 
expectation is usually denoted by EX < 00 .  

Exam ple 2. Po isson d i stri bution .  Let X be Poisson distributed with 
parameter A. Then 

ex> "J j ex> j 
EX - � . A -A. _ � 

A -A. - i.J J - e  - i.J e 
j= l j !  j= l (j - 1) ! 

ex> Aj 
= Ae-A. I: - = Ae-A.eA. = A. 

j = O  j !  
Example 3. Geometri c d i stri but ion .  Let X have a geometric distrib

ution with parameter p. Find EX. 

Now 
ex> 

EX = I: jP(1 - p)j 
j = O  

ex> 
= p(1 - p) I: j(1 - p)j -

l 

j = O  

00 d = -p(l - p) I: - (1 - p)j. 
j= O dp 

Since a power series can be differentiated term by term, it follows that 

d ex> 
EX = - P(1 - p) - I: (1 - p)j. 

dp j=O  

Using the formula for the sum of a geometric progression, we see: that 

EX = -P(l - p) � (1) = -P(1 _ p) (- 1) . 
dp p p2 
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Consequc�ntly 

EX = 1 - p . 
p 
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We will next consider an example of a density that does not have: finite 
mean. 

Examplle 4. Letfbe the function defined on R by 

f(x) = (X(X � 1) ' 

0, 

x = 1 ,  2, . . . , 

elsewhere. 

The function f obviously satisfies properties (i) and (ii) in the definition of 
density functions given in Chapter 3. To see that f satisfies property (iii) 
we note that 

and hencle 

1 1 1 = - - --
x(x + 1) x x + 1 

� f(x) = � - - -
ex> ex> [ 1 1 ] 

oX= 1 oX= 1 X X + 1 

= (1 - 1/2) + ( 1 /2 - 1 /3) + · · · = 1 . 

Thus (iii) holds andfis a density . Now fdoes not have finite mean b��cause 
ex> ex> 1 
� Ixlf(x) = � 

oX=  1 oX=  1 X + 1 

and it is v�ell known that the harmonic series L:= I X- I does not converge. 

4.2. Prolperties of expectation 

Often vve want to compute the expectation of a random variable such as 
Z = Xl .+ X2 or Z = X2 that is itself a function <p(X) of the random 
vector X. Of course, if we know the density fz of Z, this can be done by 
using (2). Quite frequently, however, the density of Z may not be known, 
or the computation of EZ from a known density of Z may be quite 
difficult. Our next result will give us a way of deciding if Z has finite ex
pectation and, if it does, of computing EZ directly in terms of the d,ensity 
fx and th�� function <p. 

Before stating this result we introduce a notational convention. :Let X 
be a discrete r-dimensional random vector having possible values 
Xh X2, • . .. and density f, and let <p be any real-valued function defined on 
K. Then Lx <p(x)f(x) is defined as 

(3) � lp(x)f(x) = � lp(xJ)f(xJ). 
x j 
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(4) 

(5) 

Expectation of Discrete Random "/ariables 

'Jrheorem 1 Let X be a discrete random vector having density f, 
and let cP be a real-valued function defined on R'. Then the ranldom 
variable Z = cp(X) has finite expectation if and only if 

� I cp(x)lf(x) < 00 
s 

and, �vhen (4) holds, 

EZ = � cp(x)f(x). 
x 

Proof Let Zl ' Z2 ' • • •  denote the distinct possible values of Z 4and let 
Xl ' X2' . .. . denote the distinct possible values of X. For any Zj there is at 
least one: Xi such that Zj = cp(xi), but there may be more than one such Xi. 
Let A j denote the collection of such x,'s, that is, 

A j = {Xi I CP(Xi) = Zj} . 
Then {X: E Aj} and {Z = Zj} denote exactly the same events. Thus 

P(Z = Zj) = P(X E Aj) = � fx(x). 
s e AJ 

Consequently, 

Since cp(x) = Z j for x in A j' it follows that 

� I zjlfz(zj) = � � I cp(x)lfx(x). j j s e AJ 

By their definition, the sets A j are disjoint for distinct values of j, an.d their 
union is the set of all possible values of X. Therefore 

� I zj lfz(zj) = � I cp(x) lfx(x). j x 

This shows that Z has finite expectation if and only if (4) holds. 
If Z does have finite expectation, then by repeating the above argument 

with the absolute signs eliminated, we conclude that (5) holds. I 

Let X be a random variable having density f and let cp(x) = Ix l . Then 
by Theorem 1 ,  IXI has finite expectation if and only if Lx Ixlf(x) < 00 .  
But, according to our definition of expectation, X has finite expectation if 
and only if the same series converges. We see therefore that X has finite 
expectation if and only if EIXI < 00.  

We shall now use Theorem 1 to establish the following important 
properti(�s of expectation. 



4.2. Properties of expectation 

TJieorem 2 Let X and Y be two randonl variables having finite 
expectation. 

(i) If c is a constant and P(X = c) = 1 ,  then EX = c. 
(ii) If c is a constant, then cX has finite expectation and E(cX) = 

cEX. 
(iii) X + Y has finite expectation and 

E(X + Y) = EX + EY. 

(iv) Suppose P(X > Y) = 1 .  Then EX > EY; moreover, EX = 
EY if and only if P(X = Y) = 1 .  

(v) IEXI < EIXI . 
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Proof. The proof of (i) :is quite simple. If P(X = c) = 1 ,  then .X has 
density ix(x) = 0 for x =F c and fx{c) = 1 .  Thus by (2) 

EX = � xfx(x) = cfx(c) = c. 
% 

To prove (ii) let <p{x) = cx and observe that 

� I cxlfx(x) = I cl � Ixlfx(x) < 00, 
% % 

so cX has finite expectation. Thus by (5) 

E(cX) = � (cx)fx(x) = c � xfx(x) = cEX. 
% x 

To establish (iii) set <p(x, y) = x + y and let f denote the joint d,ensity 
of X and Y. Then 

�: Ix + ylf(x, y) < � Ixlf(x, y) + � I ylf(x, y) 
x,y x"� 

= � Ixl � f(x, y) + � I yl � f(x, y) 
% y Y % 

= � Ixlfx(x) + � I Ylfy(y) < 00 
% Y 

and hence� X + Y has finite expectation. Applying (5) we see that 

E(X + Y) = � (x + y)f(x, y) 
%,y 

= � xf(x, y) + � yf(x, y) 
%,y x"� 

= EX + EY. 

To prove (iv) observe that Z = X - Y = X + ( - Y), and by (iii) and 
(iii) we sele that 

EX - EY = E(X - Y) = EZ = � zfZ(z).  
'Y 
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Since P�(Z > 0) = P(X � Y) = 1 ,  the values z, that Z = �f - Y 
assumes must all be nonnegative. Thus Lz zfz(z) � 0 and hence 
EX - E�Y > o. This yields the first part of (iv). If EX = El", then 
EZ = 0,. But then 

o = EZ = I: zJz{z,} . 
, 

Now the: sum of nonnegative terms can equal zero only if all the individual 
terms equal zero. Since fz(z,} > 0 it must be that z, = o. Thus the only 
possible value of Z is 0 and consequently P(Z = O} = 1 .  

Finally, (v) follows from (iv) and (ii) because - IX I � X < 1 )('"1 and 
hence - EIXI < EX < EIXI . This completes the proof of the theorem. I 

It easily follows from (ii) and (iii) that if Xl ' . . .  , X,. are any n random 
variables having finite expectation, and c t , . . .  , c,. are any n constants, then 

(6) E(CIXI + · · · + C,.X,.} = CtEXt + · · · + c,.EX,.. 

It is useful to know that a bounded random variable always has finite 
expectation. More precisely, 

l7leorem 3 Let X be a random variable such that for some 
constant M, P(IXI < M) = 1 .  Then X has finite expectation and 
IEXI � M. 

Proof. Let X l ' X2 ' . • •  be the possible values of X. Then IXi l < M for 
all i. Indeed, if Ix, l > M for some possible value x" then 

P( IX I > M} > P(IX I = Ix,D > 0, 

which contradicts the fact that P(IXI < M) = 1 .  Consequently 

I: Ix,lf(x,} < M I: f(x,} � M, , , 

so X has finite expectation. Moreover by (v) of Theorem 2, 

IEX I  � E IXI = I: Ix,lf(x,) � M. i 

This conlpletes the proof. I 

It follows easily from Theorem 3 and (iii) of Theorem 2 that if X and Y 
are two random variables such that Y has finite expectation and for some 
constant M, P(IX - Y I < M} = 1 ,  then X also has finite expe(�tation 
and lEX - EYI � M. We leave the proof of this fact for the reader. 

Since the expectation of the sum of two random variables is the sum of 
their expectations, one might suppose that the expectation of a product is 
the product of the expectations. That this is not true in general (�an be 
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seen by (�onsidering the random variable X taking values 1 and - 1 each 
with probability 1 /2 and setting Y = X. Then EX = EY = 0 but 
EXY = EX2 = 1 .  

There is an important case when this product rule is valid, namely, 
when X and Y are independent random variables. We state this more 
formally as follows. 

(7) 

Theorem 4. Let X and Y be two independent random variables 
having finite expectations. Then XY has finite expectation and 

E(XY) = (EX)(EY). 

Proof. Observe that since X and Y are independent, the joint density 
of X and Y is fx(x)fy(y). Thus 

� Ixylf(x, y) = � Ixl l Ylfx(x)fy(y) 
x" x" 

so XY has finite expectation. Using Theorem 1 ,  we conclude that 

E(X Y) = � (xy)fx(x)fy(y) 
x" 

= [� X!X<X)] [� y!y(y)] = (EX)(EY). I 

The converse of this property does not hold ; two random variables X 
and Y may be such that E(XY) = (EX)(EY) even though X and Y are not 
independent. 

Example 5. Let (X, Y) assume the values (1 , 0), (0, 1), ( - 1 ,  0), and 
(0, - 1) \vith equal probabilities. Then EX = EY = o. Since Xf� = 0, 
it follows that E(XY) = 0 and hence E(XY) = (EX)(EY). To see that 
X and Y are not independent observe, for example, that P(X = 0) = 
P(Y = 0) = 1 /2 whereas P(X = 0, Y = 0) = o. Thus 

P(X = 0, Y = 0) :/: P(X = O)P(Y = 0). 

It is often easier to compute expectations by using the properties given 
in Theorem 2 than by using the definition directly. We now illustrate this 
technique with several examples. 

ExampllB 8. B i nomia l  d i stri bution .  We already know from Example 
1 that the mean of the binomial distribution with parameters n and p 
is np. We can also derive this fact in a very simple manner by using the 
property that the expectation of a sum is the sum of the expectations « iii) 
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of Theorem 2). To this end, let Xl' . . .  , X,. be n independent Bernoulli 
random variables having parameter P and set S" = Xl + · · · + X". Then 
S" has the binomial distribution with parameters n and p. By the first part 
of Example 1 ,  EXi = p, 1 < i < n, and hence 

,. 

ES" = E(Xl + · · · + X,,) = � EX, = np. 
1 =  1 

Examplle 7. Hypergeometric  d i stri bution .  Suppose we have a pop
ulation of r objects, r1 of which are of type one and , - '1 of typ1e two. 
A sample of size n is drawn without replacement from this population. Let 
S,. denotle the number of objects of type one that are obtained. Compute 
ES,.. 

We know that S,. has the hypergeometric distribution, so we could 
compute ES,. by using (2) . It is far simpler, however, to proce�ed by 
introducing indicator random variables Xh . . .  , X,. as follows., The 
random variable Xi = 1 if and only if the ith element in the sample is of 
type one.. Then 

EX, = P(X, = 1)  = rl . 
r 

But S,. =: Xl + · · · + X,., so using (iii) of Theorem 2 we see that 
" r 

ES" = � EX, = n -1 . 
i = 1 r 

Note that the random variables X" 1 < i < n, are not independent. 

Example 8. Suppose we have a population of r distinct objects labeled 
1 , 2, . . . , '. Objects are drawn with replacement until exactly k < r 
distinct objects have been obtained. Let Sk denote the size of the sample 
required. Compute ESk• 

It is clear that S 1 = 1 and hence ES I = 1 .  Assume k > 2 and let 
Xi = Si + I - Si' i = 1 ,  2, . . .  , k - 1 .  Then clearly Sk = 1 + Xl + · · · 

+ Xk- l .  Now Xi is the number of objects that must be drawn after the 
ith new object enters the sample and until the (i + l)st new object enters 
the sample. A moment's thought shows that the event {X, = n} oc'curs if 
and only if the first n - 1 objects drawn after the ith ne)\' object entc�rs the 
sample duplicate one of the previous i objects, and the nth object drawn 
after the ith new object enters is different from the previous i objects. 
Thus, as the trials are independent, ( .) ,.- 1 ( .) 

P(Xi = n) = ; 1 - ; , n = 1 ,  2, . . . .  

This sho'Ns that the random variable Xi - 1 is geometric with parameter 
-P i = 1 -- (i/r). Hence by Example 3, E(X, - 1) = Pl 1(1 - Pi)' and 

EXit = Pi- 1(1 - p,) + 1 = pi 1 / (1 - i/r)- l = r(r - i) - l . 
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Consequtently, 

(8) ESk = 1 + � 
r

. 
k- l ( ) 
i =  1 r - z 

= � 
r

. 

k- l ( ) 
i = O  r - I 

= r (! + 
1 

+ . . . + 
1 ) 

. 
r r - 1 r - k + 1  
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We point out for later use that it is clear from the construction of the Xi 
that they are mutually independent random variables. 

In the previous chapter we have seen that nonnegative integer-valued 
random variables X play a prominent role. For these random variables 
the follo,wing theorem can frequently be applied both to decide if X has 
finite expectation and to compute the expectation of X. 

(9) 

l'heorem 5 Let X be a nonnegative integer-valued ran(lom 
variable. Then X has finite expectation if and only if the series 
L:= I P(X > x) converges. If the series does converge, then 

00 

EX = � P(X > x) . 
x = 1 

Proof We will show that 
00 00 

(10) � xP(X = x) = � P(X > x), 
x = 1 x = 1 

from which the theorem follows immediately. To this end we first write 
the left siide of (10) as 

00 x 

� P(X = x) � 1 .  
x = 1 y = 1 

It is perrnissible to interchange the order of summation and rewrite this 
expression as 

00 00 ao 

I: � P(X = x) = � P(X > y). 
y = 1 x = y y = 1 

Replacing the dummy variable y by the dummy variable x in the right side 
of this equality, we obtain the right side of (10). This shows that (10) 
holds, as desired. I 

For an elementary application of this theorem, suppose that �f' is a 
geometrit�ally distributed random variable having parameter p. Then 
P(X > x) = ( 1  - p)X and thus by the theorem 

ao 

EX == � (1  - p)X = (1 - p) + (1 - p)2 = . . .  = p- l(1 - p). 
x = 1 

This agre�es with the result found in Example 3 .  
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4.3. M c) ments 

Let X be a discrete random variable, and let r > 0 be an intege:r. We 
say that X has a moment of order r if xr has finite expectation. In that 
case we define the rth moment of X as Exr. If X has a moment of order r 
then the rth moment of X - Jl, where Jl is the mean of X, is called the rth 
central n10ment (or the rth moment about the mean) of X. By Theorem 1 
we can compute the rth moment and the rth central moment of X directly 
from the: density f by the formulas 

(1 1) EXr = � x'i(x) 
% 

and 

(12) E(X - Jl)r = � (x - Jl)'i(x). 
% 

In vie1w of (1 1)  and ( 12), the rth moment and rth central momf�nt are 
determined by the density f, and it therefore makes perfectly good sense 
to speak of them as the rth moment and rth central moment IOf this 
density. 

Suppose X has a moment of order r ;  then X has a moment of order k 
for all k < r. To see this, observe that if Ixl < 1 ,  then 

1x"1 = Ixl k < 1 
while for Ixl > 1 ,  

Thus in either case it is always true that 

Ixlk < Ixlr + 1 .  

Thus, by the comparison theorem for the convergence of series, we see 
that 

� IxIY(x) < � [Ixl r + 1]f(x) = E(IXlr) + 1 < 00, 
% 

so Xk has finite expectation. 
On th�e other hand, as was shown in Example 4, a random variable X 

may not have even a first moment. A simple modification of this example 
shows that a random variable may have a moment of order r but possess 
no highe:r order moment. (See Exercise 9.) 

The first moment (r = 1 )  is just the mean of X. In general, th(� more 
moments of X that we know the more information we have gained about 
the distribution of X; however, in applications it is the first two moments 
that are usually of major interest. 

By property (iii) of Theorem 2 we know that if X and Y both have a 
finite first moment, then so does X + Y. We will now show that this 
desirable: property holds true for moments of order r as well. 
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'1�heorem 6 If the random variables X and Y have moments of 
order r, then X + Y also has a moment of order r. 
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Proof This theorem rests on the following simple inequality. For 
any nonnegative integer j < r, 

( 13) x, Y E R. 

To see this, observe that if Ixl < I YI , then Ixli l yl , - i < I yl i l yl, -i = 
I YI ' < I ·xl ' + I yl' ; while if Ixl > I yl , then Ixl il yl, -i < lxi' s lxi' + Iyl'· 
Thus (1 3) holds . Using (1 3) and the binomial theorem we now see that 

But 

because 

Ix + y l ' < ( Ix l + I y l)' 

_ ± (�) Ix l il y l' -i 
i= O J 

< ± (�) ( lx i '  + I y l ')· 
i= O J 

± (�) = 2' 
i = O J 

2r = (1 + l)r = ± (�) 1i1r-i = ± (�) . 
i= O J i= O J 

Consequently 
Ix + yl' < 2'(Ixl ' + I yl') · 

Letfbe the joint density of X and Y. Then 

I: Ix + yl'J(x, y) < 2' I: (lx i' + I y l ')f(x, y) 
x,y x,y 

= 2'E(IX I' + I Y IJ = 2'(EIX I ' + EI Y I') < 00 .  

Hence by Theorem 1 ,  (X + Y)' has finite expectation. I 

It follows easily by induction that if Xl ' X2, • • •  , X,. all have a mloment 
of order r, then so does Xl + · · · + X,.. 

Let X be a random variable having a finite second moment. Then the 
variance of X, denoted by Var X or V(X), is defined by 

Var X = E[(X - EX)2] . 

By expanding the right-hand side we see that 

Var X = E[X2 - (2X)(EX) + (EX)2] 

= EX2 - 2(EX)2 + (EX)2 . 
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In other words 

(14) Var X = EX2 - (EX)2. 

One ofte:n denotes EX by Jl and Var X by a2. The nonnegative number 
a = .JV'ar X is called the standard deviation of X or of Ix. 

According to our previous discussion, the mean Jl is the average: value 
of the random variable X. One use of the variance is as a measure of the 
spread of the distribution of X about the mean. The more X tends to 
deviate from its mean value Jl, the larger (X - Jl)2 tends to be, and hence 
the larger the variance becomes. 

On thc� other hand, Var X = 0 if and only if X is a constant. �ro see 
this, obsc�rve that if P(X = c) = 1 for some constant c, then EX = c and 
Var X =: O. Conversely, if Var X = 0, then E[(X - EX)2] = 0 and 
hence P« X - EX)2 = 0) = 1 .  Consequently P(X = EX) = 1 .  

An altlernative use of the mean and variance is provided by the following 
problem" which is of interest in statistics. Let X be a random variable 
having a finite second moment, and suppose we want to choose the� value 
of a that minimizes E(X - a)2 . Such a value would provide the best fit to 
X by a constant if the error were measured by the mean square deviation. 

One way of solving this problem is to use calculus. Note that 

E(X - a)2 = EX2 - 2aEX + a2. 

If we differentiate with respect to a and set the derivative equal to zero, 
we see that a = EX. Since the second derivative is positive (in fact, it 
equals 2), the point corresponds to a minimum, and the minimum value is 
Var X. 

There is a second way of solving this problem that is also important to 
understand. Note that 

(X - a)2 = [(X - Jl) + (Jl - a)]2 = (X - /1)2 + 2(X - /1)(Jl - a) + (/1 - a)2 . 

Since E(X - Jl) = 0, it follows that the cross-product term has zero 
expectation and hence 

(1 5) E(X - a)2 = E(X - Jl)2 + (Jl - a)2 = Var X + (Jl - a)2 . 

It is no\\r clear from (1 5) that E(X - a)2 is at a minimum when It = a, 
and this minimum value is Var X. 

We can often find the moments of a nonnegative integer-valued random 
variable ,x most simply by differentiating its probability generating func
tion tIlx. Suppose for simplicity that 

ex> 

� fx(x)ro < 00 
x = O  
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for some to > I . Then we can regard <l>x as being defined on - to < t < to 
by 

ex> 

<l>x(t)  = � fx(x)r, - to < t < to. 
% = 0  

We can differentiate <l>x(t) any number of times by differentiating the 
corresponding power series term by term. In particular 

ex> 

<I>�(t)  = � xfx(x)r- 1 , 
%= 1 

and 
ex> 

<I>;(t) = � x(x - 1 )!x(x)tX - 2, - to < t < to . 
%= 2 

By our assumptions on to, we can let t = 1 in these formulas, obtaining 

ex> 

<I>�(I)  = � xfx(x) = EX 
%= 1 

and 
ex> 

<1>;(1) = � x(x - I )fx(x) = EX(X - 1). 
%= 2 

Thus the mean and variance of X can be obtained from <I>x by me:ans of 
the formulas 

EX = <I>�(1) 
and 

'Var X = EX2 - (EX)2 = <1>;(1) + cI>�(1) - (<I>�(1» 2 . 

Similar formulas, in terms of the higher derivatives of <l>x(t) at t = 1 ,  
can be d€�veloped for the other moments of X. 

We no'w illustrate the use of these formulas with the following exa:mples. 

Example 9. N egative b i nomia l  d i stri bution .  Let X be a random 
variable having a negative binomial distribution with parameters C( and p. 
Find the mean and variance of X. 

From lExample 1 7  of Chapter 3, we know that the generating function of 
X is given by <I>x(t) = ptz[ 1 - t(1 - p)] -tz. Consequently, 

<I>�(t )  = ccptz[1 - t(1 - p)] - (tz+ 1 )( 1 - p) 
and 

Thus 

and 
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Hence, EX = rxp- l(1 - p) and 

Var X = (ex + l)ex e � p) 2 + ex e � p) - ex2 e � p) 2 
1 - p 

= rx 2 - . 
P 

In partic:ular, if X has a geometric distribution with parameter P', then 
EX = p.- l (1 - p) (as we have already seen) and Var X = p- 2(1 - p). 

Example 1 0. Po isson d istri bution . Let X have a Poisson distribution 
with parameter A. Find the mean and variance of X. 

In Example 1 8  of Chapter 3 we found that <Ilx(t) = e).(t - l ). Thus 

<I>�(t) = Ae).(t - l ) 
and 

ell i( t )  = A 2 e).( t - 1 ) • 

Consequently Cll�( I )  = A and <l>i(l) = A2 . It follows immediately that 

EX = A, 
which agrees with the answer found in Example 2, and 

Var X = A 2 + A - A 2 = A. 
This shows that if X has a Poisson distribution with parameter A, then the 
mean and variance of X both equal A. 

4.4. Valiiance of a su m 

Let X and Y be two random variables each having finite second moment. 
Then X + Y has finite second moment and hence finite variance. Now 

Var (X + Y) = E[(X + Y) - E(X + y)]2 

= E[(X - EX) + (Y  - Ey)]2 

= E(X - EX)2 + E(Y - EY)2 

+ 2E[(X - EX)(Y - EY)] 

= Var X + Var Y + 2E[(X - EX)(Y - EY)] . 

Thus, unlike the mean, the variance of a sum of two random variables 
is, in general, not the sum of the variances. The quantity 

E[(X - EX)(Y - EY)] 

is called the covariance of X and Y and written Cov (X, Y). Thus w1e have 
the important formula 

( 16) Var (X + Y) = Var X + Var Y + 2 Cov (X, Y). 
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Now 

(X -- EX)(Y - EY) = XY - (Y)(EX) - X(EY) + (EX)(E:Y), 
and hence taking expectations we see that 

(1 7) Cov (X, Y) = E[(X - EX)(Y - EY)] = E(XY) - (EX)(J�Y). 
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From this form, it is clear that Cov (X, y) = 0 whenever X and Y are 
independent. (Example 5 shows that the converse is false.) We see from 
(1 6) that if X and Yare independent random variables having finite second 
moments, then Var (X + Y) = Var X + Var Y. 

In particular if P(Y = c) = 1 for some constant c, then X and Y are 
independent and the variance of Y equals zero ; consequently 

(1 8) Var (X + c) = Var X + Var (c) = Var X. 
More generally, if Xh X2, • • •  , X,. are n random variables each having a 

finite second moment, then 

( 19) Var ttl Xi) = 
It Var XI + 2 :t: J=t l Cov (Xi> Xj), 

and, in particular, if Xl' . . .  , X,. are mutually independent, then 

(20) Var ttl XI) = It Var XI' 

These formulas can be derived by a direct computation similar to (but 
more co:mplicated than) that used for the case n = 2, or they c:an be 
establishled from the case n = 2 by induction on n. 

In particular, if Xl' . . .  , X,. are independent random variables having a 
common variance u2 (for example, if they each had the same density), then 

(2 1) Var (Xl + . . .  + X,.) = n Var Xl = nu2• 
Another elementary but quite useful fact is that Var (aX) = a2 'Var X. 

We leave� the verification of this fact to the reader. 

Examplle 1 1 . B i nomia l d i stri bution .  Let Xl, . . .  , X,. be n independent 
Bernoulli random variables each having the same probability p of as
suming the value 1 .  Then (see Example 6) the sum S,. = Xl + · · . . + X,. 
is binomially distributed with parameters n and p. We have previously 
shown that ES,. = np. Using (21)  we find at once that 

Var S,. = n Var Xl-
Now X� = Xl because Xl is either 0 or 1 .  Thus EX� = EXl = P and 
hence 

Var Xl = EX� - (EXl)2 = P - p2 = p(1 - p). 

Consequlently Var S,. = np(1 - p). 
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In SUl1nmary then, the mean of a binomially distributed variabl�e is np 
and its variance is np(1 - pl. 

ExamlJlle 1 2. Hypergeometric d i stri bution .  Consider the situation in 
Example: 7. We now want to compute Var S", so as to obtain the variance 
of a hypergeometric distribution. To this end we will use Equation (19). 

For the dependent indicators, Xt , . . .  , X"' we previously found that 

P(X, = 1) = EX, = rl . r 
Since X;� = Xi we see that 

Var Xi = EX? _ (EXi)2 = (r:) _ (r:) 2 

Next we must compute the covariances. Assume that 1 � i < i < n. 
Now Xi}(j = 0 unless both Xi and Xj are 1 ,  so 

Thus 

and hence 

Cov (Xb Xj) = E(X,Xj) - (EXi)(EXj) 

= rl(r 1 - 1) _ (rl) 2 r(r - 1) r 
= (r:) (r: � 

1
1 _ r:) 

_ (r:) ;� = ;
)

' 

nf t COY (Xi' X) = 
n(n - 1 )  (rl) rl - r . 

i = 1  j= i+ t 2 r r(r - 1 )  

It now follows from (19) that 

V S rl(r - rt)  ( 1) rl(r - rt )  ar = n - n n -" • r2 r2( r - 1) 

It is interesting to compare the mean and variance for the hyper
geometrilc distribution with those of the binomial distribution having the 
same suc:cess probability p = (rt/r). Suppose we have a population of r 
objects of which rt are of type one and r - r1 are of type two. A random 
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sample of size n is drawn from the population. Let Y denote the number 
of objects of type one in the sample. 

If the sampling is done with replacement then Y is binomially distributed 
with parameters n and p = (rl /r), and hence 

and Var Y = n (r:) ( 1 _ r:) . 
On thc:� other hand, if the sampling is done without replacement, then Y 

has a hYlPergeometric distribution, 

EY = n (r:) and (rl) ( rl) ( n - 1) Var Y = n -;: 1 - -;: 1 - r _ 1 · 

The m,ean is the same in the two cases, but in sampling without r(�place
ment the� variance is smaller. Intuitively, the closer n is to r the: more 
deterministic Y becomes when we sample without replacement. Indeed, if 
n = r then the variance is zero and P(Y = r1) = 1 .  But if r is large 
compared to n, so that (nlr) is close to zero, the ratio of the variances 
obtained in sampling with and without replacements is close to one. This 
is as it should be, since for fixed n and large r there is little diflerence 
between sampling with replacement and sampling without replaclement. 

4.5. COlrrelation coefficient 

Let X and Y be two random variables having finite nonzero variances. 
One measure of the degree of dependence between the two random 
variables is the correlation coefficient p(X, Y) defined by 

(22) _ (X Y)  _ COY (X, Y) p - p ,  - . 
J (Var X) (Var Y) 

These ra.ndom variables are said to be uncorrelated if p = O. Since 
Cov (X, Y) = 0 if X and Y are independent, we see at once that indepen
dent random variables are uncorrelated. It is also possible for depc�ndent 
random variables to be uncorrelated, as can be seen from Example: 5. 

It is ilIlportant for applications in statistics to know that the corr(�lation 
coefficient p is always between - 1  and 1 ,  and that Ip i = 1 if and only if 
P(X = aY) = 1 for some constant a. These facts are easy consequences 
of the following basic inequality called the Schwarz inequality. 

l'heorem 7 The Schwarz I neq ua l i ty. Let X and Y have fi'nite 
secon(l moments. Then 

(23) 

Furthermore, equality holds in (23) if and only if either P( Y = 0) == 1 
or p(J.r = a Y) = 1 for some constant a. 
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Proof If P( Y  = 0) = 1 ,  then P(XY = 0) = 1 ,  EXY = 0, and 
Ey2 = 10 ; thus in this case (23) holds with equality. Also, if P(X = a Y) = 
1 ,  then a simple computation will show that both sides of (23) ar(� equal 
to (a2 E]�2) 2 . 

We now show that (23) always holds. From the above discussion we can 
assume that P(Y = 0) < 1 and hence Ey2 > o. The proof is base�d on a 
simple but clever trick. Observe that for any real number ;, 

o < E(X - A y)2 = ;,2Ey2 - 2AEXY + EX2. 

This is a quadratic function of A. Since the coefficient Ey2 of A 2 is positive, 
the minilffium is achieved for some value of A, say A = a, that can be: found 
by the usual calculus method of setting the derivative equal to zero and 
solving. The answer

, 
is a = [E(XY)][Ey2] - 1 . Since the corresponding 

function value is 

(24) 0 < E(X - ay)2 = EX 2 _ [E(X Y)] 2 
Ey2 

it follow's that (23) holds. If equality holds in the Schwarz inequality 
(23), then from (24) we see that E(X - a y)2 = 0, so that 

P[(X - a Y) = 0] = 1 .  

This conlpletes the proof. I 

Applying the Schwarz inequality to the random variables (X -- EX) 
and ( Y  -- EY) we see that 

(E[(X - EX)( Y - Ey)])2 < [E(X - EX)2] [E( Y - Ey)2] ; 

that is, 
[Cov (X, y)]2 < (Var X)(Var Y). 

Thus by the definition of p 
Ip(X, Y) I < 1 .  

We also see from Theorem 7 that Ip i = 1 if and only if P(X = a }') = 1 
for some constant a. 

The correlation coefficient is of limited use in probability theory. It 
arises mainly in statistics and further discussion of it will be postponed to 
Volume II. 

4.6. Ch�Bbyshev's ineq ual ity 

Let X be a nonnegative random variable having finite expectation, and 
let t be a positive real number. Define the random variable Y by :setting 
Y = 0 if X < t and Y = t if X > t. Then Y is a discrete random variable 
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having the two possible values 0 and t which it assumes with probabilities 
P(Y = 0) = P(X < t) and P(Y = t)  = P(X > t)  respectively. Thus 

EY = tP(Y = t)  + o · P(Y = 0) = tP(Y = t)  = tP(X > t) .  

Now clea.rly X > Y and hence EX > EY. Thus 

or 

(25) 

EX > EY = tP(X > t) 

P(X � t) < 
EX .  

t 

Quite a variety of useful inequalities can be deduced from (25).. The 
most important of these is the Chebyshev inequality. 

Chebyshev's I neq ua l ity. Let X be a random variable with mean 
Jl and finite variance (12. Then for any real number t > 0 

(26) 
(12 

P(IX - JlI � t) < 2 · t 

To prove (26), we apply (25) to the nonnegative random va.riable 
(X - Jl)2 and the number t 2 • We conclude that 

P« X _ Jll > t 2) < 
E(X : p.)2 = 0': . 

t t 

Since (X .- Jl)2 � t 2 if and only if IX - Jl I > t we see that (26) holds. 
Chebyshev's inequality gives an upper bound in terms of Var X and � 

for the probability that X deviates from its mean by more than t units. 
Its virtue lies in its great generality. No assumption on the distributilon of 
X is mad1e other than that it has finite variance. This inequality is the 
starting point for several theoretical developments . For most distributions 
that arise in practice, there are far sharper bounds for P( IX - Jl I > t)  than 
that given by Chebyshev's inequality ; however, examples show that in 
general the bound given by Chebyshev's inequality cannot be improved 
upon (see: Exercise 26). 

Let XI l, • • •  , X,. be n independent random variables having the same 
distribution. These random variables may be thought of as n independent 
measuremLents of some quantity that is distributed according to their 
common distribution. In this sense we sometimes speak of the random 
variables ,XI ' . . .  , X,. as constituting a random sample of size n frolJo this 
distribution. 

SUPPosle that the common distribution of these random variable:s has 
finite mealn Jl. Then for n sufficiently large we would expect that their 
arithmetic: mean S,./n = (Xl + · · · + X,.)/n should be close to Jl. J[f the 
Xi also have finite variance, then 
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Var (�n) = n;2 
= : 

and thus Var (Sn/n) -+ 0 as n -+ 00. As discussed in Section 4.3, this 
implies that as n gets large the distribution of Sn/n becomes more con
centrated about its mean Jl. More precisely, by applying Chebyshev's 
inequality to Sn/n we obtain the inequality 

(27) P ( Sn _ > �) < Var (Sn/n) = (12 

n 
Jl - - �2 n�2 · 

In particular, it follows from (27) that for any � > 0 

(28) lim P ( Sn - Jl > �) = o. 
n-+ 00 n 

We IItay interpret (28) in the following way. The number � can be 
thought of as the desired accuracy in the approximation of Jl by SJn. 
Equation (28) assures us that no matter how small � may be chosen the 
probability that Sn/n approximates Jl to within this accuracy, that is, 
P(I (Sn/n) - Jll < �), converges to 1 as the number of observations gets 
large. This fact is called the Weak Law of Large Numbers. We have proven 
the weak law only under the assumption that the common variance of the 
Xi is finite. Actually this is not necessary ; all that is needed is that the Xi 
have a finite mean. We state this more general result in the following 
theorem.. The proof will be given in Chapter 8. 

Theorem 8 Wea k  Law of Large N umbers.  Let Xl ' X2, • • • , XII 
be independent random variables having a common distribution with 
finite .mean Jl and set Sn = Xl + · · · + XII. Then for any � > 0 

lim P ( Sn - Jl > �) = o. 
n-+ 00 n 

Whenc�ver the Xi have finite mean, the weak law holds. However, when 
they also have finite variance, then (27) holds. This is a more precise 

statement since it gives us an upper bound for P ( �n 
- p. > �) in terms 

of n. We now illustrate the use of (27) by applying it to binomially distri
buted random variables . 

Let Xl ' X2, • • •  , XII be n independent Bernoulli random variables as
suming the value 1 with common probability p. Then Jl = P and (12 = 
p(l - p) . Thus (27) shows that 

(29) P ( Sn _ p � �) < p(l - p) . 
n n�2 
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Since p(1 - p) < 1 /4 if 0 < p < 1 (because by the usual calculus me:thods 
it can easily be shown that p(1 - p) has its maximum value at p = 1 /2), 
it follows that regardless of what p may be, 

(30) P ( S,. _ P > �) � _1_ . 
n 4n�2 

Equation (29) is useful when we know the value of p, while (30) gives us a 

bound on P ( �n - p > �) that is valid for any value of p. If p is near 

1 /2, (29) and (30) do not differ by much, but if p is far from 1 /2 the estimate 
given by (29) may be much better. (Actually even the bounds giv1en by 
(29) are quite poor. We shall discuss another method in Chapter 7 that 
yields much better estimates.) 

Suppose � and B > 0 are given. We may use (29) or (30) to find a lower 
bound on the number of trials needed to assure us that 

P ( �n - p > �) < 8. 

Indeed, from (29) we see that this will be the case if p(l - p)/n�2 < B. 
Solving for n we find that n > p(l - p)/B�2 . If we use (30), then 
n > (4B�2) - 1 trials will do. We state again that these bounds on n given 
by Chebyshev's inequality are poor and that in fact a much sroaller 
number of trials may be sufficient. 

As an illustration of the difference between these two estimates for n, 
choose � := . 1  and B = .01 .  Then �2B = 10-4 and from (30) we see that to 
guarantee that 

we would need n = 104/4 = 2500 observations. Suppose, howeve:r, we 
knew that p = . 1 .  Then since p(l - p) = .09 we see from (29) that 
n > .09 )( 104 = 900 observations will suffice. For p = 1 /2, (29) gives 
the same lestimate as (30), namely 2500. 

To illustrate that the Chebyshev bounds are really poor in the case of 
the binonlial distribution, suppose n = 100 and p = 1/2. From (29) we 
then obtain 

This should be compared with the exact value for this probability ,�hich 
is .038. 
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Exercises 

1 Let l{ be a positive integer and let/be the function defined by 

( 2x 
f(x) = N(N + 1 ) ' 

0, 

x = 1 ,  2, . . .  , N, 

elsewhere. 

Sho,v that / is a discrete density and find its mean. Hint : 

1� N(N + 1) �� x = ----
x :�1 2 

and f x2 = N(N + 1)(2N + 1) . 
x= 1 6 

2 Let �f" have a binomial density with parameters n = 4 and p.. Find 
E sin (nX/2) . 

3 Let �r be Poisson with parameter A. Compute the mean of (1 + X) - 1 . 
4 If X has mean 1 and Y has mean 3, what is the mean of 2X + 5 Y? 
5 Suppose X and Y are two random variables such that 

P(IX - Y I < M) = 1 

for some constant M. Show that if Y has finite expectation, then X has 
finitf� expectation and lEX - EYI < M. 

6 Let .. f' be a geometrically distributed random variable and let .M > 0 
be an integer. Set Z = min (X, M). Compute the mean of Z. 
Hint : Use Theorem 5. 

7 Let .. f' be a geometrically distributed random variable and let JM > 0 
be an integer. Set Y = max (X, M). Compute the mean of Y. 
Hint : Compute P(Y < y) and then use Theorem 5. 

8 Let .. f" be uniformly distributed on {O, 1, . . .  , N} . Find the mean and 
variance of X by using the hint to Exercise 1 .  

9 Construct an example of a density that has a finite moment of order 
r but has no higher finite moment. Hint : Consider the: series 
L::= 1 x- (r + 2) and make this into a density. 

1 0  Suppose X and Y are two independent random variables such that 
EX4 = 2, Ey2 = 1 ,  EX2 = 1 ,  and EY = o. Compute Var (.X'2 y). 

1 1  Sho,v that Var (aX) = a2 Var X. 
1 2  Let .X be binomially distributed with parameters n and p. lJse the 

probability generating function of X to compute its mean and variance. 
1 3  Let �r be a nonnegative integer-valued random variable. 

(a) Show that 

and 

Wx(t) = EtX, - 1  < t < 1 ,  

- 1  < t < 1 ,  

W;(t) = EX(X - l)tX- 2 , - 1 < t < l . 
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(b) lrse Theorem 4 to rederive the result that if X and Y are indepen
dlent nonnegative integer-valued random variables, then 

- 1 < t < l . 

1 4  Let X and Y be two independent random variables having finite 
second moments. Compute the mean and variance of 2X + 3 Y in 
terms of those of X and Y. 

1 5  Let Xl ' . . . , X,. be independent random variables having a common 
density with mean Jl and variance a2 • Set X = (Xl + · · · + X,.)ln . 
(a) By writing Xk - X = (Xk - Jl) - (X - Jl), show that 

,. ,. 
� - 2 � 2 - 2 i.J (Xk - X) = i.J (Xk ;- Jl) - n(X - Jl) • k = l k= l 

(b) Conclude from (a) that 

E ( ±  (Xk - X)2) = (n - 1 )0'2 . k = l 
1 6  Suppose n balls are distributed at random into r boxes. Let Xi = 1 if 

box i is empty and let Xi = 0 otherwise. 
(a) Compute EXi• 
(b) For i :F j, compute E(XiXj). 
(c) Let Sr denote the number of empty boxes. Write Sr = Xl + · · · 

+ Xr, and use the result of (a) to compute ESr• 
(d) Use the result of (a) and (b) to compute Var Sr. 

1 7  Suppose we have two decks of n cards, each numbered 1 , . . .  , n. The 
two decks are shuffled and the cards are matched against each other. 
We say a match occurs at position i if the ith card from each de:ck has 
the same number. Let S,. denote the number of matches. 
(a) Compute ES,.. 
(b) Compute Var S,.. 
Hint :' Let Xi = 1 if there is a match at position i and let Xi = 0 
otherwise. Then S,. = Xl + · · · + X,.. From the results in Chapter 
2 we know that P(X, = 1) = lIn and that if i :F j, 

1 
P(X, = 1 ,  Xj = 1) = . n(n - 1) 

18 Consider the random variable Sk introduced in Example 8. Compute 
Var ��k. 

1 9  Establish the following properties of covariance : 
(a) Cov (X, Y) = Cov ( Y, X) ; 

(b) COy Ctl a,X,. it. bjYj) = 
itl itl a,b) COY (Xi' lj). 

20 Let Xh X2, and X3 be independent random variables having finite 
positive variances ai, ai , and O'i respectively. Find the correlation 
between Xl - 'X2 and X2 + X3• 
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21 Suppose X and Y are two random variables such that p(X, Y) = 1/2, 
Var ·.r = 1 , and Var Y = 2. Compute Var (X - 2Y). 

22 A box has 3 red balls and 2 black balls. A random sample of size 2 is 
draw'n without replacement. Let U be the number of red balls s�elected 
and let V be the number of black balls selected. Compute p( U" V). 

23 Suppose a box has 3 balls labeled 1 , 2, and 3. Two balls are stelected 
without replacement from the box. Let X be the number on the first 
ball and let Y be the number on the second ball. Compute Cov (X, Y) 
and p(X, Y). 

24 Suppose an experiment having r possible outcomes 1 , 2, . . .  , r that 
occur with probabilities PI ' . . .  , Pr is repeated n times. Let X be the 
number of times the first outcome occurs, and let Y be the nUIlltber 1)f 
times the second outcome occurs. Show that 

p(X, Y) = -J PI P2 

(1 - Pl)(1 - P2) 

by carrying out the following steps. Let Ii = 1 if the ith trial yields 
outcome 1 , and let Ii = 0 otherwise. Similarly, let Ji = 1 if the ith 
trial yields outcome 2, and let Ji = 0 elsewhere. Then X = 11 + · · · 
+ In and Y = J1 + · · · + In. Now show the following : 
(a) E�(liJi) ....: 0: 
(b) If i :/: j, E(liJj) = PIP2. 

(c) E(X y) = E 
ttl IIJI) + E 

ttl j�' Iii) 
= n(n - 1)Pl P2. 

(d) C�ov (X, Y) = -npIP2. 

(e) p(X, Y) = -J--P-I-P2-- . 

(1 - Pl)(1 - P2) 

25 Suppose a population of r objects consists of rl objects of typc� 1 , r2 
objects of type 2, and r3 objects of type 3, where r1 + r2 + r3 = r. 
A random sample of size n < r is selected without replacement from 
this population. Let X denote the number of objects of type 1 in the 
sample and let Y denote the number of objects of type 2. Compute 
p(X, Y) by doing the following. Let Ii = 1 or 0 according as the ith 
eleme:nt in the sample is of type 1 or not and let Ji = 1 or 0 according 
as thf� ith element in the sample is of type 2 or not. 
(a) Show that Eli = rl/r and EJi = r2/r. 

(b) Show that for i :F j, 

and that E(liJi) = o. 
(c) Sc�t X = 11 + · · · + I,., and Y = J1 + · · · + J,. and use (a) and (b) 

to compute E(XY), Var X, and Var Y. 
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(d) Use (c) to compute p(X, Y). Compare with the corresponding 
correlation coefficient in Exercise 24 with PI = rl /r and p2 == r2/r. 

26 Let X be a random variable having density f given by 

{ 1/1 8, f(x) = 16/18, 
x = 1 , 3, 
x = 2. 

Show that there is a value of � such that P( IX - III > �) = Var X/�2 , 
so that in general the bound given by Chebyshev's inequality cannot be 
improved. 

27 A bolt manufacturer knows that 5% of his production is defe�ctive. 
He gives a guarantee on his shipment of 10,000 parts by promising to 
refund the money if more than a bolts are defective. How small can 
the manufacturer choose a and still be assured that he need not give a 
refund more than 1 % of the time ? 

28 Let X have a Poisson density with parameter A. Use Chebyshev's 
inequality to verify the following inequalities : 

(b) P(X > 2A) < ! . A 
29 Let X be a nonnegative integer-valued random variable whose prob

ability generating function <llx( t) = EtX is finite for all t and llet xo 
be a positive number. By arguing as in the proof of Chebyshev'S 
inequality, verify the following inequalities : 

(a) P(X < xo) < �X<:t)  , - t XO 
o < t < 1 ; 

t > 1 .  

30 Let X have a Poisson density with parameter A. Verify the following 
inequa.lities :  

( A) (2)),/2 (a) P I X < 2 < � ; (b) P(X > 2A) < (�r 
Hint: Use calculus to minimize the right sides of the inequalities in 
Exerci:se 29. These inequalities are much sharper, especially for large 
values of A, than are those given in Exercise 28. 

Exercises 3 1-36 develop and apply the notions of conditional 
density and conditional expectation. 

Let X and Y be discrete random variables . The conditional density 
!Ylx(y I x) of Y given X = x is defined by 

j.. ( I ) - {P(Y = Y I X = x), Y IX Y X .- 0 , 
if P(X = x) > 0, 
elsewhere. 
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For any x such that P(X = x) > ° it follows that /Ylx(Y I ;t) is a 
density in y. Example 14(d) of Chapter 3 can be interpreted as saying 
that if X and Y are independent and geometrically distributed with 
parameter p, then, for z > 0, the conditional density of Y given 
X + Y = z is the uniform density on {O, 1 ,  . . .  , z}. 

Let Y have finite expectation. The conditional expectation 0/ :Y given 
X = x is defined as the mean of the conditional density of j" given 
X = x, i.e. , as 

E[ Y  I X = x] = 1: Y/Ylx(Y  I x). 
y 

31 Verify the following properties of the conditional density and con
ditional expectation : 

(a) fy(Y) = 1:fx(x)[Ylx(Y I x) ; (b) EY = 1:/x(x)E[Y I X = x] . 
x x 

32 Let X and Y be independent random variables each having a geome,tric 
density with parameter p. Find E[ Y I X + Y = z] where z is a non
negative integer. Hint : Use Example 14(d) and Exercise 8. 

33 Let X and Y be two independent Poisson distributed random variables 
having parameters A t  and A2 respectively. Compute E[ Y I X + Y = z] 
where z is a nonnegative integer. Hint : Use the result of Exercise 35 
of Chapter 3. 

34 Let It/ be a nonnegative integer-valued random variable. Let { Y,.} , 
n > 0, be random variables each of which has finite expectation and is 
independent of N. Show that 

E[YN I N = n] = EY,. . 

35 Let {X,.} , n > 1 ,  be independent random variables having a common 
finite mean Jl and variance (12. Set So = ° and S,. = Xl + · · · + X,., 
n > 1 .  Let N be a nonnegative integer-valued random variable having 
finite mean and variance, and suppose that N is independent of all 
random variables defined in terms of {X,.} , n > 1 .  Then SN has finite 
mean and variance. Show that 

ESN = JlEN, 
and 

Var SN = (12EN + Jl2 Var N. 
Hint .� Use Exercises 3 1 (b) and 34. 

36 Obtain the results of Exercise 35 by differentiating the probability 
generating function of SN, found in Example 19 of Chapter 3, and 
setting t = 1 .  
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Continuous Random 
Variables 

In Chapter 3 �ve considered discrete random variables and their densitie:s, e.g. , 
binomial, hypergeometric, and Poisson. In applications, these random va.riables 
typically denote the number of objects of a certain type, such as the number of red 
balls drawn in a. random sample of size n with or without replacement or the 
number of calls into a telephone exchange in one minute. 

There are many situations, both theoretical and applied, in which the natural 
random variables to consider are "continuous" rather than discrete. Tentatively 
we can define a continuous random variable X on a probability space �� as a 
function X( ro), (0 E 0, such that 

P({ ro I X( ro) = x}) = 0, - 00 < x < 00, 

that is, such that X takes on any specific value x with probability zero. 
It is easy to think of examples of continuous random variables. As a first 

illustration, consider a probabilistic model for the decay times of a finite number 
of radioactive particles. Let T be the random variable denoting the time until the 
first particle decays. Then T would be a continuous random variable, for the 
probability is zero that the first decay occurs exactly at any specific tim€� (e .g. ,  
T = 2.()()()() . . . .  seconds). As a second illustration, consider the experimlent of 
choosing a point at random from a subset S of Euclidean n-space having finite 
nonzero n-dimensional volume (recall the discussion of this in Chapter 1). Let X 
be the random variable denoting the first coordinate of the point chosen. It is clear 
that X will take on any specific value with probability zero. Suppose, for example, 
that n = 2 and �� is a disk in the plane centered at the origin and having unit 
radius. Then the set of points in S having first coordinate zero is a line segnlent in 
the plane. Any such line segment has area zero and hence probability zero. 

Generally speaking, random variables denoting measurements of such physical 
quantities as spatial coordinates, weight, time, temperature, and voltage arte most 
conveniently desc:ribed as continuous random variables. Random variables which 
count objects or e�vents are clear examples of discrete random variables . 

There are cases, however, in which either discrete or continuous formulations 
could be approprilate. Thus, although we would normally consider measurerrlent of 

1 09 
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length as a continuous random variable, we could consider the measurelnent as 
being rounded off to a certain number of decimal places and therefore as being a 
discrete random variable. 

5.1 . R �lndom variables and thei r distri bution fu nctions 

In applications, a random variable denotes a numerical quantity defined 
in termlS of the outcome of a random experiment. Mathematically, 
however, a random variable X is a real-valued function define:d on a 
probability space. Naturally, we want P(X < x) to be well defined for 
every re:al number x. In other words, if (0, .91, P) is the probability space 
on which X is defined, we want 

{ro I X(ro) < x} 

to be an event (i.e., a member of .91). This leads to the following definitions . 

. Definition 1 A random variable X on a probability space 
(0, �(, P) is a real-valued function X(ro) , ro E 0, such that for 
- 00 < x < 00,  {ro I X(ro) < x} is an event . 

. Definition 2 The distribution function F of a random variable X 
is the function 

F(x) = P(X < x), - 00  < x < 00 .  

The distribution function is useful in computing various probabilities 
associated with the random variable X. An example of this is the formula 

( 1 )  P(a < X < b) = F(b) - F(a), a < b. 

In order to verify (1), set A = {ro I X(ro) � a} and B = {ro I X(ro) < b} . 
Then A c B and, by the definition of a random variable, both Al and B 
are events. Hence {ro I a < X < b} = B f1 AC is an event and ( 1 )  is a 
special case of the fact proven in Section 1 .3 that if A c B, then 

P(B f1 AC) = P(B) - P(A). 

Examlple 1 .  Consider the experiment of choosing a point at random 
from th�� disk of radius R in the plane centered at the origin. To m.ake the 
experim.ent more interesting, we can think of it as the result of throwing a 
dart at a disk-shaped target. Associated with this experiment is the 
uniform. probability space described in Section 1 .2. Let X be the random 
variable denoting the distance of the point chosen from the origin. The 
distribution function of X is easily computed. If 0 < x < R, the event 
{ro I X(tw) < x} is the disk in the plane, of radius x centered at the origin. 
Its area is 1tX2• Thus by the definition of a uniform probability space, 
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nx2 X2 
P(X < x) = - = - , 

nR2 R2 

1 1 1  

o < X < R. 

If X < 0, then P(X < x) = o. If x > R, then P(X < x) = 1 .  Thus the 
distribution function F of the random variable X is given by 

(2) 
x < 0, 
o � x < R, 
x > R. 

The graph of F is given in Figure 1 .  It follows from Formulas ( 1 ) and (2) 
that if 0 :� a < b < R, then 

b2 _ a2 
P(a < X < b) = F(b) - F(a) = 

R2 · 

1 

R 

Figure 1 

Example 2. Consider a probability model for the decay times of a 
finite nunlber of radioactive particles. Let X denote the time to decay for 
a specific particle. Find the distribution function of X. 

As we saw in Section 1 . 1 ,  for a suitable positive value for A, 
o < a < b < 00.  

Since X takes on only positive values, P(X < x) = 0 for x < 0 and, in 
particular, P(X < 0) = O. For 0 < x < 00,  

P(X < x) = P(X < 0) + P(O < X < x) 

= P(O < X < x) 

1 - A.X = - e . 

Thus X has the distribution function F given by 

(3) x < 0, 
x > o. 
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Of course, discrete random variables also have distribution functions, 
two of �Nhich were computed in Examples 10 and 1 1  of Chapter 1. 

Example 3. Let X have a binomial distribution with parameters 
n = 2 and p = 1 /2. Then f(O) = 1/4, f(l) = 1/2, and f(2) = 1/4. 
Consequently 

0, 
F(x) = 

1/4, 
3/4, 
1 ,  

x < 0, 
o < x < 1 ,  
1 < x < 2, 
2 � x. 

The graph of this distribution function is given in Figure 2. 

1 • 

• 

% ...------

o 1 2 
Figure 2 

5.1 .1 . f'roperties of distri bution fu nctions. Not all functions can 
arise as distribution functions, for the latter must satisfy certain conditions. 
Let X bc� a random variable and let F be its distribution function. Then 

(i) 0 < F(x) < 1 for all x. 
(ii) F is a nondecreasing function of x. 

Property (i) follows immediately from the defining property .F'(x) = 

P(X < ��). To see that (ii) holds we need only note that if x < y, then 

F(y) - F(x) = P(x < X < y) > O. 

A function f is said to have a right-hand (left-hand) limit L at x if 
I(x + h) � L as h � 0 when h is restricted to positive (negative) values. 
The right-hand and left-hand limits, when they exist, are denoted respec
tively byf(x+ )  andf(x- ). It is not hard to show that if/is bounded and 
either nondecreasing or nonincreasing, then f(x+ )  and f(x-)  exist for 
all x. Urnder the same conditions, f has limits f ( - (0) as x -+ - 00 and 
f( + oo) as x � + 00. 

From properties (i) and (ii) and the discussion in the preceding para
graph , it follows that the distribution function F has limits F(x +- ) and 
F(x -) �or all x as well as the limits F( - (0) and F( + 00 ). 

I 
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(iii) F( - (0) = 0 and F( + (0) = 1 .  
(iv) F(x+ ) = F(x) for all x. 

1 1 3  

In orde:r to evaluate F( - (0) and F( + (0) we need only find the lintlits of 
F(n) as n � - 00 and n � + 00 .  (This is because F is nondecreasing.) 
Set 

B" = {ro I X(ro) < n} . 

- 00 + 00 

n B" = 0 and U B" = O. 
,, = 0  ,, = 0  

It now follows from the results of Theorem 1 of Chapter 1 that 

lim PCB,,) = P(0) = 0 and lim PCB,,) = P(O) = 1 .  
" .... - OC) " .... + 00 

Since F(n) = P(X < n) = P(B,,), we have that 

F( - oo) = lim F(n) = lim P(B,,) = O  
" .... - 00 " .... - 00 

and similarly that F( + (0) = 1 .  
Property (iv) states that F is a right-continuous function and 

(4) F(x+ )  = P(X < x), - 00 < x < 00 .  

A closely related result is 

(5) F(x-)  = P(X < x), - 00  < x < 00. 

The proofs of (4) and (5) are sint1ilar to the proof of (iii). To prove (4), 
for exam.ple, we need only show that F(x + lIn) � P(X < ;�) as 
n -+ + 00 .. This can be done by setting 

Bn = {ro I X(ro) < x + �} , 
noting that n" Bn = {ro I X( ro) < x} and repeating the argument of (iii). 

From (4) and (5) we see immediately that 

(6) F(x+ ) - F(x -)  = P(X = x), - oo < x < oo . 

This formtula states that if P(X = x) > 0, then F has a jump at x of 
magnitud(� P(X = x). If P(X = x) = 0, then F is continuous at x.. We 
recall frorD the introduction to this chapter the concept of a continuous 
random variable. 

De.finition 3 A randonl variable X is called a continuous random 
variable if 

P(X = x) = 0, - oo < x < oo . 
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We now see that X is a continuous random variable if and only if its 
distribution function F is continuous at every x, that is, F is a continuous 
function. If X is a continuous random variable, then in addition to (1) 
we have that 

(7) Pea < X < b) = Pea < X < b) = Pea < X < b) 

= F(b) - F(a) , 

so that < and < can be used indiscriminately in this context. The 
various properties of a distribution function are illustrated in Fi.gure 3. 
(Note that the random variable having this distribution function would be 
neither discrete nor continuous.) 

F (+ co ) - 1 

i 
F (x+)-F (x-)=P (X - x) 

F ( x - ) J 
F (-oc. ) -O  
-

y -0 x 

Figure 3 

Consider the random variable X defined in Example 1 .  From F'ormula 
(2) or Figure 1 we see that its distribution function is continuous. 'Thus X 
is a continuous random variable. Similarly it is clear from (3) that the 
random variable from Example 2 is a continuous random variable. 

Most random variables arising in practical applications are either dis
crete or continuous. There are some exceptions. Consider Exalnple 2. 
In this example X represents the time to decay of a specific particle. 
If the experiment lasts only a specified time, say until time to > 0, and the 
particle has not decayed by this time, then its true decay time X will not be 
observed. One possible way out of this difficulty is to define a new random 
variable Y as follows 

Yew) = {X(w) 
to 

if X(w) < to, 
if X(lO) > to . 
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Thus Y is the decay time, if this time is observed (Le. , is less than or equal 
to to), and otherwise Y = to . The distribution function Fy of Y is given by 

y < 0, 
o < y < to, 
y > to· 

The distribution function has a jump at y = to of magnitude e- )'to• Thus it 
is clear that the random variable Y we have constructed is neither discrete 
nor continuous. 

We have defined distribution functions in terms of random variables. 
They can be defined directly. 

D�ifinition 4 A distribution function is any function F satisfYJfng 
properties (i)-(iv) ; that is, 

(i) 0 � F(x) < 1 for all x, 

(ii) .F is a nondecreasing function of x, 

(iii) .F( - (0) = 0 and F( + (0) = 1 , 
(iv) .F(x +)  = F(x) for all x. 

In morf� advanced books it is shown that if F is a distribution function, 
there is necessarily a probability space and a random variable X defined on 
that space such that F is the distribution function of x. 

5.2. Denlsities of continuous random variables 

In practice, continuous distribution functions are usually definc�d in 
terms of density functions. 

D�finition 5 A density function (with respect to integration) 
is a nonnegative function f such that 

f:<x> f(x) dx = 1 .  

Note that if f is a density function, then the function F defined by 

(8) F(x) = f�<x> f(Y) dY, - 00  < x < 00, 

is a continuous function satisfying properties (i)-(iv) of Section 5. 1 . 1 .  
Thus (8) defines a continuous distribution function. We say that this 
distribution function has density f. It is possible but difficult to construct 
examples of continuous distribution functions that do not have den�>ities. 
Those that do have densities are called absolutely continuous distribution 
functions. 
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If X its a continuous random variable having F as its distribution func
tion, where F is given by (8), then / is also called the density of X. In the 
sequel 'we will use "density function" to refer to either discrete density 
functions or density functions with respect to integration. It should be 
clear from the context which type of density function is under considera
tion. F'or example, the phrase "let X be a continuous random variable 
having density f" necessarily implies that / is a density function with 
respect to integration. 

It follows from ( 1) and (8) that if X is a continuous random variable 
having density f, then 

(9) P(a < X < b) = f f(x) dx, a < b, 

or some�what more generally, that 

(10) P(X E A) = L f(x) dx 

if A is a finite or countably infinite union of disjoint intervals. Thus 
P(X E )t) can be represented as the area under the curve f as x ranges 
over thf� set A (see Figure 4). 

A 

--

Figure 4 

In most applications, the easiest way to compute densities of continuous 
random variables is to differentiate (8) and obtain 

( 1 1) f(x) = F'(x), - 00  < x < 00 .  

Strictly speaking, (1 1) holds at all points x where f is continuous. 

Examlple 4. Let X be the random variable from Example 1 having the 
distribuition function F given by (2). Then 

(12) 
{O' 

F'(x) = 2x/R2, 
0, 

x < 0, 
O < x < R, 
x > R. 

At x = R the function F is not differentiable. If, however, we define / by 
f(x) = F'(x), x #= R. and f(R) = 0, then this/will be a density for F. 
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We note that (8) does not define f uniquely since we can always change 
the value of a function at a finite number of points without changing the 
integral of the function over intervals. One typical way to define f is by 
setting f(x) = F'(x) whenever F'(x) exists and f(x) = 0 otherwise. This 
defines a density of F provided that F is everywhere continuous and that F' 
exists and is continuous at all but a finite number of points. 

There a.re other ways to derive or verify formulas for the density of a 
continuous distribution function F. Given a density function f wle can 
show that j' is a density function of F by verifying that (8) holds. i�lter
natively, ,�e can reverse this process and show that F can be written iin the 
form (8) for some nonnegative function f. Then f is necessarily a dc�nsity 
function of F. These methods, essentially equivalent to each other, are 
usually rnore complicated than is differentiation. However, they are 
rigorous and avoid special consideration of points where F'(x) fails to 
exist. 

We willl illustrate these methods in our first example of the following 
subsection. 

5.2.1 . Change of variable formulas. Let X be a continuous random 
variable having density f. We will discuss methods for finding the dc�nsity 
of a random variable Y which is a function of X. 

ExamphCt 5. Let X be a continuous random variable having density f. 
Find the density of the random variable Y = X2. 

To solv�e this problem we first let F and G denote the respective distribu
tion functions of X and Y. Then G(y) = 0 for y < O. For y > 0 

G(y) = P(Y < y) = P(X2 < y) 

= P( -Jy < X < Jy) 

= F(Jy) - F( -Jy) 
and by dHferentiation we see that 

G '(y) = 
J
l - (F'(Jy) + F '( -Jy)) 

2 y 

= 
J
l - (f(Jy) + f( -JY)). 

2 y 

Thus Y =: X2 has density 9 given by 

(13) g(y) = (��y (f(Jy) + f( -Jy» for y > 0, 

for y < o. 
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Although ( 13) is valid in general, our derivation depended on diffc�rentia
tion, which may not be valid at all points. To give an elementary but 
completely rigorous proof of (1 3), we can define 9 by the right side of ( 13) 
and write for x > ° 

Ix g(y) dy = fX 1
, (f( JY) + J( -Jy)) dy. 

- 00 J 0 2yy 

By making the change of variable z = Jy (so that dz = dy/2,/y), we 
obtain 

J:oo g(y) dy = Lv'% (f(z) + J(- z)) dz 

..;-
= L:

;
J(Z) dz 

= F(��) - F( -��) = G(x), 

so that II is indeed a density of G. 
Hereafter we will freely use differentiation to establish formulas such 

as ( 1 3), knowing that we could if necessary provide alternative derivations 
via integration. 

Let us now use ( 1 3) to find the density of X2, where X is the random 
variable defined in Example 1 .  The density of X was found in Exa.mple 4 
to be f(x) = 2x/R2 for ° < x < R and f(x) = ° elsewhere. Thus by 
( 13), X2 has density 9 given by 

1 2Jy 1 
g(y) = 

2Jy R2 = 
R2 ' 

and g(y) = ° elsewhere. This density is a uniform density on (0, R2) 
according to the following. 

l)ejinition 6 Let a and b be constants with a < b. The unijnrm 
density on the interval (a, b) is the density f defined by 

(14) for a < x < b, 
elsewhere. 

The distribution function corresponding to ( 14) is given by 

(1 5) 
{a, 

F(x) = (x - a)/(b - a), 
1 ,  

x < a, 
a < x � b, 
x > b. 

It is not difficult to find other examples of uniformly distributed random 
variables. If a well-balanced dial is spun around and comes to rest after a 
large nu:mber of revolutions, it is reasonable to assume that the angle of 
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the dial after it stops moving (suitably defined in radians) is uniformly 
distribute�d on ( - 1t, 1t) or, equivalently, on (0, 21t) . In applications of 
probability theory to numerical analysis, it is often assumed that the 
rounding error caused by dropping all digits more than n places beyond 
the decirrlal point is uniformly distributed on (0, 10 -PI). 

Examplle 6. Let X be uniformly distributed on (0, 1 ). Find the density 
of Y = -- A - 1 log (1 - X) for A > O. 

Let G denote the distribution function of Y. We observe first that Y is a 
positive random variable and consequently G(y) = 0 for y < 0.. For 
y > 0 we� have 

G(y) = P(Y < y) = P(- A- 1 10g (1 - X) < y) 

= P(log ( 1  - X) � -AY) 

= P(1 - X > e- ly) 

= P(X < 1 - e-ly) 

= 1 - e- ly• 

Hence G'(y) = Ae- 1y for y > 0 and G'(y) = 0 for y < O. The density of 
Y is therefore given by . 

( 16) g(y) = {Ae-lY, 
0, 

y > 0, 
y � o. 

This density is called the exponential density with parameter A and �vil1 be 
discussed further in the next section. 

The above example is a special case of problems that can be solved by 
means of the following theorem. 

Tlaeorem 1 Let cp be a differentiable strictly increasing or strictly 
decreasing function on an interval I, and let cp(J) de.note the range o.f cp 
and cp '- 1 the inverse function to cp. Let X be a continuous random 
variable having density f such that f(x) = 0 for x ¢ I. Then Y = cp(X) 
has density g given by g(y) = 0 for y ¢ cp(I) and 

(17) Y E cp(I ) . 

It is sOltnewhat more suggestive to write ( 17) in the equivalent forIn 

(18) 
dx g(y) = f(x) dy 

, Y E cp(I) 

(or alternatively g(y)ldyl = f(x) ldxl). 

and 

In ordf�r to derive ( 17), let F and G denote the respective distribution 
functions of X arid Y. Suppose first that cp is strictly increasing (Le. , 
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qJ(X1) < qJ(X2) if Xl < X2, Xl E I and X2 E I). Then qJ - 1 is strictly 
increasil1lg on qJ(I) and for y E qJ(I), 

G(y) = P(Y < y) 

= P(qJ(X) � y) 

= P(X < q> - l(y)) 

= F( qJ - l(y)). 

Thus by the chain rule for differentiation, 

Now 

G '(y) = � F(qJ - l( y)) 
dy 

= F'(cp - l(y)) � cp - l( y) 
dy 

= f(cp - l(y)) � cp - l( y). 

� cp - l(y) = � cp - l( y) 
dy dy 

because �rp - 1 is strictly increasing so that ( 17) holds. Suppose next that qJ 
is strictly decreasing on I. Then qJ - 1 is strictly decreasing on q>(l), and 
for Y E cp{I) 

Thus 

Now 

G(y) = P( Y < y) 
= P(q>(X) < y) 
= P(X > qJ - l(y)) 
= 1 - F(qJ - l(y)). 

G '(y) = _ F'(cp - l( y)) � cp - l(y) 
dy 

= f(cp - l( y)) ( _  � cp - l(y)) . 

because (p - 1 is strictly decreasing. Therefore in either case we see that G 
has the density 9 given by (1 7). I 

Example 7. Let X be a random variable having an exponential density 
with parameter A. Find the density of Y = X1/fJ, where p =1= o. 
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According to the definition given in the previous example, X bas the 
density f given by f(x) = Ae-).x for x > 0 and f(x) = 0 for x < O. The 
above theorem is applicable with cp(x) = X1/fJ, x > O. The equation 
y = X1/fJ has solution x = yfl which yields dx/dy = pyfl- 1 . Thus by ( 18), 
Y has density 9 given by 

{ IPIAyfJ - 1 e - ).yfJ g(y) = 0, 
' y > 0, 

y < O. 

Example 8. Let X be a continuous random variable having density f 
and let a and b be constants such that b :F O. Then by Theorem 1 ,  the 
random variable Y = a + bX has density given by 

( 19) 1 (y - a) 
g( y) = !bIf b ' - 00  < y < 00 .  

As an illustration of this formula, let X be the random variable defined in 
Example 1 .  In Example 4 we found its density function f to be given by 
f(x) = 2.X/R2 for 0 < x < R and f(x) = 0 elsewhere. Consid�er the 
random variable Y = X/R and let 9 denote its density. Then by Formula 
( 19) with a = 0 and b = I /R, 

g(y) = Rf(Ry) = 2y, o < y < 1 ,  

and g(y) = 0 elsewhere. 

The reader may prefer to derive formulas such as those of Examlples 7 
and 8 by using the direct method of Example 6 instead of Theoreml 1 .  

As we have seen in the above examples, we can construct density func
tions by considering functions of random variables. There is another 
simple way of constructing density functions. Let 9 be any nonne:gative 
function such that 

o < f:", g(x) dx < 00 .  

Then 9 can always be normalized to yield a density function f = c- 1g, 
where c is the constant 

c = f:", g(x) dx. 

The following examples illustrate this method. 

Examplla 9. Let g(x) = x(1 - x), 0 < x < 1 ,  and g(x) = 0 else
where. Tlhen 

11 (X

2 

X

3) 1 1 
c = x(l - x) dx = - - - = -

o 2 3 0 6 
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and I =: c- 1g is given by I(x) = 6x(1 - x), 0 � x � 1 ,  and I(x) = 0 
elsewhere. The corresponding distribution function is given by F(x) = 0 
for x < 0, F(x) = 3x2 - 2x3 for 0 < x � 1 ,  and F(x) = 1 for .x > 1 .  

Examille 1 0. Let g(x) = 1 /(1 + x2), - 00 < x < 00.  From calculus 
we knovv that the indefinite integral of 1/(1 + x2) is arctan x. Thus foo dx 00 

c =  2 = arctan x 
- 00 1 + x - 00 

Consequently I = c- 1g is given by 

1 

1t = - -
2 

I(x) = 
n(l + x2) ' - 00  < x < 00 .  

This density i s  known as the Cauchy density. The corresponding distribu
tion fun�ction is given by 

1 1 F(x) = - + - arctan x, - 00  < x < 00 .  
2 1t 

For an illustration of a Cauchy distributed random variable we h:ave the 
following : 

Examl,le 1 1 . Let X denote the tangent of an angle (measured in radians) 
chosen at random from ( - n/2, 1t/2). Find the distribution of X. 

In solving this problem we will let E> be the random variable de�noting 
the angl1e chosen measured in radians. Now X = tan E> and hence (see 
Figure 5) for - 00 < x < 00,  

P(X < x) = P(tan E> < x) 

= p (- � < E> < arctan x) 
= ; (arctan x - (- �)) 

1 1 = - + - arctan x. 
2 1t 

Thus X has the Cauchy distribution. 

Figure 5 

.:...1L 
2 
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5.2.2. Sym metric densities. We will close this section by discussing 
symmetric densities and symmetric random variables. A density function 
f is called symmetric if f( -x) = f(x) for all x. The Cauchy density and 
the uniform density on (- a, a) are both symmetric. A random variable X 
is said to be symmetric if X and -X have the same distribution fUllction. 
The next result shows that these two concepts of symmetry are very c:losely 
related. 

Tl,eorem 2 Let X be a random variable that has a density. 
Then j' has a symmetric density if and only if X is a symmetric ranclom 
variable. 

Proof. We will prove this result for continuous random variables. 
The proof for discrete random variables is similar. In our proof "re will 
use the fact that for any integrable function! 

foo f( - y) dy = f:,. fe y) dy, - 00  < x < 00 .  

Suppose first that X has a symmetric density f. Then 

P(- X < x) = P(X > -x) 

= f:,. f( y) dy 

= I:oo f( - y) dy 

= foo f( y) dy 

= P(X � x), 

so that X· and -X have the same distribution function. 
Suppose conversely that X and -X have a common density g. Define f 

by f(x) = (g(x) + g( -x))/2. Then f is clearly a symmetric density 
function. Also 

f�oo fe y) dy = 1/2 foo g( y) dy + 1/2 f�oo g( - y) dy 

= 1/2 foo g( y) dy + 1/2 f:,. g(y) dy 

= 1/2[P(X � x)] + 1/2[P( -X > -x)] 

= P(X � x). 

Thus X has the sytnmetric density f, as desired. I 
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If a continuous distribution function F has a symmetric densitY .f, then 
F(O) = 1/2. The values of F for negative x's can be calculated from the 
values of F for positive x's. For 

and hence 

(20) 

F( -x) = f�: fe y) dy 

= LX> f( - y) dy 

= Loo fe y) dy 

= f:oo f( y) dy - f�oo f(y) dy 

F( -x) = 1 - F(x) , - oo < x < oo. 

For this reason, when tables of such a distribution function are con
structed, usually only nonnegative values of x are presented. 

5.3. Normal, exponential ,  and gamma densities 

In this section we will discuss three of the most important families of 
density functions in probability theory and statistics. 

5.3.1 . Nlormal densities. Let g(x) = e-x1/2, - 00 < x < CJ.) . In 
order to normalize 9 to make it a density we need to evaluate the constant 

There is no simple formula for the indefinite integral of e-x1/2 • The easiest 
way to evaluate c is by a very special trick in which we write c as a two
dimensional integral and introduce polar coordinates. To be specific 

c2 = f:oo e-x2/2 dx f:oo e-,2/2 dy 

= f:oo f:oo e- <x2 +,2)/2 dx dy 

= 5000 (f:x e- r2/2r dO) dr 

= 211: 5000 re- r2/2 dr 

co 

o 
= 21t. 
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Thus c =: .J 21t and the normalized form of 9 is given by 

f(x) = (21t)- 1 /2e-X2/2 , - 00  < x < 00 .  

We also record the formula 

(21) 
I:oo 

e-x2/2 dx = .../21r.. 
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The de�nsity just derived is called the standard normal density :and is 
usually d�enoted by qJ, so that 

(22) ( ) _ 1 -x2/2 qJ x - /- e , 
y 21t 

- oo < x < oo .  

The standard normal density is clearly symmetric. The distribution 
function of qJ is denoted by <1>. There is no simple formula for <I> so it must 
be evaluated numerically. Computer routines and tables such as J·able I 
at the balck of this book are available for computing <1>. Since qJ is sym
metric, (20) is applicable and 

(23) <f)( -x) = 1 - <I>(x) , - oo < x < oo . 

Let X be a random variable having the standard normal density qJ and 
let Y = Jl + (IX, where (I > o. Then by Formula ( 19), Y has the density 
9 given by 

( ) _ 1 - (1-",)2/2(12 g y - /_ e  , 
(lY 21t 

- oo < y < oo .  

This density is called the normal density with mean It and variance cr2 and 
is denoted by n(ll, (12) or n(y ; It, (12), - 00 < y < 00 .  Thus 

(24) n(y ; p.. 0-2) = � Cc-,.)·/2"o = 1 qJ (y - p,), - 00 < y <: 00 .  
U 2.". U U 

Since we have not yet defined moments of continuous random variables, 
we should temporarily think of It and (12 as the two parameters IOf the 
family of normal densities. The corresponding distribution function 4:an be 
calculated in terms of <1>, for 

P( Y < y) = P(p, + (IX < y) 

= P (x < y : It) 

It follows that if Y is distributed as n(lt, (12) and a < b, then 

(25) P(a < Y < b) = � e : It) - ell (a : It) . 
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For exa:mple, let Y be distributed as n(l ,  4) and let a = 0 and b = 3. We 
find fro1n Table I that 

P(O < Y < 3) = <1>(1) - <1>( - 1/2) = <1>(1)  - (1 - <1>(1/2)) 

= .841 3 - .3085 

= .5328. 

If a random variable Y is distributed as n(J,l, 0'2), then the random l'ariable 
a + b r� b � 0, is distributed as n(a + bJ,l, b20'2) . This is a direct applica
tion of ( 19). Alternatively, we can write Y = J,l + aX, where X has the 
standard normal distribution. Then 

a + bY = a + b(J,l + aX) = (a + bJ,l) + bO'X, 

which is distributed as n(a + bJ,l, b20'2). 
Norm.ally distributed random variables occur very often in practical 

applications. Maxwell's Law in physics asserts that under appropriate 
conditions the components of the velocity of a molecule of gas will be 
randomly distributed according to a normal density n(O, 0'2), where 0'2 
depends on certain physical quantities. In most applications, however, the 
random variables of interest will have a distribution function that is only 
approxiJnately normal. For example, measurement errors in physical 
experim�ents, variability of outputs from industrial production linles, and 
biological variability (e.g. , those of height and weight) have been. found 
empirically to have approximately normal distributions. It has also been 
found, both empirically and theoretically, that random fluctuations which 
result from a combination of many unrelated causes, each individually 
insignifi(�ant, tend to be approximately normally distributed. Theoretical 
results in this direction are known as "central limit theorems" an.d have 
developt:�d into one of the major research topics in probability theory. 
One such central limit theorem will be discussed in Chapter 7 and proved 
in Chapter 8. The importance of normal distributions arises also from 
their nioe theoretical properties. An example is the property that the sum 
of independent normally distributed random variables is itself normally 
distributed. This will be proved in Chapter 6. In Volume II we 'NiH see 
that nor:mal distributions also play a fundamental role in theoreti(�al and 
applied statistics. 

5.3.2. E:xponential densities. The exponential density with parameter 
A was defined in Section 5.2. It is given by 

(26) f(x) = { Ae- lX, 0, 
x > 0, 
x < o. 
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The corrc�sponding distribution function is 

(27) F(x) = { I - e- lX, 
0, 

x > 0, 
x < o. 

1 27 

From the discussion in Chapter 1 and in Example 2 of this chapter we see 
that exponentially distributed random variables are useful in studying 
decay tinles of radioactive particles. They are also useful in developing 
models involving many other waiting times, such as the time until a piece 
of equip1rnent fails, the time it takes to complete a job, or the time it 
takes to get a new customer. Exponentially distributed random variables 
are also of theoretical importance, as can be seen by studying Poisson 
processes (see Chapter 9) or continuous time Markov chains (see Volume 
III). 

An important property of exponentially distributed random variables is 
that if X is such a variable, then 

(28) p(�r > a + b) = P(X > a)P(X > b), a > 0  and b �� o. 
(This forlnula is similar to the one obtained in Chapter 3 for geometrically 
distribute:d random variables.) In order to see that (28) holds, let A. denote 
the paranrreter of the exponential distribution of X. Then by (27) 

P(X > a)P(X > b) = e-lile-lb 

= P(X > a + b). 

A more suggestive but equivalent form of (28) is 

(29) P(�,( > a + b I X > a) = P(X > b), a > 0  and b > o. 
Think of X as 

. 
the time it takes a piece of equipment to fail afte:r it is 

installed. Then (29) states that, conditioned on there having been no 
failure by time a, the probability of no failure in the next b units of time is 
equal to the unconditioned probability of no failure during the :first b 
units of time. This implies that the aging of the piece of equipment neither 
increases nor decreases its probability of failing in a given length of time. 

That (28) or (29) characterizes the family of exponential distributions is 
shown by the following result. 

Tlaeorem 3 Let X be a random variable such that (28) holds. 
Then either P(X > 0) = 0 or X is exponentially distributed. 

Proof. If P(X > 0) = 0, then (28) holds trivially. SUPPOs(� (28) 
holds and P(X > 0) ¢ O. Then by (28) with a = b = 0 we sele that 
P(X > 0) = 1 ,  so that X is a positive random variable. lLet F 
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denote the distribution function of X and define G by G(x) = I - lr;(x) = 
P(X > ;t'). Then G is a right-continuous, nonincreasing function, 
G(O) = I ,  G( + 00) = 0, and by (28) 

G(a + b) = G(a)G(b), a > 0 and b > o. 
It follovls that if c > 0 and m and n are positive integers, then 

(30) G(nc) = (G(C))" and 

We cllaim next that 0 < G(I)  < I .  For if G(I)  = I , then (i(n) = 
(G(I))" == I ,  which contradicts G( + 00) = o. If G(I) = 0, then G(I/nt) = 0 
and by right-continuity, G(O) = 0, another contradiction. 

Since 0 < G(I) < I ,  we can write G(I) = e- l where 0 < A. < 00.  It 
follows from (30) that if m is a positive integer, then G(I/m) = e- )./m. A 
second application of (30) yields that if m and n are positive integers, then 
G(n/m) := e- ).II/m. In other words G(y) = e- ).Y holds for all positive 
rational numbers y. By right-continuity it follows that G(y) = e- ly for 
all y > o. This implies that F = I - G is the exponential distribution 
function with parameter A.. I 

5.3.3. <:iamma densities. Before defining gamma densities in general 
we will first consider an example in which they arise naturally. 

Exam�'le 1 2. Let X be a random variable having the normal density 
n(O, 0'2). Find the density of the random variable Y = X2• 

In solving this problem we note first that the density of X is 

'"'( ) = I -xl/2al J I X  j_ e , O'y 2n 
- oo < x < oo . 

By Fornlula ( 1 3), Y has density 9 given by g(y) = 0 for y � 0 and 

1 - -
g(y) = r (J(�y) + f(-�Y)) , 2y y 

y > o. 

This implies that 

(3 1 )  g(y) = I e-y/2a\ 
0'�21tY 

y > o. 

In order to define gamma densities in general, we first consider functions 
9 of the form 

x > 0, 
x < o. 

Here we: require (l > 0 and A. > 0 in order that 9 be integrabl��. The 
density in (3 1) corresponds to the special case (l = 1/2 and A. = 1 /2(12 . In 
normalizing 9 to make it a density we must evaluate 
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Make the� change of variable y = AX. Then 

c = � (00 y'.- le-Y dY. 
A,oc Jo 
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There is no simple formula for the last integral. Instead it is used to define 
a function called the gamma function and denoted by r. Thus 

where 

(32) r(a:) = 100 x,,- le-x dx, � > o. 

The norntlalized function is called the gamma density with paranle�ters � 
and A and is denoted by r(�, A) or r(x ; �, A). We see that 

( Aoc oc- 1 - lx 0 - x  e , x > , 

(33) r(x ; �, A) = 
o
r
,
(�) 

x < 0. 

We also record the following formula, which will prove to be useful : 

(34) !coo oc- 1 - lx d r(�) x e X = -- . 
o Aoc 

The exponential densities are special cases of gamma densities. Speci
fically, thle exponential density with parameter A is the same as the gamma 
density [(1 ,  A). The density given by (3 1) was also seen to be a gamma 
density ",ith parameters � = 1 /2 and A = 1/2(12 . In other words, if X 
has the normal density n(O, (12), then X2 has the gamma density r(I/2, 1 /2(12). 
By equating (3 1) and (33) with � = 1/2 and A = 1/2(12 we obtain the useful 
fact that 

(35) r( I/2) = �-:;. 
An important property of the gamma function is 

(36) � > o. 

This fornlula follows from (32) by a simple application of integration by 
parts. To be specific 

r(a: + 1 )  = fooo x"e-X dx 

= _ xoce-x 00 + roo �xoc- 1e-x dx 
o Jo 

= �r«(X). 
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Since r(l) = 1 it follows easily from (36) that if n is a positive integer, 

(37) r(n) = (n - I ) ! .  

It also follows from (35), (36) and some simplifications that if n is an odd 
positive integer, then 

(38) 

There are no simple formulas for the distribution function corresponding 
to r(ex, �t) except when ex = m is a positive integer. In this case 'we can 
integrate� by parts to obtain for x > 0 

I

x � m m - 1 - Ay _ ( � )m - 1 - Ay x 

I
X 

� m - 1 m - 2 -Ay A y e 
d 

Ay e + A y e 'r 
y = a�y 

o (m - I) ! (m - I) ! 0 0 (m - 2) ! 

I

x Am- lym- 2e- A, 
d 

(AX)
m- le-).x 

= y - , o (m - 2) ! (m - I) ! 

provided that m > 2. If we integrate by parts m - 1 times in this roanner 
and obs��rve that 

we obtain the formula 

(39) 
I

x Amym- le- Ay m- l (AX)ke-Ax --- dy = 1 - � , o (m - I) ! k= O  k !  
x > o. 

This formula provides an interesting connection between a r�andom 
variable X having the gamma density r(m, A) and a random variable Y 
having a Poisson distribution with parameter AX. Specifically, (39) states 
that 

(40) P(X < x) = P(Y > m). 
This connection is relevant to the theory of Poisson processes, as 'we will 
see in Chapter 9. 

The qualitative behavior of the gamma density, illustrated in Figure 6, 

Figure 6. The Gamma Density 

is easily obtained by methods of calculus. One important propc�rty of 
gamma densities is that if X and Y are independent random va.riables 
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having rc�spective densities r( (Xl ' A) and r( (X2, A), then X + Y has the 
gamma density r«(Xl + (X2, A). This result will be proven in Chapter 6. 
This and other properties of gamma densities make them very convenient 
to work 'with. There are many applied situations when the density of a 
random variable X is not known. It may be known that X is a positive 
random variable whose density can reasonably well be approximated by a 
gamma density with appropriate parameters. In such cases, solving a 
problem involving X under the assumption that X has a gamma density 
will provide an approximation or at least an insight into the true but 
unknown. situation. 

5.4. Inv4!trse d istri bution fu nctions· 

Important applications of the change of variable formulas of Section 
5.2. 1 .  can be obtained by letting the function qJ be related to a distribution 
function .F. 

Let X be a continuous random variable having distribution function F 
and density function f. We will apply the change of variable form,ula to 
the functiion qJ = F. If y = F(x), then dyldx = F'(x) = f(x) and hence 
dxldy = II f(x). Thus according to (1 8), the random variable Y = F(X) 
has density 9 where 

g(y ) = ��:� = 1 ,  0 < y < 1 ,  

and g(y) = 0 otherwise. In other words, the random variable Y = F(X) 
is uniforrnly distributed on (0, 1 ). This result is valid- even if the function 
qJ = F does not satisfy all the assumptions of Theorem 1 .  By using a 
direct argument, one can show that if X is a continuous random variable 
having distribution function F, then F(X) is uniformly distributed on (0, 1) . 
(If F is discontinuous at some point xo, then P(X = xo) > 0, so that 
P(F(X) == F(xo» > 0 and F(X) could not possibly be uniformly 
distribute:d on (0, 1 ) .) 

One can also proceed in the other direction. Let F be a continuous 
distribution function that is strictly increasing on some interval I and 
such that F = 0 to the left of I if I is bounded from below and F = 1 to the 
right of I if I is bounded from above. Then for 0 < y < 1 ,  by the inter
mediate value theorem of calculus, there is a unique value of x such that 
y = F(x). Thus F - l(y), 0 < Y < 1 ,  is well defined. Under these 
assumptions, if Y is a uniformly distributed random variable on (0, 1 ), then 
the randojm variable F- 1( Y) has F as its distribution function. 

Two of the examples from Section 5.2. 1 can be used "to illustrate the 
above result. In E.xample 6 we obtained exponentially distributed ra.ndom 
variables as transforms of a uniformly distributed random variable . The 
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reader should check to see that these transformations can be obtained by 
the method of the above paragraph. In Example 1 1  we showed that if E> 
is uniformly distributed on ( -n/2, n/2), then tan E> has the <:auchy 
distribution. Let Y be uniformly distributed on (0, 1 ) . Then E> = n Y' - n/2 
is uniformly distributed on ( - n/2, n/2), so that 

X = tan e = tan (11: Y - �) 
has the C:auchy distribution. This is exactly what we would get by using 
the result of the previous paragraph. According to Example 1 0, the 
Cauchy distribution function is given by 

1 1 F(x) = - + - arctan x, 
2 n 

- 00  < x < 00, 

and the c�quation y = F(x), or 

has solution 

1 1 Y = - + - arctan x, 
2 1t 

x = F- 1( y) = tan (1I:Y - �) .  
For some purposes it is desirable to generate a random variable X having 

a prescribed distribution function F. One way of doing this is to first 
generate a uniformly distributed random variable Y and th�en set 
X = F- 1(y). This method is especially useful on a digital cornputer 
since the:re are very satisfactory methods for generating (what act like) 
uniformly distributed random variables on such computers. Suppose for 
example we want a routine for generating a random variable X having the 
standard normal density n(O, 1) .  We would use a subroutine for genc�rating 
a randoDtl variable Y uniformly distributed on (0, 1) and a subroutine for 
computing the numerical function <I> - 1 , and then compute X = <I> - 1( Y). 
To generate a random variable X having the normal density n(Jl, 0.2) we 
would set X = Jl + (1<1> - 1( Y). 

Inversc� distribution functions are useful for other purposes . To see this 
let X have the normal density n(Jl, (12) and recall from Section 5.3 ., 1  that 

P(X < b) = � (b : Il) . 
Suppose we want to choose b such that P(X < b) = .9. We need to solve 
for b in the equation • 
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The solution is given by 
b - Jl. = �- 1(.9) 

(1 
or 

b = Jl + (1 <1>- 1 (.9). 

From Table I we see that <I> - 1(.9) = 1 .28 . Thus b = Jl + 1 .280' and 

P(X � Jl + 1 .28(1) = .9. 
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In applied statistics the number b = Jl + 1 .28(1 is called the upper decile 
for the n(Jl, (12) distribution. 

Let F be any distribution function that satisfies the requirements for 
F- 1(y), 0 < y < 1 ,  to be well defined, as discussed above. Then 
m = F- .1(1/2) is called the median of F, F- 1(3/4) and F- 1(1/4) are called 
the upper and lower quartiles of F, F- 1(.9) is called the upper decile and 
F- 1(k/ l00) is called the upper k-percentile. These definitions c:an be 
modified to apply to arbitrary and, in particular, discrete distribution 
functions. 

If X has a symmetric density then X clearly has median m = O. For a 
more inte:resting example, let Xbe exponentially distributed with parameter 
A. Then its median m is given by 1 - e- Am = 1 /2, which has the solution 
m = A - 1  log 2. Suppose X represents the time for a radioactive particle 
to decay. Then if we have a very large number of such particles we would 
expect that by time m one half of the particles would have decay(�d. In 
physics this time is called the half-life of the particle. If we observe the 
half-life n1 we can use it to compute the rate of decay A, since A = m - l log 2. 

F or a jinal application of inverse distribution functions, let X have the 
normal density n(Jl, (12) and suppose we want to find a > 0 such that 
P(Jl - a < X � Jl + a) = .9. Then by (25) we have to solve for a in 
the equation 

� (:) - � ( - ;) = .9. 

Since <1>( -- x) = 1 - <I>(x) for all x, we have 

2� (;) - 1 = .9 

and henc�e a = (1<1> - 1( .95). From Table I we see that <I> - 1( .95) = 1 .645. 
In other 'Nords, 

P(Jl - 1 .6450' � X < Jl + 1 .645(1) = .9. 

By using the same technique we obtain 

P(Jl - .675(1 < X < Jl + .675(1) = .5 



1 34 Continuous Random 'lariables 

or equivalently, 
P(IX - JlI < .6750) = .5 .  

This says that if X has the normal density n(Jl, (2), then X will diffc:�r from 
Jl by less than .675u with probability one-half and by more than .675u with 
probability one-half. If we think of Jl as a true physical quantity and X as a 
measurement of Jl, then IX - JlI represents the measurement error. For 
this reason .675u is known as the probable error. 

Exercises 

1 Let )t' be a random variable such that P(IX - 1 1 = 2) = o. I�xpress 
P(IX - 1 1 > 2) in terms of the distribution function Fx. 

2 Let a. point be chosen randomly from the interior of a disk of radius R 
in the plane. Let X denote the square of the distance of th(� point 
chosc�n from the center of the disk. Find the distribution function of X. 

3 Let a. point be chosen uniformly from a solid ball in three-dimensional 
spac(� of radius R. Let X denote the distance of the point chosen from 
the clenter of the ball . Find the distribution function of X. 

4 Let a. point be chosen uniformly over the interval [0, a] . Let X denote 
the distance of the point chosen from the origin. Find the distribution 
function of X. 

5 Let a. point be chosen uniformly from the interior of a triangle having 
a bas.e of length I and height h from the base. Let X be defined as the 
distance from the point chosen to the base. Find the distri.bution 
function of X. 

6 Consider an equilateral triangle whose sides each have length s. Let a 
point be chosen uniformly from one side of the triangle. Let X denote 
the distance of the point chosen from the opposite vertex. Find the 
distribution function of X. 

7 Let the point (u, v) be chosen uniformly from the square 0 < u < 1 ,  
o < v < 1 .  Let X be the random variable that assigns to th(� point 
(u, v) the number u + v. Find the distribution function of X. 

8 Let II be the distribution function given by Formula (3). lFind a 
number m such that F(m) = 1 /2. 

9 Let J( denote the decay time of some radioactive particle and assume 
that the distribution function of X is given by Formula (3). Suppose A. 
is such that P(X > .0 1 )  = 1 /2. Find a number t such that P(X �� t )  = 
.9. 

1 0  Let )r be the random variable in Exercise 4. Find the distribution 
function of Y = Min(X, a/2) . 



Exercises 1 35 

1 1  Let X· be a random variable whose distribution function F i s  given by 

F(x) = 

Find : 
(a) P(I/2 < X < 3/2) ; 
(b) P(I/2 < X < I) ; 
(c) P(I/2 � X < I) ; 
(d) P(I < X < 3/2) ; 
(e) P(I < X < 2). 

0, 
x 
3 '  
x 
2 '  
1 ,  

x < 0, 

o < x < 1 , 

1 � x < 2, 

x > 2. 

1 2  If the distribution function of X was defined in one of the following 
ways, describe how properties (i)-(iv) of Section 5. 1 . 1  would have to 
be modified in each case : 
(a) F(x) = P(X < x) ; 
(b) F(x) = P(X > x) ; 
(c) F(x) = P(X � x). 

1 3  A poilnt is chosen uniformly from ( - 10, 1 0). Let X be the random 
variable defined so that X denotes the coordinate of the point if the 
point is in [ - 5, 5], X = - 5 if the point is in (- 10, - 5), and .X" = 5 
if the point is in (5, 10). Find the distribution function of X. 

1 4  Let X· be a continuous random variable having density f given by 

f(x) = (I j2)e - lxi
, 

Find .P( I < IX I  < 2). 

- 00  < x < 00 .  

1 5  Let F be the distribution function defined by 

1 x 
F(x) = 2 + 2(lxl + 1) 

- oo < x < oo.  

Find a density function /for F. At what points x will F'(x) = .f(x) ? 
1 6  Find a density function for the random variable in Exercise 3 .  
1 7  Find a density function for the random variable in Exercise 7.  
1 8  Let j� be a continuous random variable having density f. I�ind a 

formula for the density of Y = IX I . 
1 9  Let .l'" and Y = X2 be positive continuous random variables having 

densities f and 9 respectively. Find f in terms of 9 and find 9 in terms 
off· 

20 Let Xbe uniformly distributed on (0, I) .  Find the density of Y = Xl/fJ, 
where: P #= 0. 
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21 Let .X be a positive continuous random variable having density f. 
Find a formula for the density of Y = I /(X + 1). 

22 Let .X be a random variable, g a density function with respect to 
integration, and qJ a differentiable strictly increasing function on 
( - CX) , (0). Suppose that 

f'

(
X) P(X < x) = - <Xl g(z) dz, - 00 < x < 00 .  

Shovv that the random variable Y = qJ(X) has density g. 
23 Let }{ be a random variable that is uniformly distributed on (a, b). 

Find a linear function qJ such that Y = qJ(X) is uniformly distributed 
on (0, 1 ). 

24 Let ]r have an exponential density with parameter A.. Find the density 
of Y = eX, where e > O. 

25 Let �g(x) = x(I - X)2 , 0 < x < 1 ,  and g(x) = 0 elsewhere. How 
should 9 be normalized to make it a density? 

26 Let .. 1'" have the Cauchy density. Find the density of Y = a + bX, 
b � O. 

27 Let Jr denote the sine of an angle chosen at random from ( -n/2, n/2). 
Find the density and distribution function of X. 

28 Let �r be a continuous random variable having symmetric de:nsity f 
and such that X2 has an exponential density with parameter A.. Find! 

29 Let Jr be a continuous random variable having distribution fun�:tion F 
and density function f. Then f is said to be symmetric about a if 
f(a -r x) = f(a - x), - 00 < x < 00 .  Find equivalent conditions 
in terms of the random variable X and in terms of the distribution 
function F. 

30 The c�rror function is defined by 

erf(x) = ]; f: e _)'2 dy, - 00  < x < 00 .  

Expr1ess <I> in terms of the error function. 
31 Let Jr have the normal density n(O, 0'2) . Find the density of Y = IX I .  
32 Let Jr have the normal density n(lt, 0'

2). Find the density of Y· = �. 
This density is called a lognormal density. 

33 Let .X be normally distributed with parameters It and 0'
2 . Find 

P(IX - Itl < 0') . 

34 Let A�be normally distributed with parameters It and 0'2 . Find numbers 
a and b such that a + bX has the standard normal distribution. 

35 Let ]t' be normally distributed with parameters It = 0 and 0'
2 = 4. 

Let ]( be the integer-valued random variable defined in terms OIf X by Y = m if m - 1/2 < X < m + 1/2, where m is an integer such that 
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- 5 <; m < 5, Y = - 6 if X < - 5.5, and Y = 6 if X > 5.5. Find 
ff and graph this density. 

36 Suppose that the weight of a person selected at random from some 
population is normally distributed with parameters Jl and (I. Suppose 
also that P(X < 160) = 1/2 and P(X < 140) = 1/4. Find Jl and (I 

and find P(X � 200). Of all the people in the population weighing at 
least 200 pounds, what percentage will weigh over 220 pounds? 

37 Let tp be the number such that <I>(tp) = p, 0 < P < 1 .  Let X have the 
normal density n(Jl, (12). Show that for 0 < Pi < P2 < 1 ,  

P(Jl + tp1(1 � X < Jl + tp1(l) = P2 - Pl ·  

38 Suppose a very large number of identical radioactive particles have 
decay times which are exponentially distributed with some paramc�ter A. 
If one half of the particles decay during the first second, how long will it 
take for 75% of the particles to decay? 

39 Let X be exponentially distributed with parameter A. Let Y be the 
integer-valued random variable defined in terms of X by Y =: m if 
m < �r < m + 1 ,  where m is a nonnegative integer. How is Y 
distributed? 

40 Let T be a positive continuous random variable denoting the failure 
time Qif some system, let F denote the distribution function of J�, and 
suppose that F(t) < 1 for 0 < t < 00 .  Then we can write F(t)  = 
I - e :� G(t), t > o. Suppose G'(t )  = g(t)  exists for t > o. 
(a) Show that T has a density f given by 

f(t)  - (t )  
1 - F(t) - 9 , 

o < t < 00 .  

The function 9 is known as the "failure rate," for heuristically, 

pet � T � t + dt I T >  t )  = 
J(t) dt 

= get ) dt. 
1 - F(t ) 

(b) Show that for s > 0 and t > 0, 

P(T > t + s i T > t )  :;:: e-l!+ ·  g(u) dUe 

(c) Show that the system improves with age (i .e. , for fixed s the expres
sions in (b) increase with t) if 9 is a decreasing function�, and 
thc:� system deteriorates with age if 9 is an increasing function., 

(d) Show that La> g(u) du = 00 .  

(e) How does 9 behave if T is exponentially distributed? 
(f) If G(t) = A�t:\ t > 0, for which values of (l does the system 

improve, deteriorate, and stay the same with age? 
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41 Let }{ have the gamma density r«(l, A). Find the density of Y' = eX, 
where e > O. 

42 Sho,� that if (l > 1 ,  the gamma density has a maximum at «(l -- 1 )/A. 
43 Let }{ have the gamma density r«(l, A). Find the density of Y = .J X. 
44 Let Y be uniformly distributed on (0, 1) . Find a function qJ such that 

X = qJ( Y) has the density f given by f(x) = 2x, 0 < x < 1 ,  and 
f(x) = 0 elsewhere. 

45 Let ,Y be uniformly distributed on (0, 1 ). Find a function cp such that 
qJ( Y) has the gamma density r(I/2, 1 /2). Hint : Use Example 1 2. 

46 Findl tJ)- l(t) for t = . 1 , .2, . . .  , .9, and use these values to graph CI> - l .  
47 Let ,j;Y have the normal density n(p, (12) . Find the upper quartile for X 
48 Let .X have the Cauchy density. Find the upper quartile for ){. 
49 Let .X have the normal density with parameters Il and (/2 = .25. Find 

a constant e such that 
P(IX - III < e) = .9. 

50 Let X be an integer-valued random variable having distribution 
function F, and let Y be uniformly distributed on (0, 1). De:fine the 
integer-valued random variable Z in terms of Y by 

Z = m if F(m - 1) < Y < F(m), 

for any integer m. Show that Z has the same density as X. 
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Jointly Distributed 
Random Variables 

In the first thr��e sections of this chapter we will consider a pair of continuous 
random variables X and Y and some of their properties. In the remaining four 
sections we will consider extensions from two to n random variables Xl , X"2' . . .  , 
XII. The discussion of order statistics in Section 6.5 is optional and will not be 
needed later on in the book. Section 6.6 is mainly a summary of results on salnpling 
distributions that are useful in statistics and are needed in Volume II. The material 
covered in Section 6.7 will be used only in proving Theorem 1 of Chapter 9 and 
Theorem 1 of Chapter 5 of Volume II. 

6.1 . Prclperties of bivariate distri butions 

Let X and Y be two random variables defined on the same probability 
space. Their joint distribution function F is defined by 

F(x, y) = P(X < x, Y < y), - 00 < x, y < 00.  

To see that F i s  well defined, note that since X and Y are random variables, 
both {ro I X(ro) < x} and {ro I Y(ro) < y} are events. Their intersection 
{ro I X(co) < x and Y(ro) < y} is also an event, and its probabillity is 
therefore well defined. 

The joint distribution function can be used to calculate the probability 
that the pair (X, Y) lies in a rectangle in the plane. Consider the rectangle 

R = {(x, y) I a < x < b, c < y < d}, 

where a :< b and c < d. Then 

(1) }'« X, Y) E R) = P(a < X < b, c < Y < d) = F(b, d) - F(a, d) - F(b, c) + F(a, c). 

To verify that ( 1 )  holds observe that 

P(a <: X < b, Y < d) = P(X < b, Y < d) - P(X < Q, Y < d) = F(b, d) - F(a, d). 

1 39 
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Similarly 
P(a < X < b, Y < c) = F(b, c) - F(a, c). 

Thus 

P(a < Jr < b, c < Y < d) 

= Pea < X < b, Y � d) - Pea < X < b, Y < c) = (F(b, d) - F(a, d» - (F(b, c) - F(a, c» 

and (1) holds as claimed. 
The one-dimensional distribution functions Fx and Fy defined by 

Fx(x) = P(X < x) and Fy(y) = P(Y < y) 

are called the marginal distribution functions of X and Y. They are related 
to the joint distribution function F by 

Frlx) = F(x, (0) = lim F(x, y) 
)1-+ 00 

and 
Fy(y) = F(oo , y) = lim F(x, y). 

,x-+ oo 

If there is a nonnegative function f such that 

(2) F(x, y) = f�oo (foo f(u, v) dV) du , - 00 < x, y < 00,  

then f is called a joint density function (with respect to integration) for the 
distribution function F or the pair of random variables X, Y. Unless 
otherwise specified, throughout this chapter by density functions ",e shall 
mean d(�nsity functions with respect to integration rather than discrete 
density functions. 

If F has density f, then Equation ( 1 )  can be rewritten in terms of f, to 
gIve 

(3) P(a < X < b, c < Y < d) = f (f f(x, y) dY) dx. 

By using the properties of integration and the definition of a probability 
space, it can be shown that the relation 

(4) P«X, Y) E A) = Sf f(x, y) dx dy 
A 

holds for subsets A in the plane of the type considered in calculus. By 
letting A be the entire plane we obtain from (4) that 

(5) f�oo f�<X) f(x, y) dx dy = 1 .  
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We also obtain from (4) that 

Fx(x) = P(X < x) = foo (f:oo f(u, y) dY) du 

and henc(� Fx has marginal density fx given by 

fx(x) = f:oo f(x, y) dy 

which satisfies 

Fx(x) = f�oo fx(u) du o 

Similarly Fy has marginal density fy given by 

fy(y) = f:oo f(x, y) dx. 
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As in the one-dimensional case, f is not uniquely defined by (2) . We 
can change f at a finite number of points or even over a finite number of 
smooth curves in the plane without affecting integrals of f over sets in the 
plane. Again as in the one-dimensional case, F determines .f at th(� con
tinuity points off. This fact can be obtained from (3). 

By diff(�rentiating (2) and applying the rules of calculus we obtain 

and 

(6) 

� F(x, y) = JX (� J' f(u, v) dV) du 
oy - 00  oy - 00 

= f�oo f( u, y) du 

02 -- F(x, y) = f(x, y). 
ox oy 

Under some further mild conditions we can justify these operations and 
show that (6) holds at the continuity points off. In specific cases instead 
of checking that the steps leading to (6) are valid, it is usually simpler to 
show that the function f obtained from (6) satisfies (2). 

Example 1 .  Let us illustrate the above definitions and formulas by 
reconsidering Example 1 of Chapter 5. We recall that in that example, we 
chose a point uniformly from a disk of radius R. Let points in the plane be 
determinc:�d by their Cartesian coordinates (x, y). Then the disk can be 
written as 

{(x, y) I x2 + y2 < R2} .  

Let X and Y be random variables denoting the random coordinates of the 
point chosen. Corresponding to the assumption of uniformity, we suppose 
that X and Y have ajoint density.f given by 
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(7) f(x, y) = (1t�2 ' 

0, elsewhere. 

Then for any subset A of the disk (say of the type considered in calculus), 

P« X, Y) E A) = fff(X, y) dx dy 
A 

area of A 
- ---

which agrees with our assumption of uniformity. The marginal de:nsity fx 
is given by . foo f.JR2_X2 1 2.J R2 - x2 

f�x) = f(x, y) dy = _ -2 dy = 2 - 00 -.JR2-x2 1tR 1tR 

for - �� < x < R and fx(x) = 0 elsewhere. The marginal density fy(y) 
is given by the same formula with x replaced by y. 

The variables X and Y are called independent random variables if 
whenev1er a < b and c < d, then 

(8) P(a < X < b, c < Y < d) = P(a < X < b)P(c < Y < dr) .  

By letting a = c = - 00 ,  b = x, and d = y, it follows that if X and Y are 
independent, then 

(9) F(x, y) = Fx(x)Fy(y), - 00  < x, y < 00 .  

Conversely (9) implies that X and Y are independent. For if (9) holds, 
then by ( 1 )  the left side of (8) is 

F(b, d) - F(a, d) - F(b, c) + F(a, c) 

= Fx(b)Fy(d) - Fx(a)Fy(d) - Fx(b)Fy(c) + Fx(a)Fy(c) 

= (Fx(b) - Fx(a» (Fy(d) - Fy(c» 

= P(a < X < b)P(c < Y < d). 

More glenerally, it can be shown that if X and Y are independent and A 
and B are unions of a finite or countably infinite number of intervals, then 

P(X E A, Y E B) = P(X E A)P(Y E B) 

or, in other words, the events 

{ro I X(ro) E A} and {ro I X(ro) E B} 

are inde�pendent events. 
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Let X and Y be random variables having marginal densities fx and fy. 
Then X and Y are independent if and only if the function f defined by 

f(x, y) = fx(x) fy(y), - 00 < x, y < 00 ,  

is  a joint density for X and Y. This follows from the definition of indepen
dence and the formula 

As an illustration of dependent random variables , let X and Y b�e as in 
Example 1 .  Then for - R  < x < R and - R  < y < R, 

(10) 
1'

( 
) • .r ( 

) = 4JR2 - x2 �R2 - y2 
JX X 'J Y Y n2R4 ' 

which does not agree with the joint density of these variables at .x = 0, 
y = o. Since (0, 0) is a continuity point of the functions defined by (7) and 
(10), it follows that X and Y are dependent random variables. This agrees 
with our intuitive notion of dependence since when X is close to R, ]( must 
be close to zero, so information about X gives us information about Y. 

Density functions can also be defined directly, as we have seen in other 
contexts . A two-dimensional (or bivariate) density .function f is a non
negative function on R2 such that 

Corresponding to any bivariate density function f, there is a probability 
space and a pair of random variables X and Y defined on that space and 
having joint density f. 

The ea.siest way to construct two-dimensional density functions is to 
start with two one-dimensional densities f1 and f2 and define the function 
f by 

( 1 1 )  - 00  < x, y < 00 .  

Then f is a two-dimensional density function since it is clearly nonne:gative 
and fOO foo foo foo 

-
00 

-
00 
f{x, y) dx dy = -

00 
fl{X) dx -

00 
f2(Y) dy = 1 . 

If randoDl variables X and Yhave thisf as their joint density, then X and Y 
are indep1endent and have marginal densities fx = f1 and fy = f2. 

As an illustration of ( 1 1 ), let f1 and f2 both be the standard normal 
density n(O, 1 ) . Then f is given by 
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or 

(12) 
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f( ) - _1_ -x1/2 _1_ -y1/2 x, y -
J2n 

e 
Jirr. 

e 

f( ) - 1 _ (x1+y1)/2 X, y - - e , 21t - 00 < x, y < 00.  

The density given by ( 12) is called the standard bivariate normal density. 
In our next example we will modify the right side of(12) slightly to obtain a 
joint dc:�nsity function that corresponds to the case where the two random 
variablc�s having normal marginal densities are dependent. 

Examlple 2. Let X and Y have the joint density function I given by 

f( ) - - (x1 -xy+y1)/2 X, y - ce , - 00 < x, y < 00, 

where c is a positive constant that will be determined in the coursle of our 
discussion. We first "complete the square" in the terms involving y and 
rewrite I as 

f(x, y) = ce- [(y-x/2)1 + 3x1/41/2 , - 00 < x, y < 00, 

and thc:�n note that 

IX<x) = 
f�CXJ I(x, y) dy = ce- 3x2/8 f�CXJ r(y-x/2)2/2 dy. 

Making the change of variable u = y - x/2, we see that 

f�CXJ e- (y-xt2)2/2 dy = 
f�CXJ e-u2/2 du = J2n. 

Consequently 
fx(x) = c.J 21te - 3x1/8 . 

It is now clear that Ix is the normal density n(O, (12) with (72 = 4/3 and 
hence 

J- 1 .J3 
c 2n = 

a.J2-1t 
-

2.J21t 
or c = .J3/41t. Consequently 

( 1 3) f( ) - .J3 - (x1 -xy+y1)/2 x, y - e , 41t - 00 < x, y < 00 .  

The above calculations now show that Ix is the normal density n(O, 4/3). 
In a sil1nilar fashion, we can show that Iy is also n(O, 4/3). Since I(x, y) � 
Ix(x)ly(y), it is clear that X and Y are dependent. 
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6.2. D istri bution of su ms and quotients 
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Let X and Y be random variables having joint density f. In many 
contexts 'we have a random variable Z defined in terms of X and Y and 
we wish to calculate the density of Z. Let Z be given by Z = qJ(�f', Y), 
where qJ is a real-valued function whose domain contains the range of X and 
Y. For fixed z the event {Z < z} is equivalent to the event {(X, Y) IE Az} ,  
where Az is the subset of R2 defined by 

Thus 
Az = {(x, y) I qJ(x, y) < z} . 

Fz(z) = P(Z < z) 

= P« X, Y) E Az) 

= 
II

f(X, y) dx dy. 
Az 

If we can find a nonnegative function 9 such that 

II
f(X, y) dx dy = foo g(v) dv, 

A z 

- 00  < Z < 00,  

then 9 is necessarily a density of Z. We will use this method to cal�:ulate 
densities of X + Y and Yj X. 

6.2.1 . Distri bution of su ms. Set Z = X + Y. Then 

Az = {(x, y) I x + y < z} 

is just the: half-plane to the lower left of the line x + y = z as sho'wn in 
Figure 1 .  Thus 

Fz(z) = 
II

f(X, y) dx dy = 
I�oo (f:

x
f(X, y) dY) dx. 

Az 

Make the change of variable y = v - x in the inner integral. Then 

Fz(z) = 
I�oo (foo f(x, v - x) dV) dx 

= foo (I�oo 
f(x, v - x) dX) dv, 

where we have interchanged the order of integration. Thus the density of 
Z = X +. Y is given by 

(14) fx+rlz) = 
I�oo f(x, z - x) dx, - 00  < z < 00 .  
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y 

++++++f�----X 

Figure 1 

In the main applications of (14), X and Y are independent and (14) can be 
rewritten as 

( 15) fx+rtz) = f�"" fX<x)frtz - x) dx, - 00 < z < 00 . 

If X and Y are nonnegative independent random variables, then 
fx+y{z) = 0 for z < 0 and 

( 16) fx+rtz) = f: fX<x)frtZ - x) dx, 0 < z < 00 .  

The right side of ( 1 5) suggests a method of obtaining densities. Given 
two one-dimensional densities f and g, the function h defined by 

h(z) = f�"" f(x)g(z � x) dx, - 00 < Z < 00, 

is a one-dimensional density function, which is called the convolution of f 
and g. Thus the density of the sum of two independent random variables 
is the convolution of the individual densities. 

Example 3. Let X and Y be independent random variables each having 
an exponential distribution with parameter A.. Find the distribution of 
X + Y. 

The density of X is given by JX<x) = Ae- lx for x � 0 andfx{x) = 0 for 
x < o. The density of Y is the same. Thus fx+ Y(z) = 0 for Z < 0 and, 
by (16), for Z > 0 

fx+ rlz) = f: k- hA,e-.l.(z-x) dx 

= A,2e- .l.z f: dx = A,2ze- .l.z . 
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We see that X + Y has the gamma density r(2, l). 
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Example 4. Let X and Y be independent and uniformly distributed 
over (0, 1) . Find the density of X + Y. 

The density of X is given by fx(x) = 1 for 0 < x < 1 and fX<x) = 0 
elsewhere. The density of Y is the same. Thus fx+ Y{z) = 0 for z < o. 
For Z > 0 we apply ( 16). The integrandfx{x)fy(z - x) takes on only the 
values 0 and 1 .  It takes on the value 1 if x and Z are such that 0 < x < 1 
and 0 < Z - x < 1 .  If 0 < Z < 1 ,  the integrand has value 1 on the set 
o < x < Z and zero otherwise. Therefore we obtain from (16) that 

fx+ Y(z) = Z, o < Z < 1 .  

If 1 < Z < 2 the integrand has value 1 on the set Z - 1 < x < 1 and 
zero otherwise. Thus by ( 16) 

fx+ y{z) = 2 - z, 1 < Z < 2. 
If 2 < Z < 00 the integrand in (1 6) is identically zero and hence 

In summary 
fx+ y(z) = 0, { z, 

fx+Y(z) = 2 - z, 
0, 

o 1 

2 < Z < 00. 

o < Z < 1 ,  
1 < z < 2, 
elsewhere. 

2 

Figure 2 

The graph off is given in Figure 2. One can also find the density of X + y 
by computing the area of the set 

Az = {(x, y) I 0 < x < 1 ,  0 � y < 1 and x + y < z} 
(see Figure 3) and differentiating the answer with respect to z. 

1 < z < 2 
Figure 3 
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Example 3 has an important generalization, which may be stated as 
follows. 

jrheorem 1 Let X and Y be independent random variables 
such that X has the gamma density r«(Xl ' A) and Y has the galnma 
density r«(X2' A). Then X + Y has the gamma density 

r{(X1 + (X2' A). 

Proof. We note that X and Y are positive random variables and that 

x > 0, 

and 
ACZ1 yCZ1 - l e - ly 

fy(y) = 
r(oc2) 

, y > o. 

Thus fx+ y{z) = 0 for Z < 0 and, by (1 6), for Z > 0 

In the preceding integral we make the change of variable x = zu (with 
dx = z tiu) to obtain 

(17) Z > 0, 

where 

(18) 

The constant c can be determined from the fact that f x + y integrates out 
to 1 .  From (1 7) and the definition of gamma densities, it is clear that fx + y 
must be the gamma density r«(Xl + (X2' A) as claimed. I 

From ( 17) and the definition of the gamma density we also s��e that 
c = l/r((Xl + (X2). This together with (1 8) allows us to evaluate the 
definite integral appearing in (1 8) in terms of the gamma function : 

(19) i
l 

CZ1 - 1(1 )CZ1- l d r«(Xl)r«(X2) u - u u =  . 
o r«(X1 + (X2) 

This fonnula permits us to define a new two parameter family of de�nsities 
called Beta densities. The Beta density with parameters (Xl and (X2 is given 
by 

(20) 
(r«(X1 + (X2)XCZt - 1(1 - X)CZ1- l 

.f( x) = r( (Xl)r( (X2) 
0, 

o < x < 1 ,  

elsewhere. 
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The reason for this terminology is that the function of (Xl and (X2 defined by 

is called the Beta function. 
Our final application of the convolution formula is to normally distri

buted random variables. 

T�leorem 2 Let X and Y be independent random variables 
having the respective normal densities n(lll , (1�) and n(1l2, (1�). Then 
X + },. has the normal density 

n(lll + 1l2' (1� + O"�). 

Proof We assume first that III = 112 = O. Then 

- 00  < x < 00 ,  

and 

- oo < y < oo .  

Thus by (1 5) 
1 foo [ 1  (X2 (z - X)2) ] 

fx+ Y(z) = exp - - 2" + 2 dx. 21t0"1 (12 
-

00 2 (1 1 (12 
Unfortunately an evaluation of this integral requires some messy computa
tions (whi��h are not important enough to master). One way of proce�eding 
is to first lnake the change of variable 

.J (12 + (12 
U = 1 2 x. 

(11(12 
After som1e simple algebra we find that 

1 foo [ 1  ( 2uz(1 Z2) ] 
fx+ Y(z) == exp - - u2 - . 

1 + 2" du o 
21t.J (1� + (1� - 00 2 (1 2.J (1f + (1� (12 

We next complete the square in u and observe that 

Then by ntlaking a second change of variable 
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we see that 

e -z2/2(C7�+C7�) 
-

� 21t.J u� + u� , 

which is just the normal density n(O, u� + O'�) . 

In general, X - ttl and Y - tt2 are independent and have the respective 
normal densities n(O, q�) and n(O, u�) . Thus by the above special case, 
(X - Ill) + ( Y  - 112) = X + Y - (Ill + 112) has the normal density 
n{O, O'� -+- O'�) , and hence X + Y has the normal density 

as claimc:�d. I 

The preceding proof is elementary but messy. A less computational 
proof involving more advanced techniques will be given in Section 8 .3 .  
Another proof is indicated in Exercise 36 at the end of this chapte:r. 

Example 5. Let X and Y be independent random variables each having 
the normlal density n(O, 0'2). Find the density of X + Y and X2 + y2. 

From "fheorem 2 we see immediately that X + Y has the normal density 
n(0, 20'2) .. By Example 12  of Chapter 5, X2 and y2 each have the gamma 
density r"{1 /2, 1 /20'2). It is easily seen that X2 and y2 are independent. 
Thus by Theorem 1 ,  X2 + y2 has the gamma density r{l ,  1 /20'2), which 
is the sanne as the exponential density with parameter 1 /20'2 . 

6.2.2. Distri bution of quotients* . As before, let X and Y denote 
random variables having joint density f. We will now derive a formula for 
the density of the random variable Z = Y/ X. The set 

Az = {(x, y) I y/x < z} 

is shown in Figure 4. If x < 0, then y/x < z if and only if y > xz. Thus 

Az = {(x, y) I x < ° and y > xz} u {(x, y) I x > 0 and y < xz} .  

Consequc�ntly 

Fy,X<z) = IIf(X, y) dx dy 
A. 

= J: Ol (1: f(x, y) dy) dx + LOl (f� f(x, y) dY) dx. 
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z > o 
Figure 4 

In the inner integrals, we make the change of variable y = xv (with 
dy = x dv) to obtain 

Fy/:x{z) = [<Xl (L-<Xl xf(x, xv) dV) dx 

+ L

<Xl (f <Xl xf(x, xv) dV) dx 

= [<Xl (f<Xl (- x)f(x, xv) dV) dx 

+ fo

<Xl (f <Xl xf(x, xv) dV) dx 

= f�<Xl (f<Xl Ixlf(x, xv) dV) dx. 

By interchanging the order of integration we see that 

(21) Fy,rtz) = f<Xl (f:<Xl Ixlf(x, xv) dX) dv, - 00  < Z < 00 .  

It follows from (21) that Y/X has the densitY!Flx given by 

(22) fy,rtz) = 
f:<Xl Ixlf(x, xz) dx, - 00  < Z < 00 .  

In the special case when X and Y are independent positive random 
variables, (22) reduces to !YIX(z) = 0 for Z < 0 and 

(23) fy,rtz) = 
L<Xl 

xfrtx)fY(xz) dx, o < Z < 00 .  

Our next theorem is a direct application of (23). 
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'Jrheorem 3 Let X and Y be independent random variables 
havin�7 the respective gamma densities r(cx1 , A,) and r(cx2, A,). 1�hen 
Yj X has the density given by fy/x(z) = 0 for z < 0 and 

2 I" 
(z) - r(CX1 + CX2) ZlZl- 1 

0 < Z < 00 .  ( 4) J YIX -
r(OC 1)r(OC2) (z + 1)11' + 112 ' 

Proof. Recall that 

x > 0, 

and 
A,lZl ylZl - 1 e - ly fy( y) = 

r(oc2) 
, y > o. 

Formula (23) is applicable, so for 0 < z < 00, 

= XlZl + lZl - 1e-xl(z+  1 ) dx. A,IZI + IZlZlZl - 1 iOO 
r( cx1)r( cx2) 0 

By Equation (34) of Chapter 5 

roo XIZI + lZl - le-xl(z +  1 ) dx = 
r(cx1 + cx2) 

• 

Jo (A,(z + 1» 1Z1 +lZl 

Consequently (24) holds as claimed. 

o < Z < 00 .  

I 

(Here wc� recall from Equation (35) of Chapter 5 that r(lj2) = .J;�.) We 
leave it to the reader to show as an exercise that under the same conditions 
both Yj}( and Yj lX I have the Cauchy density. 
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6.3. Cond itional densities 

In orde�r to motivate the definition of conditional densities of con
tin uous random variables, we will first discuss discrete random variables. 
Let X and Y be discrete random variables having joint density !. If x is 
a possible value of X, then 

P(Y _ I X - ) - P(X = x, Y = y) _ f(x, y) 
- Y - x - - . P(X = x) fx(x) 

The function !YIX defined by 

(25) 
(f(X' y) 

fY lx(Y I x) = fx(x) 
, 

0, 

fx(x) � 0, 

fx{x) = 0, 

is called the conditional density of Y given X. For any possible valu�� x of 
X, 

�!YIX(Y I x) = Ly!(X , y) = !x(x) = 1 , 
y fx{x) fx{x) 

so that for any such x, !Ylx(Y I x) defines a discrete density function of y 
known as the conditional density of Y given X = x. In the discrete: case 
conditional densities involve no really new concepts. 

If X is a continuous random variable, however, then P(X = x) = ° for 
all x so that P(Y = y I X = x) is always undefined. In this casc:� any 
definition of conditional densities necessarily involves a new concept. 
The simplest way to define conditional densities of continuous random 
variables is by analogy with Formula (25) in the discrete case. 

De.finition 1 Let X and Y be continuous random variables 
having joint density!. The conditional densitY!YIX is defined by 

(26) 
(/(X' y) 

IYlx( Y I x) = fx(x) , 

0, 

° < fx(x) < 00 , 

elsewhere. 

It follo'ws immediately from this definition that, as a function of y, 
!Ylx(Y I x) is a density whenever 0 < !x(x) < 00 (again called the 
conditional density of Y given X = x). Conditional densities can be used 
to define conditional probabilities. Thus we define 

(27) Pea < Y < b I X = x) = f !Ylx( Y I x) dy, a < b. 

Alternatively, we could attempt to define the conditional probability 
appearing in (27) by means of the following limit : 

(28) P{a S Y < b I X = x) 

= lim Pea � Y < b I x - h < X < x .+ h). 
h ! O 
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The right-hand side of (28) can be rewritten in terms of f as 

If 

r $��: U:/(", y) dy) du _ r (1/2h) $��� ($:/(", y) dy) du �� J��= (J�cxJ(u, y) dy) du - � (lj2h) J��=lx(u) du 
· 

f I(u, y) dy 

is continuous in u at u = x, the numerator of the last limit converges to 

f/(X, y) dy 

as h ! o. If fx is continuous at x the denominator converges to �lx(x) as 
h ! o. lUnder the additional condition thatfx(x) =1= 0, we are led from (28) 
to 

Pea < Y < b I X = x) = J!/�x, y) dy , 
Ix(x) 

which a.grees with (27). In summary, we have defined conditional densities 
and conditional probabilities in the continuous case by analogy ,vith the 
discrete: case. We have also noted that, under further restrictions, a 
limiting process would yield the same definition of conditional prob
abilities. It turns out that such limiting processes are difficult to work with 
and will not be used further. 

It follows immediately from the definition of conditional density func
tions that 

(29) f(x, y) = fx(x)fYlx(Y I x), - 00 < x, Y < 00 .  

If X and Y are independent and 

(30) f(x, y) = fx(x)fy(y), - 00 < x, Y < 00, 

then 

(3 1 )  .fYlx(Y I x) = fy(y), o < fx(x) < 00 and - 00 < Y < 00 .  

Conversely if (3 1) holds, then it follows from (29) that (30) holds and X 
and Y are independent. Thus (31) is a necessary and sufficient condition 
for two random variables X and Yhaving a joint density to be independent. 

Example 7. Let X and Y have the bivariate density f given by F'ormula 
( 1 3), namely 

f( ) - .J3 - (x2 - x, + ,2)/2 X, y - e , - 00 < x, y < 00 . 
4x 

Then as we saw in Example 2, X has the normal density n(O, 4/3). l"hus for 
- 00  < x, y < 00 
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.J3 - (x1 -xy+yl)/2 - e 
41t 

fYlx(Y I x) = -----.J 3 - 3x1/8 -- e 
2�21t 
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In other 'words, the conditional density of Y given X = x is the normal 
density n(x/2, 1 ). 

We have been starting with joint densities and using them to construct 
marginal densities and conditional densities. In some situations we may 
reverse this by starting with marginal densities and conditional densities 
and using them to construct joint densities. 

Example 8. Let X be a uniformly distributed random variable: over 
(0, 1), and let Y be a uniformly distributed random variable over (0, X). 
Find the joint density of X and Y and the marginal density of Y. 

From the statement of the problem, we see that the marginal density of 
X is given by 

fx(x) = {�, for o < x < 1 ,  
elsewhere. 

The density of Y given X = x is uniform on (0, x), so that 

{ l/x fYlx(Y I x) = 0, 
for o < Y < x < 1 ,  

elsewhere. 

Thus the joint density of X and Y is given by { l/x 
f(x, y) = 0, 

for o < Y < x < 1 ,  
elsewhere. 

The marginal density of Y is 

fy(Y) = f

oo 

f(x, y) dx = i1 ! dx = - log y, 
- 00 y x 

andfy(y) = 0 elsewhere. 

o < Y < 1 ,  

6.3.1 . Bllyes' ru le. Of course, we can reverse the roles of X and :Y and 
define the: conditional density of X given Y = y by means of the formula 

(32) x - f(x, y) fXIY( I y) -
fy(y) 

, 

Since 
f(x, y) = fX<x)jYIX<Y I x) 
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and 

fy(y) = f�
oo 

f(x, y) dx = f�
oo 

fx(x)jYIX(Y I x) dx, 

we can rewrite (32) as 

(33) fXI Y(x I y) = fx(x)fYlx(Y I x) 
J�oo fx(x)fYlx(Y  I x) dx 

This formula is the continuous analog to the famous Bayes' rule discussed 
in Chapter 1 .  

In Chapters 3 and 4 we considered random variables X and }T which 
were both discrete. So far in Chapter 6 we have mainly considered random 
variables X and Y which are both continuous. There are cases when one is 
interest(�d simultaneously in both discrete and continuous rando:m vari
ables. It should be clear to the reader how we could modify our discussion 
to include this possibility. Some of the most interesting applications of 
Formula (33) are of this type. 

Examlple 9. Suppose the number of automobile accidents a driver will 
be involved in during a one-year period is a random variable Y having a 
Poisson distribution with parameter A, where A depends on the driver. 
If we choose a driver at random from some population, we can let A vary 
and de1rrne a continuous random variable A having density fA' The 
conditional density of Y given A = A is the Poisson density with parameter 
A given by 

for Y = 0, 1 ,  2, . . .  , 

elsewhere. 

Thus thle joint density of A and Y is 

for Y = 0, 1 ,  2, . . .  , 

elsewhere. 

In general we cannot find a nice formula for the marginal density of Y or 
the conditional density of A given Y = y, since we cannot evaluate the 
required integrals. We can find simple formulas, however, in the special 
case when f is a gamma density r((l, P), so that 

In this case, 

(P« A(J - 1 e - ).Il 
fA(A) = r((l) 

0, 
for A > 0, 

elsewhere. 
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loo prz Arz- 1 e - ).fl A)' e - ).  
= - dA 

o r({X) y !  

= P roo Arz+)'- le- ).(fl + 1 ) dA 
y ! r({X) Jo 

_ r({X + y)prz 
-

y ! r({X)(p + l)rz+)' ·  
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The valu(� of the last integral was obtained by using Formula (34) of 
Chapter 5. We leave it as an exercise for the reader to show that fy is the 
negative binomial density with parameters � and p = PI( 1 + P). Wle also 
have that for A > 0 and y a nonnegative integer, 

.; (A I y) = 
f( A, y) 

JA / y  
fy(y) 
przArz+)'- le- ).(fl + l )y ! r(�)(p + l )rz+)' 

-
r(�)y ! r(� + y)P 

(p + 1 )rz + )' A rz + )' - 1 e - ).(fl + l ) 
-

r(� + y) 

which says that the conditional density of A given Y = y is the gamma 
density r(� + y, p + 1). If someone in the insurance industry wanted to 
solve problems of this type he would quite possibly try to approximate the 
true density fA by a gamma density r(�, P), where � and P are chosen to 
make the approximation as good as possible. 

6.4. PrOI)erties of mu ltivariate distri butions 

The concepts discussed so far in this chapter for two random variables X 
and Y arle readily extended to n random variables. In this section we 
indicate briefly how this is done. 

Let Xl , . . .  , XII be n random variables defined on a common probability 
space. Their joint distribution function F is defined by 

F(Xh . . . l' XII) = P(Xl < Xh . . .  , XII < XII)' - 00 < Xl ' . . .  , XII < 00 .  

The marginal distribution functions Fxm, m = 1 ,  . . .  , n, are defined by 

- 00  < Xm < 00 .  

The value� of FXm(xm) can be obtained from F by letting Xl ' . . .  , .Xm- l , 
Xm + 1 ,  · . •  , X,., all approach + 00 .  

A nonnegative function f is called a joint density function (with re�spect 
to integra.tion) for the joint distribution function F, or for the random 
variables ,Xl ' . . .  , XII' if 
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(34) 

Under some further mild conditions the equation 

a" 
f(X1 ' · · · , X,.) = F(X1' . . .  , X,.) 

aX1 • · · ax,. 

is valid at the continuity points of F. If (34) holds and A is any subset of 
R" of the type considered in calculus, then 

P((X 1 . · • • • X,J E A) = f · � .  f f(xt o · · · .  XII) dX1 • • • dXII ' 

In parti'cular 

(35) f� <Xl ' "  f� <Xl f(xt o  · · · • XII) dX1 • • • dXII = 1 

and if am < bm for m = 1 , . . .  , n, then 

fbI fbn 
= · · · f(XI ' · · · , X,.) dXI · · · dx,.. al an 

The random variable Xm has the marginal density IXm obtained by integrat
ing I oVler the remaining n - 1 variables. For example, 

fxlx2) = f� <Xl • • •  f� <Xl f(xt o · · · • XII) dX1 dX3 • • • dXII' 

In general, the random variables Xl ' . . .  , X,. are called independent if 
whenevc�r am < bm for m = 1 ,  . . . , n, then 

P(al < Xl < b1 , • • •  , a,. < X,. < b,.) 

= P(al < Xl < b1) · • • P(a,. < XIII < b,.). 

A necessary and sufficient condition for independence is that 

- 00 < Xh . . .  , x,. < 00 .  

The necessity is  obvious, but the sufficiency part for n > 2 i s  tricky and 
will not be proved here. If Fhas a density I, then Xl , . . .  , X,. are indepen
dent if aLnd only if I can be chosen so that 

- 00 < Xl ' . . . , x,. < ('X) • 

One can also define an n-dimensional density directly as a nonnegative 
function on R" such that (35) holds. The simplest way to construct n
dimensional densities is to start with n one-dimensional densities II !' . . · , I,. 

and define f by 

- 00 < X I , . . . , x,. < eJJ . 
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If Xl ' . . .  , XII are random variables whose joint density 1 is given by (36), 
then Xl ' . . .  , XII are independent and Xm has the marginal density fm. 

Examplle 1 0. Let Xl , . . .  , XII be independent random variables,. each 
having an exponential density with parameter A. Find the joint density of 
Xl ' · · · , ]rn• 

The density of X m is given by ( Ae- lXm 
IXm(xm) = 0, 

Thus 1 is given by 

for ° < Xm < 00 ,  

elsewhere. 

for Xl ' . • • , XII > 0, 
elsewhere. 

In ord��r to compute the density of the sum of n independent random 
variables, and for several other purposes, we need the following fact. 

Tl"eorem 4 Let Xl " ' " Xn be independent random variables. 
Let Y be a random variable defined in terms of Xl , . . .  , Xm, and let Z 
be a lrandom variable defined in terms 01 X m + l ' . . .  , Xn (where 
1 < m� < n). Then Y and Z are independent. 

The proof of this theorem will not be given since it involves arguments 
from measure theory. 

Using this theorem and an argument involving mathematical induction, 
we can extend Theorems 1 and 2 to sums of independent random variables, 
as follows. 

Tlieorem 5 Let Xl " . " Xn be independent random variables 
such that Xm has the gamma density r(cxm, A) for m = 1 ,  . . .  , n .  
Then J(l + · · · + Xn has the gamma density r(cx, A), where 

Recall that the exponential density with parameter A is the same as the 
gamma d�ensity r(l , A). Thus as a special case of this theorem we have the 
following corollary : If Xl ' . . .  , Xn are independent random variables, each 
having an exponential density with parameter A, then Xl + · · · + )rll has 
the gamma density r(n, A). 

Tlreorem 6 Let Xl ' . . .  ' Xn be independent random variables 
such that X m has the normal density n(J.lm, 0';), m = 1 ,  . . . , n .  Th,en 
Xl + · · · + Xn has the normal density n(J.l, 0'2), where 

J.l = J.ll + · · · + J.ln and 0'2 = O'� + · · · + 0'; . 
If Xl ' . . .  , Xn has a joint density f, then any subcollection of these 

random variables has a joint density which can be found by integrating 
over the remaining variables. For example, if 1 < m < n, 
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[Xt, . . .  ,Xm(Xl , · · · , Xm) = foo fOO [(Xl ' . . .  ' Xn) dXm+ I • • · dxn• 
- 00 - 00  

The conditional density of a subcoIIection of Xl ' . . .  , Xn giv1en the 
remaining variables can also ,be defined in an obvious manner. Thus the 
conditional density of Xm+ 1 , • . .  , Xn given Xh . . .  , Xm is defined by 

.f ( I ) [(Xl ' · · · , Xn) 
JXm + t , . . .  , X"IXt , . . .  , Xm Xm+ l , · · · , Xn Xl " ' · ' Xm =

.f ( )
' 

J Xl, • • •  , X m Xl ' . · · , Xm 
where f is the joint density of Xl'  · . · , Xn' 
Often conditional densities are expressed in terms of a somewhat different 
notation. For example, let n + 1 random variables Xl' . . .  , Xn' :1" have 
joint density f. Then the conditional density of Y given Xl '  . . .  , Xn is 
defined by 

.f ( I  ) [(Xl ' · · · , Xn' Y) 
J Y I XI .  • • •  , x" Y Xl " · ' , Xn = .f 

( ) 
• 

J Xl ,  • • •  , X" Xl '  • . • , Xn 

6.5. Order statistics· 

Let 1/1 " • •  , Un be independent continuous random variables, each 
having distribution function F and density function f. Let Xl' · . .  , Xn 
be random variables 0 btained by letting Xl (ro), . . .  , Xn( ro ) be the set 
Ul{ro), . .. .  , Un(ro) permuted so as to be in increasing order. In particular, 
Xl and Jrn are defined to be the functions 

Xl(ro) = min (Ul(ro), . . .  , Un{ro)) 
and 

Xn{ro) = max (Ul(ro), . . .  , Un{ro)). 

The random variable Xk is called the kth order statisttc. Another related 
variable of interest is the range R, defined by 

R(o)) = Xn{ro) - Xl(ro) 

= max (UI(ro), . . .  , Un{ro)) - min (Ul(ro), . . .  , Un(ro)). 

It follows from the assumptions on Ul , . . .  , Un that, with probability one, 
the Ut's :are distinct and hence Xl < X2 < · · · < Xn. 

To illustrate these definitions numerically, suppose Ul(ro) = 4.8, 
U2{ro) = 3.5, and U3{ro) = 4.3. Then Xl{ro) = 3.5, X2{ro) = 4.3, 
X3{ro) = 4.8, and R{ro) = 1 . 3. 

Examp, le 1 1 . Consider a machine having n parts whose failure times 
Ul , · · · , Un satisfy the assumptions of this section. Then Xk is the time it 
takes for k of the parts to fail. If the entire machine fails as soon as a 
single part fails, then Xl = min (Ul , . . .  , Un) is the failure time of the 
machine.. If the machine does not fail until all its parts have failed, then 
Xn = max (Ul , . . .  , Un) is the failure time of the machine. 
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Example 1 2. Let n hopefully identical parts be manufactured in a 
single run. of an assembly line and let U l ' . . .  , U" denote the lengths of the 
n parts. i�n inspector might be interested in the minimum length X"l and 
maximumt length X" to check if they are within certain tolerance limits. 
If the parts are to be interchangeable the amount of variation in the 
lengths may have to be kept small. One possible measure of this variation 
is the range R of the lengths. 

We win now compute the distribution function of the kth order statistic 
Xk• Let -- 00 < x < 00 .  The probability that exactly j of the Ui's lie in 
(-00 ,  x] and (n - j) lie in (x, (0) is 

(;) Fl(xXl - F(x» "-i, 

because the binomial distribution with parameters n and p = F(x) is 
applicabl��. The event {Xk < x} occurs if and only if k or more of the 
U,'s lie in ( - 00 ,  x] . Thus 

(37) F x,Jx) = P(Xk � x) 

- t (�) FJ(x)(1 - F(x» "-J, - 00 < x < 00 .  

J= k } 
In particular the distribution functions of X" and Xl can be written very 
simply as 

Fx,.(x) = (F(x» ", - 00  < x < 00 ,  

and 
FX1(x) = 1 - (1  - F(x» ", - 00 < x < 00 .  

In order to find the corresponding density functions, we must differentiate 
these quantities . We easily find that 

fx,.(x) = n!(x)F,,- 1(x), - 00  < x < 00 ,  

and 
- 00  < x < 00 .  

The corr��sponding derivation for Xk in general i s  slightly more com
plicated. From (37), 

fx,,(x) = t n ! f(x)Fi- 1(x)(1 - F(x» "- 1 
J=k (j - 1) ! (n - j) !  

,,- 1 , 
_ � . 

n : f(x)FJ(x)(l _ F(x» "-J- 1 
J= k ] ! (n - ] - I ) ! 

= t .  n ! 
. f(x)Fl- 1(xXl - F(x» ,,-i 

J= k (] - I) ! (n - ]) ! 

- t .  n ! 
. f(x)Fi- 1(x)( 1 - F(x» ,,-i  

J = k + 1 () - 1) ! (n - }) ! 
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and by c:ancellation 

(38) fx,.(x) = (k 
_ l)

��n _ k) ! f(x)Fk-
l
(XX1 - F(X» ,,-k, 

- 00  < x < 00 .  

In order to find the density of the range R we will first find the joint 
density of Xl and Xn. We assume that n > 2 (since R = 0 if n = 1). Let 
x < y. lrhen 

l'(XI > x, X,. < y) = P(x < Ul < y, . . .  , x < Un < y) 

= (F(y) - F(x))
n, 

and of course 
P(X,. < y) = Fn(y). 

Consequently 

F Xt tX,'(x, y) = P(X 1 < X, Xn � y) 

= P(Xn < y) - P(X 1 > X, Xn < y) 

= F"(y) - (F(y) - F(x))n. 

The joint density is given by 

82 
fx"xn(x, y) = 

ax ay 
F x, .xn(x, y) 

= n(n - l)f(x)f( y)(F( y) - F(x))
n
- 2 , x < y. 

It is obvious and easily shown that 

!Xttx,.(x, y) = 0, x > y. 

By slightly modifying the argument used in Section 6.2. 1 to find the density 
of a sum, we find that the density of R = Xn - Xl is given by 

fR(r) = f�a,fx"Xn(X' r + x) dx. 

In other words 

I" ( ) = 
rn(n - 1)  foo f(x)f(r + xXF(r + x) - F(X» "- 2 dx, 

JR r l - ex>  
0, 

r > 0 
.r < o. 

These formulas can all be evaluated simply when Ul , • • •  , Un are indepen
dent and uniformly distributed in (0, 1) . This is left as an exercise. 

There is a "heuristic" way for deriving these formulas which is quite 
helpful. We will illustrate it by rederiving the formula for Ix". JLet dx 
denote a small positive number. Then we have the approximation 

!x,,(x) dx � P(x � Xi � X + dx). 
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The most likely way for the event {x < Xk < X + dx} to occur is that 
k - 1 of the U/s should lie in (- 00, x] , one of the U/s should lie in 
(x, x + fAlx] , and n - k of the U/s should lie in (x + dx, (0) (see ]�igure 
5). The derivation of the multinomial distribution given in Chaptc:�r 3 is 
applicabl�e and the probability that the indicated number of the U/s will 
lie in the appropriate intervals is 

.; (x) dx � 
n ! 

J X" (k - 1) ! l ! (n - k) ! 

x (
I

X 

f(u) dU)k - l 

I

X + dx 

f(u) du (100 feu) du 
')"- k - 00 X x +dx ) 

� n ! f(x) dxFk- l(X)(l - F(X)),,- k, 
(k - 1) ! (n - k) !  

from whilch we get (38). We shall not attempt to make this method 
rIgorous. 

k - l  ( 1 ] n -k 

x x+dx 

Figure 5 

6.6. SaITlpl ing distri butions· 

Let Xl ' . . .  ' X" be independent random variables, each having the 
normal density n(O, (12). In this section we will find the distribution 
functions of several random variables defined in terms of the X's. B�esides 
providing; applications of the preceding material, these distribution 
functions are of fundamental importance in statistical inference, and will 
be needed in Volume II. 

The constant (12 is convenient but unessential since Xl/a, . . .  , X,,/(1 are 
independ(�nt and each has the standard normal density n(O, 1) . ThlLls we 
could alw'ays take (12 = 1 with no loss of generality. 

By Th(�orem 6 the random variable Xl + · · · + X" has the normal 
density writh parameters ° and n(12. If we divide this sum by various 
constants we can get alternative forms of this result. Thus 

Xl + . . .  + X" 
n 

is normally distributed with parameters ° and (12/n, and 

Xl + . . .  + X" 
a�� 

has the standard normal density n(O, 1). 
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Since ,Xl/a has the standard normal density, it follows from Exarrlple 12 
of Chapter 5 that X�/a2 has the gamma density r(I /2, 1/2). Thus by 
Theorerrl 5 

x� + . . . + X; 
a2 

has the gamma density r(n/2, 1/2). This particular gamma density is very 
important in statistics. There the corresponding random variable is said 
to have a chi-square (X2) distribution with n degrees of freedom, d�enoted 
by x2(n). By applying Theorem 5 we will obtain the following result about 
X2 distributions. 

l�heorem 7 Let Y1 , • • •  , Y,. be independent random variables 
such that Ym has the X2(km) distribution. Then Yl + · · · + Y,. has the 
X2(k) distribution, where k = kl + · · · + k,.. 

Proof. By assumption, Ym has the gamma distribution r(km/2, 1/2). 
Thus by 'Theorem 5, Yl + · · · + Y,. has the gamma distribution r(k/2, 1/2) 
where k = k I + · · · + k,.. But this distribution is X2(k) by definition. I 

We can also apply Theorem 3 to find the distribution of the ratio of two 
independent random variables Yl and Y2 having distributions X2(k l) and 
X2(k2) re�spectively. It is traditional in statistics to express the results in 
terms of the normalized variables Yl/kl and Y2/k2 • The distribution of 

Yl/kl 
Y2/k2 

is known as the F distribution with kl and k2 degrees of freedom, d�enoted 
by F(kf , k2). 

lneorem 8 Let Yl and Y2 be independent random variables 
havin�, distributions X2(kl) and X2(k2). Then the random variable 

Yl/kl 
Y2/k2 

, 

which has the distribution F(kl ' k2), has the density f given by f(x) := 0 
for x < 0 and 

(39) I(x) = 
(kdk2) r[(kt + k2)j2] (ktxjk2)(Ic,/

2 ) - t x > O. 
r(kl /2) r(k2/2) [1 + (klx/k2)](k1 + k2)/2 ' 

Proof. By Theorem 3, the random variable YI/Y2 has density g, where 
g is given by (24) with (Xl = kl/2 and (X2 = k2/2. Thus the density j' of 
k2 Yl/kl Jf2 is given by 

and (39) now follows from (24). I 
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We can apply this result to the random variables Xl ' . . .  , Xn defi.ned at 
the beginning of this section. Let 1 < m < n. By Theorem 4, the random 
variables 

X� + . . .  + X! 
(72 and 

are independent. Since they have the respective distributions x2(rn) and 
x2(n - In) we see that the random variable 

(X� + · · · + X!)/m 
(X;+ l + . . .  + X;)/(n - m) 

has the .P(m, n - m) distribution and the density given by (39), where 
kl = m and k2 = n - m. Tables of F distributions are given in V'olume 
II. 

The ca.se m = 1 is especially important. The random variable 

X� 
(xi + · · · + �;)/(n - 1) 

has the }:-( 1, n - 1 )  distribution. We can use this fact to find the distribu
tion of 

y 
= 

Xl . 
J(Xi + · · · + X;)/(n - 1) 

Since Xl has a symmetric density function and is independent of the 
random variable �(X� + · · 

. 
+ X;)/(n - 1), it follows easily from 

Theorem. 2 of Chapter 5 that Y has a symmetric density function jry. By 
Example 5 of Chapter 5 the density fYl is related to fy by 

1 - -
fY2(Z) = r (fy( - J z) + fy(J z» ,  

2y z 
z > o. 

By using the symmetry of fy and letting z = y2 we see that 

fy(y) = I Y lfYl(y2). 

Since y2 has the F( I ,  n - 1 ) density given by (39) with kl - 1 and 
k2 = k := n - 1 ,  we now find that 

I yl (l/k) rECk + 1)/2] ( y2/k)- 1 /2 
fy(y) = 

r(1/2) r(k/2) [1 + ( y2/k)]<k +  1 )/2 • 

Since r( ll /2) = � 'It, this expression reduces to 

(40) 
,. rECk + 1)/2] [1 + ( y2/k)] - (k+ I )/2 

J'y( y) = 
/ ' 

Y k'lt r(k/2) 
- 00  < y < 00 .  

A rando:m variable whose density is given by (40) is said to have a t 
distribution with k degrees of freedom. We observe that the t distribution 
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with 1 degree of freedom is the same as the Cauchy distribution discussed 
in Chapter 4. Tables of t distributions are given in Volume II. 

The distribution of the random variable 

Y = Xl 
J(x� + · · · + X;)/(n - 1) 

which is a t distribution with n - 1 degrees of freedom, depends only on 
the fact that 

and xi + . . .  + X; 
(/2 

are inde:pendent and distributed respectively as n(O, 1) and , x2(n - 1). 
Thus we have the following result. 

1�heorem 9 Let X and Y be independent variables with the 
respective distributions n(O, 1) and X2(k). Then 

X 
�Y/k 

has a t distribution with k degrees of freedom. 

6.7. M u ltidi mensional changes of variables· 

Let XlL ' . . .  , Xn be continuous random variables having joint density f 
Let Yl , . . .  , Yn be random variables defined in terms of the X's. In this 
section �ve will discuss a method for finding the joint density of the Y's 
in terms off. We will consider mainly the case when the Y's are defined 
as linear functions of the X's. 

Suppose then that 
n 

Yi = 1: a,jX j' i = 1 ,  . . .  , n . 
j= l 

The constant coefficients aij determine an n x n matrix 

[al l 
A = [a,j] = : 

an! 
Associatc�d with such a matrix is its determinant 

det A = 

If det A =1= 0 there is a unique inverse matrix B = [bij] such that B.A = I 
or equivalently 

(41) i = j, 
i =1= j. 
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The constants b 'j can be obtained by solving for each i the system (4 1 ) ofn 
equations in the n unknowns bi t , . . .  , b i,.. Alternatively, the constants bij 
are uniquely defined by requiring that the equations 

have solutions 

(42) 

,. 
y, = � aijxj' j = l 

fa 

X, = � bijY)' )= 1 

i = 1 ,  . . .  , n, 

i = 1 ,  . . .  , n . 

T��eorem 10 Let Xl' . . .  ' X,. be continuous random variables 
having joint density f and let random variables Yl ' . . . , Y" be defined� by 

,. 
Yi = � aijXj' i = 1 , . . .  , n, 

j= l 

where the m.atrix A = [aij] has nonzero determinant det A .  Then 
Yh · · · , Y,. have joint density fy I t • • •  , y" given by 

(43) 1 
fy" . . .  ,Yn(Yt > · · · , YII) = 

Idet A I  
f(xt > . . .  , XII)' 

where the x's are defined in terms of the y's by (42) or as the unique 
solution to the equations y, = Lj= 1 a'jXj • 

This th1eorem, which we will not prove here, is equivalent to a thc�orem 
proved in advanced calculus courses in a more general setting involving 
"Jacobians." From the general result proved in advanced calculus, �(e can 
extend the above theorem to nonlinear changes of variables. Wle will 
describe this extension briefly, although it will not be needed later. 

Let the Y's be defined in terms of the X's by 

Yi = g,(Xl ' · · · , X,.), 

Consider the corresponding equations 

(44) 

i = 1 ,  . . .  , n. 

i = I, . . .  , n. 

Suppose that these equations define the x's uniquely in terms of the y's, 
that the partial derivatives oy,/OXj exist and are continuous, and that the 
Jacobian 

°Yl °Yl 
oXl ax,. 

J (x t ,  . . . , x,.) == 
· · · · · · 

oY. oy" 
OXt ax,. 

is everywbere nonzero. Then the random variables Yt , • • •  , Y,. are: con
tinuous and have a joint density given by 
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(45) 
1 

jy"" , . Y .. (Y l '  ' , , ' YII) = 
I
J( )1 I(x. , , , , , XII) ' 
Xl ' · . • , xn 

where th�e x's are defined implicitly in terms of the y's by (44). This change 
of variable formula can be extended still further by requiring that the 
functions g i be defined only on some open subset S of Rn such that 

P((Xl '  . . . , Xn) E S) = 1 .  
In the special case when Yi = :Lj= 1 aljXj, we see that oyt/OXj = aij and 
J(Xl ' . . •  , xn) is just the constant det A = det [aij]. So it is clear that 
(45) reduces to (43) in the linear case. 

Exa mpl le 1 3. Let Xh . • .  , Xn be independent random variables each 
having a.n exponential density with parameter A.. Define Y1 , • • • , Yn by 
Yi = Xl + · · · + Xb 1 < i < n. Find the joint density of Yl , . . . , Yn . 

The rnlatrix [alj] is 

1 0 
1 1 0 

1 1 

o 

o 

1 
Its deter1ninant is clearly 1 .  The equations 

i = 1 , . . .  , n, 
have the solution 

i = 2, . . . , n. 
The joint density of Xl'  . . .  , Xn is given by 

(46) 

(47) 

Xl ' . · · , Xn > 0, 
elsewhere. 

o < YI < · · · < Yn' 
elsewhere. 

Of course, one can apply the theorem in the reverse direction. 1rhus1f 
Yh · . · , 'Yn have the joint density given by (47), and random variables 
Xl' . · . , ,Xn are defined by Xl = Yl and Xi = Yi - Yi- 1 for 2 < i < n, 
then the X's have the joint density f given by (46). In other ,words, 
Xl'  . . .  , ,Xn are independent and each has an exponential distribution with 
paramet(�r A.. This result will be used in Chapter 9 in connection with 
Poisson lprocesses. 
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Exercises 

1 Let �( and Y be continuous random variables having joint density 
function f. Find the joint distribution function and the joint density 
function of the random variables W = a + bX and Z = c .+ dY, 
where� b > 0 and d > o. Show that if X and Y are independent, then 
W and Z are independent. 

2 Let X' and Y be continuous random variables having joint distribution 
function F and joint density function f. Find the joint distribution 
function and joint density function of the random variables W = X2 
and 2� = y2. Show that if X and Y are independent, then Wand Z are 
indep1endent. 

3 Let .l'" and Y be independent random variables each uniformly distri
buted on (0, 1) . Find 
(a) P(IX - Y I < .5), 

(b) p( ; - 1 < .5) . 
(c) P(Y > X I Y � 1/2). 

4 Let X' and Y be independent random variables each having the normal 
density n(O, 0'2). Find p(X2 + y2 < 1) . Hint : Use polar coordinates. 

5 Let X' and Y have a joint density f that is uniform over the interior of 
the triangle with vertices at (0, 0), (2, 0), and ( 1 ,  2). Find P(X < 1 and 
Y � 1 ). 

6 Suppose the times it takes two students to solve a problem are indepen
dently and exponentially distributed with parameter A.. Find the 
proba.bility that the first student will take at least twice as long as the 
second student to solve the problem. 

7 Let X' and Y be continuous random variables having joint density f 
given by f(x, y) = A.2e- Ay, 0 < x < y, and f(x, y) = 0 else�vhere. 
Find the marginal densities of X and Y. Find the joint distribution 
function of X and Y. 

8 Let f(x, y) = c(y - x)«, 0 < X < y < 1 ,  and f(x, y) = 0 elsevvhere. 
(a) For what values of (l can c be chosen to make f a density fun(�tion? 
(b) How should c be chosen (when possible) to make f a  density? 
(c) Find the marginal densities off. 

9 Let f(x, y) = ce- (X2 -xy+ 4y2)/2 , - 00 < x, y < 00 .  How should c be 
chosen to make f a density? Find the marginal densities of f. 

1 0  Let X and Y be independent continuous random variables having joint 
density f. Derive a formula for the density of Z = Y - X. 

1 1  Let X and Y be independent continuous random variables having the 
indicated marginal densities. Find the density of Z = X + Y. 
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(a) �� and Y are exponentially distributed with parameters A1  and A2' 
�{here A t � A2 . 

(b) �� is uniform on (0, 1), and Y is exponentially distributed with 
parameter A. 

1 2  Let �f" and Y have a joint density f given in Exercise 8. Find the 
density of 'z = X + Y. 

1 3  Let �f" and Y be independent and uniformly distributed on (a, b). 
Find the density of Z = I Y - XI . 

1 4  Let )r and Y be continuous random variables having joint density f. 
Derive a formula for the density of Z = aX + b Y, where b � 0. 

1 5  Let j' be a Beta density with parameters (Xt > 1 and (X2 > 1 .  'Where 
does .f take on its maximum value? 

1 6  Let .. f" and Y be independent random variables having respective 
normlal densities n(Jll ,  (1�) and n(Jl2' (1�). Find the density of 
Z = Y - X. 

1 7  Let a point be chosen randomly in the plane in such a manner that its 
x and y coordinates are independently distributed according to the 
normlal density n(O, (12). Find the density function for the random 
variable R denoting the distance from the point to the origin. (This 
density occurs in electrical engineering and is known there as a Rayleigh 
density.) 

1 8  Let )r and Y be continuous random variables having joint density f. 
Derive a formula for the density of Z = XY. 

1 9  Let �� and Y be independent random variables each having the normal 
density n(O, (12). Show that Y/X and Y/ IXI both have the (�auchy 
density. 

20 Let �( and Y be as in Exercise 19 .  Find the density of Z = I Yll iXI . 
21 Let )r and Y be independent random variables each having an ex

ponential distribution with parameter A. Find the density of Z == Y/X. 
22 Let l� and Ybe independent random variables having respective gamma 

densities r«(Xl ,  A) and r«(X2' A). Find the density of Z = X/(X + Y). 
Hint .� Express Z in terms of Y/ X. 

23 Let �( and Y have joint density f as indicated below. Find the condi
tional density fYlx in each case : 
(a) f as in Exercise 7, 
(b) f as in Exercise 8, 
(c) f as in Exercise 9. 

24 Let X and Y be distributed as in Example 7.  Find P( Y < 2 I X' = 1 ) . 
25 Sho,,' that the marginal density fy in Example 9 is negative binomial 

with parameters (X and p = fJ/(fJ + 1) . Hint : Use Formula (36) of 
Chapter 5. 

26 Let Jrr be a discrete random variable having a binomial distribution 
with parameters n and p. Suppose now that p varies as random variable 
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II having a Beta density with parameters (Xl and (X2 . Find the c:ondi
tional density of II given Y = y. 

27 Let Y· be exponentially distributed with parameter A.. Let A. vary as a 
random variable A having the gamma density r((X, P). Find the 
marginal density of Y and the conditional density of A given Y == y. 

28 Let A�l ' X2, X3 denote the three components of the velocity of a 
molecule of gas. Suppose that Xl ' X2, X3 are independent and each 
has the normal density n(O, 0'2). In physics the magnitude of the 
velocity Y = (X� + X� + X�) 1/2 is said to have a Maxwell distribu
tion. Find fy. 

29 Let X'"l ' . .  0 , Xn be independent random variables having a co]nmon 
normal density. Show that there are constants An and Bn such that 

has the same density as Xl ' 
30 Let A�l ' X2, X3 be independent random variables each uniformly 

distributed on (0, 1 ). Find the density of the random variable 
Y = ';\'"1 + X2 + X3 · Find P(Xl + X2 + X3 < 2). 

31 Let X'l be chosen uniformly on (0, 1), let X2 be chosen uniforrrlly on 
(0, Xl)' and let X3 be chosen uniformly on (0, X2). Find the: joint 
density of Xl ' X2, X3 and the marginal density of X3. 

32 Let l'l ' . .  " Un be independent random variables each uniformly 
distributed over (0, 1). Let Xb k = 1 ,  . . .  , n, and R be as in Section 6.5 . 
(a) Find the joint density of Xl and Xno 
(b) Find the density of R. 
(c) Find the density of Xk• 

33 Let (.If , . ' "  Un be independent random variables each having an 
exponential density with parameter A.. Find the density of Xl = 
min ( iUf , . . . , Un). 

34 Find a formula for the x2(n) density. 
35 Let X and Y be independent random variables distributed respectively 

as x2(m) and x2(n). Find the density of Z = X/(X + Y). Hint : Use 
the answer to Exercise 22. 

36 Let X and Y be independent random variables each having the standard 
normal density. Find the joint density of aX + bY and bX -- aY, 
where: a2 

+ b2 > o. Use this to give another derivation of Theorem 2. 
37 Let X' and Y be independent random variables each having density f. 

Find the joint density of X and Z = X + Y. 

38 Let X'" and Y be independent random variables each having an ex
ponential density with parameter A.. Find the conditional density of X 
given Z = X +. Y = z. Hint : Use the result of Exercise 37. 

39 Solve Exercise 38 if X and Y are uniformly distributed on (0, c) . 
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40 Let II and Vbe independent random variables each having the standard 
norrrlal density. Set Z = p U  + .Jl - p

2 V, where - 1 < p .< 1 .  
(a) Find the density of Z. 
(b) Find the joint density of U and Z. 
(c) Find the joint density of X = III + (II U and Y = 112 + (l2Z, 

�{here (I I  > 0 and (12 > 0. This joint density is known as a. bivar
iate normal density. 

(d) Find the conditional density of Y given X = x. 

41 Let X and Y be positive continuous random variables having joint 
density f. Set W = Y/ X and Z = X + Y. Find the joint density of 
W and Z in terms off. Hint : Use Equation (45). 

42 Let )r and Y be independent random variables having the respective 
gamma densities r(Cth A) and r(Ct2, A). Use Exercise 41 to show that 
Y/ X and X + Y are independent random variables. 

43 Let R and e be independent random variables such that R has the 
Rayl�eigh density 

f R(r) = 
(I r e , r > , { - 2 - r2/2(12 0 
0, r < 0, 

and 0 is uniformly distributed on ( - 1t, 1t) . Show that X = R cos e 
and :Y = R sin e are independent random variables and that each has 
the normal density n(O, (12

). Hint : Use Equation (45). 
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Expectations and the 
Central Limit 
Theorem 

In the first four sections of this chapter we extend the definition and properties 
of expectations to random variables which are not necessarily discrete. In S�ection 
7.5 we discuss the �Central Limit Theorem. This theorem, one of the most important 
in probability theory, justifies the approximation of many distribution functions by 
the appropriate normal distribution function. 

7.1 . Expectations of conti nuous ra ndom variables 

Let us recall from Chapter 4 our definition of the expectation of a 
discrete random variable X having density f We say that X has finite 
expectation if Lx Ix lf(x) < 00 ,  and in that case we define its expectation 
EX as 

EX = � xf(x). 
x 

The easie:st way to define expectations of continuous random variables 
having dc:�nsities is by analogy with the discrete case. 

Djefinition 1 Let X be a continuous random variable having 
density f We say that X has finite expectation if 

I:oo Ix lf(x) dx < 00 ,  

and in that case we define its expectation by 

EX = I:oo xf(x) dx. 

Using this definition we can easily calculate expectations of continuous 
random variables having the various densities discussed in Chapters 5 
and 6. 

Example 1 .  Let X be uniformly distributed on (a, b). Then 

EX = I.b X ( 1 ) dx = ( 1 ) x2 
b = 

a + b . 
a - b - a  b - a  2 a  2 
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Examlple 2. Let X have the gamma density r«(l, A). Then 

EX = x - x"- le- h dx 
100 ACI 

o r«(l) 

(l 
= I '  

where we have used Formulas (34) and (36) of Chapter 5. By setting 
(l = 1 we see that if X has an exponential density with parameter A, then 
EX = A - I . 

Exam l:Jle 3. Let X have the Cauchy density f given by 

1 
f(x) = 

1t(1 + x2) , 
- 00 < x < 00 .  

Then X does not have finite expectation. For 

foo 1 2 loo x Ixl 2 dx = - 2 dx 
- 00 1t( 1 + x ) 1t 0 1 + x 

= - lim dx 2 le x 
1t e -+ 00 0 1 + x2 
1 e 

= - lim log (1 + x2) 
1t e-+ 00 0 

= 00 .  

7.2. A ��eneral defi nition of expectation 

The definition of expectation given in Section 7. 1 is certainly appropriate 
from a computational point of view for the case of continuous random 
variables having densities. In order to define expectation in general, 
however, it is better to extend the notion of expectation directly from the 
discrete case to the general case. We will present only the basic ideas that 
motivate the general definition of expectation. The precise details require 
further background in the theory of measure and integration. We will 
assume in our discussion that all random variables under considteration 
are defined on a fixed probability space (0, .s;I, P). 

Let X and Y be discrete random variables such that, for some B > 0, 
P(IX - YI < B) = 1 .  It follows from Theorems 2(iii) and 3 of Chapter 4 
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that if ]1" has finite expectation, then X has finite expectation and 
lEX - EYI < e. It also follows that if Y does not have finite expectation, 
then neither does X. When expectation is defined in general these proper
ties should continue to hold. 

Let us assume this to be the case and let X be any random vatiable. 
Suppose 1we want to calculate EX with an error of at most e, for some 
e > o. AJI we need to do is find a discrete random variable Y SUCll that 
P(IX - ]"1 � e) = ' 1  and calculate EY according to the methods of 
Chapter 4. 

It is easy to find such approximations to X. Let X8 be the discrete 
random variable defined by 

(1) X8 = ek if ek < X < e(k + 1 ) for the integer k. 

This random variable can also be defined in terms of the greatest integer 
function [ ] as X8 = e[X/e] . If e = 10-" for some nonnegative integer 
n, then X,(ro) can be obtained from X(ro) by writing X(ro) in decimal form 
and dropping all digits n or more places beyond the decimal point. It 
follows in�mediately from (1) that 

X(co) - 8 < X,(co) S X(ro), co e n, 
and hencc:� P(IX - Xe l < e) = 1 . The density function of Xt is given by 

/x.(x) = {�(ek < X < e(k + 1» if x = ek for the integer k, 
elsewhere. 

The random variable X8 has finite expectation if and only if 

� Ixlfx.(x) = 1: leklP(ek < X < e(k + 1» < 00, 

x k 

in which (�ase 
EX, = 1: ekP(ek S X < e(k + i» . 

k 

These expressions can be written in terms of Fx. For 

P(ek < X < e(k + 1» = P(X < e(k + 1» - P(X < ek) 

and by Equation (5) of Chapter 5, P(X < x) = F(x - )  holds for all x. 

The follo�ving theorem, which we state without proof, will be used to give a 
general d��finition of expectation. 

TAteorem 1 Let X be a random variable and let X8, e > 0, be 

defined by (1). If X8 has finite expectation for some e > 0, then X8 

has finite expectation for all e > 0 and 

lim EX. 
8-+ 00 

exists �rnd is finite. 
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This theorem and our preceding discussion suggest the following general 
definition of expectation. 

l)efinition 2 Let X be a random variable and let Xe, B > 0, be 
defined by (1). If Xe has finite expectation for some B > 0, we say that 
X has finite expectation and define its expectation EX by 

EX = lim EXe• £-+ 0 

Otherwise we say that X does not have finite expectation. 

From the discussion preceding Theorem 1 it follows that the definition 
of EX can be given in terms of the distribution function of X and that if 
two random variables have the same distribution function, then their 
expectations are equal (or both not finite). Using techniques from the 
theory of measure and integration, we can show that Definition 2 gives 
the sam(� values as do our previous definitions for the special cases when 
X is discrete or when X is a continuous random variable having a density. 
There is an analog of Theorem 1 of Chapter 4 which we state �{ithout 
proof. In this theorem, qJ can be any function of the type considc�red in 
calculus., 

'.Jrheorem 2 Let Xl ' . . .  ' Xn be continuous random variables 
havin�1 joint density f and let Z be a random variable defined in termrs of 
Xl , . . .  , Xn by Z = qJ(XI , . • •  , Xn). Then Z has finite expectation 
if anti only if 

f:<Xl · · · L<Xl<Xl 1 q>(Xl , · · • , xlI)lf(x 1 , • • • , XII) dX1 • • • dXII < 00, 

in whlch case 

E;Z = Joo . . .  J<Xl q>(x1 , • • •  , xlI)f(x1 , • • •  , XII) dX1 • • • dxlI. -
00 - 00 

We can show that the basic properties of expectation proven in C�hapter 
4 for dis(�rete random variables are valid i� general. In particular Theorems 
2, 3, and 4 of Chapter 4 are valid and will be freely used. 

As in the discrete case we sometimes refer to EX as the mean of Jr. The 
definition of moments, central moments, variance, standard deviation, 
covarian.ce, and correlation given in .Chapter 4 for discrete random 
variables depend only on the notion of expectation and extend immediately 
to the gc:�neral case. 

In general, as in the discrete case, if X has a moment of order r, then X 
has a moment of order k for all k < r. Theorems 6 and 7 of Chapter 4 
are also true in general. The reader should review these definitions and 
theorems in Chapter 4 before going on to the next section. 
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7.3. Moments of conti nuous random variables 
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Let X be a continuous random variable having density f and m�ean f.1. 
If X has :finite mth moment, then by Theorem 2 

and 

EXm = f:oo 
xmf(x) dx 

In particular, if X has finite second moment, its variance (12 is given by 

(12 = f:oo (x - IlYf(x) dx. 

Note tha.t (12 > O. For if (12 = 0, then it follows by the argumc�nt of 
Section 4.3 that P(X = f.1) = 1 ,  which contradicts the assumption that X 
is a continuous random variable. 

Examplle 4. Let X have the gamma density r«(l, A). Find the moments 
and the variance of X. 

The mth moment of X is given by 

A/Z 
f

oo 
m+/Z- l -AX d = - x e x, r«(l) 0 

so by Formulas (34) and (36) of Chapter 5 

(2) EXm = A/Zr(m + (l) 
Am+/Zr«(l) 

= 
(l( (l + 1) · · ·  «(l + m - 1 ) 

Am 
The variance of X is given by 

(12 = EX 2 - (EX)2 = ex(ex A.� 1) - (�r = ;2
' 

By setting (l = 1 , we see that if X has the exponential density with 
parameter A, then EXm = m !  A -m and X has variance A - 2 . F or a s�econd 
special ca.se, let X have the x2(n) distribution which, according to Sc�ction 
6.6, is the: same as the r(n/2, 1/2) distribution. Then 

n/2 EX = - = n 
1/2 and n/2 Var X = --2 = 2n . 

(1 /2) 
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We can often take advantage of symmetry in computing moments. 
For exanlple, if.. X has a symmetric density, if EXm exists, and if r.n is an 
odd positive integer, then EXm = O. To see this, note that by Theorem 2 
of Chapter 5, X and - X have the same distribution function. Thus xm 
and ( - .x)m = - xm have the same distribution function and conse
quently the same expectation. In other words EXm = E( - xm) = -- EXm, 
which inlplies that EXm = 0. 

ExamJ,le 5. Let X have the normal density n(Jl, 0'2). Find the� mean 
and central moments of X. 

The random variable X - Jl has the normal density n(O, 0'2), which is a 
symmetric density. Thus E(X - Jl)m = 0 for m an odd positive integer. 
In partic:ular E(X - p) = 0, so we see that the parameter J1 in the normal 
density n(Jl, 0'2) is just the mean of the density. It now follows that all the 
odd central moments of X equal zero. To compute the even Icentral 
moments we recall from Section 5 .3 .3 that Y = (X - Jl)2 has the gamma 
density Jr( I /2, 1 /20'2). Since for m even E(X - Jl)m = Eym/2, it follows 
from Example 4 that 

- -------(
_

1 )m/2 

20'2 

= O'ml • 3 · · · (m - 1). 

By using� Formulas (35) and (38) of Chapter 5, we obtain the alternative 
formula 

(3) E(X - Jl)m = 
m !  (1m. 

2m/2 (;) ! 
In particular 0'2 denotes the variance of X and E(X - Jl)4 = 30'4. 

Let X and Y be continuous random variables having joint density f, 
means Jlx and Jly, and finite second moments. Then their covariance is 
given by 

(4) E(X - JlxXY - Jly) = f�<Xl f�<Xl (x - Jly)(y - Jly)f(x, y) dx dy. 

Exam lJ.le 6. Let X and Y have the joint density f in Exampl1e 2 of 
Chapter 6. Find the correlation between X and Y. 
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According to Example 2 of Chapter 6 

f( ) _ .J3 - [(x1 -xy+y1
)
/2] 

X, y - - e 4n 

_ .J3 - 3x1/8 - [(y-x/2 )1/2] - - e e . 4n 
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We saw in that example that X and Y each have the normal d1ensity 
n(0, 4f3). Thus Jlx = Jly = 0 and Var X = Var Y = 4/3 . From lEqua
tion (4) and the second expression for f, we have 

EX'V 
�3 foo _ ( 3x1/8) d foo 1 - [(y-x/2)1/2] d .1 = xe x y -- e y. 

2.J2n - <X>  - 00 & 
Now 

foo 1 - [(y-x/2)1/2] d 
_ foo ( + x) 1 - (u1/2) d _. x 

y --=== e y - u - --=== e u -' - ,  
- 00 .J2n - <X> 2 �2n 2 

and henc(� 

EXY = 
1 foo x2e- (3x1/8 ) dx ( 2 ) .J- - 00 

2 .J3 21t 

= 1/2 f:oo x
2n(x ;  0, 4/3) dx 

= 1/2 · 4/3 = 2/3 . 

The correlation p between X and Y is given by 

EXY �3 1 p - - - -- �Var X .JVar Y 
- .J4ij.J 4/3 - 2 · 

Exampl19 7. Let Ul , • • .  , U" be independent random variables each 
uniformly distributed over (0, 1)  and set 

X = min (Uh . . .  , U,,) 
and 

Y = max (Ul , . . .  , U,,). 

Find the 1tl10ments of X and Y and the correlation between X and J'''. 

These random variables were studied in Section 6. 5 (where they were 
denoted by Xl and X,,). Specializing the results of that section tOl U/s 
which are uniformly distributed, we find that X and Y have a joint d(�nsity 
fgiven by 

(5) r( ) _ { n( n - 1)( y - x)" - 2 , 
) x, Y - 0 , 

o < x � y < 1 ,  
elsewhere. 
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Those r�eaders who have skipped Section 6.5 can think of the present 
problem as that of finding the moments of, and the correlation between 
two random variables X and Y whose joint density is given by (5). 

The mrth moment of X is given by 

EXm = n(n - 1) J: xm dx f (y - X),,- 2 dy 

= n( n - 1) xm dx Y - x i1 ( )" - 1 Y = 1 
o n - 1 y = x  

= n J
o

l 
xm(1 - X),, - l  dx. 

The definite integral appearing in this expression is a Beta integral and 
was evaluated in Formula (19) of Chapter 6. From this formula ,�e find 
that 

EX m = 
nr(m + 1)r(n) 

= 
m !  n !  

r(m + n + 1) (m + n) ! 

In particular, EX = I /(n + 1 )  and EX2 = 2/(n + 1 )(n + 2) . It follows 
that 

Var X = (EX2) - (EX )2 = � . 
(n + 1) (n + 2) 

The mth moment of Y is given by 

Ey m = n(n - 1) Ll ym dy J: (y - X),, - 2  dx 

= n(n - 1) ym dy Y - x -i 1 ( )" - 1 ( 1) x = y 

o n - 1 x = O 

= n J: ym+,,- l dy 
n - --

m + n 

Thus E}r = nl(n + 1 )  and 

Var Y = 
n : 2 - t : 1) 2 

= 
(n + l)�(n + 2) · 

Alternatively, these quantities could be computed from the marginal 
densities of X and Y. 

To find the covariance of X and Y we start with 

EXY = n(n - 1) J
o

l 
Y dy J: x( y - X),, - 2  dx. 
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Since 

we find that 
x(y - X)'I- 2 = y(y - X),,- 2 - (y - X),,- l , 

EXY = n(n - 1) fol y2 dy f: (y - X),,- 2 dx 

- n(n - 1) f y dy f: (y - X),,- l dx 

= n(n - 1) y2 dy Y - x -11 ( )"- 1( 1) x =y 
o n - 1 x = O 

(1 (y x)"( 1) x =y 
- n(n - 1) Jo 

y dy -
n 

-
>: =0 

= n f y,,+ l dy - (n - 1) il y,, + l dy 
1 - --

n + 2 
Consequently 

Cov (X, Y) = EX Y - EXEY 

1 n - --
n + 2 (n + 1)2 

1 - ------
(n + 1 )2(n + 2) 

. 

Finally v,{e obtain for the correlation between X and Y, 

Cov (X, Y) p = -;================= 
.JVar X Var Y 

= 
(n + l)!(n + 2)/(n + l):(n + 2) 

1 
n 

7.4. COlrld itional expectation 
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Let X and Y be continuous random variables having joint density! and 
suppose that Y has finite expectation. In Section 6.3 we definc�d the 
conditional density of Y given X = x by 

(!{X, y) 
!y/ x(y I x) = !x(x) , 

0, 

o < !x{x) < 00 ,  

elsewhere. 
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For each x such that 0 < fx(x) < 00 the function fr lx(Y I x), -- 00 < 

y < 00 ,  is a density function according to Definition 5 of Chapter 5,. Thus 
we can talk about the various moments of this density. Its mean is called 
the contiitional expectation of Y given X = x and is denoted by 
E[ Y I X' = x] or £[ Y I x] . Thus 

(6) E[Y I X = x] = 5-0000 yf(y I x) dy 

= J� 00 yf(x , y) dy 
fx(x) 

when 0 < fx(x) < 00 .  We define E[ Y I X = x] = 0 elsewhere. In 
statistics the function m defined by m(x) = E[Y I X = x] is called the 
regression function of Y on X. 

Conditional expectations arise in statistical problems involving predic
tion and Bayesian estimation, as we will see in Volume II. They are also 
important, from a more general viewpoint, in advanced probability theory. 
We will confine ourselves to some elementary illustrations of conditional 
expectations. The general theory is quite sophisticated and will not be 
needed in this book. 

Example 8. Let X and Y have the joint density f in Example 2 of 
Chapter 6. Find the conditional expectation of Y given X = x. 

In Example 7 of Chapter 6 we found that the conditional density of Y 
given X = x is the normal density n(x/2, 1 )  which we now know has 
mean x/2 . Thus 

x E[ Y I X = x] = - . 
2 

In this example the conditional variance of Y given X = x is the constant 1 .  

Exa mJ,le 9. Let X and Y be continuous random variables having joint 
density .. f given by (5) . In the previous section we computed various 
moments involving X and Y. Here we will compute the conditional density 
and conditional expectation of Y given X = x. 

The rrlarginal density of X is given by 

fx(x) = n(n - 1) f ( y - X)" - 2  dy 

o < x < 1 ,  

and fx(x) = 0 elsewhere. Thus for 0 < x < 1 ,  

( n - 1)( y - X)lI - 2  

fey I x) = (1  - X)lI- 1 ' 

0, 

x < y < 1 ,  

elsewhere. 
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Consequently, for 0 < x < 1 ,  

E [Y I X = x] = 
f:oo 

yf(y I x) dy 

= (n - 1)(1 - X) l - " f y(y - x),,- Z  dy 
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= (n - 1)(1 - X) l - " f [( y - X)"- l + x(y - x)"- Z] dy 

= (n _ 1)(1 _ X) l - " [(1 - x)" + x(1 - X)"- l ] 
n n - 1 

(n - 1)(1 - x) = + x  
n 

n - 1 + x 
n 

It is s01netimes convenient to calculate the expectation of Yaccording to 
the formula 

(7) EY = f:oo E [Y I X = x]fx(x) dx. 

This fQrnlula follows immediately from (6). For 

f:oo E [ Y I X = x ]fx(x) dx = 
f:oo dx L: yf(x, y) dy 

= f:oo f:oo yf(x, y) dx dy 

= EY. 

Applying this formula to Example 9, we get 

EY = f
O

l (n 
- � + X) n(1 - X)" - l dx 

= n !a1 (1 - X)"- l dx - f (1 - x)" dx 

1 n = 1 - = , 
n + 1 n + 1 

which agrees with the answer found in Example 7. 
Naturally, conditional expectations can be defined similarly for discrete 

random variables. Some exercises involving this were given in Chapter 4. 

7.5. Thel Central Li mit Theorem 

Throughout this section Xl ' X2, . . .  will denote independent, identically 
distributed random variables having mean Jl. and finite nonzero variance 
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u2 • We 'will be interested in studying the distribution of S" = Xl + · · · 
+ X". flirst of all we note that S" has mean nJL and variance nu2 • 

Suppose next that Xl has density f. Then, for all n > 1 ,  S" will have a 
density ISn. Now 1st = f, and the other densities can be calculated succes
sively by using formulas obtained in Chapters 3 and 6 for the density of 
the sum of two independent random variables. We have that 

ISn(x) = � Isn- t(y)/(x - y) 
y 

or 

according as Xl is a discrete or a continuous random variable. For certain 
choices of I (e.g., binomial, negative binomial, Poisson, normal, and 
gamma), we can find simple formulas for Is". In general, however, we have 
to resort to numerical methods. 

One of the most important and most remarkable results of probability 
theory is that for large values of n the distribution of S" depends on the 
distribution of Xl essentially only through JL and u2 • Such a result is more 
easily discussed in terms of the normalized random variable 

S * = S" - ES" = S" - nJL 
, " .JVar S" u.J n 

which has mean 0 and variance 1 .  
To get some idea of how the distribution function of S,,* behaves as 

n � 00 ,  let us first consider a special case in which this distribution 
function can be found easily and exactly. Suppose, then, that Xl is 
normally distributed with mean JL and variance u2• Then, by results in 
Chapter 6, S: is normally distributed with mean 0 and variance l or, in 
other words, S: has the standard normal distribution function <1>. 

Suppose next that Xl takes values 1 and 0 with respective 'probabilities 
p and 1 - p. Then as we saw in Chapter 3, S" has a binomial distribution 
with parameters n and p ;  that is, 

P(S" = k) = (�) /(1 _ p),,- k, 

It was discovered by DeMoivre (1 667-1754) and Laplace ( 1 749-1 827) 
that in this case the distribution function of S,,· approaches <1>, the standard 
normal distribution function, as n � 00 .  

In more recent times there have been many extensions of the DeMoivre
Laplace limit theorem, all known as "central limit theorems." The sinlplest 
and best known of these results was proven by Lindeberg in 1922 : 
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l'heorem 3 Centra l L im it Theorem.  Let Xh X2, • • •  be inde
pendent, identically distributed random variables having mean Jl and 
finite nonzero variance u2 • Set S" = X I + · · · + X". Then 

(8) lim P (Sft � nJl 
< x) = <I>(x) , 

,, -+  ex> (J n 
- 00  < x < 00 .  

The generality of this theorem is remarkable. The random variable Xl 
can be discrete, continuous, or neither of these. Moreover, the conclusion 
holds even if no moments of Xl exist beyond the second. Another very 
surprising part of the theorem is that the limiting distribution function of 
S,,· is independent of the specific distribution of Xl (provided, of course, 
that the hypotheses of the theorem are satisfied). We should not be 
surprised, however, that <I> is that limiting distribution. F or we have seen 
that this is true if X I has either a normal or a binomial distribution. 

The proof of the Central Limit Theorem will be postponed to Chapter 8, 
since it requires advanced techniques yet to be discussed which involve 
characteristic functions. It is possible to give an elementary but somewhat 
laborious proof of the DeMoivre-Laplace limit theorem, the special case 
of the Central Limit Theorem when Xl is binomially distributed. There 
are elem��ntary ways to make the Central Limit Theorem plausibl1e, but 
they are not proofs. One such way is to show that, for any positive integer 
m, if Xl has finite mth moment, then 

lim E (S" - nJl)m 

,,-+ ex> u.J n 

exists and equals the mth moment of the standard normal distribution. 
At this stage it is more profitable to understand what the Central Limit 

Theorem means and how it can be used in typical applications. 

Example 1 0. Let Xl ' X2, • • •  be independent random variables each 
having a Poisson distribution with parameter A.. Then by results in 
Chapter 4, Jl = u2 = A. and S" has a Poisson distribution with parameter 
nA.. The Central Limit Theorem implies that 

(s - nA. ) lim P ft
.J

- < X = <I>(x) , 
,,-+ ex> nl 

- 00  < x < 00 .  

One can extend the result of this example and show that if Xt is a 
random variable having a Poisson distribution with parameter A. = t, then 

(9) (X - EX ) lim P J t � X = W(x), 
t-+ ex> Var X t - 00  < x < 00 .  
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Equation (9) also holds if Xt is a random variable having the gamma 
distribution r(t, A) for fixed A, or the negative binomial distribution with 
parameters ex = t and p fixed. 

7.5.1 . Normal approximations. The Central Limit Theorem strongly 
suggests that for large n we should make the approximation 

P (Sn
(1
J�

nJl 
< x) � cI>(x) , 

or equivalently (X - nil) (10) P(Sn < x) � cI> 
(1J� 

= <I> (x - ES,,) , 
.JVar S" 

- 00 < x < 00 ,  

- 00  < x < 00 . 

We will refer to ( 10) as a normal approximation formula. According to 
this forrrlula we approximate the distribution function of S" by the normal 
distribution function having the same mean and variance. One difficulty 
in applyilng the normal approximation formula is in deciding how large n 
must be for ( 10) to be valid to some desired degree of accuracy. Various 
numerical studies have indicated that in typical practical applications 
n = 25 is sufficiently large for ( 10) to be useful . 

As an example where normal approximation is applicable, let Xl ' 
X2, • • •  be independent random variables each having an exponential 
density with parameter A. = 1 .  Then (10) becomes 

(1 1) P(S" < x) � cI> (x In 
n) , - 00 < x < 00 .  

Graphs showing the accuracy of this approximation are given in Figure 1 
for n = 10. 

1 .0 

.8 

.6 

.4 
- True Distribution Function 

.2 - - Normal  Approximation 

o 5 1 0  1 5  20 

Figule 1 
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Examplle 1 1 . Suppose the length of life of a certain kind of light bulb , 
after it is installed, is exponentially distributed with a mean length of 
10 days. As soon as one light bulb burns out, a similar one is installed in 
its place. Find the probability that more than 50 bulbs will be required 
during a one-year period. 

In solving this problem we let X,. denote the length of life of the nth 
light bulb that is installed. We assume that Xl '  X2, • • •  are indepc�ndent 
random variables each having an exponential distribution with mean 10 or 
parametc:�r A. = 1 / 10. Then SrI = Xl + · · · + X,. denotes the time: when 
the nth bulb burns out. We want to find P(Sso < 36"5). Now Sso has 
mean 50A. - I = 500 and variance 50A. - 2 = 5000. Thus by the normal 
approxinlation formula ( 10) 

P(Sso < 365) � cI> e6��OO) 
= <1>( - 1 .91) = .028. 

It is therefore very unlikely that more than 50 bulbs will be needed. 

Suppose that SrI is a continuous random variable having density .fs,.. If 
we diff�r��ntiate the terms in ( 10) we obtain 

(12) isn(x) � (1�; qJ (x (1�J.l) , - 00 < x < 00 . 

Though the derivation of (1 2) is far from a proof, ( 12) is actually a good 
approxinlation for n large (under the further mild restriction that, for some 
n, Is,. is a. bounded function). 

As an c�xample of this approximation let Xl be exponentially distributed 
with parameter A. = 1 ,  so that (1 1)  is applicable. Then (12) becomc�s 

(13) 1 (x - n) isn(x) � J; qJ J; , - 00  < n < 00 .  

Graphs showing the accuracy of this approximation are given in Figure 2 
for n = 1 0. 

. 1 5 

. 1 0  

.05 

o 

- True Density Function 
- - Normal  Approximation 

5 1 0  
Figure 2 

1 5  20 
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Forms of the Central Limit Theorem involving densities inst��ad of 
distribution functions are known as "local" central limit theorems. They 
are also important, especially in the advanced theory of probability. 

There is an approxinlation similar to (12) for discrete random variables. 
Naturally, a precise statement of such an approximation depends on the 
nature of the possible values of S", that is, those values of x such that 
isn(x) = P(S" = x) > O. For simplicity we make the following two 
assumptions : 

(i) If x is a possible value of Xl ' then x is an integer ; 

(ii) if a is a possible value of Xl ' then the greatest common divisor of 
thc� set 

{x - a I x is a possible value of Xl } 
IS one. 

We exclude, for example, a random variable Xl such that P(XI =: 1) = 
P(XI = 3) = 1/2, for then the greatest common divisor of the indicated 
set is 2. Under assumptions (i) and (ii), the approximation 

(14) x an integer, 

is valid for large n. 

Exam ple 1 2. Let Xl be the binomial random variable taking Oft -values 
1 and 0 with probabilities p and 1 - p respectively. Then (i) and (ii) 
hold and (14) is applicable with Jl = p and (]2 = p(1 - p). Since Sn has 
the binornial distribution with parameters n and p, we have the approxima
tion 

(1 5) /s"(x) = (:) pX(l _ p)"-X 
1 ( x - np ) � qJ , 

.J np(l - p) .J np(l - p) 
x an integer. 

This approximation is plotted in Figure 3 for n = 10 and p = .3 .  

From Figure 3 we are led to another method for approximating fsn(x) 
in the discrete case, that is, the integral of the right side of (14) over the set 
[x - 1/2, x + 1/2] . By expressing this integral in terms of <I> we obtain 
as an alternative to (14) 

(16) /s"(x) � «I» (x + (�j: - nil) 
_ «I» (x � (�j� - nil) , x an integer. 
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The area of the shaded region of Figure 3 is an approximation to 
P(S" = 5). 

Finally, if we sum ( 16) on the set { . . .  , x - 2, x - I , x} we are led to 
the approximation 

(17) P(S" < x) � � (� + (:3� - nil) , x an integer. 

When S" is discrete and conditions (i) and (ii) hold, then ( 17) is usually 
more accurate than is the original normal approximation Formula ( 10). 
In Figure 4 we compare the approximations in Formulas ( 10) and ( 1 7) 
when S" has the binomial distribution with parameters n = 1 0  and 
p = . 3 .  

1 .0 

.8 

.6 

.4 

.2 

0 
0 2 4 6 8 1 0  

Figure 4 

Example 1 3. A certain basketbal1 player knows that on the average he 
will make 60 percent of his freethrow attempts. What is the probability 
that in 25 attempts he will be successful more than one-half of the time? 

We will interpret the problem as implying that the number S" of successes 
in n attempts is binomially distributed with parameters n and p = .6. 
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Since P(S" > x) = 1 - P(S" < x - 1) we are led from (11) to the 
approxilnation 

(18) P(S" > x) � 1 - � (x - (�j: - nil) , x an integer. 

In our case nJl = 2S(.6) = I S and (1J� = J2S(.6)(.4) = SJ.24. �rhus 

P(S2S > 13) � 1 _ <I> (13 - (1/2) - 15) 
SJ.24 

= 1 - <1>( - 1 .02) 
= <1>(1 .02) = .846. 

7.5.2. ��ppl ications to sampl ing .  The Central Limit Theorem and the 
corresponding normal approximation formulas can be regarded as refine
ments of the Weak Law of Large Numbers discussed in Chapter 4. We 
recall that this law states that for large n, S,,/n should be close to Jl with 
probability close to 1 .  The weak law itself, however, provides no infor
mation on how accurate such an estimate should be. As we saw in C�hapter 
4, Chebyshev's Inequality sheds some light on this question. 

The normal approximation formula ( 10) is also useful in this context. 
For c > 0 

P ( !" - Il > c) = P(S" :::;; nil - nc) + P(S" > nil + nc) 

� � (ujD + 1 - � C:;�) 
= 2 [ 1 _ � (c:�) ] . 

In other words 

(19) 
where 

(20) 

Examplle 1 4. A sample of size n is to be taken to determine the per
centage of the population planning to vote for the incumbent in an eljection. 
Let Xk =: 1 if the kth person sampled plans to vote for the incumbent and 
Xk = 0 otherwise. We assume that Xl ' . . .  , X" are independent, identically 
distribut(�d random variables such that P(Xl = 1) = p and P(XI =: 0) = 

1 - p. �rhen Jl = p and (12 = p(1 - p). We will also assume that p is 
close enough to .S so that u = .J p(1 - p) can be approximated satis-



7.5. The Central Limit Theorem 1 91 

factorily by (J � 1 /2 (note that (J has a maximum of 1 /2 at p = . 5, and 
that, as J' ranges over .3 < P < .7, (J stays above .458 which is close to 
1 /2). The random variable S,,/n denotes the fraction of people sampled 
that plan to vote for the incumbent and can be used to estimate the true 
but unknown probability p. We will use normal approximations to solve 
the follo'Ning three problems : 

(i) Suppose n = 900. Find the probability that 

S,. _ p > .025 . 
n 

(ii) Suppose n = 900. Find c such that 

P ( �n - p > c) = .01 . 
(iii) Find n such that 

P ( �n _ p > .025) = .0 1 .  

Solution to (i) . By (20) 

so by ( 19) 
o = 

(.025)J9O<i = 1 .5, .5 

P ( �'! - P > .025) � 2(1 - 4>(1 .5» 

= 2(.067) = . 1 34. 
Solution to (ii) . We first choose � so that 2(1 - <I>(�)) = . 0 1 or 

<1>(£5) = .995. Inspection of Table I shows that £5 = 2.58. Solving (20) for 
c we get 

c = 
�� 

= 
(2. 58)(.5) 

= .043. In J900 

Solution to (iii). As in (ii) we have � = 2.58 . Solving (20) for n �{e find 

n = 
�2(J2 = 

(2.58)2(.25) = 2663 . 
c2 ( .• 25)2 

It is worthwhile to compare the results of (ii) and (iii). In both cases 

P ( �n - p > c) � .0 1 .  

In (ii), c = .043 and n = 900, while in (iii), c = .025 and n = 2663 . In 
going from (ii) to (iii), in order to decrease c by the factor 43/25 ,�e are 
forced to increase 'n by the square of that factor. This is true generally 
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whenever we want to keep p ( �n - Jl > c) 
constant .. For then � is determined by ( 19) and, from (20), n is relatc�d to c 
by n = ()2u2Ic2 . In the same context, if we increase n by some factor, we 
decrease c only by the square root of that factor. 

Exercises 

1 Let lr have a Beta density with parameters (Xl and (X2 . Find EX� 
2 Let X" and Ybe independent random variables having respective gamma 

densities r«(Xl ' l) and r«(X2' A). Set Z = Y/X. For which values of (Xl 
and OC2 will Z have finite expectation? Find EZ when it exists. Hint : 
See l'heorem 3 of Chapter 6 and related discussion. 

3 Let �( have the normal density nCO, (2). Find EIXI .  Hint: Urse the 
result of Exercise 3 1  of Chapter 5. 

4 Let J( have an exponential density with parameter A. and let Xe be 
defin(�d in terms of X and B > 0 by (1) . What is the distribution of 
Xe/B ? Find EXe and evaluate its limit as B --+ O. 

5 Let Jr have a Beta density with parameters (Xl and (X2 . Find the 
momlents and the variance of X. 

6 Let X" have a X2 distribution with n degrees of freedom. Find the: mean 
of Y = .JX. 

7 Let A� be the random variable as in Example 7. Find EXm from the 
marginal density Ix. 

8 Let 2� be as in Exercise 2. Find the variance of Z. 

9 Let lJl and U2 be independent random variables each having an 
exponential density with parameter l, and set Y = max (UI ,  U2). 
Find the mean and variance of Y (see Section 6.5). 

1 0  Let X" be the random variable from Example 1 of Chapter 5. Find the 
mean and variance" of X. 

1 1  Let X" be the random variable from Example 1 of Chapter 6. Find the 
mean and variance of X. Hint : Reduce EX2 to a Beta integral. 

1 2  Find the mean and variance of the random variable Z from Exerc�ise 17  
of Chapter 6. 

1 3  Find the mean and variance of the random variable Y from Exerc�ise 28 
of Chapter 6. 

1 4  Let J( be the sine of an angle in radians chosen uniformly from 
( -n/2, nI2). Find the mean and variance of X. 
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1 5  Let X' have the normal density n(O, 0'2). Find the mean and varia.nce of 
each of the following random variables : 
(a) 1.t1(I ; 
(b) X'2 ; 
(c) etx. 

1 6  Let X' have the gamma density r(a, A). For which real t does etX have 
finite expectation? Find EetX for these values of t. 

1 7  Let X' have the gamma density r(a, A). For which real numbers r does 
X' have finite expectation? Find EX' for these values of r. 

1 8  Let l� be a nonnegative continuous random variable having density 
f and distribution function F. Show that X has finite expectation if and 
only if 

and then 

folXl ( 1  - F(x» dx < 00 

EX = folXl (1 - F(x» dx. 

Hint : See the proof of Theorem 5 of Chapter 4. 

1 9  Let X"k be the kth order statistic in a sample from random variables 
Ui , . • •  , Un which are independent and uniformly distributed over 
(0, 1) ., Find the mean and variance of Xk• 

20 Let X' and Y be as in Example 7 and let R = Y - X. Find the mean 
and variance of R. Hint : Use Equation (16) of Chapter 4. 

21 Let X" and Y have density f as in Exercise 9 of Chapter 6. Fiud the 
correlation between X and Y. 

22 Let ){ and Y be independent random variables such that X has the 
normal density n(Jl, 0'2) and Y has the gamma density rea, A). Find 
the m1ean and variance of the random variable Z = XY. 

23 Let l" and Y be random variables having mean 0, variance l ,  and 
correlation p. Show that X - P Y and Y are uncorrelated, and that 
X - P Y has mean ° and variance 1 _ p2. 

24 Let X;, Y, and Z be random variables having mean ° and unit variance. 
Let P lL be the correlation between X and Y, P2 the correlation between 
Y and Z, and P3 the correlation between X and Z. Show that 

P3 � PiP2 - .Jl - pf .Jl - p�.  
Hint : Write 

XZ = [P i Y + (X - Pi Y)][P2 Y + (Z - P2 Y)] , 

and use the previous problem and Schwarz's inequality. 

25 Let X;, Y, and Z be as in the previous problem. Suppose P I > .9 and 
P2 � .8. What can be said about P3 ? 
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26 Let �( and Y have a density f that is uniform over the interior of the 
triangle with vertices at (0, 0), (2, 0), and (1 , 2). Find the conditional 
expec�tation of Y given X. 

27 Let l� and Ybe independent random variables having respective gamma 
densities r«(ll '  l) and r«(l2' l), and set Z = X + Y. Find the con
ditional expectation of X given Z. 

28 Let I] and Y be random variables as in Exercise 26 of Chapter 6. 
Find the conditional expectation of n given Y. 

29 Let J( and Y be continuous random variables having a joint density. 
Suppose that Y and cp(X) Y have finite expectation. Show that 

Eq>(X)Y = J:.., q>(x)E [ Y I X = x]fx(x) dx. 

30 Let j� and Y be continuous random variables having a joint density, 
and let Var [Y  I X = x] denote the variance of the conditional 
density of Y given X = x. Show that if E[Y I X = x] = Jl indepen
dently of X, then EY = Jl and 

Var Y = J:.., Var [ Y I X = x]fX<x) dx. 

31 Let Xl ' X2,_ . • •  be independent, identically distributed random 
variables having mean 0 and finite nonzero variance (12 and set 
S" = Xl + · · · + X". Show that if Xl has finite third moment, then 
ES! = nEXl and 

lim E ( 8;_) 3 = 0, 
" ... ex> (I'\j n 

which is the third moment of the standard normal distribution. 
32 Let j�l '  . . .  , X"' and S" be as in Exercise 3 1 .  Show that if Xl has finite 

fourth moment, then 

and 
ES: = nEXt + 3n(n - 1)0'4 

lim E ( 8;_)4 = 3, 
" ... ex> (1V n 

which is the fourth moment of the standard normal distribution. 
Hint �· The term 3n(n - 1) comes from the expression 

(;) 2��! · 
33 Let .l"have the gamma density r(cx, A). Find the normal approxirnation 

for P(X � x). 
34 Let Xl ' X2, • • •  be independent, normally distributed random 

variables having mean 0 and variance (12 . 
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(a) Vlhat is the mean and variance of the random variable X� ? 
(b) H:ow should P(X� + · · · + X; � x) be approximated in terms of 

<I>?  

35 Let X"l ' X2, • • •  be independent normally distributed random variables 
having mean 0 and variance 1 (see previous exercise). 
(a) Find P(X� + · · · + Xfoo � 120). 
(b) Find P(80 < X� + · · · + xfoo � 120). 
(c) Find c such that P(X� + · · · + xloo < 100 + c) = .95. 
(d) Find c such that P(I00 - c < X� + · · · + Xfoo < 100 +. c) = 

.95. 

36 A runner attempts to pace off 100 meters for an informal race: . His 
paces are independently distributed with mean Jl = .97 meters and 
standard deviation u = . 1  meter. Find the probability that his 100 
paces will differ from 100 meters by no more than 5 meters. 

37 Twenty numbers are rounded off to the nearest integer and then 
added. Assume the individual round-off errors are independent and 
uniformly distributed over (- 1 /2, 1 /2). Find the probability that the 
given sum will differ from the sum of the original twenty numbers by 
more than 3 .  

38 A fair coin is tossed until 100 heads appear. Find the probability that 
at least 226 tosses will be necessary. 

39 In thf� preceding problem find the probability that exactly 226 toss� 
will be needed. 

40 Let X" have a Poisson distribution with parameter A.. 
(a) How should fx(x) be approximated in terms of the standard 

normal density qJ? 
(b) How should fx(x) be approximated in terms of the standard 

normal distribution function <I>? 

41 Let S'" have a binomial distribution with parameters n and p := 1/2. 
How does P(S2" = n) behave for n large? Hint : Use approximation (1 5). 

42 Players A and B make a series of $1 bets which each playc:�r has 
probability 1/2 of winning. Let S" be the net amount won by player A 
after .n games. How does P(S2" = 0) behave for n large? Hint : See 
previous problem. Why isn't approximation (1 5) directly appllicable 
in this case? 

43 Candi[dates A and B are running for office and 55% of the elec:torate 
favor candidate B. What is the probability that in a sample of size 100 
at least one-half of those sampled will favor candidate A ?  

44 A polling organization samples 1200 voters to estimate the proportion 
planning to vote for candidate A in a certain election. How large 
would the true proportion p have to be for candidate A to be 95�Ya sure 
that tbe majority of those sampled will vote for him 1 
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45 Suppose candidate A from the preceding problem insisted that the 
sample size be increased to a number n such that if 5 1% of all voters 
favor�ed him he could be 95% sure of getting a majority of the votes 
sampled . About how large would n have to be? 

46 Solve Exercise 27 of Chapter 4 by using normal approximation. 
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Moment Generating 
Functions and 
Characteristic 
Functions 

Some of the most important tools in probability theory are borrowed fronl other 
branches of mathematics. In this chapter we discuss two such closely related tools. 
We begin with moment generating functions and then treat characteristic functions. 
The latter are sonlewhat more difficult to understand at an elementary level because 
they require the use of complex numbers. It is worthwhile, however, to ov(�rcome 
this obstacle, for a knowledge of the properties of characteristic functions will 
enable :us to prove both the Weak Law of Large Numbers and the Central Limit 
Theorem (Section 8 .4). 

8.1 . M (l�ment generati ng fu nctions 

The nloment generating function Mx{t) of a random variable� X IS 
defined by 

Mx{t) = Eetx. 

The domain of Mx is all real numbers t such that etX has finite expectation. 

Example 1 .  Let X be normally distributed with mean Jl and variance 
(12 . Then 

Now 

_ -Ilt foo 1 ty- (yl/2al) d - � e y. - 00 uJ21t 

Consequc�ntly 

M x{t) = e,uealtl/2 fa) ) 
e - [(y-cr2t)2/2cr2] dt . . - 00 U 21t 

1 97 
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Since the last integral represents the integral of the normal density 
n«(12t, (12), its value is one and therefore 

(1) - 00 < t < 00 . 

Examl=tle 2. Let X have the gamma density with parameters (X and A.. 
Then 

A.t% lOO « - 1 - (l - t)x d = -- x e x 
r«(X) 0 

A.« r«(X) -
r«(X) (l - t )« 

for -
00 < t < A.. The integral diverges for A. < t < 00 .  Thus 

(2) - 00 < t < l. 

Suppose now that X is a discrete randonl variable, all of whose possible 
values are nonnegative integers. Then 

<X> 

Mx(t ) = � e"tP(X = n). 
"= 0 

In Chapter 3 we defined the probability generating function for such 
random variables as 

<X> 

<l>x(t ) = � t"P(X = n). 
" = 0 

From th�ese two formulas it is clear that 

(3) 

Formula (3) allows us to determine the moment generating function directly 
from the probability generating function. For example, if X has a binomial 
distribution with parameters n and p, then as was shown in Example 16 of 
Chapter 3, 

<l>x(t) = (pt + 1 - p)". 

It follows immediately that 

MX<t)  = (pet + 1 _ p)". 

Similarly, if X has a Poisson distribution with parameter A., then according 
to Example 1 8  of Chapter 3,  

Consequently, 
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Of cours1e, in these two examples Mx{t) could also easily be obtained 
directly from the definition of the moment generating function. 
- If X and Y are independent random variables, then etX and etY are also 
independent. Consequently 

Mx+rlt)  = Et!(x+ y) = EetXetY = EetXEetY 

= MX<t)My(t). 

It follows easily that if Xl " ' "  XII are independent and identically 
distributed, then 

(4) 
In order to see why Mx{t) is called the moment generating function we 

write 
ex> t"X" 

MX<t) = EetX = E � - . 
11= 0 n !  

Suppose Mx{t) is finite on - to < t < 10 for some positive number to . 
In this case one can show that in the last expression for Mx{t) it is per
missible to interchange the order of expectation and summation. In other 
words 

(5) 
ex> EX "  Mx(t) = � - til 

11= 0 n !  

for - to < 1 < to . In particular, if Mx{t) is finite for all I, then (5) holds 
for all t. The Taylor series for Mx{t) is 

ex> til d" 
(6) Mx(t) = � - - Mx{t)  . 

11= 0 n !  dt " t= O  
By comparing the coefficients of t il  in (5) and (6), we see that 

(7) 
d" 

EX" = - Mx(t) 
dt ll t= O  

Example 3. Let X be normally distributed with mean 0 and variance 
(12. Use moment generating functions to find the moments of X. 

Observe first from (1) that 

MX<t) = e,,2t2/2 = i: ((12t 2)11 � 
11= 0 2 n !  

Thus the odd moments of X are all zero, and the even moments are given by 

EX 211 tT211 
-- = --
(2n) ! 2"n !  
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or 
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EX 2ft = 0'2ft(2n) ! 
• 

2ftn ! 

This agrees with the result obtained in Chapter 7. 
This example can also be used to illustrate (7) . Since 

and 

it follows that 

and 

� etlltl/2 = 0 
dt t = O  

d 2 tl1t1/2 2 - e = 0' ,  
dt2 t= O  

which are just the first two moments of X. 

8.2. Ch.lracteristic fu nctions 

The characteristic function of a random variable X is defined as 

lI'x(t ) = Eeftx• - 00 < t < 00, 

where i == J - 1 .  Characteristic functions are slightly more complicated 
than mOlnent generating functions in that they involve complex nUlnbers. 
They have, however, two important advantages over moment generating 
functions. First, lI'x(t) is finite for all random variables X and all real 
numbers t. Secondly, the distribution function of X and usually the density 
function, if it exists, can be obtained from the characteristic function by 
means of an "inversion formula." U sing properties of characteristic 
functions we will be able to prove both the Weak Law of Large Numbers 
and the Central Limit Theorem, which we would not be able to do with 
moment generating functions. 

Before discussing characteristic functions we will first briefly sUmInarize 
some required facts involving complex variables. 

We can write any complex number z in the form z = x + iy, where x 
and y are real numbers. The absolute value Iz i of such a complex number 
is defined by Iz i  = (x2 + y2)1 /2 . The distance between two co:mplex 
numbers Zl and Z2 is defined to be IZl - z2 1 . 

If a function of a real variable has a power series expansion with a 
positive radius of convergence, we can use that power series to define a 
corresponding function of a complex variable. Thus we define 
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ex> z" 
e'Z = � _ 

,, = 0  n ! 
for any complex number z. The relation 
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remains valid for all complex numbers Z1 and Z2 . Letting z = it, �{here t 
is a real number, we see that 

ex> ( ·t )" 
eit = � _z _ 

,, = 0  n !  ( . t 2 it 3 t 4 it 5 ) - 1 + zt - 2" - 3! + 4 !  + 51 - · · · 

_ (1 _ t 2 
+ 

t 4 _ • • •  ) 
+ i (t _ t 3 

+ 

t 5 _ • • •  ) . 2 !  4 !  3 !  S !  
Since the� two power series in the last expression are those of cos t and 
sin t, it f;oIIows that 

(8) eit = cos t + i sin t. 

Using thle fact that cos ( - t) = cos t and sin ( - t) = - sin t, we sc�e that 

e - it = cos t - i sin t. 

From th��se formulas we can solve for cos t and sin t, obtaining 

(9) eit 
+ e- it 

cos t = ---2 and • eit _ e- it 
sln t = ---2 i 

It also follows from (8) that 

l eit l = (cos2 t + sin2 t )1 /2 = 1 . 
If /(t) and g(t) are real-valued functions of t, then h(t) = /(t) -1r ig(t) 

defines a complex-valued function of t. We can differentiate h(t) by 
differentiating /(t) and g(t) separately ; that is, 

h'(t) = /'(t) + ig'(t), 

provided that /' (t ) and g' (t) exist. Similarly we define 

f h(t) dt = f f(t) dt + i f get ) dt, 

provided that the indicated integrals involving! and 9 exist. The formula 

is valid for any complex constant c. The fundamental theorem of calculus 
continues to hold and, in particular, if c is a nonzero complex constant, 
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then 

A complex-valued random variable Z can be written in the form 
Z = X + iY, where X and Y are real-valued random variables. Its 
expectation EZ is defined as 

EZ = E(X + iY) = EX + iEY 

whenever EX and EY are well defined. Just as for real-valued random 
variables, Z has finite expectation if and only if EIZ I  < 00 ,  and in that 
case 

IEZ I  < EIZ I · 
The formula 

E(a1Z1 + a2Z2) = a1EZ1 + a2EZ2 
is valid ,whenever a1 and a2 are complex constants and Zl and �l2 are 
complex-·valued random variables having finite expectation. 

We will let X and Y, with or without subscripts, continue to denote real
valued random variables. Thus in the phrase "let X be a random 
variable . . .  " it is understood that X is real-valued. 

Suppose now that X is a random variable and t is a constant (we reserve 
the symbol t for real constants). Then l eitX I = 1 ,  so that eitX has finite 
expectation and the characteristic function ({Jx(t), - 00 < t < 00, given 
by 

({Jx(t) = EeitX, - 00 < t < 00, 

is well defined. We see that ((Jx(O) = Eeo = El = 1 and, for -- 00 < 

t < 00 ,  

I lI'X<t)1 = IEeitXI S E leitXI = El  = 1 . 

The reason characteristic functions are finite for all t whereas moment 
generating functions ar� not finite in general is that eit, - 00 < t < 00 ,  is 
bounded while et, - 00 < t < 00, is unbounded. 

Example 4.  Let X be a random variable taking on the value a with 
probability one. Then 

- 00 < t < 00 .  

In particular, if X takes on the value zero with probability one, then its 
characteristic function is identically equal to 1 .  

If X is a random variable and a and b are real constants, then 

lI'lI+bX(t ) = Ee't(lI+bX) 
= EeitlleibtX 

= eitll Eeibt x, 
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and hen(�e 

(10) - 00 < t < 00 .  

Exa mp,le 5. Let U be uniformly distributed on (- 1 ,  1) .  Then for 
t � 0 

For a < b let 

((Ju(t) = eitu - du 
I

1 1 

- 1  2 

= - -
2 it - 1 

sin t = -- . 
t 

x = a ; b + e � a) U. 

Then Xis uniformly distributed on (a, b), and by (10) for t � 0 

Alternatively 

( ) _ it(a + b)/2 sin « b  - a)t/2) 
({Jx t - e • 

(b - a)t/2 

((J:x(t) = eitx dx ib 1 

a b - a 

- --
b - a it a 

- ---
it(b - a) 

It is easy to check by means of (9) that these two answers agree. 

Examplle 6. Let X have an exponential distribution with paramc�ter A.. 
Then 

qJX<t) = 50'" e'txle- .l.x dx 

= l LIXl e- (.l.- it)x dx 
o 

- . e 
A - it 

- (l- it)x 
00 

Since lim�t-+ oo e- lx = 0 and eitx is bounded in x, it follows that 

lim e- (l- it)x = lim e- lxeitx = o. 
x-+oo 
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A 
lfJ:g{t) = . · A - I t  

Suppose X and Y are independent random variables. Then e'tX and 
e'tY are also independent random variables ; consequently 

((Jx+ y{t) = Eeit(x + y) = Ee'tXeitY = Ee'tXEe'tY 
and hence 

( 1 1 )  - 00 < t < 00 .  

Formula ( 1 1 )  extends immediately to yield the fact that the characteristic 
function of the sum of a finite number of independent random variables 
is the product of the individual characteristic functions. 

It can be shown that lfJx(t) is a continuous function of t. Moreover, if X 
has finite� nth moment, then ((J<;>(t) exists, is continuous in t, and �:an be 
calculated as 

In particular 

(12) 

qJ(")(t ) = d " EeitX = E d" eitX = E(iX)"eltx, x 
dt" dt" 

lfJ<;>(O) = i"EX". 

We can attempt to expand ((Jx(t) into a power series according to the 
formula 

(13) qJx(t) = EeitX = E f (itX)" = f i"EX" 
t ", 

,, = 0  n !  ,, = 0 n !  
Suppose that 

ex> EX" Mx(t) = � - t "  
,, = 0  n !  

is  finite on - to < t < to for some positive number to . Then (1 3) also 
holds on - to < t < to o 

Example 7. Let X be normally distributed with mean 0 and variance 
(12 . Find. ((Jx(t) . 

From �Chapter 7 we know that EX" = 0 for any odd positive integer n. 
Furthermore, if n = 2k is an even integer, then 

Therefor�e 

EX" = EX 2k = U
2k(2k) ! 

. 
2kk !  
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More generally let X be normally distributed with mean Jl and variance 
(12 . Then Y = X - Jl is normally distributed with mean 0 and variance 
(12 . Since X = Jl + Y we see from Formula ( 10) and Example 7 that 

(14) (t ) - itll -altl/2 ({Jx - e e , - 00 < t < 00 .  

Let X be a random variable whose mo.ment generating function lJx{t) 
is finite on - to < t < to for some positive number to . Since 

Mx(t ) = EetX 
and 

we would expect that 

(1 5) 

In other ,�ords, we would expect that if we replace t by it in the formula 
for the Illoment generating function, we will obtain the corresponding 
formula for the characteristic function. This is indeed the case, but a 
thorough understanding of the issues involved requires a sophistiicated 
concept (analytic continuation) from complex variable theory. 

As an c:�xample of (1 5), let X be normally distributed with mean II and 
variance (l2 . Then as we have already seen 

and hencc:� 
M x(t ) = eIltealtl/2 

illt - altl/2 = e r- e 

which by (14) is ({Jx{t). 

8.3. Inversion formu las and the Conti nuity Theorem 

Let X be an integer-valued random variable. Its characteristic function 
is given by 

00 

({Jx( t )  = � eii'l"x(j )· 
- 00 

One of th�� most useful properties of ((Jx(t) is that it can be used to calculate 
fx(k). Spc�cifically we have the "inversion formula" 

(16) fx(k) = .l In e- ikt({Jx(t ) dt. 
21t -n 

In order to verify (1 6) we write the right side of this formula as 

.l In e- ikt [ f  eIJ'fx(j )] dt. 
2n - x  - 00 
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A theorem in integration theory justifies interchanging the order of 
integration and summation to yield the expression 

f fxU)  � I7t 
ei(j-k)t dt. 

- ex> 2n -7t 
In order to complete the proof of ( 16) we must show that the last expression 
equals Ix(k). To do so it is enough to show that 

(1 7) � I7t 
ei(j- k)t dt = { 1 

2n -7t  0 if j = k, 
if j =1= k. 

Formula. (1 7) is obvious whenj = k, for in that case ei(j-k)t = 1 fOlr all t .  
If j =1= k ,. then 

1 I7t i(j-k)t l 7t _ ei(j-k)t dt = e -7t  
2n - 7t  21ti(j - k) 

ei(j- k)7t _ e- i(j-k)7t 
- --------------

21ti(j - k) 

= sin (j - k)1t = 0, 
1t(j - k) 

since sin mn = 0 for all integers m. This completes the proof of ( 17) and 
hence also of ( 16). 

Exam lJ�le 8. Let Xl ' X2, • • •  , Xn be independent, identically distributed 
integer-valued random variables and set Sn = Xl + · · · + Xn. Then 
({JSn(t) = (({JX t(t))

n, and consequently by ( 16) 

(1 8) ISn(k) = 21 I" e- ik'(IPx,(t ))" dt. n -7t  
Formula. (1 8) is the basis of almost all methods of analyzing the be:havior 
of ISn(k) for large values of n and, in particular, the basis for the proof of 
the "local" Central Limit Theorem discussed in Chapter 7. 

There is also an analog of ( 16) for continuous random variables. Let 
X be a random variable whose characteristic function ((Jx(t) is integrable, 
that is, 

f� <Xl I IPx(t ) 1 dt < 00 . 

It can be shown that in this case X is a continuous random variable having 
a density Ix given by 

(19) fx(x) = � f<Xl e- ;x'IPx(t)  dt. 
2n - ex> 

Exa mlJ� le 9. Let X be normally distributed with mean 0 and variance 
(12. We will show directly that ( 19) is valid for such a random variable. 

! 
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From Example 7 we know that X has characteristic function l{Jx(t) = 
e-altl/2 . 'Thus by the definition of characteristic functions, 

-a1tl/2 _ foo itx 1 -xl/2a1 d e - e J e x. 
- <X> U 2n 

If we rep1lace t by - t and u by 1/(1 in this formula it becomes 

- t1/2a1 foo - itx (1 -a1x1/2 d e = e --=- e x 
- <X>  J2n 

or equivalently, 
1 - t1/2a1 1 foo - itx - a1x1/2 d ---- e = - e e x. 

(1� 2n 2n - <X> 

Finally, if we interchange the role of the symbols x and t in the last 
equation we obtain 

1 -x1/2a1 _ 1 foo - itx - a1t1/2 dt ---- e - - e e , 
(1� 2n 2n - <X> 

which is just ( 19) in this special case. 
Let X now denote any random variable. Let Y be a random variable 

that is independent of X and has the standard normal distribution, a.nd let 
c denote a positive constant. Then X + c Y has the characteristic function 

(t ) - cltl/2 l{Jx e · 

Since l{Jx(t) is bounded in absolute value by 1 and e-cltl/2 is integra.ble, it 
follows that X + c Y has an integrable characteristic function. (:onse
quently ( 19) is applicable and X + c Y is a continuous random va.riable 
having a density given by 

fx+cY(x) = 21 foo e- itx({Jx(t )e-c2t2/2 dt. 
n - <X>  

If we integrate both sides of this equation over a < x < b and inter
change the order of integration, we conclude that 

or 

(20) 

Pea < X + cY < b) = � f.b (fOO e- ltx({Jx(t )e- c2t2/2 dt) dx 
2n a - <X> 

= � foo (f.b e- itx dX) l{Jx(t )e- cltl/2 dt 
2n - <X> a 

The importance of (20) is that it holds for an arbitrary random variable X. 
The right side of (20) depends on X only through l{Jx(t). By using this 

fact and letting c -+ 0 in (20), one can show that the distribution function 
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of X is determined by its characteristic function. This result is kno'�n as a 
"uniqueness theorem" and can be stated as follows : 

' .. fheorem 1 If two random variables have the same characteristic 
/unctlon, they have the same distribution .function. 

Exam il le 1 0. Use the uniqueness theorem to show that the sum of two 
independent normally distributed random variables is itself normally 
distributed. 

Let X· and Y be independent and distributed respectively according to 
n(IlI ' O'�) and n(1l2' O'�). Then 

and 

Consequently 

Thus thc:� characteristic function of X + Y is the same as that of a random 
variable having a normal distribution with mean III + 112 and variance 
O'� + O'� . By the uniqueness theorem X + Y must have that normal 
distribution. 

The rrlost important application of the inversion formula (20) is that it 
can be used to derive the next result, which is basic to the proof of the 
Weak Law of Large Numbers and the Central Limit Theorem. 

(21) 

Then 

(22) 

'J.rheorem 2 Let Xn' n > 1 ,  and X be random variables such that 

lim ({Jx,.{t ) = ((Jx{t), - 00 < t < 00 .  

n-+ OO 

lim Fx,.{x) = Fx{x) 
n-+ OO 

at all points x where Fx is continuous. 

This theorem states that convergence of characteristic functions implies 
converge�nce of the corresponding distribution functions or, in other 
words, that distribution functions "depend continuously" on their 
characteristic functions. For this reason Theorem 2 is commonly known 
as the "C�ontinuity Theorem." 

The proof of this theorem is rather involved. We will not presc:�nt the 
details of the proof, but we will indicate briefly some of the main ideas of 
one method of proof. 

We first choose a random variable Y that has the standard normal 
distribution and is· independent of each of the random variables Xn' n > 1 .  
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Let a < b and let c be a positive constant. Then by the inversion 
formula (20) 

(23) pea � X,. + cY < b) = -
e -

. 
e (fJx,.(t )e-cltl/2 dt 1 J 00 ( - ibt - illt) 

2n - 00 - It 
and 

(24) P(a < X + cY  � b) = -
e -

. 
e (fJx(t )e-clt2:/2 dt. 1 J 00 ( - ibt - illt) 

2n - 00 - It 

By assumption ({JXn(t) -+ ((Jx(t) as n -+ 00 .  It follows from this by a 
theorem in integration theory that the right side of (23) converges to the 
right side of (24) as n -+ 00 .  Consequently 

(25) lim pea < X,. + cY < b) = Pea < X + cY < b). 
n-+ 00 

There are two more steps to the proof of the theorem. First one must 
show (by letting a -+ - 00 in (25» that 

(26) lim P(Xn + cY < b) = P(X + cY < b). 
n-+ 00 

Finally, one must show (by letting c -+ 0 in (26» that 

lim P(Xn < b) = P(X < b) 
,.-+ 00 

whenever P(X = b) = O. The last result is equivalent to the conclusion 
of the theorem. 

8.4. The Weak Law of La rge N u m bers and the Central Li mit Theorem 

In this section we will use the Continuity Theorem to prove th�� two 
important theorems in probability theory stated in the title to this section. 
Both theorems were discussed without proof in earlier chapters. In order 
to prove these theorems we first need to study the asymptotic behavior of I 
log (fJx{t) near t = O. 

Let z be a complex number such that Iz - 1 1  < 1 .  We can define 
log z by means of the power series 

{z 1)2 (z 1)3 log z = (z - 1) -
-

+ 
- - · · · 

2 3 

(for Iz - 1 1  > 1 ,  other definitions of log z are needed). With this definition 
we have the usual properties that log 1 = 0, 

e10g z = z, Iz - 1 1 < 1 ,  

and if h(t ), a < t < b, i s  a differentiable complex-valued function such 
that Ih(t) .- 1 1  < 1 ,  then 

� log h(t ) = 
h'(t ) . dt h(t ) 
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Let X' be a random variable having characteristic function qJx(t) .. Then 
qJx(t) is continuous and qJx(O) = 1 .  Thus log qJx(t) is well defined for t 
near 0 and log qJx(O) = o. 

Suppose now that X has finite mean Jl. Then qJ x( t) is differentiable and, 
by (1 2), qJ �(O) = iJl. Hence 

Consequently, 

(27) 

1 · log qJx(t ) 1· log qJx(t ) - log qJx(O) 1m = 1m --------
t -+ O  t t -+ O t - 0 

d 
= - log qJx(t ) 

dt t = O 

qJ�(O) -
qJx(O) 

= iJl. 

lim log qJx(t ) - iJlt 
= o. 

t-+ O t 

Suppose now that X also has finite variance (12. Then qJx(t) is twice 
differentiable and by ( 12) 

qJx{O) = - EX 2 = - (Jl2 + (12). 

We can apply l'Hospltal's rule to obtain 

qJx{t ) . -- - IJl 
r log qJx{t ) - iJlt r qJx{t ) 1m 

2 
= 1m --

2
-
t
--

t-+O t t-+O 

I. qJ�{t) - iJlqJx{t) 
= 1m ------

t -+ O  2tqJx(t ) 

= lim qJ�{t ) - iJlqJx<t) . 
t -+ O  2t 

By a second application of l'Hospital's rule we see that 

lim log qJx{t )  - iJlt 
= _qJx_"{_O)_-_i_JlqJ_�_(O_) 

t -+ O t 2 2 

- (Jl2 + (12) - (iJl )2 

2 

In other words 

(28) 1. log qJx{t ) - iJlt (12 
1m = 

t -+ O  t 2 2 
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T��eorem 3 (Wea k Law of La rge N u mbers ) . Let Xl ' X2, " • •  

be independent, identically distributed random variables having finite 
mean Jl and set SrI = Xl + · · · + X". Then /or any e > 0 

(29) lim P ( SrI - Jl > e) = o. 
n -+ 00 n 

Proof The characteristic function of 

IS 

S X + · · · + X 2 _ Jl =  1 " - Jl  
n n 

e - iJlt( qJ X l  ( tin))" . 

Let i be fixed. 
-
Then for n sufficiently large, tfn is close enough to zc�ro so 

that log q'Jxt (tfn) is well defined and 

(30) e - iJlt( qJx l(t fn»)" = exp [n(log qJx l(t fn) - iJl(t fn))] .  

We claim next that 

(3 1) lim n(log qJxl(tln) - iJl(tfn)) = O. 
,, -+ 00 

Equation (3 1) is obvious for t = 0 since log qJXl(O) = log 1 = o. If 
t #; O  we can write the left side of (3 1 ) as 

1 . log qJx(tln) - iJl(tfn) 
t 1m . 

,, -+ 00 tin 

But tfn --l� 0 as n � 00, so the last limit is 0 by (27). This complet�es the 
proof of (3 1). It follows from (30) and (3 1 )  that the characteristic function 
of SrI - - Jl 

n 

approaches 1 as n -+ 00.  Now 1 is the characteristic function of a random 
variable }{ such that P(X = 0) = 1 .  The distribution function of X is 
given by 

if x > 0, 
if x < O. 

This distribution function is continuous everywhere except at x = o. 
Choose e > o. Then by the Continuity Theorem, 

(32) 

and 

lim P (S" - Jl � - e) = Fx< - e) = 0 
n-+ 00 n 
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The last result implies that 

lim P (S" - Jl > 8) = 0, 
,,-+ 00 n 

which together with (32) implies that (29) holds as desired. I 

For the next theorem it is necessary to recall that <I>(x) denotes the 
standard normal distribution function given by 

<I>(x) = IX -l- e-y2/2 dy, 
- 00 J21t 

- 00  < x < 00.  

We recall also that this distribution function i s  continuous at all values 
of x. 

'jrheorem 4. ( Centra l Li m it Theorem) . Let Xh X2, • • •  be 
independent, identically distributed random variables each having nlean 
Jl and'./inite nonzero variance (12 . Then 

lim P (S" J-nJ1. < x) = <I>(x) , 
,,-+ 00 ! (1 n 

Proof Set 

S * = S" - nJl 
" (1J n 

. 

- oo < x < oo .  

Then for t fixed and n sufficiently large, 

((Js:(t ) = e - i"llt/(r/�({Js,.(tl(1J�) 
= e - i"llt/(1v'�( ({Jx 1 (tl (1J� ))", 

or 

(33) ({Js:(t )  = exp [n(log ((Jxl(tl(1J�) - iJl(tl(1J�))] . 
We clairn next that 

(34) lim n(log ((Jxl(tl(1J�) - iJl(tl(1J�)) = 
,, -+ 00 

If t = 01, then both sides of (34) equal zero and (34) clearly holds. If 
t "# 0 w�e can write the left side of (34) as 

t 2 I ' log ((Jxl(tl(1J�) - iJl(tl(1J�) 2 1m 
I ' 

(1 ,,-+ 00 (tl(1Y n)2 

which by (28) equals 
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Thus (34) hQlds for all t. It follows from (33) and (34) that 

- 00 < t < 00 .  

,, -+  00 

According to Example 7, e- t2/2 is the characteristic function of a random 
variable Jr having the standard normal distribution function <I>(x). Thus 
by the Continuity Theorem 

lim P(S,,* < x) = <I>(x) , - 00 < x < 00 ,  

,, -+  00 

which is the desired conclusion. I 

Exercises 

1 Let X be uniformly distributed on (a, b) . Find Mx(t). 

2 Express the moment generating function of Y = a + bX in terms of 
Mx(t) (here a and b are constants). 

3 Let X' have a Poisson distribution with parameter A. Use moment 
generating functions to find the mean and variance of X. 

4 Let X have a negative binomial distribution with parameters a. and p. 
(a) Find the moment generating function of X. 
(b) Use this moment generating function to find the mean and variance 

of X. 

5 Let X' be a continuous random variable having the density fx(x) = 

( 1 /2)e- 1x l , - 00 <
-
x < 00 .  

(a) Show that Mx(t) = 1 /( 1  - t 2), - 1  <: t < 1 .  
(b) Use this moment generating function to find a formula for EX2" 

(note that the odd moments of X are all zero). 

6 Let X· haye a binomial distribution with parameters n and p. 
(a) Fiind dMx(t)/dt and d2 Mx(t)/dt 2 • 
(b) Use (a) and Formula (7) to compute the mean and variance of X. 

7 Let 'X"I ' . . . ' X" be independent, identically distributed ra.ndom 
variables such that MX1 (t) is finite for all t. Use moment generating 
functions to show that 

E(X 1 + · · · + X,,)3 = nEX � + 3n(n - I)EX �EX 1 

+ n(n - l)(n - 2)(EX 1)3 . 
Hint : Find (d3/dt 3)(M X l (t» " ' ,= o .  

8 Let X' be a random variable such that Mx(t) is finite for all t. U·se the 
same argument as in the proof of Chebyshev'S Inequality to conclude 
that 

t > o. 
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P(X � x) � min e- txMx(t ) , 
t � O 

provided that e- txMx(t) has a minimum on 0 < t < 00 .  

9 Let ,,¥, have a gamma distribution with parameters (l and A.. lIse the 
result of Exercise 8 to show that P(X > 2(l/A.) < (2/e)fT.. 

1 0  Let X have a Poisson distribution with parameter A.. Find CfJx(t) .  

11  Let X have a geometric distribution with parameter p. Find lfJx(t) .  

1 2  Let Xh X2, • • •  , XII be independent random variables each having a 
geomletric distribution with parameter p. Find the characteristic 
function of X = Xl + · · · + XII. 

1 3  Let Xl ' X2, • • •  , XII be independent random variables each having an 
exponential distribution with parameter A.. Find the characteristic 
function of X = Xl + · · · + XII. 

1 4  Let J( be a discrete random variable all of whose possible values are 
nonnegative integers. What relationship should we expect to hold 
between the characteristic function of X and the probability generating 
function of X (recall Formulas (3) and (1 5)) ? 

1 5  Let X be any random variable. 
(a) Show that CfJx(t) = E cos tX + iE sin tX. 
(b) Show that CfJ-x'{t) = E cos tX - iE sin tX. 
(c) Show that lfJ- x{t) = lfJx{ - t). 

1 6  Let X be a symmetric random variable, that is, such that X and - X 
have the same distribution function. 
(�) Show that E sin tX = 0 and that CfJx{t) is real-valued. 
(b) Show that CfJx{ - t) = CfJx{t). 

1 7  Let X and Y be independent, identically distributed random variables . 
Show that CfJx- y(t) = I CfJx(t )1 2 • Hint : Use Exercise 1 5 . 

1 8  Let .l'" be a random variable such that CfJx(t) is real-valued. 
(a) Show that X and - X  have the same characteristic function 

(use Exercise 1 5). 
(b) Why does it follow that X and - X  have the same distribution 

function ? 
1 9  Let A� be a continuous random variable having the density /x(x) = 

( 1 /2)e- lx l , - 00 < x < 00 .  

(a) Show that lfJx{t) = 1 /( 1  + t 2) .  
(b) Use (a) and the inversion formula ( 19) to conclude that 

e- ix i = fOO e- ixt 1 dt. 
- 00 n{1 + t 2) 

(c) Show by using (b) that 

e - Ix l = foo e'xt I dt. 
- 00 n( I + t 2) 
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20 Let X be a random variable having the Cauchy density 

1 
fx(x) = 

n(l + x2) ' 
- oo < x < oo. 

21 5 

Show that ({Jx(t) = e- 1 t l ,  - 00 < t < 00 .  Hint : Interchange the role 
of x and t in Exercise 1 9. 

21 Let A� and Y be independent random variables having the Cauchy 
density. 
(a) Find the characteristic functions of X + Y and of (X + Y)/2. 
(b) Why does it follow that (X + Y)/2 also has the Cauchy density? 

22 Extend the result of Exercise 2 1  by showing that if Xl ' X2 , • • •  , �f"n are 
indepc�ndent random variables each having the Cauchy density, then 
(Xl + · · · + X,.)/n also has the Cauchy density. 

23 For A > 0 let X). be a random variable having a Poisson distribution 
with parameter )10. 
(a) Use arguments similar to those used in proving the Central Limit 

Theorem to show that for - 00 < t < 00,  

lim Eeit(x;.- ).)/J;' = lim exp [l(eit/Ji - 1 - i t/.Jl)] = e- t2/2 • 
). -+ 00 ). -+ 00 

(b) What conclusion should follow from (a) by an appropriate 1tTIodi
fication of the Continuity Theorem? 
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Random Walks and 
Poisson Processes 

In this chapter we discuss two elementary but important examples of stochastic 
processes. A stochastic process may be defined as any collection of random 
variables. Usually, however, in referring to a stochastic process we have in :mind a 
process that has enough additional structure so that interesting and useful results 
can be obtained. This is certainly true of the two examples treated in this chapter. 
The material on Poisson processes, our second example, does not depend on the 
first two sections where we discuss random walks. 

9.1 . Ra,ndom wa lks 

Consider a sequence of games such that during the nth game a random 
variable Xn is observed and any player playing the nth game receives the 
amount Xn from the "house" (of course, if Xn < 0 the player actually pays 
-Xn to the house) . 

Let us follow the progress of 'a player starting out with initial capital x. 
Let Sn' n > 0, denote his capital after n games. Then So = x and 

S = x + X + · · · + X n 1 n' n > 1 .  

The col1lection of random variables So, Sl ' S2 , . . .  is an example of a 
stochastic process. In order to get interesting results we will assunle that 
the random variables Xl ' X2, • • •  are independent and identically distrib
uted. Under this assumption the process So, S l ' . . .  is called a random 
walk. 

We will further assume that the Xk's have finite mean /l. If a player plays 
the first n. games, his expected capital at the conclusion of the nth game is 

( 1 )  

Supposelt however, that the player chooses numbers a < x and b > x 
and makes a bargain with himself to quit playing when his capital be:comes 
not greater than a or not less than b. Then the number of times T that he 

21 6 
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wIll play the game is a random variable defined by 

T = min (n > 0 I Sn < a or Sn > b). 

21 7 

In orde:r to guarantee that Sn < a or Sn > b for some n, we assume that 

(2) P(Xk = 0) < 1 .  

It is possible to prove that the random variable T is finite (with probability 
1 )  and, in fact, P(T > n) decreases exponentially as n .... 00 .  This lneans 
that for some positive constants M and c < 1 ,  

(3) P(T > n) < M�, n = 0, 1 ,  2, . . . . 
The proof of (3) is not difficult but will be omitted to allow rOOlm for 
results of much greater interest. From (3) and Theorem 5 of Chapte:r 4, it 
follows that ET and all higher moments of T are finite. 

b-8 

x-4 

8-0 --------------------- -------

T- 1 0 n 

Figure 1 

If the player quits playing after the Tth game, his capital will be ST 
(see Figure 1). A famous identity due to Abraham Wald relates the ex
pected capital when the player quits playing to the expected number of 
times he plays the game. Specifically, Wald's identity asserts that 

(4) EST = X + J,lET. 

Wald's id,entity is remarkably similar to (1) . 
In proving Wald's identity it is convenient to introduce a new notation. 

Let A be any event. By l A  we mean the indicator random variable of A, 
that is, the random variable that is 1 if A occurs and 0 if A does not 
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occur. I�y definition 1A + l Ac = 1 .  Using this notation we can write 
T 00 

ST = X + � Xj = x + � Xjl {T� j} . j= l j= l 
Since th(� complement of the event {T  > j} is the event {T < j}, we see 
that 

(5) 

and hence 

(6) 

00 

ST = X + � Xj(l - l {T<j})' j = l 

00 

EST = X + E � Xj(l - l {T<J}). j= l 
It can be shown by using measure theory that the order of expectation and 
summation can be reversed in (6). Thus 

(7) 
00 

EST = X + � E[Xj(l - l {T< j})] . 
j = l 

In deterrnining whether or not T < j, it suffices to look at the random 
variables Xl ' X2, • • •  , Xj - l . It follows that the random variables }{j and 
(1 - l {T<j}) are independent. Consequently 

E[Xj(l - l {T<j})] = EXjE(l - l {T<j}) 
= Jl(l - peT < j )) 

= JlP(T > j ). 

We now conclude from (6) and Theorem 5 of Chapter 4 that 
00 

EST = X + Jl � peT � j)  
j= l 

= X + pET, 

which completes the proof of Wald's identity. 
If the Xn's have mean Jl = 0 and finite variance (12, there is a second 

identity due to Wald, namely 

(8) Var ST = (12 ET. 

Since ES'T = x by (4), Formula (8) is equivalent to 

(9) E(ST - X)2 = (12 ET. 

We willI now verify (9). By (5) 

and hence 

00 

ST - X = � Xj( l - l {T<j})' j= l 

00 00 

(ST - X)2 = � Xj(l - l {T<j}) � Xk(l - l {T< k}) j = l k = l 
00 00 

= � � Xj(l - l {T<j})X,,(l - l {T< "}) . j = I k= I 



9.2. Simple rando�rn walks 21 9 

In taking expectations it is again permissible to interchange expectation 
and sumlmation. We conclude that 

00 00 

(10) .l?:(ST - X)2 = 1: 1: E[Xj(l - l {T<j})Xk(l - l {T< k})] . 
j = 1 k= 1 

We will now evaluate the individual terms in this double sum. Consider 
first terms corresponding to values of.i and k such thatj < k. The random 
variable 

depends only on Xl ' X2, . . .  , Xk- 1 , and hence is independent of the 
random variable Xk• Since EXk = Jl = 0, we see that 

E[Xj(l -- l {T< j})Xk(l - l {T< k})] 
= E[Xj(l - l {T< j})(l - l {T< k})]EXJI: = o. 

Similarly the terms in the right side of (10) vanish when j > k. When 
j = k we obtain 

E[X J(l - 1 {T<j})2] . 

The random variable ( 1  - I {T< j}) depends only on Xl ' X2, . . .  , Xj- l ' and 
hence is independent of Xj. Since this random variable takes on only the 
values 0 and 1 ,  we see that 

Thus 
E[XJ(l - 1 {T<j})2] = E[XJ(l - l {T<j})] 

= EX J E(l - l {T< j}) 

= Var XJ(l - peT < j )) 

= (12p(T > j) . 

We now Iconclude from (10) and Theorem 5 of Chapter 4 that 

00 

E(ST - X)2 = (12 1: peT > j )  = (12 ET, j= l 

which proves (9) and hence also (8). 

9.2. Simlple random walks 

We win assume throughout this section that a < x < b, a < b, and 
a, b, and x are integers . The two identities of the previous section are 
most easily applied if it is known that 

(1 1) peST = a or b) = peST = a) + peST = b) = 1 . 
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This will certainly be the case if 

( 12) P(Xk = - 1 , 0, or 1 )  = 1 ,  

in which case the random walk So, S1 ' . . .  is called a simple randon1 walk . 
The main property that distinguishes simple random walks froml other 
random walks is that they do not "jump over" integer points. Set 

p = P{Xk = I }, 

q = P{Xk = - I }, 

r = P{Xk = O}. 

Then p > 0, q > 0, r > 0, and p + q + r = 1 .  The assumption (2) 
states that r < 1 .  It follows from (1 1) that 

( 1 3) EST = aP(ST = a) + bP(ST = b) 
= a( 1 - peST = b)) + bP(ST = b). 

For simple random walks we can solve explicitly for peST' = a), 
peST = b), EST, and ET. Consider first, the case p = q. Then J.l = 0 and 
Wald's identity (4) becomes EST = x. Thus by ( 1 3) 

x = a( 1 - peST = b)) + bP(ST = b). 

It follow's immediately that 

( 14) peST = b) = x - a 
b - a 

and 

( 1 5) b - x peST = a) = . 
b - a 

Wald's identity does not give any information about ET when JU = O. 
The identity (8) is applicable in this case, however, and we find that 
(12 = P .+ q = 1 - r and 

Var ST = (12ET = (1 - r)ET. 
Now 

Var ST = Esi - (EST)2 

Thus if J' = q, 

( 16) 

= b2p(ST = b) + a2P(ST = a) - x2 
b2(x - a) + a2(b - x) 2 = - x 

b - a 

= (ax + bx - ab) - x2 
= (x - a)(b - x). 

ET = (x - a)(b - x) 
. 

1 - r 
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If r = 0 and p = q = 1 /2, 

( 17) ET = (x - a)(b - x). 

Exampl le 1 .  Two players having respective initial capitals of $5 and 
$ 1  0 agre(� to make a series of $ 1  bets until one of them goes broke. A.ssume 
the outcomes of the bets are independent and both players have probability 
1/2 of winning any given bet. Find the probability that the player with the 
initial capital of $ 10 goes broke. Find the expected number of bets. 

The problem fits into our scheme with Sn denoting the capital of the less 
wealthy player after n bets if we choose p = q = 1 /2, x = 5, a = 0, and 
b = 1 5 . The answer to the first part is given by 

5 - 0 1 
P(ST = b) = = - . 

1 5  - 0 3 

The ansvver to the second part is 

ET = (5 - 0)(1 5  - 5) = 50. 

Suppose next that p =F q. To avoid trivial exceptions we will also assume 
that p > 0 and q > O. Wald's identity cannot be used to find P(S]r' = b) 

if p =F q ; therefore another approach is required. 
Define f(x) for x an integer in [a, b] by letting f(x) denote the prob

ability that ST = b when So = x. We observe first that f satisfies the 
differencc� equation 

(1 8) j( x) = pf(x + 1) + qf(x - 1) + rf(x) , a < x < b. 

This is true because 

and 

f(x) = P(ST = b) 

= p . P(ST = b I Xl = 1 )  + q . peST = b I Xl = - 1) 

+ r · P(ST = b I Xl = 0) 

P(Sr = b I Xl = i) = f(x + i), i = 1 ,  - 1 , O. 

In addition to ( 18) we have the obvious boundary conditions 

( 19) f(a) = 0 and feb) = 1 .  

From (1 8) and ( 1  - r) = p + q, we see that 

(20) jr(x + 1) - f(x) = 11 (f(x) - f(x - 1)), a < x < b. 
p 

Set C = j( a + 1 )  = f(a + 1 )  - f(a). Then (20) implies that 

f(x � 1 )  - f(x) = c (!r-tJ, a < x < b. 
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Using the formula for the sum of a geometrical progression we obtain 

x - 1 

f(x) = I(x) - f(a) = � (fey + 1) - fey») 
1 = 11 

1 _ (q/p)X-II 
= c  , 

1 - (q/p) a � x � b. 

From the special casef(b) = 1, we now have that 

1 - (q/p) 
c - ---'----- 1 _ (q/p)b-II · 

We substitute this in our expression for f(x) and obtain 

1 _ (q/p)X-II 
f(x) = 1 _ (q/p)b-II · 

We have shown, in other words, that if p #; q and p > 0, then 

(21) peS = b) = 1 - (q/p)X-II 
T 1 _ (q/p)b-II ' a < x � b .  

It follows immediately from (2 1) that under the same conditions 

(22) pes = a) = (q/p)X-II - (q/p)b-a 
a � x < b. T 1 _ (q/p)b-a  ' 

From (1 3) and (2 1) 

(23) ES = (b _ a) 
1 - (q/p)X-II 

+ a .  T 1 _ (q/p)b-a 

Since Jl := p - q, it now follows from Wald's identity that 

(24) ET = (b - a) 1 - (q/p)x-a _ X - a 
p - q 1 - (q/p)b-II P - q , a < x < b. 

Example 2. Let us modify the previous example by supposing that the 
wealthier player because of his greater skill has probability .6 of winning 
any given bet, with the other player having probability .4 of winning the 
bet. Find the probability that the wealthier player goes broke, the 
expected gain to that player, and the expected number of bets. 

Here ,�e take p = .4 and q = .6. The probability that the wealthier 
player goes broke is 

P(S = 15) = 1 - ( .6/ .4)5 = .01 5 1 .  T 1 _ (.6/.4)1 5 
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In order to find the expected gain to the wealthier player we first note that 
the expected capital of the poorer player after they stop playing is 

EST = 1 5P(ST = 1 5) = 1 5(.0 1 5 1 ) = .23. 

Thus the expected gain to the wealthier player or the expected loss to the 
other player is $5.00 - $.23 = $4.77, a good percentage of the poorer 
player's initial capital . The expected number of bets is 

ET = EST - X = - 4.77 � 24. 
Jl - .2 

Let b --+ 00 in (2 1) . It can be shown that the left side of (2 1)  converges 
to P(S" :> a for all n > 0). If q < p, the right side of (2 1) converges to 
1 - (qjp)x-a. If q > p, the right side of (2 1 )  converges to O. If q = p, 

the right side of ( 1 4) converges to O. Thus for a < x = So, 

(25) P(SII > a for all n > 0) = 

(� 
_ 
(!) x-a for 

for 

q < p, 

q � p. 
Similarly for b > x = So'J 

P(S" < b for all n > 0) = 

{� _ (�) b-x 
for 

for 

p < q,  

p > q .  
Examplle 3. A gambling house has a capital of one hundred thousand 

dollars. .4�n infinitely rich gambler tries to break the house. He is allowed 
to try, and decides to bet $ 1000 at a time. If the gambler has the proba
bilities .49 of winning each bet and . 5 1  of losing, what is the probability 
he will ever break the house ? 

Let SrI denote the capital of the house (in mUltiples of $ 1(00) after n 
games. 1rhen p = . 5 1 , q = .49, x = 100, and a = O. By (25) the prob
ability that the house will go broke is 

1 - P(SII > 0 for all n � 0) = (!r-a = (::�) 100 = .01 8 . 

Let A be a subset of the integers (in applications, A will have 0, 1. , or 2 

points). For x ¢ A and y ¢ A,  let P A(X, y) denote the probability that a 
simple random walk beginning at x will hit y at some positive time before 
hitting A I, For x E A or Y E A  set P A(X, y) = O. These probabilities (;an be 
computed in terms of the formulas of this section. 

Exampll. 4. Suppose p = q. Find P{a,b}(Y, y), where a < y < b. 

After one step, the random walk is at y - 1 , y, or y + 1 with respective 
probabilities p, 1 � 2p, and p. From y - 1 , the probability of returning 
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to y before a is (y - a - 1)/(y - a). From y + 1 , the probability of 
returning to y before b is (b - y - 1)/(b - y). Thus the probability of 
returning to y before hitting a or b is given by 

or 

(26) 

y - a - 1  b - y - 1 
P{a,b}( Y, y) = p + 1 - 2p + p ----

y - a  b - y  

P ( ) _ 1 _ p(b - a) 
{a,b} y, Y -

( y _ a)( b _ y) 
· 

For x ¢ A and y ¢ A ,  let GA(x, y) denote the expected number of visits 
to y (for positive values of n) before hitting A for a random walk starting 
at x. Set GA(x, y) = 0 if x E A or Y E A . It is not hard to show that the 
number of returns from y to y before hitting A has a geometric distribution 
with parameter p = 1 - P A(y, y). Thus by Example 3 of Chapter 4, 

(27) 

If x =F y, then 

(28) G A(X, y) = P A(X, y)(1 + G A(Y, y)) . 

For to have any positive number of visits to y before hitting A, w(� must 
first get to y before, hitting A .  This has probability P A(X, y) . If we do get 
to y before hitting A, then the total number of visits to y before hitting A is 
1 plus the total number of returns from y to y before hitting A.  This 
explains (28). From (27) and (28) we have that 

(29) G .. (x, y) = p .. (x, y) 

1 - PA(y, y) 
for all x and y. 

Exam plle 5. Let us return to the first example of this section. Find the 
expected number of times n > 1 that two players will be back to their 
initial capital before one of them goes broke. 

We recall that in this example p = q = 1 /2, a = 0, x = 5, and b = 1 5. 

The probability of returning back to the original capitals before one of 
the playe:rs goes broke is, by (26), P 15 ' 

P (5 5) = 1 -
(1 /2)(15) = .85. {O, t S }  , 

5 · 10 .. 
� '  � '. 

Thus by (27) the expected number of times both players will be back to 
their initial capital before one of them goes broke is 

G (5 5) _ p{o, t s }(5, 5) 
{O, t S} , -

1 - P (5 5) {O, t S } , 

= .85 = 5.67 . 
. 1 5  
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In the remaining sections of this chapter we will consider a probabilistic 
model for the random distribution of particles in space or events in time. 
Such models find applications in a variety of different fields. ,As an 
example, suppose we have a piece of radioactive material and let an 
experiment consist of observing the times when disintegrations occur. 
Suppose the experiment starts at time 0 and let Dm denote the time of the 
mth disintegration. As discussed in Example 2 of Chapter 1 , the laws of 
physics tell us that the times Dm must be considered random variables. 
The collc�ction of points {Dt , D2 , • • • } can be considered as a random 
countablle subset of [0, (0). 

As another illustration of essentially the same phenomena, consider 
calls comling into a telephone exchange. Let Dm denote the time when the 
mth call begins. There is no known way of predicting the Dm exactly, but 
they can usefully be treated as random variables. 

Consider an experiment of the following type. A swab is dipped into a 
test tube containing a suspension of bacteria and is then smeared uni
formly a�cross the surface of a disk containing nutrients upon whi1ch the 
bacteria can mUltiply. After a few days, wherever a bacterium was dropped 
there appears a visible colony of bacteria. The locations of these spots as 
well as their total number are random. This situation is illustrated in 
Figure 2. 

• • • 

• • 
• • 

• 
• • • 

• • 
• • 

• • 
• 

• • 

Figure 2 

The location of the spots can be viewed as a random subset of points of 
the disk. 

In the examples of radioactive particles and bacteria, we were led to 
consider a random collection of points in a certain subset S of Euclidean 
space. In these examples both the location of the "particles" and their 
total nurnber is random. Associated with such a random collection are 
various random v3:riables such as the total number N of particles in S, the 
number of particles NB in a specified subset B c S, and the distance Dm 
from a specified point in S to the mth closest particle. In Figure 3 the 
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Figure 3 

particles are denoted by dots. In that figure N = Ns = 4 and NB = 2. 

It is the distributions and joint distributions of random variables of this 
type that we will be studying in the rest of this chapter. 

Naturally, there are many different mathematical models that consider 
the random distribution of particles. We will consider one of the most 
elementary and most important such models, called the Poisson process. 
Such a process is closely related to the uniform distribution of particles 
which we will discuss first. 

Consider then a system in which the total number of particles n is fixed, 
but for which the locations of the particles in S are random. The model 
we want is one for which these n particles are independently and uniformly 
distributed over a set S having finite volume. Denote the volume of a 
subset B of S by IBI . Then each particle has probability P = IBI/ IS I  of 
landing in B. Consequently, the number of particles NB that land in the 
set B has the binomial distribution with parameters n and p. More 
generally, let B1 , B2, • • • , Bk be k disjoint subsets of S whose union is S 
and let Pj = IBjI/ IS I .  Then the random variables NBt, . . .  , NBk have the 
multinomial distribution with parameters n and PI '  . . . ' Pk. Hence if 
nl ' . . .  , nk are nonnegative integers with sum n, 

n '  - n N - n ) - · pftt • • •  pftk 
- 1 ' · · · '  Bk - k - 1 k (n l !) · · · (nk !) 

n ! k IB .l ftJ = - n � · IS lft J = 1 nj ! 
The Poisson process on S is a modification of the above. We suppose 

now that the total number of particles N = Ns in S is a random variable 
having a Poisson distribution with parameter AIS I . Moreover, we assume 
that given N = n, the n particles are independently and uniformly dis-
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tributed over S. Let Bt , . . .  , B" be as before. Then our assumptions are 
that if n t , . . .  , n" are k nonnegative integers with sum n, then 

Hence 

( n !  " IB · III) P(NB1 = n t , . · · , NBk = n" I N = n) = -II 
n � · lS I  j= t nj ! 

n ! " IB -r i ll} 
(30) P(�l = n, NBI = n t , · · · , NBk = nle) = peN = n) - n �-

IS III j= t ni ! 

= liltS I" e- ).Is l n ! Ii LBjl"J 
n !  IS III j= t nj ! 

= l"e- ).Is l Ii IBjl"J . 
j= t n j ! 

Since the sets Bj are disjoint with union S, 
lS I = IBt l + . . .  + fB"I , 

and thus 'we can write the right-hand side of (30) as 

n
le 

(AlB jl)II) - l IB} 1 ----- e 0 j= t n j ! 
Now the event {N = n, NBI = nt ,  . . .  , NBk = n,,} is the same a.s the 
event {NJrJl = n t , . . .  , NBk = n,,}, because n = n t + 0 • • + n" and N = 
NBI + 0 • " + NBko Thus 

peN == n, NBI = nt ,  . . .  , NBk = n,,) = P(NBI = n t , . · . , NBk = nit). 
We have therefore proved the important fact : 

(3 1) peN N ) n
" 

(AI Bjl)IIJ - l IBJ I B I = n t , · • •  , Bk = n" = e 0 j= t n j ! 
In other 'words, the random variables NBI , . . .  , NBk are independent and 
Poisson dlstributed with parameters AIBjl respectively. 

It is not too surprising that the random variables NBl' 1 < j < )�, are 
Poisson distributed ; but it is surprising that they are mutually independent 
because in the case where the number of particles is fixed the corresponding 
quantities are dependent. It is this independence property that makc�s the 
Poisson process easy to work with in applications. 

In the preceding models the total number of particles, whether random 
or fixed, was always finite, and they were distributed over sets having 
finite total volume. For some purposes, however, it is theoretically si]mpler 
to considc�r an infinite number of particles distributed over a set having 
infinite volume. Thus we might want to distribute particles over all of 
R' or ov��r [0, 00), etc. To cover such cases, we require only a slight 
extension of the previous model. 
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The basic assumption of a Poisson process on a set S having finite or 
infinite volume is that if BI , B2, . • •  , Bk are disjoint subsets of S each having 
finite volume, then the random variables NBI , . . .  , NBk are independent and 
Poisson distributed with parameters A IBI I , . . .  , A IBk l respectively. The 
constant A is called the parameter of the process. 

Let B be a subset of S having finite volume. As a consequence of the 
definition of a Poisson process, it follows that if BI , B2 ,  • • •  , Bk a.re dis
joint subsets of B whose union is B, and nl ,  n2' . . .  , nk are nonnegative 
integers with sum n, then 

n ! k IB . l nJ (32) .P(NBI = n l , · · · , NBk = nk I NB = n) = - n �- . 
IB l n  j = l nj ! 

To verify (32) note that the desired probability is just 

jP(N BI = n l , · · · , N Bk = nk) _ n� = I e - ). IBJ I (AIBjl)nJ/nj ! . 
P(N B = n) 

-
e-). I B I (AIBl)n/n ! 

which re�duces to the right-hand side of (32). 
Another way of looking at Equation (32) is as follows : Given that there 

are n particles in B, the joint distribution of the random variables 
NBI , . . . �, NBk is the same as that obtained by distributing n particles 
independently and uniformly over B. This fact is very useful for solving 
some problems in which the Poisson process acts as an input to a more 
complicated system. We will not pursue this aspect of a Poisson process 
any further in the text . (See, however, Exercises 2 1  and 3 1  for simple 
illustrations of its use.) 

9.4. Dh;ta nce to pa rticles 

Suppose we have a Poisson process on a subset S of Euclidean space. 
If S has finite volume, then the number N of particles in S is finite. Let 
Dl < D2 < · · · < DN denote the distance to these particles from the 
origin arranged in nondecreasing order. If S has infinite volume, then 
the number of particles in S is infinite, and we let Dl < D2 < . · · < Dm • • • 
denote the distances to the particles arranged in nondecreasing order. 
Such an arrangement is possible because for any positive number r only 
finitely Inany particles are at distance less than r from the origin. In this 
section vve will compute the distribution of Dm for various choices of the 
set S. 

We first give an example where these distances enter in a natural way. 
Suppose that stars in a certain set S of 3-dimensional Euclidean space are 
distributled according to a Poisson process on S with parameter A. Suppose 
further that these stars are equally bright. The amount of light reaching 
the origin from a star is proportional to the inverse square of the distance 
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from the origin to the star. Thus the amount of light received from a star 
of distan(� r from the origin is Klr 2 for some positive constant K., The 
amount of light received from the nearest (and hence apparently brightest) 
star is K/.Df. The total amount of light is 

By advan.ced probability techniques it can be shown that if S is all of 
three-dimensional space, then the sum of the above series is infinite� with 
probability one. This fact has interesting implications in cosmology. 

We will now compute the distribution of Dm, assuming for simplicity 
that S has infinite volume. Let Sr = S n {x : Ixl < r} (that is, let Sr be the 
set of points in S at distance at most r from the origin), and let qJ(r) denote 
the volulIle of Sr. The number Ns,. of particles in Sr has a Poisson distri
bution with parameter AqJ(r) . The event {Dm < r} is the same as the event 
{Ns,. � mr }. Thus by Equations (39) and (40) of Chapter 5, 

(33) P(Dm < r) = P(Ns,. > m) 

It follows from (33) that if qJ(r) is differentiable, then Dm has a dc�nsity 
function jr", given by 

(34) 
lmqJ(r )m- lqJ'(r )e- ).tp(r) 

J",( r) = 
( m _ I) ! 

' r > O. 

If qJ(r) is strictly increasing it has a continuous inv�rse function qJ -- I (r) .  
It follows from (33) that the random variable qJ(Dm) has the gamma 
distribution r(m, A). 

In several important cases qJ(r) is of the form qJ(r) = crd, where c is a 
positive numerical constant (this is true, for example, if S = Rd or if 
S = [0, co»). In this case (34) becomes 

(35) f, ( ) 
d(cl)m md- l  -c).rd r = r e m (m - 1) ! 

' r > O. 

Various special cases of �his formula will be considered in the exercises. 
We win use Formula (35) to compute the moments ED!" in these 4:ases. 

Thus 

ED!" = foCXl riJm
(r) dr 

100 d(cl)m md+ j - I -c).rd d = ---- r e r. o (m - 1) ! 
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To compute this, we make the change of variable s = Acrd and integrate 
to obtain 

9.5. W21iti ng ti mes 

ED� = (AC)-J/dr(m + (j/d » . 
(m - 1) ! 

So far we have been visualizing a Poisson process as a model for the 
distribution of particles in space. If we think of the set [0, (0) as the time 
axis, then we may consider a Poisson process on [0, (0) as the distribution 
of times at which certain events occur. In the beginning of Section 3 we 
mentionled some examples of using a Poisson process on [0, (0) in this 
manner. 

In the switch from thinking of a Poisson process on [0, (0) as a distri
bution of particles in the set [0, (0) to thinking of the Poisson process as 
the distribution of events in time, a new set of terms is introduced. Instead 
of speaking �f "particles," we now speak of "events", and the distance Dm 
to the mth particle now becomes the time when the mth event takes place. 

Let N'(t) = N[o,t] denote the number of events that occur during the 
time span [0, t ] .  Then N(t) is a Poisson distributed random variable with 
paramet1er AI. If ° < s < I, then N(t) - N{s) represents the nunlber of 
events taking place during the time span (s, t ] ,  and it has a Poisson distribu
tion with parameter A{t - s) . More generally, if ° < t t < t2 < · · · < t,., 
then N{tt), N{t2) - N(tt), . . .  , N{t,.) - N{t,. - t )  are independent random 
variables having Poisson distributions with parameters 

respectively. These facts are immediate from our definition of the F'oisson 
process and its translation into the time language. 

As mc:�ntioned above, Dm is the time of the mth event. From our results 
in Section 9.4 we know that Dm has the gamma distribution r{m, A) . In 
particular, D 1 is exponentially distributed with parameter A. Recall 
from Chapter 6 that the sum of m independent, identically distributed 
exponential variables has the gamma distribution r(m, A). Define 
random variables Wt ,  W2, • • •  , W,., . . .  as follows : Wt = Dt ,  W,. = 
D,. - D,._ t , n > 2. Then clearly Dm = Wt + · . · + Wm. The discussion 
just giv,en makes it plausible that Wt , W2, • • •  , Wm are independent 
exponen.tially distributed random variables with the common paranleter A. 
This is iin fact true and is a very interesting and useful property of the 
Poisson process on [0, (0). The random variable Wm is, of course, nothing 
more than the time between the (m - l)st event and the mth, so that the 
times »'1 ' W2, . . .  are the waiting times between successive events in a 
Poisson process. 
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Theorem 1 Let WI ' W2, • • •  , Wn, .  . .  be the waiting times 
between successive events in a Poisson process on [0, (0) with param
eter A. Then Wn, n > 1 , are mutually independent exponentlally 
distributed random variables with the common mean A - t 

. 

Proof Let /,. be the n-dimensional density given by 

for ° < t t  < t2 < · · · < tm 
elsewhere. 

From Example 1 3  of Chapter 6, we see that the theorem is true if and only 
if the ra.ndom variables DJ , • • •  , D" have joint density J". This is true 
for n = 1 , since D 1 is exponentially distributed with parameter A. 

A rigorous proof in general is more complicated. Before givi1t1g this 
proof we will first give a heuristic way of seeing this fact. 

Let 0 = to < tl < . . .  < tn and choose h > 0 so small that t i - 1 + h < tb 
i = 1 , 2�, . . . , n. Then (see Figure 4) 

(36) P(ti < Di < ti + h,  1 < i < n) 

= P(N(t t) = 0, N(t t + h) - N(tt) = 1 , . . .  , 

N(tn) - N(tn- t + h) = 0, N (t,. + h) - N (t,.) > 1) 

= e- ;'t 1 (Ah)e- ;'h . · · e- ;'(tn - tn - 1 - h) [1 _ e- ;'h] 

= An- l hn- l e- ;'tn(1 _ e- ;'h). 

o I 
1 

I o 1 1 
I 0 

Figure 4 

If we knew that the random variables D l ' D2, • • • , Dn had a joint density 
gn that vvas continuous at the point (t l ' t2 , • • • , tn) , we could conclude that 

P(ti < Di < ti + h for 1 < i < n) = Un(tt , . . .  , tn)hn + e(h), 

where e(h) is some function of h such that 

lim 
e(h) = o. 

h lO h
n 

It would then follow from (36) that 

as desired. 

g(t t ' . . .  , tn) = lim h-np(ti < Di < ti + h) 
h l O 
1· ') n - l - ;'t 1 - e- ;'h 

= Im ll. e n ----
h lO h 

= Ane- ;'tn 



232 Random Walks and Poisson Pro1cesses 

We will now give an elementary but rigorous proof of Theor,em 1 .  
Although this proof is not difficult, it is rather long, and the reader may 
wish to omit it. 
Let Fn be the distribution function having density /,.. It follows a1t once 

from the definition of In that for n > 2, 

/"(Sl ' . .  · , sn) = 11 (Sl)/"- l (82 - Sl ' · · . , Sn - 81)· 

Integrating both sides over the set S 1 < t l ' . . . , Sn < tm we see that 

(37) Fn(tl >  · · · • tn) = f�l 11 (S1)Fn- 1(t2 - Sh · · · .  tn - S1) ds1 ·  

Let Gn de:note the joint distribution of D1 , D2, • • •  , Dn. From Example 10 
of Chapter 6 we see that the theorem is true if and only if the random 
variables D1 , • • •  , Dn have joint density /,., and hence joint distribution 
function Fn. Consequently, to prove our theorem we must shovv that 
Fn = Gn· 

Now JFi'l is just the exponential distribution with parameter it. As 
pointed out before, G l ' the distribution of D l ' is also exponential with 
parameter A. Thus Fl = G1 • 

Suppose we can show that for n > 2, 

(38) Gn(t1 •  · · · • tn) = E' 11 (S1)Gn- 1 (t2 - S1 ' · · · , tn - S1) ds1 ·  

Then, as G1 = Fl it would follow from (37) and (38) that G2 = F2 • 

Using th(� fact that G2 = F2, another application of (37) and (38) 'would 
show G3 = F3, etc. In other words, if we knew that (38) held, the:n our 
theorem would follow from (37) and (38) by induction. In establishing 
(38) we can assume that 0 < t 1 < · · · < tn' since otherwise both sides of 
(38) are zero. 

To stal1 on the proof, observe that the event {Di < ti l is the same as the 
event {N(ti) > i} and thus 

n 
{Di < ti' 1 < i < n} = () {Di � til i = 1 

n 
= () {N(ti) > i } 

i=  1 

We can therefore write 

Gn(t1 , t2 , • • •  , tn) = P(N(ti) > i, 1 < i < n). 

Consequ��ntly (38) is the same as 
(39) l'(N (ti) > i, 1 < i < n) 
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To establish (39), note first that for any k > 1 

(40) 
(It )k - At it 1 - As [l(t - S)]k- l - A(t - S) d - e = Ae e s. 

k !  0 (k - 1) ! 
Indeed, it [ 1 (t )]k- l - At 1 k  it 1 - ;ls A - S - A( t - s) d e A ( )k - I d Ae e s =  t - s  s 

o (k - 1) ! (k - 1) ! 0 
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= 
e- lt;..k ft 

Sk- l ds = (It )k 
e- lt. 

(k - I ) ! J o k !  

Now let 0 < 1 1 < 12 < · · · < In and let 1 < kl < k2 < · · .. < kn. 
Next we claim that 

= f�' ).e- AsP(N (t l - s) = kl  - 1 ,  · · 
· 
, N(tn - s) = kn - 1) ds. 

To see this observe that by (40) 

n 
= P (N (tl) = kl) n P(N (tj) - N (tj - l) = kj - kj- 1) j= 2  it1 [let - S)]k 1 - 1 e- l(t1 - S) ds = le- l! ��l��� ________ _ 

o (k l - 1) ! 

x Ii: [-1.( t J - t J _ l)]k r k J - 'e - .1.(1 r I J - 1 ) 
• 

j= 2 (kj - kj- 1) ! 
On the other hand, 

(43) ( " -1.e- .l.·P(N (t l  - s) = kl - 1 ,  . . . , N (tn - s) = kn - 1 )  d$ .1 0 
= f� l -1.e- AsP(N (tl  - s) = k l  - 1) 

n 
x n P(N (tj - s) - N (tj- 1  - s) = kj - kj ._ l) ds 

j = 2  it l _ [let - S)]k1 - l e- l(t1 - s) 
= le As ��l __ �� ____ __ 

o (kl - 1) ! 

n [let ° _ t 0 _ )]kJ- kJ - 1 e- l(tJ - tJ - t }  
x n J J I ds. 

j= 2 (kj - kj- 1) ! 

Comparing the right-hand side of (42) with that of (43), we see that (41) 

holds. The desired equality (39) now follows from (41 )  by summing both 
sides of (41)  over all values of kl ' . . .  , kn such that kl < k2 < · · · < kn 
and kl �: 1 , k2 > 2, . . .  , kn > n. I 
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Exercises 

1 Let S". be a random walk with Jl = 0 and So = x. Suppose tha.t 

P(a - c < ST < b + d) = 1 , 

where a < x < b, c > 0, and d > o. 
(a) Show that 

(a - c)P(Sr < a) + bP(ST > b) 

(b) Show that 
< x < aP(Sr < a) + (b + d)P(ST > b) . 

x - a  x - a + c 
---- < P(ST > b) < · 
b - a + d b - a + c 

2 A ganlbler makes a series of bets of $ 1 . He decides to quit bettilng as 
soon as his net winnings reach $25 or his net losses reach $50. Suppose 
the probabilities of his winning and losing each bet are both equal to 
1 /2. 
(a) Find the probability that when he quits he will have lost $50. 
(b) Find his expected loss. 
(c) Find the expected number of bets he will make before quitting. 

3 Suppose the gambler described in Exercise 2 is playing roulette and his 
true probabilities of winning and losing each bet are 9/ 19  and 10/ 19  

respectively. Solve (a), (b), and (c) of Exercise 2 using the: true 
probabilities. 

4 A ganlbler makes a series of bets with probability p of winning and 
probability q > p of losing each bet. He decides to play until he has 
either won Ml dollars or lost M2 dollars, where Ml and M"2 are 
positive integers. He has a choice of betting 1 dollar at a time or of 
betting 1 /2 dollar at a time. Show that he is more likely to win Ml 
dollars before losing M 2 dollars if he bets 1 dollar at a time than if he 
bets 1 /2 dollar at a time. What generalization of this result seems 
plausible ? 

5 Derivc:� ( 14) by solving the appropriate difference equation. 

6 Let Sn denote a simple random walk with p = q = 1 /2 and let a < b. 
Find jD{a,b}(X, y) and G{a,b}(X, y) for a < x < b and a < y < b. 

7 Let Sn denote a simple random walk withp = q = 1/2. Find p{O}(x, y) 
and G{O} (x, y) for x > 0 and y > o. 

8 Let Sn denote a simple random walk with 0 < q < p. Find P0 (x, y) 
and G0 (x, y). 

9 Let Sn denote a simple random walk with 0 < q < p. Find p{O}( -- 1 ,  y) 
and G{O}( - 1 , y) for y < o. 

1 0  Suppose points are distributed in 3-dimensional space according to a 
Poisson process with parameter A = 1 .  Each point of the process is 
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taken as the center of a sphere of radius r. Let X denote the number 
of spheres that contain the origin. Show that X is Poisson distributed 
with lmean (4/3)nr 3 . 

1 1  A point is chosen at random in a circle with center at the origin and 
radius R. That point is taken as the center of a circle with radius X 
wherc:� X is a random variable having density f Find the probability 
p that the random circle contains the origin. 

1 2  Suppose n points are independently and uniformly chosen in the: circle 
with Icenter at the origin and radius R. Each point is taken as the 
center of a random circle whose radius has density f Find, in terms of 
p of E:xercise 1 1 , the probability that exactly k circles contain the origin. 

1 3  Find the answer to Exercise 12 if the n points are replaced ,�ith a 
random number N of points having a Poisson distribution with mean 
nR2 . 

1 4  Suppose N balls are distributed at random into r boxes, wherle N is 
Poisson distributed with mean A. Let Y denote the number of lempty 
boxes. Show that Y is binomially distributed with parameters r and 
p = e-l/,. Hint:  If Xi is the number of balls in box i, then Xh 0 • 0 , X, 
are independent Poisson distributed random variables each having 
mean A/r. 

1 5  Using the result of Exercise 1 4  we may easily derive the probability 
Pk(r, n) that exactly k boxes are empty when n balls are distributed at 
random into r boxes. To do this first observe that 

00 

P(Y = k) = � peN = n)P( Y = k i N = n) 
n= O  

and 

So 

Now ,equate coefficients of An to rederive Equation ( 1 6) of Chapter 2.  

16  Suppose the times of successive failures of a machine form a Poisson 
process on [0, (0) with parameter A. 
(a) \\lhat is the probability of at least one failure during the time period 

(t'l t + h), h > O? 
(b) "'hat is the conditional probability of at least one failure by time 

t ,+ h, given that there is no failure by time t? 
17 Suppose we have a Poisson process on [0, (0) with parameter )l. Let 

Zt denote the distance from t to the nearest particle to the right. 
Compute the distribution function of Zto 
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1 8  Suppose we have a Poisson process on [0, (0) with parameter A.. Let 
Y, denote the distance from t to the nearest particle to the left. Take 
Y, = t if there are no particles to the left. Compute the distribution 
function of Yt. 

1 9  For Zt and Y, as in Exercises 17 and 18, 
(a) show that Yt and Zt are independent, 
(b) compute the distribution of Zt + Yt. 

20 Particles arrive at a counter according to a Poisson process with 
parameter A.. Each particle gives rise to a pulse of unit duration. The 
particle is counted by the counter if and only if it arrives when no pulses 
are present. Find the probability that a particle is counted between time 
t and time t + 1 .  Assume t > 1 .  

21 Consider a Poisson process on [0, (0) with parameter A. and let J' be a 
random variable independent of the process. Assume T has an 
exponential distribution with parameter v. Let NT denote the number 
of particles in the interval [0, T] . Compute the discrete density of N r. 

22 Do Exercise 21 if T has the uniform distribution on [0, a] , a > O. 
23 Consider two independent Poisson processes on [0, (0) having param

eters A.I  and A.2 respectively. What is the probability that the first 
process has an event before the second process does ? 

24 Suppose n particles are distributed independently and uniformly on a 
disk of radius r. Let D I denote the distance from the center of thle disk 
to the nearest particle. Compute the density of DI • 

25 For DI as in Exercise 24 compute the moments of DI . Hint : Obtain a 
Beta integral by a change of variables. 

26 Consider a Poisson process on R' having parameter A.. For a set A 
having finite volume, let N A denote the number of particles in .If . 
(a) Compute EN1. 
(b) If A and B are two sets having finite volume, compute E(NANB). 

27 Let A I '  A 2' . . .  , An be n disjoint sets having firiite volume, and similarly 
let BI , B2, • • •  , Bn be n disjoint sets having finite volume. For real 
numb€�rs (Xl '  . .  · , (x,. and PI '  · . · , Pn , set 

n 
f(x) = � (Xj 1A,(X) 

i = 1 

and 
n 

g(x) = � P,lB,(x). 
i = I 

Show that for a Poisson process having parameter A. 

E ttl ajN AI) ttl PIN BI) 
= ).

2 (Lr f(x) dX) (JRr g(X) dX) + ). Lr f(x)g(x) dx. 
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28 In Exercise 27 show that 

Var ( t  rx.,NA1) = l r j2(X) dx. 
f =  1 J R" 
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29 Consider a Poisson process with parameter A on R3, and let Dm denote 
the distance from the origin to the mth nearest particle. 
(a) Find the density of Dm. 
(b) Find the density of D;. 

30 Suppose we have a Poisson process with .parameter A on the upper 
half-plane of R2, i.e. , the Poisson process is on the subset S = 
{(x, y) : y > O} of R2. 
(a) "rhat is the density of the distance Dm from 0 to the mth nearest 

particle ? 
(b) Filnd the first two moments of Dm. 

31 Consider the following system. The times when particles arrive into 
the system constitute a Poisson process on [0, (0) with paramc�ter A. 
Each particle then lives for a certain length of time independent of the 
arrival times of the particles in the process and independent iQf the 
lives of the other particles. Suppose the lengths of life of the particles 
are exponentially distributed with common parameter Jl. Let M(t) 
denotle the number of particles that are alive at time t. Compute the 
distribution of M (t) by carrying out the following steps. 
(a) Suppose a particle arrives according to the uniform distribution on 

[0, t ]  and lives for a random length of time that is exponentially 
distributed with parameter Jl. Find the probability Pt that the 
particle is alive at time t. 

(b) Using the fact that given N(t) = n the particles are independently 
and uniformly distributed over [0, t] ,  show that 

P(M (t ) = k I N(t)  = n) = (�) 1,(1 - PI)"-'" 

(c) NiQW show that M(t ) is Poisson distributed with parameter Atp,. 
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3. 1 12. 4. 1 /8 . 

7. 1 12. 8. 3/10. 
1 0. 5/8, 3/8. 1 1 . 415 .  

1 3. (a) 1 /2, (b) 1 /2. 
1 5. 5/29. 
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(b) 
rb 

(r + b)( r + b - 1)  

(d) b(b - 1)  . 
(r + b)( r + b - 1) 

22. (b) 1 3/25, 

1 6. 10/ 19. 

(c) 21/25. 

26. (a) 1 /4, (b) 2/5, (c) 1 /2. 
25. (a) 1 /12, (b) 17/36, (c) 6117. 
27. 14/23 . 

28. 4/9. 29. 2/1 3 . 
31 . (a) (r + c)/(b + r + c), (b) bl(b + r + c). 
37. 1 - (4/5;)� H · 5615 . 

38. (a) tto (�) (�r (�rO-k, (b) 1 - (�r· 
39 . . 9976. 40. 2. 

6 . 122 42. . 
1 34 - 1 24 44. 1 - (1 /10)1 2. 
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46. 1 - (1 1 /4)(3/4)7 • 
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30. 1 /3 .  

41 . 75191 . 
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r (12) (�)k (.!) 1 2-k 47. k= 2 k 10 10 . 

� (12) (�)k (.!) 12-k k= 1 k 10  10 

C HA PTER 2 

1 .  64. 
3. l/n. 

5. (n - 1)(r)"_ 1 /'". 

2. (a) 2", (b) 2(211 - 1). 
4. (10)6/106. 

6. [ (r 
N 

N) / (�)r- 1
. 

7. 2(n - k - l)/n(n - 1 ). 8. n(n + 1 )/2. 
9. (a) (n - 2)/n(n - 1 ), (b) (n - 2)/(n - 1)2. 

1 4. (a) 4q, (b) 4 · 10q, (c) 1 3  · 48q, 

( ' + b) r + b - n + 1 
n - 1 

(d) 1 3 ·  1 2 · 4 ·  6q, (e) 4 · cn q, (f) 10 · 4Sq, 

(g) 1 3  · en 43q, (h) en (�) (�) . 1 1 · 4q, (i) 1 3  C3
2) G) 43q. 

(52) - 1  
Here q = 5 . 

1 5. 8/ cn · 

1 6. 4 · (48)"- 1 /(52)". 

1 7. (a) (r - k)"/(r),,, (b) (1 - �r 
1 8. (� = :) / (:) . 
20. Expand out the terms. 
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1 .  {(x) = {0
1/10, x = 0, 1 ,  . . . , 9, 

elsewhere. 

2. P(X + r = n) = p' ( - r ) ( _ 1)"-'( 1 - p)"-', n = r, r + 1 ,  . . . . 
n - r 

3. (a) P(X = k) = 
(!) C � k) 0 � k � 6 

C�) ' , 
(b) P(X = k) = (;) Gf Gr-k, 0 < k < n. 

4. 1/(2N + 1 - 2). 
5. (a) .3, (b) .3 , (c) .55, (d) 2/9, (e) 5/1 1 .  
6. (a) (1 - p)4', (b) (1 - p)4 - ( 1  - p)8 + (1 _ p) 10, 

(c) (1 - p)31 - (1 - p)6 + (1 - p)7 - (1 _ p)l l .  
7. (a) 3/4, (b) 1 / 10, (c) 1 /25, (d) 3/50. 
8. P(X = k) =: (2k - 1)/144, 1 < k :s; 12. 

9. P(X = k) = (k - 1) Ie;) , k = 2, 3, · · · , 1 2. 

o _ _, {P( 1 - p)X, X = 0, 1 , . . . , M - 1 , 
1 · P(Y - x) -' (1 _ p)M, x = M. 
1 1 . (a) P(X2 = k2) = p(1 - p)k, k = 0, 1 , 2, . . .  , 

(b) P(X + 3 = k) = p(1 - p)k- 3, k = 3, 4, . . . . 
1 2. (a) P(Y < y) = (�) I (:) , y = n, n + 1 , . . .  , r, 

(b) P(Z � z) = (r + : - Z) I (:) , z = 1 , 2, . . .  , r - n + 1 . 

1 3. (a) 2/3, (b) 2/9, (c) 1 3/27. 

1 4 (a) N + 2 � 
(b) 

1 
• 

2(N + 1) '  N + 1 

1 5 . (a) P(min (X, Y) = z) = 2(
N 

- z) -; 1 , Z = 0, . . .  , N, 
(N + 1) 
2z + 1 (b) P(max (X, Y) = z) = 2 ' z = 0, . . . , N, 

(N + 1) 
(c) P(I Y - XI = 0) = 

1 , 
N + 1 

P(I Y _ X' = z) = 2(
N + 1 - z) 1 N I (N + 1)2 ' z = , . . .  , · 
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1 6. (a) P2 , (b) PIP2 
PI + P2 .- PIP2 PI + P2 - PIP2 

1 7 . (a) geometric with parameter PI + P2 - PIP2, 
(b) PIP2 1[(1 - P2)%+ 1 - (1 - Pl)%+ I ], Z = 0, 1 ,  2, . . . . 

PI - P2 
1 8. (a) g(x) Ly h(y), (b) h(y) Lx g(x). 

20. 5/72. 
(2r) ! 21 .  (a) 2 ' where Xi are nonnegative integers whose sum is 2r, 

X l ! . . .  X, !! r ' 

(2r) ! 
(b) 2'r2, • 

22. (a) binomial with parameters n and P t + P2, 

(b) (z) (_j�)%-Y ( P2 )Y 
Y PI + P2 PI + P2 

23. (53/8)e- 5/2. 
25. (a) 1 - (5/6)6, (b) 4. 

(; � n G = ; � n G = �) 30. ��� ____ � ____ � 

G) z - 1 
N2 ' 

24. (17/2)e- 3 . 
26. p'(1 - p)Xr- '. 

2 < z � N, 

31 . P(X + Y = z) = 2N + 1 - z N 1 2N. ---- , + < z � , 
N2 

o elsewhere. 

32. <bx(t) = _1_ (1 - tN+ 1) , t ¢ 1 , and <bx(l) = 1 . 
N -+- l  I - t 

I\. e . .  
33 

-- , X a nonnegatIve even Integer, 
( 'J x/2� -l 

· /x(x) = (xI2) ! 
o elsewhere. 

36 (x + y + z) � ( A1 )X ( A2 )Y ( A3 )% 
• 

X !  y ! Z !  Al + A2 + A 3  At  + A2 + A 3  At  + A2 + A3 · 

37. (a) elp(t- l ), 
(b) Poisson vvith parameter Ap. 

1 .  (2N + 1 )/3 .  
3. A - 1(1 - e-l). 

C HAPTE R 4 

2. 4p(1 - p)(l - 2p). 
4. 17. 

/-lnswers 
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6. p- l(1 - p) [1 - (1 - p)M ]. 7. M + p- l(1 _ p)M+ l . 
8. EX = N/2 and Var X = (N2 + 2N)/12. 

1 0. 2. 
1 4. E(2X + 3 Y) = 2EX + 3EY, 

Var (2X + 3 Y) = 4 Var X + 9 Var Y. 

( 1)111 ( 2)" ( 1)" 
1 6  . (a) 1 - ; , (b) 1 - ; , (c) , 1 - ; , 

(d) r (1 - ;f [ 1 - (1 - ;fJ + r(r - 1) [ ( 1 - ;f - ( 1 - ;rn] • 

1 7. (a) 1 ,  (b) I .. 
k- l . 

1 8. � I 
2 

• 
i = 1 r(1 - i/r) 

2 
20. - a2 

Veal + ai)(Gri + ail 
21 . 9 - 2v'2. 
23. (a) - 1/3, (b) - 1 /2. 
25. (c) EXY = n(n - 1) '1 '2 , 

r(r - 1)  

22. - 1 . 

Var X = n (rl) (1 - '1 ) � , Var Y = n ('2) (1 _ ��) r - n ; 
r , , - 1  " , - 1  

( 1 )  rl r2 2 '1 '2 n n ·- - n  
(d) 

r(, - 1 )  r 2 . 
n G - ;) Jr��2 (1 - r:) (I, _ r:) 

26. � = 1 .  

243 

27. Chebyshev's inequality shows that a = 718  will suffice (see also the answer to 
Exercise 46 of Chapter 7). 

32. z/2. 33. z12/(11 + 12) , 

C HAPTE R 5 

1 .  Fx( - 1 ) + 1 - Fx(3). 

2. F(x) = 0, x -< 0 ;  F(x) = X/R2, 0 < X < R2 ; and F(x) = 1 ,  x > R2. 
3. F(x) = 0, x -< 0 ;  F(x) = x3/R3, 0 < X < R ;  and F(x) = 1 ,  x > R. 
4. F(x) = 0, x -< 0; F(x) = x/a, 0 < x < a; and F(x) = 1 for x > a. 
5. F(x) = 0, x < 0; F(x) = (2hx - x2)/h2, 0 < X < h ;  and F(x) = 1 , x > h. 
6. F(x) = 0, x -< sv'3/2 ; F(x) = v' 4x2 - 3s2/s, sv'3/2 < x < s ;  

and F(x) = 1. , x > s. 
7. F(x) = O, x -< O ; F(x) = x2/2, O < x < I ; F(x) = - 1 + 2x - (1/2)x2, 

1 < x < 2 ;  Clnd F(x) = 1 ,  x > 2. 
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8. m = 1- 1 loge� 2. 
9. t = - log .9/ 100 log 2 = 1 . 52 X 10- 3• 

1 0. F(x) = 0, x < 0; F(x) = x/a, O S x < a/2 ; and F(x) = 1 ,  x � a/2. 
1 1 . (a) 7/12, (b) 1 /3, (c) 1/6, (d) 5/12, (e) 1 /2. 
1 2. (a) (iv) F(x -- ) = F(x) for all x;  

)'nswefS 

(b) (ii) F is a non increasing function of x and (iii) F( - (0) = 1 and F( + ex) = 0 ;  
(c) (ii) F is a nonincreasing function of x, (iii) F( - (0) = 1 and F( + 00) = 0 ,  and 

(iv) F(x _. ) = F(x) for all x. 

1 3. F(x) = O,-X <: - 5 ; F(x) = (x + 10)/20, - 5  S x < 5 ; and F(x) = l , x � 5. 
1 4 - 1  -2 . e - e . 
1 5. ((x) = 1 /2(/x/  + 1)2 = F'(X) for all x. 

1 6 . /(x) = 3x2/R :3, 0  < x < R ; and {(x) = O elsewhere.-

1 7. /(x) = x, O <: x < 1 ; !(x) = 2 - x, 1 < x < 2 ;  and /(x) = 0 elsewhere. 

1 8. ly(Y) = I(y) + /( -y), y > O ; ly(Y) = 0, y < o. 
1 9. rex) = 2xg(x�!), x > 0;  and g(y) = !(�y)/2 �y, y > o. 
20. If P > 0 then, ly(Y) = p�- l , 0 < y < 1 ,  and /y(Y) = 0 elsewhere. 

If P < 0, then /y(y) = - PyP- t , Y > 1 ; and /y(y) = 0 elsewhere. 
21 . /y(y) = y- 2  f« 1 - y)/y), O < y < 1 ,  and /y(y) = 0 elsewhere. 
23. ,,(x) = (x - a)/(b - a), - 00 < x < 00 .  

24. Y has an exponential .density with parameter l/c. 
25. Multiply g by 12. 
26. /y(y) = /b //n(b2 + (y - a)2), - 00 < y < 00 . 

27. F(x) = O, X ..:::: - 1 ;  F(x) = 1 /2 + l /n arcsin x, - 1  s x S 1 ;  F(x) = 1 ,  x >  1 .  
{(x) = l /n�j - x2, - 1  < x < 1 ,  and /(x) = 0 elsewhere. 

28. lex) = 1/x/e- ).x2, - 00 < x < 00 .  

29. X - a and a - X have the same distribution. F(a - x) = 1 - F(a + x) for all x. 

30. �(x) = 1 /2 -f- 1 /2 erf (x/ �2), - 00 < x < 00 .  

31 . Iy(y) = 2_::. e-y2/2a\ 0 < y < 00 , and /y(y) = 0 elsewhere. 
aV2j't 

1 32. /y(y) = --_== exp [ - (log y - p,)2/2a2], 0 < y < 00 , and /y(Y) = 0 else�Nhere. 
ayV2n 

33 . .  6826. 
34. (X - p,)/a has the standard normal distribution. 
35. Iy( - 6) = .0030, Iy( - 5) = .0092, /y( - 4) = .0279, Iy( - 3) = .0655, 

Iy( - 2) = . 1 210, Iy( - 1) = . 1 747, /y(O) = . 1 974, ly(l ) = . 1747 �, 
ly(2) = . 1 210�, ly(3) = .0655, ly(4) = .0279, ly(5) = .0092,. 
ly(6) = .0030, fy(y) = 0 elsewhere. 

36. p, = 1 60, a =: 29.6, P(X � 2(0) = .0885, P(X � 220 / X � 2(0) = .244 (24.4%). 
38. 2 seconds. 
39. Geometric wrth parameter 1 - e-).. 
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40. (e) get) = A�, t > 0, where A is the parameter of the exponential distribution ; 
(f ) improves for ex < 1 ,  deteriorates for a > 1 ,  stays the same for ex = 1 .  

41 . Gamma density r(a, A/c). 

43. fy(y) = 
2A« y2«- t e-).yl, y > 0, and fy(y) = 0 elsewhere. 

rea) 

44. ,,(y) = �y, y � o. 
45. qJ(x) = [<I>- 1.(X) ]2, - 1  < x < 1 .  
48 .  <1>-1 (. 1 )  = - 1 .282, <1>- 1(.2) = - .842, 

<1>- 1(.4) = - .253, <1>- 1(.5) = 0, 
<1>- 1(.7) = . 524, <1>- 1(.8) = .842, 

47. JJ + .675a. 48. 1 .  

<1>- 1(.3) = - .524, 
<1>- 1(.6) = .253, 
<1>- 1(.9) = 1 .282. 

49 . . 82. 

C H APTE R 6 

1 .  Fw z(w, z) = F (W - a , Z - C) . fw z(w, z) = _1 
f (W - a , Z - C) . 

, b d ' bd b d 

2. Fw,z(w, z) = F(�w, ��) - F(- �w, ��) - F(�w, - ��) + F( - �w, - �;) 

and fw,z(w, z) = 1_ (/('Vw, V;) + f(-Vw, V�) + I(vw, -V�) 
4v wz + f( -v w,. -V�» 

for w, Z > 0 and Fw,z(w, z) and .fw.z(w, z) equal zero elsewhere. 

3. (a) 3/4, (b) 5/12, (e) 3/4 ; these results are easily obtained by finding the areas of 
the appropriate unit square. 

4 1 - - 1/2a2 . e . 

5. 3/8. 6. 1/3 .  
7. X is  exponentially distributed with parameter 1. Y has the gamma density r(2, 1). 

FX ,Y(x, y) = 1 - e-).x - 1xe-A>', 0  < x < Y ; 
FX,Y(x, y) = 1 - e-A'(1 + 1y), 0 < y < x; and FX,Y(x, y) = 0 elsewhere. 

8. (a) ex > - 1 , (b) c = (ex + 1)(ex + 2), 
(e) fx(x) = (ex + 2)(1 - x)«+ l , 0 < X S 1 ,  and fx(x) = 0 elsewhere ; 
ff(Y) = (ex + 2)y«+ 1 , 0 s y s 1 ,  andff(y) = 0 elsewhere. 

9. c = � 1 5/411:. X is distributed as nCO, 16/15) and Y is distributed as nCO, 4/15). 

1 0. /y-x(z) = s:
oo 

/x(x)/y(z + x)dx. 

1 1 . (a) /x+ y(z) = 

A. 
A.IA.� (e-Az% - e-A1%), Z > 0, and /x+ Y(z) = 0, Z < 0. 

1 - 2 
(b) fx+ y(z) = 0, Z s O ; fx+ y(z) = 1 - e-AZ, O  S z < 1 ;  

fx+ y(z) == e-J.Z(eA - 1), 1 < z < 00 .  

1 2  I' ( ) a + 2 «+ 1 
• JX+ Y Z = Z , 

2 
Ix+y(z) = ° elsewhere. 

a + 2 + 1 o S Z s 1 ,  Ix + f(Z) = 
2 

(2 - z)« , 1  < Z S 2 ;  
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1 3. jjy-x l (z) = . 
2 ( 1 - Z ) , 0 < Z < b - a, and jjy-x l (z) = 0 elsewhere. 

b - a b - a  

1 4. fz(z) = � foo f (X' Z - ax) dx, - 00  < Z < 00 .  
I b l - 00  b 

1 7. fR(r) = r
2 e-- r1/2a1, r > 0 ; and fR(r) = 0, r < o. 

(J 

1 8. fxy(z) = - /(x, z/x)dx. foo 1 
- 00 Ixl 

20. fz(z) = 2/n(1 + Z2), z > 0, and fz(z) = 0, z < o. 
21 . fy/x(z) = 1 /(1  + Z)2, Z > 0, and fy/x(z) = 0, Z =::; o. 
22. Beta density with parameters a1 and a2 . 

23. (a) fY lx(x) = k-A(Y-x), O < x < y, and fYlx(ylx) = 0 elsewhere. 
(b) fYlx(y I x) = (a + 1 )(y - x)rz/(1 - x)rz+ 1 ,  0 < x < y < 1 ,  
and fYlx(y I x) = 0 elsewhere. 
(c) fy1x(y I x) = n(y ; xiS, 1 /4). 

24. CI>(3/2) = .933 . 

26. Beta density with parameters al + y and a2 + n - y. 

27. fy(y) = aprz/(y + P)rz+ 1 , y > 0, and fy(y) = 0, y < o. The conditional density 
of A given }" = y is the gamma density r(a + 1 ,  P + y). 

28 Ii ( ) - V2/n 2 -yl/2a2 · y y - -3- y e , 
a 

y � 0, and fy(y) = 0, y < o. 

30. Iy(y) = y2/2, 0 < Y < I ; fy(y) = _y2 + 3y - 3/2, 1 < y < 2 ;  
fy(y) = y/2 - 3y + 9/2, 2 < y < 3 ,  and fy(y) = 0 elsewhere. 
P(XI + X2 + X3 < 2) = 516. 

31 . fXl tXl,X3(Xh X2, X3) = l /x1x2, 0  < X3 < X2 < X l < I ,  and equals zero elsewhere. 
fX3(x) = (loge x)2/2, 0 < x < 1 ,  and equals zero elsewhere. 

32. (a) fXI ' xn(x) = n(n - 1)(y - X)"- 2  0 < X < Y < 1 ,  and equals zero elsewhere ; 
(b) fR(r) = n(n - 1)(1 - r)r"- 2 , 0 < r < 1 ,  and zero elsewhere. 
(c) Beta density with parameters k and n - k + 1 .  

33. Exponential with parameter nA. 
34. X(,,12) - 1 e-XI2/2"12 r(nI2), x > 0, and 0 elsewhere. 

35. Beta density with parameters m/2 and n/2. 
36. aX + bY and bX - a Y  are jointly distributed as independent random variables 

each having the normal density n(O, a2 + b2). 

37. Ix x+ y(x, z) = /(x) /(z - x). , 

38. Uniform on (0, z) for z > o. 
39. Uniform on (0, z) for 0 < z < c, and uniform on (z - c, c) for c < z < 2c. 
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41 . fw,z(w, z) = f , · 
( Z ) 2 ( z WZ ) 
w + I  w + I w + I 

C H APTE R 7 

1 .  at /(a l + (2)' 
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2. Z will have finite expectation when a l > 1 and a2 > 0. In this case EZ = 
a2/(at - 1 ). 

3. (1.J 2/n. 

4. X,je has a gc:�ometric distribution with parameter (1 - e-1t). 
EXt = ee-1ll(I - e-1t). limt .... o EXt = 1 /1. 

5. EXm = r(al + (2) r(al + m)/r(at )  r(al + a2 + m). 

Var X = al cx'2/(a l + a2 + I )(a l + (2)2
. 

6.  vi r  (n ; l)/r (�) . 
8. a2(al + a2 - 1 )/(a l  - I)2(al - 2) for al > 2. 

9. EY = 3/2;". Var Y = 5/4;"2 . 

1 0. EX = 2R/3, Var X = R2/1 8.  

1 1 . EX = 0, Var X = R2/4. 

1 2. EZ = (1.J n/2, Var Z = (12(2 - n/2). 

1 3. EY = 2(1.J2/�, Var Y = (12(3 - 8/n). 

1 4. EX = 0, Var X = 1 /2. 

1 5. (a) E I X I == (1.J 2/n, Var I X I = (12(1 - 2/n) ; 
(b) EX2 = a2, Var X2 = 2(14 ; 
(c) EetX = ealtl/2, Var etX = e2alt2 _ ea2t2 • 

1 6. EetX = ( __ l_)« for t < 1. 
;" - t 

1 7. EXr = r(a + r )/r(a);"r for r > - a. 

1 9. EXk = k/(n + 1), Var Xk = k(n - k + I )/n + I )2(n + 2). 
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20. ER = (n - l)/(n + 1), Var R = 2(n - l)/(n + 1)2(n + 2). 
21 . p = 1 /4. 
22. EZ = p,a/l, Var Z = a(a2a + a2 + p,2)/12.  
25. P3 > .458. 
26. E [Y I X = x] = x, 0 < x < 1 ;  E [Y I X = x] = 2 - x, 1 < x < 2; and 

E [Y I X = x]  = 0 elsewhere. 

27. E [X I Z = z] = alz/(al + (2) for z > 0 and 0 elsewhere. 

28. E [n I Y = y 1 = (al + y)/(al + a2 + n), y = 0, 1 ,  2, . . .  , n, and 0 elsewhere. 

33. P(X � x) � <f)« lx - a)/��). 
34. (a) EX; = a2 and Var xl = 2a4• 

(b) p(Xf + .. . .  + X; < x) � <I>« x - na2)/a2Y2n). 
35. (a) .921 . (b) .842. (c) 23 .26. (d) 27.71 . 
36 . . 9773. 
39 . . 0053.  

37 . . 02. 

40. (a) ix(x) � A,- 1 /2 tp« x - l)/��), 

38 . . 041 5. 

(b) fx(x) � <f)« x + 1 /2 - l)/��) - <f)« x - 1/2 - l)/��). 
41 . 1 /� nn. 
42. 1 /� nn. Approximation (1 5) is not directly applicable because the greatest common 

divisor of the: set {x - 1 I x is a possible value of S I }  is two rather than one. 

43 . .  1 33 .  44 . . 523 . 45. n � 6700. 
46. 551 .  

C H A PTER . 

1 .  Mx(t) = (ebt - eGt)/(b - a)t, t =1= 0, and Mx(O) = 1 .  

2 .  eGtMx(bt). 
4. (a) Mx(t) = [PI(1 - et(1 - p» J', - 00 < t < log (1 /(1 - p» . 
5. (b) (2n) ! 

6. (a) dMx(t) = npet(pet + 1 - p)"- l and 
dt 

d2MX(t) = nJ,et(pet + 1 _ p)"- l + n(n _ 1)p2e2t(pet + 1 _ p)n-2. 
dt 2 

1 0. el(eit- l ). 1 1 .  p/(1 - e't(l - p» . 
1 2. [P/(1 - eif(l - p» 1". 1 3. [1/(1 - it) 1". 
1 4. tpx(t) = <f)x(e"). 
21 . (a) tl'x+ y(t) = :  e- 2 lt l  and tp(X+ Y)/2(t) = e- 1t l • 

23. (b) lim P (Xl -= 1 < x) = cI>(x) , - 00 < x < 00 . 
l-+«>  v'l 
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C HAPTE R 9 

2. (a) 1 /3, (b) 0, (c) 1 250. 
3. (a) « 10/9)50 - (10/9)75)/(1 - (10/9)7 5) � .93, 

(b) � $44.75, 
(c) � 850. 

6. For x = y 

P ( ) - 1 - b - a 
{a,b} y, Y -

2(y - a)(
b 

_ y) 
and 

G ( ) = 2(y - a)(b - y) _ 1 {a,b} y, Y b 
. 

For x < y 
x - a 

P{a,b}(X, y) = -
y - a 

and 

- a 

G ( ) _ 2(x - a)(b - y) 
{a b} x, Y - · , . b - a 

For x > y 
b - x 

P{a,b}(X, y) = b 
- y  

and 

G ( ) _ 2(y - a)(b - x) 
{a,b} x, Y - . 

b - a 
7. For x = y 

p{O}(y, y) = 1 - 1 /2y and G{O}(Y' y) = 2y - 1 . 
For x < y 
p{O}(x, y) = x/y and G{O}(x, y) = 2x. 
For x > y 
p{O}(x, y) = 1 and G{O}(x, y) = 2y. 

8. For x = y 
P0(y, y) = 1 + q - p and G0(y, y) = 1 + q - p . 

For x < y 
P0(x, y) = 1 and G0(x, y) = 1 /(p - q). 
For x > y 

p - q  

P0(x, y) = (.ll)X-" and G(lJ(x, y) = (q/p)X-" . 
.p p - q 

9. P{o}( - I , - 1) = q and G{o}( - I , - 1) = !I .  
p 

For y < - 1  
p - q 1 P (- 1 y) -- and G ( 1 y) - --to} , -- q [(q/p)" _ 1 ] 

to} - , - q(q/p)"
. 

1 1 . p = ;2 LOO ( LR xf(x -+ z)dx )dZ. 

249 
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1 5. Pk(r, n) = � � ( _ 1 )1 r � 1 _ 1__ . ( ) r-k ( k) ( . + k)n 
k 1= 0  1 r 

1 6. (a) 1 - e-).h, (b) 1 - e-).h. 
1 7.  Fzt(x) = 0, x < 0 ;  and Fzt(x) = 1 - e- ).x, x > O. 

1 8. Fyt(x) = 0, x < 0 ;  Fy/x) = 1 - e-).X, 0 < x < t ;  and Fyt(x) = 1 ,  x � t. 

1 9. (b) Fyt+zt(x) = 0, X < 0 ; Frt+z.<x) = 1 - e-Ax(1 + Ax), 0 < x < t ;  
and Fyt+Zt(x) = 1 - e- X(I + At), t s x < 00 .  

20. Ae-).. 
21 . fNT(k) = VAk/(A + v)k+ 1 , k = 0, 1 ,  2, . . . , and zero elsewhere. 

22. fNT(k) = � [ 1 - e-Aa ± (.l.�)�] , k = 0, 1 ,  2, . . .  , and zero elsewhere. 
Aa _ j= O J ! 

23. A l /(Al + A2)' 
2nx ( x2)n- l 

24. fDt(x) = --;I 1 -
r 2 , 0  S x < r, and 0 elsewhere. 

25. EDT = rmn ! r (; + 1) jr (; + n + 1
) 

. 

26. (a) A2 1A I 2 + A lA I , (b) A2 1A I IB I + AlA (") B I . 
29. (a) fDm(r) = 3(4nA/3)mr 3m- le-4 1t).r3/3/(m - I ) ! , r > 0, and 0 elsewhere. 

(b) Gamma density r(m, 4nA/3). 
30. (a) fDm(r) = (nA)mr 2m- t  e- 1C).r2/2/2m- 1 (m - I ) !, r > 0, and 0 elsewhere. 

(b) EDm = (An/2)- 1 /2 r(m + 1 /2) and ED;' = 2m 
. 

(m - I ) !  nA 
1 it 1 - e-Ilt 

31 .  (a) Pt = - e-Il(t-s) ds = . 
I () pI 
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Table I Values of the standard DOrmal distributioD functioD 

Jz I (f)(z) = -- e - u2 /2 du = P(Z s z) 
- 00 vT,; 

-

z () 1 2 3 4 5 6 7 8 9 

- 3 . .00 1 3 .001 0 .0007 .0005 .0003 .0002 .0002 .0001 .000 I .0000 

- 2.9 .00 1 9  .00 1 8  .00 1 7  .00 1 7  .001 6 .00 1 6  .00 1 5  .00 1 5 .00 1 4  .00 1 4  
- 2.8  .0026 .0025 .0024 .0023 .0023 .0022 .002 1 .0020 .0020 .00 1 9  
- 2.7  .003 5 .0034 .0033 .0032 .003 1 .0030 .0029 .0028 .0027 .0026 
- 2. 6  .0047 .0045 .0044 .0043 . 004 1  .0040 .0039 .0038 .0037 .0036 
- 2 .5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .005 1 .0049 .0048 
- 2.4 .0082 .0080 .0078 .0015 .0013 .001 1 .0069 .0068 .0066 .0064 
- 2. 3  .0 1 07 .0 1 04  .0 1 02 .0099 .0096 .0094 .009 1 .0089 .0087 .0084 
- 2 .2 .0 1 39 .0 1 36 .01 32 .0 1 29 .0 1 26 .0 1 22 .0 1 1 9  .0 1 1 6  .0 1 1 3  .0 1 1 0  
- 2. 1  .01 79 .0 1 74 .0 1 10 .01 66 .01 62 .0 1 58 .01 54 .0 1 50 .0 1 46 .0 1 43 
- 2.0 .0228 .0222 .02 1 7  .02 1 2  .0207 .0202 .01 97 .01 92 .01 88 .01 83 
- 1 .9 .0287 .028 1 .0274 .0268 .0262 .0256 .0250 .0244 .0238 .023 3 
- 1 . 8  .0359 .0352 .0344 .0336 .0329 .0322 .03 14 .0307 .0300 .0294 
- 1 .7 .0446 .043 6 .0427 .04 1 8  .0409 .040 1 .0392 .0384 .0375 .0367 
- 1 .6 .0548 .0537 .0526 .05 1 6  .0505 .0495 .0485 .0475 .0465 .0455 
- 1 .5 .0668 .0655 .0643 .0630 .06 1 8 .0606 .0594 .0582 .0570 .0559 
- 1 .4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .068 1 
- 1 . 3  .0968 .095 1 .0934 .09 1 8  .090 1 .0885 .0869 .0853 .0838 .0823 
- 1 . 2  . 1 1 5 1  . 1 1 3 1  . 1 1 1 2 . 1 093 . 1 075 . 1 056 . 1 038 . 1 020 . 1 003 .0985 
- 1 . 1  . 1 3 57 . 1 33 5  . 1 3 14 . 1 292 . 1 21 1  . 1 25 1  . 1 230 . 1 2 1 0 . 1 1 90 . 1 1 10 
- 1 .0 . 1 5 87 . 1 562 . 1 539 . 1 5 1 5  . 1 492 . 1 469 . 1 446 . 1 423 . 1 40 1  . 1 379 
- .9 . 1 84 1  . 1 8 1 4  . 1 788 . 1 762 . 1 736 . 1 7 1 1 . 1 685 . 1 660 . 1 635 . t eS I I 
- . 8  . 2 1 1 9  .2090 .206 1  .2033 .2005- . 1 977 . 1 949 . 1 922 . 1 894 . 1 867 
- .7 .2420 .2389 .2358 .2327 .2297 .2266 .2236 .2206 .2 1 77 . 2 1 48 
- . 6  .2743 .2709 .2676 . 2643 .26 1 1 .2578 .2546 . 25 1 4 .2483 .245 1 
- . 5  . 3085 . 3050 . 30 1 5 . 298 1 .2946 .29 1 2  .2877 . 2843 .28 1 0  .2176 
- .4 .3446 .3409 .3372 . 3336 .3300 .3264 . 3228 . 3 1 92 . 35 1 6  .3 :1 2 1  
- .3  . 38:2 1 .3783 .3745 . 3707 . 3669 . 3632 . 3594 . 3557 . 3 520 .3483 
- .2 .42�07 .4 1 68 .4 1 29 .4090 .4052 .40 1 3 . 3974 . 3936 .3 897 . 3��59 
- . 1  .4602 .4562 .4522 .4483 .4443 .4404 .4364 . 4325 .4286 .4247 
- .0 . 5()()() .4960 .4920 .4880 .4840 .4801 .476 1 .412 1 .468 1 .464 1 

Reprinted with ]permission of The Macmillan Company from INTRODUcnON' TO 
PROBABILITY AND STATISTICS, second edition, by B. W. Lindgren and G. W. 
McElrath. Copyright © 1966 by B. W. Lindgren and G. W. McElrath. 
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Table I Values of the standard normal distribution function 

z 0 1 2 3 4 5 6 7 8 9 
-- -

.0 .5000 .5040 .5080 . 5 1 20 .5 1 60 . 5 1 99 . 5239 .5279 .53 19 .5359 

. 1  .539'8 .5438 .5478 .5 � 1 7  .5557 .5596 .5363 .5675 .57 14  . S753 

.2 .5793 .5832 . 587 1 . 59 1 0  . 5948 .5987 .6026 .6064 .6 103 . 6 14 1  

. 3  .6 1 79 .62 1 7  .6255 .6293 .633 1 .6368 .6406 .6443 .6480 .65 1 7  

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .69 1 5 .6950 .6985 .70 1 9  .7054 .7088 .7 1 23 .7 1 57 .7 1 90 .7224 

.6 .7257 .729 1 .7324 .7357 .7389 .7422 .7454 .7486 . 75 1 7  .7549 

.7  .7580 .761 1 .7642 .7673 .7703 .7734 .7764 .7974 .7823 . 7852 

.8 .788 1 .79 1 0  .7939 .7967 .7995 .8023 .805 1 .8078 .8 1 06 . 8 1 33 

.9 .8 1 59 .8 1 86 .82 12  .8238 .8264 .8289 .83 1 5  . 8340 .8365 .8389 
1 .0 .84 1 3  .8438 .846 1 .8485 .8508 .853 1 .8554 .8577 .8599 .862 1 
1 . 1  .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .88 1 0  .8830 
1 .2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .90 1 S  
1 . 3 .9032 .9049 .9066 .9082 .9099 .9 1 1 5  . 9 1 3 1  .9 147 .9 1 62 .9 1 77 
1 .4 .9 1 92 .9207 .9222 .9236 .925 1 .9265 .9278 .9292 .9306 .93 1 9  
1 . 5 .9312 .9345 .9357 .9370 .9382 .9394 .9406 .94 1 8 .9430 .944 1 
1 .. 6 .945:2 .9463 .9474 .9484 .9495 .9505 .95 1 5  .9525 .9535 .9545 
1 .7 .9554 .9564 .9573 .9582 .9591  .9599 .9608 .96 1 6  .9625 .9633 
1 .8 .964 1 .9648 .9656 .9664 .967 1 .9678 .9686 .9693 .9700 .9706 
1 .9 .97 1 3  .97 1 9  .9726 .9732 .9738 .9744 .9750 .9756 .9762 .9767 
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .98 1 2  .98 1 7  
2. 1 .982 1 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 
2.2 .986 1 .9864 .9868 .987 1 .9874 .9878 .988 1 .9884 .9887 .9890 
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .99 1 1 .99 1 3 .99 1 6  
2.4 .99 1  :8 .9920 .9922 .9925 .9927 .9929 .993 1 .9932 .9934 .9936 
2.5 .9938 .9940 .994 1 .9943 .9945 .9946 .9948 .9949 .995 1 .9952 
2.6 .995:3 .9955 .9956 .9957 .9959 .9960 .996 1 .9962 .9963 .9964 
2.7 .996:5 .9966 .9967 .9968 .9969 .9970 .997 1 .9972 .9973 .9974 
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 . 9980 .998 1 
2.9 .998 1 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 
-- -
3 .  .9987 .9990 .9993 .9995 .9997 .9998 .9998 .9999 .9999 1 .0000 

Note I :  If a normal variable X is not " standard," its values must be " standardized " : Z = (X - "')/0. That (X - ") is, P(X � x) = cJ' -a- . 
Note 2 :  For I t  two-tail " probabilities, see Table lb. 
Note 3 :  For z ;� 4, �x) - � to four decimal plaees ; for z � -A, t/>(z) = .0 to four decimal places,. 
Note 4 :  The eruries opposito z - 3 are for 3.0, 3. 1 ,  3.2, etc. 
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Absolutely continuotLls distribution function, 
l I S 

Bayes' rule, 1 7, I SS 

Bernoulli distribution, 66. See also Binomial 
distribution 

Bernoulli trials, 66 
infinite sequence:s of, 70 

Beta distribution, 148 

Beta function, 149 

Binomial coefficients�� 31 

Binomial distribution, 51  
application of �Chebyshev's Inequality, 

102 
Bernoulli trials, 66 
mean, 83, 89 
moment generating function, 198 
normal approxirnation, 1 88, 1 90  
Poisson approxilmation, 69 
probability generating function, 73 
sums of binomisLI random variables, 75 
variance, 97 

Birthday problem, 29 

Bivariate distribution, 143 
normal, 1 72 
standard normall, 144 

Cauchy distribution, 1 22 
sum of Cauchy random variables, 21 S 

Central Limit Theorc�m, 1 85, 212  
application to s2lmpling, 190 
local form, 1 87- 1 89 
normal approxirnation, 1 86 

Change of variable� formula, multidimen
sional, 1 66-168 

one-dimensional, 1 19 

Characteristic functi()n, 200 
Continuity The()rem, 208 . 
inversion formulla, 205-207 
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Index 

sum of independent random variables, 
204 

Uniqueness Theorem, 208 

Chebyshev's Inequality, 101 

Chi-square (X2) distribution, 164 
mean, 1 77 
moments, 1 77 
variance, 1 77 

Combinations, 3 1-34 

Committee membership, 32 

Complement of an event, 3, 6 

Complex numbers, 200--202 

Complex-valued random variable, 202 

Conditional density, discrete, 107 
in Bayes' rule, 1 55 
with respect to integration, 1 53, 11 60 

Conditional expectation, continuous random 
variable, 1 82 

discrete random variable, 108 

Conditional probability, 1 4  
involving random variables, S7 

Constant random variable, S2 
characteristic function, 202 

Continuity Theorem, 208 

Continuous random variable, 109, 1 1 3 

Convolution, 1 46 

Correlation coefficient, 99, 1 76 

Coupon problem, 46 

Covariance, 96, 1 05, 1 76, 1 78 

Decay, exponential, 5, I I I  
Deciles, 1 33 

DeMoivre-Laplace Limit Theorem, 1 84 

De Morgan's laws, 1 0  

Density. See Discrete density ; Density with 
respect to integration 
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Density with respect to integration, 1 1 5 
beta, 1 48 
bivariate, 1 40, 143 
chi-square (x2), 1 64  
conditional, 1 017, 1 53, 1 60 
exponential, 1 1 9 
F, I 64 
gamma, 1 29 
joint, 1 40, 143, 1 57, 1 58 
marginal, 1 4 1 ,  1 58 
Maxwell, 1 71 
normal, 1 25 
Rayleigh, 1 70 
symmetric, 1 23 
t, 1 65 

Discrete density function, 50, 54 
Bernoulli, 66 
binomial, 5 1  
conditional, 1 07 
geometric, 55 
hypergeometric:, 52 
joint, 62 
marginal, 62 
multinomial, 68 
negative binomlial, 55 
Poisson, 56 
symmetric, 1 23 

Discrete random va.riable, 50 

Discrete random vector, 61 

Distribution, 51 

Distribution function, 1 1 0, 1 1 5 
absolutely continuous, 1 1 5 
Cauchy, 1 22 
discrete randoIlO variable, 57-58 
gamma, 1 30 
geometric, 59 
inverse, 1 3 1  
joint, 1 39, 1 57 
marginal, 140, 1 57 
normal, 1 25 
properties, 1 1 2 
symmetric densiity, 1 24 
transformations involving, 1 3 1 
uniform, 1 1 8 

Error function, 1 36 

Events, 3, 6 
complement, 3, 6 
independent, 1 9, 20 
intersection, 3, 6 
union, 3, 6, 38 

Expectation, complex-valued random vari-
able, 202 

conditional, 1 08,  1 82 
continuous random variable, 1 73 
discrete randonll variable, 84 
function of random variables, 86, 1 76 

general definition, 1 76 
properties, 85, 1 76 

Exponential decay, 5, 1 1 1  

Exponential distribution, 1 1 9, 1 26 
characteristic function, 203-204 
mean, 1 74 
moment generating function, 1 98 
moments, 1 77 
special property, 1 27 

Index 

sums of exponential random variables, 
1 46, 1 59, 1 68 

variance, 1 77 
waiting times for Poisson process, 230 

F distribution, 1 64  

Failure rate, 1 37 

Field of sets, 7 
sigma field, 7 

Gamma distribution, 1 29 
distance to particles in Poisson process, 

229 
mean, 1 74 
moment generating function, 1 98 
moments, 1 77 
normal approximation, 1 85-1 86 
quotients of gamma random variables, 

1 52 
sums of gamma random variables, 1 48, 

1 59 
variance, 1 77 
waiting times in Poisson process, 230 

Gamma function, 1 29 

Geometric distribution, 55, 56 
distribution function, 59 
mean, 84-85, 91 , 96 
probability generating function, 73 
special property, 59-60 
sums of geometric random variables, 

72, 75-76 
variance, 96 
waiting times in Bernoulli trials, 70 

Half-life, 1 33 

Hypergeometric distribution, 52 
mean, 90 
variance, 98 

Independent events, 1 9, 20 

Independent random variables, 63, 64, 66, 
1 42, 1 43, 1 54, 1 58, 1 59 

quotients, 1 5 1  
sums, 72, 1 46 



Index 

Indicator random variable, 52. See also 
Bernoulli distribution 

Intersection of events, 3, 6 

Inversion formulas involving characteristic 
functions, 205-207 

J acobians, 1 67 

Joint density, discrete, 61 , 62 
with respect to integration, 140, 1 43, 

1 57, 1 58 

Joint distribution function, 1 39, 1 57 

Lognormal distribution, 1 36 

Lower decile, 1 33 

Lower quartile, 1 33 

Marginal density, discrete, 62 
with respect to iintegration, 1 4 1 ,  1 58 

Marginal distribution function, 140, 1 57 

Matching problems, 3 1 ,  40 

Maxwell distribution, 1 7 1  

Maxwell's law, 1 26 

Mean, 83, 1 76 

Median, 1 33 

Moment generating function, 1 97 
computation of moments, 1 99 
sum of independent random variables, 

199 

Moments, 92, 1 76-1 77 
central, 92, 1 76--1 77 

Multidimensional change of variables, 1 66-
1 68 

Multinomial distribution, 68 
application to order statistics, 1 63 
connection with Poisson process, 226 

Mutually independent events, 19-20 

Mutually independent random variables. 
See Independent random variables 

Negative binomial distribution, 55 
mean, 95-96 
normal approxilmation, 1 85-1 86 
probability gen(;�rating function, 73 
sums of negative binomial random vari

ables, 75 
variance, 95-96 
waiting times in Bernoulli trials, 71 

Normal approximation, 1 86 

Normal distribution, 1 24-126 
bivariate, 1 72 
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Central Limit Theorem, 1 84-1 85l1 2 1 2  
characteristic function, 204-205 
inversion formula, 207 
mean, 1 78 
moment generating function, 1 97-1 98 
moments, 1 78, 1 99-200 
normal approximation, 1 86 
sampling distributions, 1 63 
standard, 1 25 
standard bivariate, 1 43-144 
sums of normal random variabl�es, 1 49, 

1 59 
transformations involving, 1 32 
variance, 1 78 

Occupancy problems, 43 

Order statistics, 1 60 

Ordered samples, 27-30 

Pairwise independent events, 1 9  

Partitions, 34-38 

Percentiles, 1 33 

Permutations, 29-3 1 

Poisson approximation to binomial dis
tribution, 69 

Poisson distribution, 56 
approximation to binomial distriibution, 

69 . 
mean, 84 
moment generating function, 1 98 
normal approximation, 1 85 
probability generating function, 74 
relation to gamma distribution, 1. 30 
sums of Poisson variables, 75 
variance, 96 

Poissofl process, 228 
distance to mth nearest particle, 228 
waiting times, 230 

Poker hand, 47 

Polya's urn scheme, 1 8  

Possible value, 50 

Probability generating function, 73 
computation of moments, 94 
sums of independent random va.riables, 

74 

Probability measure, 8 

Probability space, 8 

Probability the6ry, 1 

Probable error, 1 34 

Quartiles, 1 33 

Quotients of random variables, 1 50 
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Random sample, 1 01 

Random variable, 1 1 0 
complex-valued, 202 
continuous, 1 09, 1 1 3 
discrete, 50 
symmetric, 1 23 

Random walk, 2 1 6  
simple, 220 

Range, 1 60  

Rayleigh distribution, 1 70 

Regression function, 1 82 

Relative frequency interpretation, 1-3 
conditional probability, 1 4  
expectation, 82 

Sampling distributions, 1 63 

Sampling with replacement, 28. See also 
Binomial distribution 

Sampling without re:placement, 29, 3 1 ,  37-38, 
52 

Schwarz inequality, 99 

Sigma field (G-field) of subsets, 7 

Simple random walk, 220 

Standard bivariatc;� normal distribution, 
1 43-144 

Standard deviation, 94, 1 76 

Standard normal distribution, 1 25 

Statistical regularity, 1 

Stochastic process, 2 1 6  

Sums of independeDlt random variables 
characteristic function, 204 
continuous, 1 4j; 
discrete, 72 
moment generating function, 1 99 
probability gen4erating function, 74 
variance, 97 

Symmetric density, 1 23 
median, 1 33 
moments, 1 78 

Symmetric probability space, 9, 27 

Symmetric random variable, 1 23 
median, 1 33 
moments, 1 78 

t distribution, 1 65 

Uncorrelated random variables, 99 

Uniform distribution, discrete, 55 
mean, 82-83 

Index 

Uniform distribution on an interval, 1 1 8 
characteristic function, 203 
mean, 1 73 
transformations involving, 1 3 1-1 32 

Uniform probability space, 9-10 

Union of events, 3, 6, 38 

Uniqueness theorem involving characteristic 
funCtions, 208 

Unordered samples, 3 1 -34 

Upper decile, 1 33 

Upper k-percentile, 1 33 

Upper quartile, 1 33 

Variance, 93, 1 76, 1 77 

Waiting times, Bernoulli trials, 70 
Poisson process, 230 

Wald's identities, 2 1 7-21 8  

Weak Law o f  Large Numbers, 1 02, 21 1 
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