
1

Fundamental Engineering Optimization Methods

Second Edition

Kamran Iqbal

2

Contents
Preface .. 5

1 Engineering Design Optimization .. 6

 Introduction .. 6 1.1

 Optimization Examples in Science and Engineering ... 7 1.2

 Notation .. 13 1.3

2 Mathematical Preliminaries .. 14

 Set Definitions ... 14 2.1

 Function Definitions .. 15 2.2

 Gradient Vector and Hessian Matrix ... 15 2.3

 Taylor Series Approximation ... 17 2.4

 Properties of Convex Functions .. 18 2.5

 Matrix Eigenvalues and Singular Values ... 19 2.6

 Quadratic Function Forms .. 20 2.7

 Vector and Matrix Norms ... 21 2.8

 Linear Systems of Equations ... 21 2.9

 Linear Diophantine System of Equations .. 23 2.10

 Condition Number and Convergence Rates .. 24 2.11

 Newton’s Method for Solving Nonlinear Equations ... 25 2.12

 Conjugate-Gradient Method for Solving Linear Equations ... 25 2.13

3 Graphical Optimization ... 27

 Functional Minimization in One-Dimension ... 27 3.1

 Graphical Optimization in Two-Dimensions ... 28 3.2

4 Mathematical Optimization .. 35

 The Optimization Problem .. 35 4.1

 Optimality criteria for the Unconstrained Problems .. 36 4.2

4.2.1 First Order Necessary Conditions (FONC) ... 37

4.2.2 Second Order Conditions (SOC) .. 37

 Optimality Criteria for the Constrained Problems .. 39 4.3

4.3.3 Equality Constrained Problems ... 39

4.3.4 Inequality Constrained Problems .. 43

 Optimality Criteria for General Optimization Problems ... 45 4.4

3

4.4.1 Optimality Criteria for Convex Optimization Problems .. 47

4.4.2 Second Order Conditions .. 48

 A Geometric Viewpoint ... 50 4.5

 Postoptimality Analysis ... 51 4.6

 Duality Theory ... 53 4.7

4.7.1 Local Duality .. 53

4.7.2 Strong and Weak Duality .. 54

4.7.3 Duality in Convex Optimization Problems .. 55

4.7.4 Separable Problems .. 56

5 Linear Programming Methods .. 58

 The Standard LP Problem .. 58 5.1

 Solution to the LP Problem ... 59 5.2

5.2.1 The Basic Solution to the LP Problem ... 60

 The Simplex Method ... 61 5.3

5.3.1 The Simplex Algorithm .. 61

5.3.2 Tableau Implementation of the Simplex Algorithm .. 63

5.3.1 Obtaining an Initial BFS ... 65

5.3.2 Final Tableau Properties ... 70

 Postoptimality Analysis ... 70 5.4

 Duality Theory for the LP Problems .. 74 5.5

5.5.1 Fundamental Duality Properties ... 75

5.5.2 The Dual Simplex Method ... 76

5.5.3 Recovery of the Primal Solution.. 77

 Optimality Conditions for LP Problems ... 80 5.6

5.6.1 KKT Conditions for LP Problems .. 81

5.6.2 A Geometric Viewpoint ... 82

 The Quadratic Programming Problem .. 83 5.7

5.7.1 Optimality Conditions for QP Problems .. 83

5.7.2 The Dual QP Problem .. 85

 The Linear Complementary Problem .. 86 5.8

 Non-Simplex Methods for Solving LP Problems.. 90 5.9

6 Discrete Optimization ... 93

4

 Discrete Optimization Problems ... 93 6.1

 Solution Approaches to Discrete Problems .. 94 6.2

 Linear Programming Problems with Integral Coefficients .. 95 6.3

 Binary Integer Programming Problems ... 95 6.4

 Integer Programming Problems .. 97 6.5

6.5.1 The Branch and Bound Method .. 98

6.5.2 The Cutting Plane Method .. 100

7 Numerical Optimization Methods .. 103

 The Iterative Method .. 103 7.1

 Computer Methods for Solving the Line Search Problem .. 105 7.2

7.2.1 Interval Reduction Methods ... 105

7.2.2 Approximate Search Algorithms ... 107

 Computer Methods for Finding the Search Direction .. 109 7.3

7.3.1 The Steepest Descent Method .. 109

7.3.2 Conjugate-Gradient Methods ... 111

7.3.3 Newton’s Method ... 114

7.3.4 Quasi-Newton Methods .. 115

7.3.5 Trust-Region Methods .. 117

 Computer Methods for Solving the Constrained Problems .. 118 7.4

7.4.1 Penalty and Barrier Methods .. 119

7.4.2 The Augmented Lagrangian Method .. 120

 Sequential Linear Programming .. 122 7.5

 Sequential Quadratic Programming.. 124 7.6

7.6.1 Descent Function Approach .. 125

7.6.2 SQP with Approximate Line Search ... 126

7.6.3 The Active Set Strategy ... 127

7.6.4 SQP Update via Newton’s Update .. 128

7.6.5 SQP with Hessian Update .. 130

References .. 132

5

Preface

This book is addressed to students in fields of engineering and technology as well as practicing engineers.

It covers the fundamentals of commonly used optimization methods used in engineering design.

Optimization methods fall among the mathematical tools typically used to solve engineering problems. It

is therefore desirable that graduating students and practicing engineers are equipped with these tools and

are trained to apply them to specific problems encountered in engineering practice.

Optimization is an integral part of the engineering design process. It focuses on discovering optimum

solutions to a design problem through systematic consideration of alternatives, while satisfying resource

and cost constraints. Many engineering problems are open-ended and complex. The overall design

objective in these problems may be to minimize cost, to maximize profit, to streamline production, to

increase process efficiency, etc. Finding an optimum solution requires a careful consideration of several

alternatives that are often compared on multiple criteria.

Mathematically, the engineering design optimization problem is formulated by identifying a cost function

of several optimization variables whose optimal combination results in the minimal cost. The resource

and other constraints are similarly translated into mathematical relations. Once the cost function and the

constraints have been correctly formulated, analytical, computational, or graphical methods may be

employed to find an optimum. The challenge in complex optimization problems is finding a global

minimum, which may be elusive due to the complexity and nonlinearity of the problem.

This book covers the fundamentals of optimization methods for solving engineering problems. Written by

an engineer, it introduces fundamentals of mathematical optimization methods in a manner that engineers

can easily understand. The treatment of the topics presented here is both selective and concise. The

material is presented roughly at senior undergraduate level. Readers are expected to have familiarity with

linear algebra and multivariable calculus. Background material has been reviewed in Chapter 2.

The methods covered in this book include: a) analytical methods that are based on calculus of variations;

b) graphical methods that are useful when minimizing functions involving a small number of variables;

and c) iterative methods that are computer friendly, yet require a good understanding of the problem. Both

linear and nonlinear methods are covered. Where necessary, engineering examples have been used to

build an understanding of how these methods can be applied. Though not written as text, it may be used

as text if supplemented by additional reading and exercise problems from the references.

There are many good references available on the topic of optimization methods. A short list of prominent

books and internet resources appears in the reference section. The following references are main sources

for this manuscript and the topics covered therein: Arora (2012); Belegundu and Chandrupatla (2012);

Chong and Zak (2013); and, Griva, Nash & Sofer (2009). In addition, lecture notes of eminent professors

who have regularly taught optimization classes are available on the internet. For details, the interested

reader may refer to these references or other web resources on the topic.

6

1 Engineering Design Optimization

This chapter introduces the topic of optimization through example problems that have been selected from

various fields including mathematics, economics, computer science, and engineering.

Learning Objectives: The learning goal in this chapter is to develop an appreciation for the topic as well

as the diversity and usefulness of the mathematical and computational optimization techniques to be

introduced in later chapters.

 Introduction 1.1

Engineering system design comprises selecting one or more variables to meet a set of objectives. A better

design is obtained if an appropriate cost function can be reduced. The design is optimum when the cost is

the lowest among all feasible designs. Almost always, the design choices are limited due to resource

constraints, such as material and labor constraints, as well as physical and other restrictions. A feasible

region in the design space is circumscribed by the constraint boundaries. More importantly, both the cost

function and the constraints can be cast as mathematical functions involving design variables. The

resulting mathematical optimization problem can then be solved using methods discussed in this book.

Engineering system design is an interdisciplinary process that necessitates cooperation among designers

from various engineering fields. Engineering design can be a complex process. It requires assumptions to

be made to develop models that can be subjected to analysis and verification by experiments. The design

of a system begins by analyzing various options. For most applications the entire design project must be

broken down into several subproblems which are then treated independently. Each of the subproblems

can be posed as an optimum design problem to be solved via mathematical optimization.

A typical optimum engineering design problem may include the following steps: a descriptive problem

statement, preliminary investigation and data collection as a prelude to problem formulation,

identification of design variables, optimization criteria and constraints, mathematical formulation of the

optimization problem, and finding a solution to the problem. This text discusses the last two steps in the

design process, namely mathematical formulation and methods to solve the design optimization problem.

Engineering design optimization is an open-ended problem. Perhaps the most important step toward

solving the problem involves correct mathematical formulation of the problem. Once the problem has

been mathematically formulated, analytical and computer methods are available to find a solution.

Numerical techniques to solve the mathematical optimization problems are collectively referred as

mathematical programming framework. The framework provides a general and flexible formulation for

solving engineering design problems.

Some mathematical optimization problems may not have a solution. This usually happens due to

conflicting requirements of incorrect formulation of the optimization problem. For example, constraints

may be restrictive so that no feasible region can be found, or the feasible region may be unbounded due to

7

a missing constraint. In this text we will assume that the problem has been correctly formulated so that the

feasible region is closed and bounded.

 Optimization Examples in Science and Engineering 1.2

We wish to introduce the topic of optimization with the help of practical examples. These examples have

been selected from various STEM (science, technology, engineering, mathematics) fields. Each example

requires finding the optimal values of a set of design variables in order to optimize (maximize or

minimize) a generalized cost that may represent the manufacturing cost, profit, energy, power, distance,

mean square error, and so on. The complexity of the design problem grows with number of variables

involved. Each of the simpler problems, presented first, involves a limited number of design variables.

The problems that follow are more complex in nature and may involve hundreds of design variables.

Mathematical formulation of each problem is provided following the problem definition. While the

simpler problems are relatively easy to solve by hand, the complex problems require the use of

specialized optimization software in order to find a solution.

Problem 1: Shortest distance problem

Find the shortest distance from a given point (𝑥0, 𝑦0) to a given curve: 𝑦 = 𝑓(𝑥).

Formulation: The optimization problem is mathematically formulated to minimize the Euclidian

distance from the given point to the curve:

min
𝑥,𝑦

 𝑓 =
1

2
{(𝑥 − 𝑥0)

2 + (𝑦 − 𝑦0)
2}

Subject to: 𝑦 = 𝑓(𝑥)
(1.1)

Problem 2: Open box problem

What is the largest volume for an open box that can be constructed from a given sheet of paper

(8.5”x11”) by cutting out squares at the corners and folding the sides?

Formulation: Let 𝑥 represent the side of the squares to be cut; then, the unconstrained

optimization problem is formulated as:

max
𝑥

 𝑓 = 𝑥(8.5 − 2𝑥)(11 − 2𝑥) (1.2)

Problem 3: Logging problem

What are the dimensions of a rectangular beam of maximum dimensions (or volume) that can be

cut from a log of given dimensions?

8

Formulation: Let [2𝑥, 2𝑦] represent the width and height of the beam to be cut (with origin at

the center); let 𝑑 represent the diameter of the log. Then, the optimization problem is formulated

as:

max
𝑥,𝑦

 𝑓 = 4𝑥𝑦

Subject to: 𝑥2 + 𝑦2 − 𝑑2 ≤ 0
(1.3)

Problem 4: Ladder placement problem

What are the dimensions (width, height) of the largest box that can be placed under a ladder of

length 𝑙 when the ladder rests against a vertical wall?

Formulation: Let [𝑥, 𝑦] represent the dimensions of the box, and let (𝑎, 0) and (0, 𝑏) represent

the horizontal and vertical contact points of the ladder with the floor and the wall, respectively.

Then, the optimization problem is mathematically formulated as:

max
𝑥,𝑦

 𝑓 = 𝑥𝑦

Subject to:
𝑥

𝑎
+

𝑦

𝑏
≤ 1, 𝑎2 + 𝑏2 = 𝑙

(1.4)

Problem 5: Soda can design problem

Design a soda can (choose diameter 𝑑 and height ℎ) to hold a volume of 200 ml, such that the

manufacturing cost (a function of surface area) is minimized and the constraint ℎ ≥ 2𝑑 is obeyed.

Formulation: Let 𝒙𝑇 = [𝑑, ℎ] represent the diameter and length of the can. Then, the

optimization problem is formulated to minimize the surface area of the can as:

min
𝑑,𝑙

 𝑓 =
1

2
𝜋𝑑2 + 𝜋𝑑ℎ

Subject to: 1
4
 𝜋𝑑2ℎ = 200, 2𝑑 − ℎ ≤ 0

(1.5)

Problem 6: Simplified manufacturing problem

A manufacturer produces two products: tables and chairs. Each table requires 10 kg of material

and 5 units of labor, and earns $7.50 in profit. Each chair requires 5 kg of material and 12 units of

labor, and earns $5 in profit. A total of 60 kg of material and 80 units of labor are available. Find

the best production mix to earn maximum profit.

Formulation: Let 𝑥𝑇 = [𝑥1, 𝑥2] represent the quantities of tables and chairs to be manufactured.

Then, the optimization problem is mathematically formulated as follows:

max
𝑥1,𝑥2

 𝑓 = 7.5𝑥1 + 5𝑥2

Subject to: 10𝑥1 + 5𝑥2 ≤ 60, 5𝑥1 + 12𝑥2 ≤ 80; 𝑥1, 𝑥2 ∈ ℤ
(1.6)

9

Problem 7: Student diet problem

A student has a choice of breakfast menu (eggs, cereals, tarts) and a limited ($10) budget to fulfill

his/her nutrition needs (1000 calories, 100 g protein) at minimum cost. Eggs provide 500 calories

and 50g protein and cost $3.50; cereals provide 500 calories and 40g protein and cost $3; tarts

provide 600 calories and 20g protein and cost $2. How does he/she choose his/her breakfast mix?

Formulation: Let 𝑥𝑇 = [𝑥1, 𝑥2, 𝑥3] represent the quantities of eggs, cereals and tarts chosen for

breakfast. Then, the optimization problem is mathematically formulated as follows:

min
𝑥1,𝑥2,𝑥3

𝑓 = 3.5𝑥1 + 3𝑥2 + 2𝑥3

Subject to: 500(𝑥1 + 𝑥2) + 600𝑥3 ≥ 1000, 50𝑥1 + 40𝑥2 + 20𝑥3 ≥ 100,

 3.5𝑥1 + 3𝑥2 + 2𝑥3 ≤ 10; 𝑥1, 𝑥2, 𝑥3 ∈ ℤ

(1.7)

Problem 8: Data-fitting problem

Given a set of 𝑁 data points (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝑁, fit a polynomial of degree 𝑚 to the data such

that the mean square error ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑁

𝑖=1 is minimized.

Formulation: Let the polynomial be given as: 𝑦 = 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑚𝑥𝑚; then, the

unconstrained optimization problem is formulated as:

min
𝑎0,𝑎1

 𝑓 =
1

2
∑ (𝑦𝑖 − 𝑎0 − 𝑎1𝑥𝑖 − ⋯− 𝑎𝑚𝑥𝑖

𝑚)2
𝑁

𝑖=1
 (1.8)

Problem 9: Neural network training problem

Given a single layer artificial neural network with 𝑝 input nodes, 𝑛 output nodes, and a set of

connection weights 𝑤𝑖𝑗 , 𝑖 = 1,… , 𝑝, 𝑗 = 1,… , 𝑛, choose the weights to minimize the error in

recognizing a given output pattern.

Formulation: let the error between the actual and desired output at the 𝑗th node be given as:

𝜀𝑗 = 𝑦𝑗 − 𝑑𝑗; then, the unconstrained optimization problem is defined to minimize the squared

error given as:

min
𝑤𝑖𝑗

 𝑓 =
1

2
∑ 𝜀𝑗

2
𝑛

𝑗=1
 (1.9)

Problem 10: Classification problem

Given a set of data points: 𝒙𝑖 ∈ ℝ𝑛, 𝑖 = 1,… , 𝑛, with two classification labels: 𝑦𝑖 ∈ {1,−1}, find

the equation of a hyperplane separating data into classes with maximum inter-class distance.

10

Formulation: To simplify the problem, we assume that data points lie in a plane, i.e., 𝒙𝑖 ∈ ℝ2,

and that they are linearly separable. We consider a hyperplane of the form: 𝒘𝑇𝒙 − 𝑏 = 0, where

𝒘 is a weight vector that is normal to the hyperplane. For separating given data points, we assume

that 𝒘𝑇𝒙𝑖 − 𝑏 ≥ 1 for points labeled as 1, and 𝒘𝑇𝒙𝑖 − 𝑏 ≤ −1 for points labeled as −1. The two

hyperplanes (lines) are separated by
2

‖𝒘‖
. Thus, optimization problem is defined as:

max
𝒘

1

2
‖𝒘‖2

Subject to: 1 − 𝑦𝑖(𝒘
𝑇𝒙𝑖 − 𝑏) ≤ 0; 𝑖 = 1,… , 𝑛

(1.10)

Problem 11: Transportation problem

Goods are to be shipped from 𝑚 supply points with capacities: 𝑠1, 𝑠2, … , 𝑠𝑚, to 𝑛 distribution

points with demands: 𝑑1, 𝑑2, … , 𝑑𝑛. Given the transportation cost 𝑐𝑖𝑗 for each of the network

routes, find the optimum quantities, 𝑥𝑖𝑗, to be shipped along those routes to minimize total

shipment cost.

Formulation: let 𝑥𝑖𝑗denote the quantity to be shipped node 𝑖 to node 𝑗; then, the optimization

problem is formulated as:

min
𝑥𝑖𝑗

 𝑓 = ∑𝑐𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗

Subject to: ∑𝑥𝑖𝑗

𝑗

= 𝑠𝑖, for 𝑖 = 1,… ,𝑚; ∑𝑥𝑖𝑗

𝑖

= 𝑑𝑗, for 𝑖 = 1,… , 𝑛; 𝑥𝑖𝑗 ≥ 0
(1.11)

Problem 12: Knapsack problem

Given an assortment of 𝑛 items, where each item 𝑖 has a value 𝑐𝑖 > 0, and a weight 𝑤𝑖 > 0, fill a

knapsack of given capacity (weight 𝑊) so as to maximize the value of the included items.

Formulation: Without loss of generality, we assume that 𝑊 = 1. Let 𝑥𝑖 ∈ {0,1} denote the event

that item 𝑖 is selected for inclusion in the sack; then, the knapsack problem is formulated as:

max
𝑥𝑖

 𝑓 = ∑ 𝑐𝑖𝑥𝑖

𝑛

𝑖=1

Subject to: ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1
≤ 1

(1.12)

Problem 13: Investment problem

Given the stock prices 𝑝𝑖 and anticipated rates of return 𝑟𝑖associated with a group of investments,

choose a mix of securities to invest a sum of $1M in order to maximize return on investment.

11

Formulation: Let 𝑥𝑖 ∈ {0,1} express the inclusion of security 𝑖 in the mix, then the investment

problem is modeled as the knapsack problem (Problem 12).

Problem 14: Set covering problem

Given a set 𝑆 = {𝑒𝑖: 𝑖 = 1,… ,𝑚} and a collection 𝒮 = {𝑆𝑗: 𝑗 = 1,… , 𝑛} of subsets of 𝑆, with

associated costs 𝑐𝑗, find the smallest sub-collection Σ of 𝒮 that covers 𝑆, i.e., ⋃ 𝑆𝑗 = 𝑆𝑆𝑗∈Σ .

Formulation: Let 𝑎𝑖𝑗 ∈ {0,1} denote the condition that 𝑒𝑖 ∈ 𝑆𝑗, and let 𝑥𝑗 ∈ {0,1} denote the

condition that 𝑆𝑗 ∈ Σ; then, the set covering problem is formulated as:

min
𝑥𝑗

 𝑓 = ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

Subject to: ∑ 𝑎𝑖𝑗𝑥𝑖 ≥ 1
𝑛

𝑗=1
, 𝑖 = 1,… ,𝑚; 𝑥𝑗 ∈ {0,1}, 𝑗 = 1,… , 𝑛

(1.13)

Problem 15: Airline scheduling problem

Given the fixed costs and operating costs per segment, design an optimum flight schedule to

minimize total operating cost for given passenger demand on each segment over a network of

routes to be serviced under given connectivity, compatibility, and resource (aircrafts, manpower)

availability constraints.

Formulation: Let 𝑆 = {𝑒𝑖: 𝑖 = 1,… ,𝑚} denote the set of flight segments required to be covered,

and let each subset 𝑆𝑗 ⊆ 𝑆 denote a set of connected flight segments that can be covered by an

aircraft or a crew; then the least cost problem to cover the available routes can be formulated as a

set covering problem (Problem 10).

Problem 16: Shortest path problem

Find the shortest path from node 𝑝 to node 𝑞 in a connected graph (𝑉, 𝐸), where 𝑉 denotes the

vertices and 𝐸 denotes the edges.

Formulation: Let 𝑒𝑖𝑗 denote the edge incident to both nodes 𝑖 and 𝑗, and let 𝑓: 𝐸 → ℝ represent a

real-valued weight function; further, let 𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑛) denote a path, where 𝑣1 = 𝑝, 𝑣𝑛 = 𝑞;

then, the unconstrained single-pair shortest path problem is formulated as:

min
𝑛

 𝑓 = ∑ 𝑒𝑖,𝑖+1

𝑛−1

𝑖=1
 (1.14)

Alternatively, let 𝑥𝑖𝑗 denote a variable associated with 𝑒𝑖𝑗; then, an integer programming

formulation (Chapter 6) of the shortest path problem is given as:

12

min
𝑥𝑖𝑗

 𝑓 = ∑𝑒𝑖𝑗𝑥𝑖𝑗

𝑖,𝑗

Subject to: ∑𝑥𝑖𝑗

𝑗

− ∑𝑥𝑗𝑖

𝑗

= {
1 for 𝑖 = 𝑝

−1 for 𝑖 = 𝑞
0 otherwise

(1.15)

Note: the shortest path problem is a well-known problem in graph theory and algorithms, such as

Dijkstra’s algorithm or Bellman-Ford algorithm, are available to solve variants of the problem.

Problem 17: Traveling salesman problem

A company requires a salesman to visit its 𝑁 stores (say 50 stores) that are geographically

distributed in different locations. Find the visiting sequence that will require the least amount of

overall travel.

Formulation: The traveling salesman problem is formulated as shortest path problem in an

undirected weighted graph where the stores represent the vertices of the graph. The problem is

then similar to Problem 10.

Problem 18: Power grid estimation problem

Given the measurements of active and reactive power flows (𝑝𝑖𝑗 , 𝑞𝑖𝑗) between nodes 𝑖, 𝑗 and the

measurements 𝑣𝑖 of the node voltages in an electric grid, obtain the best estimate of the state of

the grid, i.e., solve for complex node voltages: v𝑖 = 𝑣𝑖∠𝛿𝑖 , where 𝛿𝑖 represents the phase angle.

Formulation: let 𝑣̅𝑖, 𝑝̅𝑖𝑗, 𝑞̅𝑖𝑗 represent the measured variables, and let 𝑘𝑖
𝑣, 𝑘𝑖𝑗

𝑝
, 𝑘𝑖𝑗

𝑞
, respectively,

represent the confidence in measurements of the node voltages and the power flows; further let

z𝑖𝑗 = 𝑧𝑖𝑗∠𝜃𝑖𝑗 represent the complex impedance between nodes 𝑖, 𝑗; then, power grid state

estimation problem is formulated as (Pedregal, p. 11):

min
𝑣𝑖,𝛿𝑖

 𝑓 = ∑𝑘𝑖
𝑣(𝑣𝑖 − 𝑣̅𝑖)

2

𝑖

+ ∑𝑘𝑖𝑗
𝑝
(𝑝𝑖𝑗 − 𝑝̅𝑖𝑗)

2

𝑖,𝑗

+ ∑𝑘𝑖𝑗
𝑞
(𝑞𝑖𝑗 − 𝑞̅𝑖𝑗)

2

𝑖,𝑗

Subject to: {
𝑝𝑖𝑗 =

𝑣𝑖
2

𝑧𝑖𝑗
cos 𝜃𝑖𝑗 −

𝑣𝑖𝑣𝑗

𝑧𝑖𝑗
cos(𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗)

𝑞𝑖𝑗 =
𝑣𝑖

2

𝑧𝑖𝑗
sin 𝜃𝑖𝑗 −

𝑣𝑖𝑣𝑗

𝑧𝑖𝑗
sin(𝜃𝑖𝑗 + 𝛿𝑖 − 𝛿𝑗)

(1.16)

Problem 19: Steady-state finite element analysis problem

Find nodal displacements 𝑢𝑖 that minimize the total potential energy associated with a set of point

masses 𝑚𝑖 connected via springs of constants 𝑘𝑖𝑗 , while obeying structural and load constraints.

13

Formulation: For simplicity we consider a one-dimensional version of the problem, where the

nodal displacements are represented as: 𝑢1, 𝑢2, … , 𝑢𝑁. Let 𝑓𝑖 represent an applied force at node 𝑖;

then, the potential energy minimization problem is formulated as:

min
𝑢𝑖

 ∏ =
1

2
∑𝑘𝑖𝑗𝑢𝑖𝑢𝑗

𝑖,𝑗

+ ∑𝑢𝑖𝑓𝑖
𝑖

(1.17)

Problem 20: Optimal control problem

Find an admissible control sequence 𝑢(𝑡) that minimizes a quadratic cost function 𝐽(𝑥, 𝑢, 𝑡),

while moving a dynamic system: 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 between prescribed end points. The class of

optimal control problems includes minimum energy and minimum time problems, among others.

Formulation: As a simplified problem, we consider the optimal control of an inertial system of

unit mass modeled with position (𝑥) and velocity (𝑣). The system dynamics are given as:

𝑥̇ = 𝑣, 𝑣̇ = 𝑢, where 𝑢(𝑡), 𝑡 ∈ [0, 𝑇] represents the input. We consider a quadratic cost that

includes time integral of square of position and input variables. The resulting optimal control

problem is formulated as:

min
𝑥𝑖

 𝑓 = ∫
1

2
(𝑥2 + 𝜌𝑢2)𝑑𝑡

𝑇

0

Subject to: 𝑥̇ = 𝑣, 𝑣̇ = 𝑢

(1.18)

 Notation 1.3

The following notation is used throughout this book: ℝ denotes the set of real numbers; ℝ𝑛 denotes the

set of real n-vectors; ℝ𝑚×𝑛 denotes the set of real 𝑚 × 𝑛 matrices; 𝑓:ℝ𝑛 → ℝ𝑚 denotes an ℝ𝑚-valued

function defined over ℝ𝑛; ℤ denotes the set of integers, and ℤ𝑛 denotes integer vectors. In the text, small

bold face letters such as 𝒙, 𝒚 are used to represent vectors or points in ℝ𝑛; capital bold face letters such as

𝑨,𝑩 are used to represent matrices; 𝑨𝑞 represents qth column of 𝑨; and 𝑰 represents an identity matrix.

14

2 Mathematical Preliminaries

This chapter introduces essential mathematical concepts that are required to understand the material

presented in later chapters. The treatment of the topics is concise and limited to presentation of key

aspects of the topic. More details on these topics can be found in standard mathematical optimization

texts. Interested readers should consult the references (e.g., Griva, Nash & Sofer, 2009) for details.

Learning Objectives: The learning goal in this chapter is to understand the mathematical principles

necessary for formulating and solving optimization problems, i.e., for understanding the optimization

techniques presented in later chapters.

 Set Definitions 2.1

Closed Set. A set 𝑆 is closed if for any sequence of points {𝑥𝑘}, 𝑥𝑘 ∈ 𝑆, lim𝑘→∞ 𝑥𝑘 = 𝑥, we have 𝑥 ∈ 𝑆.

For example, the set 𝑆 = {𝑥: |𝑥| ≤ 𝑐} where c is a finite number, describes a closed set.

Bounded Set. A set 𝑆 is bounded if for every 𝑥 ∈ 𝑆, ‖𝑥‖ < 𝑐, where ‖∙‖ represents a vector norm and c is

a finite number.

Compact set. A set 𝑆 is compact if it is both closed and bounded.

Interior point. A point 𝑥 ∈ 𝑆 is interior to the set 𝑆 if {𝑦: ‖𝑦 − 𝑥‖ < 𝜖} ⊂ 𝑆 for some 𝜖 > 0.

Open Set. A set 𝑆 is open if every 𝑥 ∈ 𝑆 is an interior point of 𝑆. For example, the set 𝑆 = {𝑥: |𝑥| < 𝑐},

where 𝑐 is a finite number, is an open set.

Convex Set. A set 𝑆 is convex if for each pair 𝑥, 𝑦 ∈ 𝑆, their convex combination 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆 for

0 ≤ 𝛼 ≤ 1. Examples of convex sets include a single point, a line segment, a hyperplane, a halfspace, the

set of real numbers (ℝ), and ℝ𝑛.

Hyperplane. The set 𝑆 = {𝒙: 𝒂𝑇𝒙 = 𝑏}, where 𝒂 and 𝑏 are constants defines a hyperplane. Note that in

two dimensions a hyperplane is a line. Also, note that vector 𝒂 is normal to the hyperplane.

Halfspace. The set 𝑆 = {𝒙: 𝒂𝑇𝒙 ≤ 𝑏}, where 𝒂 and 𝑏 are constants defines a halfspace. Note that vector 𝒂

is normal to the halfspace. Also, note that a halfspace is a convex set.

Polyhedron. A polyhedron represents a finite intersection of hyperplanes and halfspaces. Note that a

polyhedron is a convex set.

Convex Hull. The convex hull of a set 𝑆 is the set of all convex combinations of points in 𝑆. Note that

convex hull of 𝑆 is the smallest convex set that contains 𝑆.

15

Extreme Point. A point 𝑥 ∈ 𝑆 is an extreme point (or vertex) of a convex set 𝑆 if it cannot be expressed

as 𝑥 = 𝛼𝑦 + (1 − 𝛼)𝑧, with 𝑦, 𝑧 ∈ 𝑆 where 𝑦, 𝑧 ≠ 𝑥, and 0 < 𝛼 < 1.

 Function Definitions 2.2

Function. A function 𝑓(𝒙) describes a mapping from a set of points called domain to a set of points

called range. Mathematically, 𝑓:𝒟 → ℛ where 𝒟 denotes the domain and ℛ the range of the function.

Continuous Function. A function 𝑓(𝒙) is said to be continuous at a point 𝒙0 if lim𝒙→𝒙0
𝑓(𝒙) = 𝑓(𝒙0).

Alternatively, if a sequence of points {𝒙𝑘} in the function domain 𝒟(𝑓) converges to 𝒙0, then 𝑓(𝒙𝑘) must

converge to 𝑓(𝒙0) for a function to be continuous. Note, that for functions of single variable, this implies

that left and right limits coincide.

Affine Function. A function of the form 𝑓(𝒙) = 𝒂𝑇𝒙 + 𝑏 represents an affine function.

Quadratic Function. A function of the form 𝑓(𝒙) =
1

2
𝒙𝑇𝑸𝒙 − 𝒃𝑇𝒙, where 𝑸 is symmetric, represents a

quadratic function.

Level Sets. The level sets of a function are defined as 𝑆 = {𝑥: 𝑓(𝒙) = 𝑐}. For functions of a single

variable, level sets represent discrete points. For functions of two variables, level sets are contours plotted

in the 𝑥𝑦-plane.

Stationary Point. From elementary calculus, a single-variable function 𝑓(𝑥) has a stationary point at 𝑥0

if the derivative 𝑓′(𝑥) vanishes at 𝑥0, i.e., 𝑓′(𝑥0) = 0. Graphically, the slope of the function is zero at the

stationary point, which may represent a minimum, a maximum, or a point of inflecion.

Local Minimum. A multi-variable function, 𝑓(𝒙), has a local minimum at 𝒙∗ if 𝑓(𝒙∗) ≤ 𝑓(𝒙) in a small

neighborhood around 𝒙∗, defined by |𝒙 − 𝒙∗| < 𝜖.

Global Minimum. The multi-variable function 𝑓(𝒙) has a global minimum at 𝒙∗ if 𝑓(𝒙∗) ≤ 𝑓(𝒙) for all

𝒙 in a feasible region defined by the problem.

Convex Functions. A function 𝑓(𝒙) defined on a convex set 𝑆 is convex if and only if for all 𝒙, 𝒚 ∈ 𝑆,

𝑓(𝛼𝒙 + (1 − 𝛼)𝒚) ≤ 𝛼𝑓(𝒙) + (1 − 𝛼)𝑓(𝒚), 𝛼 ∈ [0,1]. Note that affine functions defined over convex

sets are convex. Similarly, quadratic functions defined over convex sets are convex.

Other ways to define convex functions are given in Sec. 2.5.

 Gradient Vector and Hessian Matrix 2.3

The gradient vector and Hessian matrix play important roles in optimization problems. These concepts are

introduced below:

16

The Gradient Vector. Let 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) be a real-valued function of 𝑛 variables with

continuous partial derivatives, i.e., let 𝑓 ∈ ∁1. Then, the gradient of 𝑓 is a vector defined by:

∇𝑓(𝒙)𝑇 = (
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
)

The gradient of 𝑓(𝒙) at a point 𝒙0 is given as: ∇𝑓(𝒙0) = ∇𝑓(𝒙)|𝒙=𝒙0
.

The gradient vector has several important properties. These include:

1. The gradient points in the direction of maximum rate of increase in the function value. This can

be seen by considering the directional derivative of 𝑓(𝒙) along any direction 𝒅, which is defined

as: 𝑓𝒅
′ (𝒙) = ∇𝑓(𝒙)𝑇𝒅 = |∇𝑓(𝒙)||𝒅| cos𝜃, where 𝜃 is the angle between the two vectors. The

maximum rate of increase occurs when 𝜃 = 0, i.e., along ∇𝑓(𝒙).

2. The magnitude of the gradient gives the maximum rate of increase in 𝑓(𝒙), i.e.,

max‖𝑑‖=1 𝑓𝑑
′ (𝑥) = ‖∇𝑓(𝒙)‖.

3. The gradient vector at a point 𝒙∗ is normal to the tangent hyperplane defined by 𝑓(𝒙) = 𝑐, where

𝑐 is a constant. This can be shown as follows: let 𝐶 be any curve in the tangent space passing

through 𝒙, and let 𝑠 be a parameter along 𝐶. Then, a unit tangent vector along 𝐶 is given as:
𝜕𝒙

𝜕𝑠
= (

𝜕𝑥1

𝜕𝑠
,
𝜕𝑥2

𝜕𝑠
, … ,

𝜕𝑥𝑛

𝜕𝑠
). Further,

𝑑𝑓

𝑑𝑠
=

𝜕𝑓

𝜕𝒙

𝜕𝒙

𝜕𝑠
= ∇𝑓(𝒙)𝑇 𝜕𝑥

𝜕𝑠
= 0, i.e., ∇𝑓(𝒙) is normal to

𝜕𝒙

𝜕𝑠
.

The Hessian Matrix. The Hessian of 𝑓 is a 𝑛 × 𝑛 matrix given by ∇2𝑓(𝒙), where [∇2𝑓(𝒙)]𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
.

Note that Hessian is a symmetric matrix, since
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
=

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
.

As an example, consider a quadratic function: 𝑓(𝒙) =
1

2
𝒙𝑇𝑸𝒙 − 𝒃𝑇𝒙 where 𝑸 is symmetric. Its gradient

and Hessian are given as: ∇𝑓(𝒙) = 𝑸𝒙 − 𝒃; ∇2𝑓(𝒙) = 𝑸.

As another example, let 𝑓(𝑥, 𝑦) = 3𝑥2𝑦. Then, ∇𝑓(𝑥, 𝑦) = [6𝑥𝑦, 3𝑥2]𝑇 , ∇2𝑓(𝑥, 𝑦) = [
6𝑦 6𝑥
6𝑥 0

].

At a point (𝑥0, 𝑦0) = (1,2), we have ∇𝑓(𝑥0, 𝑦0) = [12, 3]𝑇 , ∇2𝑓(𝑥0, 𝑦0) = [
12 6
6 0

].

Composite functions. Gradient and Hessian in the case of composite functions of the form: 𝑓(𝒙) =

𝑔(𝒙)ℎ(𝒙) are defined as:

∇𝑓(𝒙) = ∇𝑔(𝒙)ℎ(𝒙) + 𝑔(𝒙)∇ℎ(𝒙)

∇2𝑓(𝒙) = ∇2𝑔(𝒙)ℎ(𝒙) + 𝑔(𝒙)∇2ℎ(𝒙) + ∇𝑔(𝒙)∇ℎ(𝒙)𝑇 + ∇𝑔(𝒙)∇ℎ(𝒙)𝑇

Vector-valued functions. Let 𝑓 = 𝒈𝑇𝒉, where 𝒈, 𝒉:ℝ𝑛 → ℝ𝑚 are vector-valued functions of 𝒙. Let 𝛁𝒈

be a matrix defined by [∇𝒈(𝒙)]𝑖𝑗 =
𝜕𝑔𝑗(𝒙)

𝜕𝑥𝑖
, i.e., 𝛁𝒈(𝒙)𝑇 defines the Jacobian of 𝒈 at point 𝒙. 𝛁𝒉 is

defined in the same way. Then:

17

∇𝑓 = [𝛁𝒉]𝒈 + [𝛁𝒈]𝒉

 Taylor Series Approximation 2.4

Taylor series approximates a differentiable function 𝑓(𝑥) in the vicinity of an operating point 𝑥0. Such

approximation is helpful in scientific and engineering analysis, in particular, problems involving

multivariable functions.

An infinite Taylor series expansion of 𝑓(𝑥) around 𝑥0 is given as (where Δ𝑥 = 𝑥 − 𝑥0):

𝑓(𝑥0 + Δ𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0)Δ𝑥 +
1

2!
𝑓′′(𝑥0)Δ𝑥2 + ⋯

As an example, the Taylor series for sin and cosine functions around 𝑥0 = 0 are given as:

sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
− ⋯

cos 𝑥 = 1 −
𝑥2

2!
+

𝑥4

4!
− ⋯

These series are summed in the Euler formula: cos 𝑥 + 𝑖 sin 𝑥 = 𝑒−𝑖𝑥.

The 𝑛th order (truncated) Taylor series approximation of 𝑓(𝑥) is given as:

𝑓(𝑥0 + Δ𝑥) ≅ 𝑓(𝑥0) + 𝑓′(𝑥0)Δ𝑥 +
1

2!
𝑓′′(𝑥0)Δ𝑥2 + ⋯+

1

𝑛!
𝑓(𝑛)(𝑥0)Δ𝑥𝑛

Note that first or second order approximation often suffice in the close neighborhood of 𝑥0. As an

example, the local behavior of a function is frequently approximated by a tangent line defined as:

𝑓(𝑥) − 𝑓(𝑥0) ≅ 𝑓′(𝑥0)(𝑥 − 𝑥0)

Next, the Taylor series expansion of a function 𝑓(𝑥, 𝑦) of two variables at a point (𝑥0, 𝑦0) is given as:

𝑓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) = 𝑓(𝑥0, 𝑦0) +
𝜕𝑓

𝜕𝑥
Δ𝑥 +

𝜕𝑓

𝜕𝑦
Δ𝑦 +

1

2
[
𝜕2𝑓

𝜕𝑥2
Δ𝑥2 +

𝜕2𝑓

𝜕𝑥𝜕𝑦
Δ𝑥Δ𝑦 +

𝜕2𝑓

𝜕𝑦2
Δ𝑦2] + ⋯

where Δ𝑥 = 𝑥 − 𝑥0, Δ𝑦 = y − y0, and all partial derivatives are computed at the operating point: (𝑥0, 𝑦0).

Further, let 𝑧 = 𝑓(𝑥, 𝑦); then, using first order Taylor series, the tangent plane of 𝑧 at (𝑥0, 𝑦0) is defined

by the equation:

𝑧 = 𝑓(𝑥0, 𝑦0) +
𝜕𝑓

𝜕𝑥
|
(𝑥0,𝑦0)

(𝑥 − Δ𝑥) +
𝜕𝑓

𝜕𝑦
|
(𝑥0,𝑦0)

(𝑦 − Δ𝑦).

18

 Finally, it is important to remember that truncated Taylor series only approximates the local behavior of

the function, and therefore should be used with caution.

Taylor series expansion for multi-variable functions. Taylor series expansion in the case of a multi-

variable function is given as (where 𝒅 = 𝒙 − 𝒙0):

𝑓(𝒙0 + 𝒅) = 𝑓(𝒙0) + ∇𝑓(𝒙0)
𝑇𝒅 +

1

2!
𝒅𝑇∇2𝑓(𝒙0)𝒅 + ⋯

where ∇𝑓(𝒙0) and ∇2𝑓(𝒙0) are, respectively, the gradient and Hessian of 𝑓 computed at 𝒙0.

In particular, a first-order change in 𝑓(𝒙) at 𝒙0 along 𝒅 is given by: 𝛿𝑓 = ∇𝑓(𝒙0)
𝑇𝒅, where ∇𝑓(𝒙0)

𝑇𝒅

defines the directional derivative of 𝑓(𝒙) at 𝒙0 along 𝒅.

 Properties of Convex Functions 2.5

From Sec. 2.2 above, a function 𝑓(𝑥) defined on a convex set 𝑆 is convex if and only if for all 𝒙, 𝒚 ∈ 𝑆,

𝑓(𝛼𝒙 + (1 − 𝛼)𝒚) ≤ 𝛼𝑓(𝒙) + (1 − 𝛼)𝑓(𝒚), 𝛼 ∈ [0,1]. In general, this condition may be hard to verify.

Hence, other conditions based on the following properties of convex functions have been developed.

1. If 𝑓 ∈ ∁1 (i.e., 𝑓 is differentiable), then 𝑓 is convex over a convex set 𝑆 if and only if for all

𝒙, 𝒚 ∈ 𝑆, 𝑓(𝒚) ≥ 𝑓(𝒙) + ∇𝑓(𝒙)𝑇(𝒚 − 𝒙). Graphically, it means that a function is on or above the

tangent line (hyperplane) passing through 𝒙.

2. If 𝑓 ∈ ∁2 (i.e., 𝑓 is twice differentiable), then 𝑓 is convex over a convex set 𝑆 if and only if for all

𝒙 ∈ 𝑆, 𝑓′′(𝒙) ≥ 0. In the case of multivariable functions, 𝑓 is convex over a convex set 𝑆 if and

only if its Hessian matrix is positive semi-definite everywhere in 𝑆, i.e., for all 𝒙 ∈ 𝑆 and for all

𝒅, 𝒅𝑇𝛁2𝑓(𝒙)𝒅 ≥ 0. This can be seen by considering second order Taylor series expansion of

𝑓(𝒙) at two points equidistant from a midpoint, 𝒙̅, given as: 𝑓(𝒙̅ ± 𝒅) ≅ 𝑓(𝒙̅) ± ∇𝑓(𝒙̅)𝑇𝒅 +
1

2
𝒅𝑇∇2𝑓(𝒙̅)𝒅. Adding these two points with 𝛼 =

1

2
 and applying the definition of convex

function gives: 𝑓(𝒙̅) ≤ 𝑓(𝒙̅) + 𝒅𝑇∇2𝑓(𝒙̅)𝒅, or 𝒅𝑇∇2𝑓(𝒙̅)𝒅 ≥ 𝟎.

3. If the Hessian is positive definite for all 𝒙 ∈ 𝑆 and for all 𝒅, i.e., if 𝒅𝑇𝛁2𝑓(𝒙)𝒅 > 0, then the

function is strictly convex. This is, however, a sufficient but not necessary condition, and a

strictly convex function may have only a positive semidefinite Hessian at some points.

4. If 𝑓(𝒙∗) is a local minimum for a convex function 𝑓 defined over a convex set 𝑆, then it is also a

global minimum. This can be shown as follows: assume that 𝑓(𝒙∗) = 0, then according to

property one above: 𝑓(𝒙) ≥ 𝑓(𝒙∗), 𝒙 ∈ 𝑆. Thus, for a convex function 𝒇, any point 𝒙∗ that

satisfies the necessary condition: ∇𝑓(𝒙∗) = 0, is a global minimum of 𝑓.

Further ways of establishing convexity are discussed in (Boyd & Vandenberghe, Chaps. 2&3).

19

Convex optimization problems. Convexity plays an important role in optimization problems due to the

fact that convex functions defined over a closed and bounded set attain a unique global minimum in that

set. In numerical optimization problems convexity assures the existence of a global minimum to the

problem. It is therefore important to first establish the convexity property when solving optimization

problems.

Consider a general optimization problem that involves minimization of a multivariable function 𝑓(𝒙).

The constraints in the problem include inequality constraints, equality constraints, and bounds on the

optimization variables. The problem is formulated as:

min
𝒙

𝑓(𝒙)

Subject to {

𝑔𝑖(𝒙) ≤ 𝑒𝑖, 𝑖 = 1,… ,𝑚

ℎ𝑗(𝒙) = 𝑏𝑗, 𝑗 = 1,… , 𝑙

𝑥𝑘 ∈ [𝑥𝑘
𝐿, 𝑥𝑘

𝑈], 𝑘 = 1,… , 𝑛

The following characterization of convexity applies to the solution spaces in such problems: if a function

𝑔𝑖(𝒙) is convex, then the set 𝑔𝑖(𝒙) ≤ 𝑒𝑖 is convex. Further, if functions 𝑔𝑖(𝒙), 𝑖 = 1,… ,𝑚, are convex,

then the set {𝒙: 𝑔𝑖(𝒙) ≤ 𝑒𝑖, 𝑖 = 1,… ,𝑚} is convex. In general, finite intersection of convex sets (that

include hyperplanes and halfspaces) is convex.

The feasible region for the optimization problem is defined by the set: 𝑆 = {𝒙: 𝑔𝑖(𝒙) ≤ 𝑒𝑖 , ℎ𝑗(𝒙) = 𝑏𝑗}.

The feasible region is a convex set if the functions: 𝑔𝑖(𝒙), 𝑖 = 1,… ,𝑚, are convex and the functions:

ℎ𝑗(𝒙), 𝑗 = 1,… , 𝑙, are linear. If, in addition, 𝑓(𝒙) is a convex function, then the optimization problem is

convex. Note, however, that these convexity conditions are sufficient but not necessary.

 Matrix Eigenvalues and Singular Values 2.6

Let 𝑨 be an 𝑛 × 𝑛 matrix and assume that for some vector 𝒗 and scalar 𝜆, 𝑨𝒗 = 𝜆𝒗; then 𝜆 is an

eigenvalue and 𝒗 is an eigenvector of 𝑨. The eigenvalues of 𝑨 may be solved from: det(𝑨 − 𝜆𝑰) = 0.

The 𝑛th degree polynomial on the left-hand side of the equation is the characteristic polynomial of 𝑨

whose roots are the eigenvalues of 𝑨. Let these roots be given as: 𝜆𝑖, 𝑖 = 1,… , 𝑛 then their associated

eigenvectors are solved from: det(𝑨 − 𝜆𝑖𝑰) 𝒗𝑖 = 0.

A matrix with repeated eigenvalues may not have a full set of eigenvectors which, by definition, are

linearly independent. This happens, for instance, when the nullity of (𝑨 − 𝜆𝑖𝑰) is less than the degree of

repetition of 𝜆𝑖. In such cases, generalized eigenvectors may be substituted to make up the count.

Spectral Decomposition of a Symmetric Matrix. If 𝑨 is symmetric, it has real eigenvalues and a full set

of eigenvectors. Labeling them 𝒗1, 𝒗2, … , 𝒗𝑛, it is possible to choose them to be orthonormal, such that

𝒗𝑖
𝑇𝒗𝑖=1, and 𝒗𝑖

𝑇𝒗𝑗 = 0 for 𝑖 ≠ 𝑗. By defining 𝑽 = (𝒗1, 𝒗2, … , 𝒗𝑛) and 𝚲 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑛), we have

𝑨𝑽 = 𝚲𝑽 or 𝑨 = 𝑽𝚲𝑽𝑇. This is referred to as spectral decomposition of 𝑨.

20

Singular Value Decomposition of a Non-square Matrix. For non-square 𝑨 ∈ ℝ𝑚×𝑛, the singular value

decomposition (SVD) of 𝑨 is given as: 𝑨 = 𝑼𝚺𝑽𝑇 = ∑ 𝜎𝑖𝒖𝑖𝒗𝑖
𝑇𝑟

𝑖=1 , where 𝑟 = rank (𝑨), 𝑼 ∈ ℝ𝑚×𝑟,

𝑼𝑇𝑼 = 𝑰𝑚×𝑚; 𝑽 ∈ ℝ𝑛×𝑟, 𝑽𝑇𝑽 = 𝑰𝑛×𝑛; 𝚺 = diag (σ1, σ2, … , σr), where σ1 ≥ σ2 ≥ ⋯ ,≥ σr are termed

as singular values of 𝑨.

In the above SVD, the columns of 𝑼 are eigenvectors of 𝑨𝑨𝑇 , and the columns of 𝑽 are eigenvectors of

𝑨𝑇𝑨. The singular values are square roots of the nonzero eigenvalues of both 𝑨𝑨𝑇 and 𝑨𝑇𝑨. If, in

addition, 𝑨 is symmetric, then 𝑼 = 𝑽 and 𝑨 = 𝑼𝚺𝑽𝑇 is equivalent to 𝑨 = 𝑼𝚺𝑼𝑇

 Quadratic Function Forms 2.7

The function 𝑓(𝒙) = 𝒙𝑇𝑸𝒙 = ∑ ∑ 𝑄𝑖,𝑗𝑥𝑖𝑥𝑗
𝑛
𝑗=1

𝑛
𝑖=1 describes a quadratic form on 𝒙. Note that replacing 𝑸

by its symmetric counterpart
1

2
(𝑸 + 𝑸𝑇) does not change 𝑓(𝒙). Therefore, in a quadratic form 𝑸 can

always assumed to be symmetric.

The quadratic forms in one and two variables are given by: 𝑓(𝑥) = 𝑞𝑥2 and 𝑓(𝑥1, 𝑥2) = 𝑄1,1𝑥1
2 +

𝑄2,2𝑥2
2 + 2𝑄1,2𝑥1𝑥2, respectively.

Let 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 denote the minimum and maximum eigenvalues of 𝑸; then for any 𝒙:

𝜆𝑚𝑖𝑛𝒙𝑇𝒙 ≤ 𝒙𝑇𝑸𝒙 ≤ 𝜆𝑚𝑎𝑥𝒙
𝑇𝒙

The quadratic form is classified as:

a) Positive definite if 𝒙𝑇𝑸𝒙 > 0

b) Positive semidefinite if 𝒙𝑇𝑸𝒙 ≥ 0

c) Negative definite if 𝒙𝑇𝑸𝒙 < 0

d) Negative semidefinite if 𝒙𝑇𝑸𝒙 ≤ 0

e) Infinite otherwise

The positive definiteness of 𝒙𝑇𝑸𝒙 can be determined from the positivity of the eigenvalues of 𝑸.

Accordingly, let 𝜆𝑖, 𝑖 = 1,2,… , 𝑛 be the eigenvalues of 𝑸; then 𝑸 is:

a) Positive definite only if 𝜆𝑖 > 0, 𝑖 = 1,2,… , 𝑛

b) Positive semidefinite only if 𝜆𝑖 ≥ 0, 𝑖 = 1,2,… , 𝑛

c) Negative definite only if 𝜆𝑖 < 0, 𝑖 = 1,2, … , 𝑛

d) Negative semidefinite only if 𝜆𝑖 ≤ 0, 𝑖 = 1,2, … , 𝑛

e) Indefinite otherwise

Alternatively, let 𝑄𝑘 be the kth principal minor of 𝑸; then 𝑸 is:

a) Positive definite if and only if 𝑄𝑘 > 0, 𝑘 = 1,2, … , 𝑛

b) Positive semidefinite if and only if 𝑄𝑘 > 0, 𝑘 = 1,2,… , 𝑟 < 𝑛, where 𝑟 is the rank of 𝑸

c) Negative definite if and only if 𝑄𝑘 < 0, 𝑘 = 1,2,… , 𝑛

21

d) Negative semidefinite if and only if 𝑄𝑘 ≤ 0, 𝑘 odd, and 𝑄𝑘 ≥ 0, 𝑘 even, 𝑘 = 1,2,… , 𝑟 < 𝑛

e) Indefinite otherwise

Geometrically, the set 𝑆 = {𝒙: 𝒙𝑇𝑸𝒙 ≤ 𝑐} describes an ellipsoid in ℝ𝑛 centered at 𝟎 with its maximum

eccentricity given by √𝜆𝑚𝑎𝑥/𝜆𝑚𝑖𝑛 .

 Vector and Matrix Norms 2.8

Norms provide a measure for the size of a vector or matrix, similar to the notion of absolute value in the

case of real numbers. A norm of a vector or matrix is a real-valued function with the following properties:

1. ‖𝒙‖ ≥ 0 for all 𝒙

2. ‖𝒙‖ = 0 if and only if 𝒙 = 𝟎

3. ‖𝛼𝒙‖ = |𝛼|‖𝒙‖ for all 𝛼 ∈ ℝ

4. ‖𝒙 + 𝒚‖ ≤ ‖𝒙‖ + ‖𝒚‖

Matrix norms additionally satisfy:

5. ‖𝑨𝑩‖ ≤ ‖𝑨‖‖𝑩‖

Vector Norms. Vector p-norms are defined by ‖𝒙‖𝑝 = (∑ |𝑥𝑖|
𝑛
𝑖=1)

1

𝑝, 𝑝 ≥ 1. They include the 1-norm

‖𝒙‖1 = ∑ |𝑥𝑖|
𝑛
𝑖=1 , the Euclidean norm ‖𝒙‖2 = √∑ |𝑥𝑖|

2𝑛
𝑖=1 , and the ∞-norm ‖𝒙‖∞ = max1≤𝑖≤𝑛|𝑥𝑖|.

Matrix Norms. Popular matrix norms are induced from vector norms, given as: ‖𝑨‖ = max‖𝑥‖=1‖𝑨𝒙‖.

All induced norms satisfy ‖𝑨𝒙‖ ≤ ‖𝑨‖‖𝒙‖. Examples of induced matrix norms are:

1. ‖𝑨‖1 = max1≤𝑗<𝑛 ∑ |𝐴𝑖,𝑗|
𝑛
𝑖=1 (the largest column sum of 𝑨)

2. ‖𝑨‖2 = √𝜆𝑚𝑎𝑥(𝑨
𝑇𝑨), where 𝜆𝑚𝑎𝑥denotes the maximum eigenvalue of the matrix

3. ‖𝑨‖∞ = max1≤𝑖≤𝑛 ∑ |𝐴𝑖,𝑗|
𝑛
𝑗=1 (the largest row sum of 𝑨)

 Linear Systems of Equations 2.9

Systems of linear equations arise in solving the linear programming problems (Chapter 5). In the

following, we briefly discuss the existence of solutions in the case of such systems.

Consider a system of 𝑚 (independent) linear equations in 𝑛 unknowns described as: 𝑨𝒙 = 𝒃. Then, the

system has a unique solution if 𝑚 = 𝑛; multiple solutions if 𝑚 < 𝑛; and, the system is over-determined

(and can be solved in the least-squares sense) if 𝑚 > 𝑛.

A solution to the system 𝑨𝒙 = 𝒃 exists only if rank 𝑨 = 𝑟 = rank [𝑨 𝒃], i.e., if 𝒃 lies in the column space

of 𝑨. The solution is unique if 𝑟 = 𝑛. The system is inconsistent if rank 𝑨 ≠ rank [𝑨 𝒃].

22

Square Systems (𝑚 = 𝑛). In this case, the solution is obtained as 𝒙 = 𝑨−1𝒃. Alternatively, Gaussian

elimination with partial pivoting results in a matrix decomposition 𝑨 = 𝑷𝑳𝑼 where 𝑷,𝑷𝑇𝑷 = 𝑰 is a

permutation matrix; 𝑳 is a lower triangular matrix with ones on the diagonal; and 𝑼 is an upper triangular

with eigenvalues of 𝑨 on the main diagonal (Griva, Nash & Sofer, p.669). Then, using 𝒚, 𝒛 as

intermediate variables, the system can be solved in steps as: 𝑷𝒛 = 𝒃, 𝑳𝒚 = 𝒛, 𝑼𝒙 = 𝒚. If 𝑨 is symmetric

and positive definite, then Gaussian elimination results in 𝑨 = 𝑳𝑼 = 𝑳𝑫𝑳𝑇 where 𝑫 is a diagonal matrix

of (positive) eigenvalues of 𝑨. In this case, the solution to the linear system is given as: 𝒙 = 𝑳𝑫−1𝑳𝑇𝒃.

Underdetermined Systems (𝑚 < 𝑛). Assume that matrix 𝑨 has full row rank. Then, we can arbitrarily

choose (𝑛 − 𝑚) variables as independent variables, and solve the remaining (𝑚) variables as dependent

variables. The Gauss-Jordan elimination can be used with matrix [𝑨 𝒃] to convert the system into its

canonical form given as: 𝑰(𝑚)𝒙(𝑚) + 𝑸𝒙(𝑛−𝑚) = 𝒃′. Then, the general solution to the linear system

includes both the independent variables: 𝒙(𝑛−𝑚) and the dependent variables: 𝒙(𝑚) = 𝒃 − 𝑸𝒙(𝑛−𝑚). A

particular solution to the linear system is obtained by setting: 𝒙(𝑛−𝑚) = 𝟎, and is given as: 𝒙(𝑚) = 𝒃′.

Overdetetrmined Systems (𝑚 > 𝑛). In this case, QR factorization can be used to write: 𝑨 = 𝑸𝑹, where

𝑸𝑸𝑇 = 𝑰, and 𝑹 is upper triangular. Then, the original system 𝑨𝒙 = 𝒃 is equivalent to: 𝑹𝒙 = 𝑸𝑇𝒃, which

can be solved via back-substitution.

Linear Least-Square Framework. Given a linear system of equations: 𝑨𝒙 = 𝒃, 𝑨 ∈ ℝ𝑚×𝑛,𝑚 > 𝑛,

define 𝒓 = 𝑨𝒙 − 𝒃 as the residual vector, and consider the unconstrained minimization problem:

min
𝒙

 ‖𝒓‖2 = (𝑨𝒙 − 𝒃)𝑇(𝑨𝒙 − 𝒃)

The minimum is obtained by setting:
𝑑

𝑑𝒙
[𝒙𝑇𝑨𝑇𝑨𝒙 − 𝒃𝑇𝑨𝒙 − 𝒙𝑇𝑨𝒃 + 𝒃𝑇𝒃] = 0, which leads to the

normal equations: 𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃. Then, the solution to the least-squares problem is given as (where 𝒙̂

denotes the estimated value of the variable):

𝒙̂ = (𝑨𝑇𝑨)−1𝑨𝑇𝒃

A similar least-squares solution in the case of 𝑚 < 𝑛 is given as: 𝒙̂ = 𝑨𝑇(𝑨𝑨𝑇)−1𝒃. These cases can be

combined into a general solution to 𝑨𝒙 = 𝒃 written as: 𝒙 = 𝑨†𝒃, where 𝑨† is the pseudo-inverse of 𝑨,

where the latter is given as:

a) 𝑨† = 𝑨−1 (m=n)

b) 𝑨† = 𝑨𝑇(𝑨𝑨𝑇)−1 (m<n)

c) 𝑨† = (𝑨𝑇𝑨)−1𝑨𝑇 (m>n)

Two examples of practical situations that result in linear least-squares problems involving over-

determined systems of linear equations (𝑚 > 𝑛) are presented below.

23

Linear Estimation Problem. Originally tackled by Carl Frederic Gauss, linear estimation problem arises

when estimating the state 𝒙 of a linear system using a set of noisy observations denoted as 𝒚. It is

assumed that: 𝒚 = 𝑨𝒙 + 𝒓, where 𝒓 is a random noise vector.

Let 𝑹 = 𝐸[𝒓𝒓𝑇] describe the measurement noise covariance matrix; then, the best linear estimator for 𝒙 is

given as: 𝒙̂ = (𝑨𝑇𝑹−1𝑨)−1𝑨𝑇𝑹−1𝒃.

Data Fitting Problem. The data-fitting problem involves fitting an 𝑛th degree polynomial given as:

𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + ⋯+ 𝑝𝑛𝑥𝑛 to a set of data points: (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… ,𝑁 where 𝑁 > 𝑛.

To solve this problem, we similarly define a residual: 𝑟𝑖 = 𝑦𝑖 − 𝑝(𝑥𝑖) = 𝑦𝑖 − (𝑝0 + 𝑝1𝑥𝑖 + ⋯+ 𝑝𝑛𝑥𝑖
𝑛),

and define the following unconstrained minimization problem: min𝑝𝑗
∑ 𝑟𝑖

2𝑁
𝑖=1 , where 𝑝𝑗 represents the

coefficients of the polynomial. Then, by defining a coefficient vector: 𝒙 = [𝑝0, 𝑝1, … , 𝑝𝑛]𝑇, and an

𝑁 × (𝑛 + 1) matrix 𝑨 whose rows are observation vectors of the form [1, 𝑥𝑖, 𝑥𝑖
2, … , 𝑥𝑖

𝑛], we can solve

for the coefficients using the linear least-squares framework.

In the linear case, 𝑝(𝑥) = 𝑝0 + 𝑝1𝑥, and 𝑨 is a 𝑁 × 2 matrix whose rows are [1, 𝑥𝑖] vectors. The least-

squares method then results in the following equations:

(
∑ 1𝑁

𝑖=1 ∑ 𝑥𝑖
𝑁
𝑖=1

∑ 𝑥𝑖
𝑁
𝑖=1 ∑ 𝑥𝑖

2𝑁
𝑖=1

)(
𝑝0

𝑝1
) = (

∑ 𝑦𝑖
𝑁
𝑖=1

∑ 𝑥𝑖𝑦𝑖
𝑁
𝑖=1

)

Using averages:
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 = 𝑥̅,

1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 = 𝑦̅, the solution is given as:

𝑝1 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁

𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

; 𝑝0 = 𝑦̅ − 𝑝1𝑥̅

Finally, the above solution can also be obtained through application of optimality conditions (Chapter 3).

 Linear Diophantine System of Equations 2.10

A Linear Diophantine system of equations (LDSE) is represented as: 𝑨𝒙 = 𝒃, 𝒙 ∈ ℤ𝑛. The following

algebra concepts are needed to formulate and solve problems involving a solution to LDSE.

Unimodular Matrices. A real square matrix 𝑨 ∈ ℤ𝑛×𝑛 is unimodular if its determinant det(𝑨) = ±1.

Further, if 𝑨 ∈ ℤ𝑛×𝑛 is unimodular, then 𝑨−1 ∈ ℤ𝑛×𝑛 is also unimodular.

If the coefficient matrix in the equation: 𝑨𝒙 = 𝒃 is unimodular and 𝒃 has integral entries, then the

solution 𝒙 is integral.

Matrix 𝑨 ∈ ℤ𝑚×𝑛 is totally unimodular if every square submatrix 𝑪 of 𝑨, has det(𝑪) ∈ {0,±1}.

24

If 𝑨 is totally unimodular and 𝒃 is an integer vector, then every vertex {𝒙|𝑨𝒙 ≤ 𝒃} is integral. Note,

every vertex 𝒙 is determined by 𝑨′𝒙 = 𝒃′, where 𝑨′ is a nonsingular square submatrix of 𝑨 and 𝒃′

contains corresponding rows of 𝒃.

Hermite Normal Form of a Matrix. Let 𝑨 ∈ ℤ𝑚×𝑛, 𝑟𝑎𝑛𝑘(𝑨) = 𝑚; then, 𝑨 has a unique hermite normal

form given as: HNF(𝑨) = [𝑫 𝟎], where 𝑫 is lower triangular, where 𝑑𝑖𝑗 < 𝑑𝑖𝑖 , 𝑗 < 𝑖. Further, there exists

a unimodular matrix 𝑼 such that 𝑨𝑼 = HNF(𝑨), where we note that post-multiplication by a unimodular

matrix involves performing elementary column operations. Next, let 𝒖1, 𝒖2, … , 𝒖𝑛 represent the columns

of 𝑼, then the set {𝒖𝑚+1, … , 𝒖𝑛} form a basis for ker (𝑨).

Solution to the LDSE. Assume that 𝑨 ∈ ℤ𝑚×𝑛, 𝑟𝑎𝑛𝑘(𝑨) = 𝑚, and let 𝑨𝑼 = HNF(𝑨); then, we may

consider: 𝒃 = 𝑨𝒙 = 𝑨𝑼𝑼−1𝒙 = 𝑯𝑵𝑭(𝑨)𝒚, 𝒚 = 𝑼−1𝒙. Next, assume that we have a solution 𝒚0 to:

HNF(𝑨)𝒚0 = 𝒃; then, the general solution to the LDSE: 𝑨𝒙 = 𝒃, 𝒙 ∈ ℤ𝑛 is given as: 𝒙 = 𝒙0 +

∑ 𝛼𝑖𝒙𝑖
𝑛−𝑚
𝑖=1 , where 𝒙0 = 𝑼𝒚0, and 𝒙𝑖 ∈ {𝒖𝑚+1, … , 𝒖𝑛}.

 Condition Number and Convergence Rates 2.11

The condition number of a matrix is defined as: 𝑐𝑜𝑛𝑑(𝑨) = ‖𝑨‖ ∙ ‖𝑨−1‖. Note that 𝑐𝑜𝑛𝑑(𝑨) ≥ 1 and

𝑐𝑜𝑛𝑑(𝑰) = 1, where 𝑰 is an identity matrix. If 𝑨 is symmetric with real eigenvalues, and 2-norm is used,

then 𝑐𝑜𝑛𝑑(𝑨) = 𝜆𝑚𝑎𝑥(𝑨)/𝜆𝑚𝑖𝑛(𝑨).

The condition number of the Hessian matrix affects the convergence rates of optimization algorithms: ill-

conditioned matrices give rise to numerical errors in computations. It is possible to improve the condition

number of Hessian matrix by scaling the variables. Optimization algorithms generate a series of solutions,

and the convergence property implies that the sequence converges to the true solution in the limit. The

rate of convergence dictates how quickly the approximate solutions approach the exact solution.

Assume that a sequence of points {𝑥𝑘} converges to a solution point 𝑥∗ and define an error sequence:

𝑒𝑘 = 𝑥𝑘 − 𝑥∗. Then, we say that the sequence {𝑥𝑘} converges to 𝑥∗ with rate 𝑟 and rate constant 𝐶 if

lim𝑘→∞
‖𝑒𝑘+1‖

‖𝑒𝑘‖𝑟 = 𝐶. Further, if uniform convergence is assumed, then ‖𝑒𝑘+1‖ = 𝐶‖𝑒𝑘‖
𝑟 holds for all 𝑘.

Thus, convergence to the limit point is faster if 𝑟 is larger and 𝐶 is smaller. Specific cases for different

choices of 𝑟 and 𝐶 are mentioned below.

Linear convergence. For 𝑟 = 1 and 0 < 𝐶 < 1, ‖𝑒𝑘+1‖ = 𝐶‖𝑒𝑘‖, signifying linear convergence. In this

case the speed of convergence depends only on 𝐶, which can be estimated as 𝐶 ≈
𝑓(𝑥𝑘+1)−𝑓(𝑥∗)

𝑓(𝑥𝑘)−𝑓(𝑥∗)
.

Quadratic Convergence. For 𝑟 = 2, the convergence is quadratic, i.e., ‖𝑒𝑘+1‖ = 𝐶‖𝑒𝑘‖
2. If,

additionally, 𝐶 = 1, then the number of correct digits doubles at every iteration.

Superlinear Convergence. For 1 < 𝑟 < 2, the convergence is superlinear. Superlinear convergence is

achieved by certain numerical algorithms that only use the gradient (first derivative) of the cost function.

25

 Newton’s Method for Solving Nonlinear Equations 2.12

Newton’s method, also known as Newton-Raphson method, iteratively solves a nonlinear equation:

𝑓(𝑥) = 0, starting from an initial point 𝑥0. The method generates a series of solutions {𝑥𝑘} that are

expected to converge to a fixed point 𝑥∗ that represents a root of the equation. To develop the method, we

assume that an estimate of the solution is available as 𝑥𝑘, and use first order Taylor series to approximate

𝑓(𝑥) around 𝑥𝑘, i.e.,

𝑓(𝑥𝑘 + 𝛿𝑥) = 𝑓(𝑥𝑘) + 𝑓′(𝑥𝑘)𝛿𝑥

Then, by setting 𝑓(𝑥𝑘 + 𝛿𝑥) = 0, we can solve for the offset 𝛿𝑥, and use it to update our estimate 𝑥𝑘 as:

𝑥𝑘+1 = 𝑥𝑘 − 𝑓(𝑥𝑘)/𝑓′(𝑥𝑘)

Next, Newton’s method can be extended to a system of nonlinear equations, given as:

𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

⋮

𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

Let a gradient matrix ∇𝑓(𝒙) be formed with columns: ∇𝑓1(𝒙), ∇𝑓2(𝒙),… , ∇𝑓𝑛(𝒙); then, the transpose of

the gradient matrix defines the Jacobian matrix given as: 𝐽(𝒙) = ∇𝑓(𝒙)𝑇. Using the Jacobian matrix, the

update rule in the 𝑛-dimensional case is given as:

𝒙𝑘+1 = 𝒙𝑘 − (𝐽(𝒙𝑘))
−1

𝑓(𝒙𝑘).

Convergence Rate. The Newton’s method requires a good initial guess for it to converge. Further,

Newton’s method, if it converges, exhibits quadratic rate of convergence near the solution point. The

method can become unstable if 𝑓(𝑥∗) ≈ 0. Assuming 𝑓′(𝑥∗) ≠ 0, and 𝑥𝑘 is sufficiently close to 𝑥∗, we

can use second order Taylor series to write:

𝑥𝑘+1 − 𝑥∗ ≈
1

2
(
𝑓′′(𝑥∗)

𝑓′(𝑥∗)
) (𝑥𝑘 − 𝑥∗)2

which shows that Newton’s method has quadratic convergence with a rate constant: 𝐶 =
1

2
|
𝑓′′(𝑥∗)

𝑓′(𝑥∗)
|.

 Conjugate-Gradient Method for Solving Linear Equations 2.13

26

The conjugate-gradient method is an iterative method designed to solve a system of linear equations

described as: 𝑨𝒙 = 𝒃, where 𝑨 is assumed normal, i.e., 𝑨𝑇𝑨 = 𝑨𝑨𝑇. The method initializes with 𝒙0 = 𝟎,

and uses an iterative process to obtain an approximate solution 𝒙𝑛 in 𝑛 iterations. The solution is exact in

the case of quadratic functions of the form: 𝑞(𝒙) =
1

2
𝒙𝑇𝑨𝒙 − 𝒃𝑇𝒙. For general nonlinear functions,

convergence in 2𝑛 iterations is to be expected.

The conjugate-gradient method generates a set of vectors 𝒗1, 𝒗2, … , 𝒗𝑛 that are conjugate with respect to

𝑨 matrix, i.e., 𝒗𝑖
𝑇𝑨𝒗𝑗 = 0, 𝑖 ≠ 𝑗. Let 𝒗−1 = 𝟎, 𝛽0 = 0; and define a residual 𝒓𝑖 = 𝒃 − 𝑨𝒙𝑖. Then, a set of

conjugate vectors is iteratively generated as:

𝒗𝑖 = 𝒓𝑖 + 𝛽𝑖𝒗𝑖−1, 𝛽𝑖 =
𝒗𝑖

𝑇𝑨𝒓𝑖

𝒗𝑖
𝑇𝑨𝒗𝑖

The method is named so because 𝑨𝒙 − 𝒃 represents the gradient of the quadratic function. Solving a

linear system of equations thus amounts to solving the minimization problem involving a quadratic

function. We note that the set of conjugate vectors of a matrix is not unique. Further, nonzero conjugate

vectors with respect to a positive-definite matrix are linearly independent.

Scaling of Variables. In conjugate-gradient and other iterative methods, scaling of variables, termed as

preconditioning, helps reduce the condition number of the coefficient matrix, which aids in fast

convergence of the algorithm.

Towards that end, we consider a linear system of equations: 𝑨𝒙 = 𝒃, and use a linear transformation to

formulate an equivalent system that is easier to solve. Let 𝑷 be any nonsingular 𝑛 × 𝑛 matrix, then an

equivalent left-preconditioned system is formulated as: 𝑷−1𝑨𝒙 = 𝑷−1𝒃, and a right-preconditioned

system is given as: 𝑨𝑷−1𝑷𝒙 = 𝒃. As the operator 𝑷−1 is applied at each step of the iterative solution, it

helps to choose a simple 𝑷−1 with a small computational cost. An example of a simple preconditioner is

the Jacobi preconditioner: 𝑷 = 𝑑𝑖𝑎𝑔(𝑨).

Further, if 𝑨 is symmetric and positive-definite, then 𝑷−1 should be chosen likewise. If both 𝑷−1 and 𝑨

are positive-definite, then we can use the Cholesky decomposition of 𝑷, 𝑷 = 𝑪𝑇𝑪, to write 𝑪−1𝑪−𝑇𝑨𝒙 =

𝑪−1𝑪−𝑇𝒃, or 𝑪−𝑇𝑨𝑪−1𝒙 = 𝑪−𝑇𝒃. Then, by defining 𝑪−𝑇𝑨𝑪−1 = 𝑨̂, 𝑪−𝑇𝒃 = 𝒃̂, we obtain 𝑨̂𝒙 = 𝒃̂,

where 𝑨̂ is positive-definite.

27

3 Graphical Optimization

We briefly discuss the graphical optimization concepts in this chapter before proceeding to formal

mathematical optimization method in Chapter 4 and computational methods in Chapter 7. Graphical

approach is recommended for problems of low dimensions, typically those involving one or two

variables. Apart from being simple, the graphical method provides a valuable insight into the problem,

which may not be forthcoming in the case of mathematical and computational optimization methods,

particularly in the case of two-dimensional problems.

The graphical method is applicable when the optimization problem is formulated with one or two

variables. Graphical optimization helps enhance our understanding of the underlying problem and

develop an appeal for the expected solution. The method involves plotting contours of the cost function

over a feasible region enclosed by the constraint boundaries. In most cases, the desired optimum can be

spotted by inspection.

Software implementation of the graphical method uses a grid of paired values for the optimization

variables to plot the objective function contours and the constraint boundaries. The minimum of the cost

function can then be identified on the plot. Graphical minimization procedure thus involves the following

steps:

1. Establishing the feasible region. This is done by plotting the constraint boundaries.

2. Plotting the level curves (or contours) of the cost function and identifying the minimum.

The graphical method is normally implemented in a computational software package such as Matlab ©

and Mathematica ©. Both packages include functions that aid the plotting and visualization of cost

function contours and constraint boundaries. Code for Matlab implementation of graphical optimization

examples considered in this chapter is provided in the Appedix.

Learning Objectives: The learning goals in this chapter are:

1. Recognize the usefulness and applicability of the graphical method.

2. Learn how to apply graphical optimization techniques to problems of low dimensions.

 Functional Minimization in One-Dimension 3.1

Graphical function minimization in one-dimension is performed by computing and plotting the function

values at a set of discrete points and identifying its minimum value on the plot. We assume that the

feasible region for the problem is a closed interval: 𝑆 = [𝑥𝑙 , 𝑥𝑢]; then, the procedure can be summarized

as follows:

1. Define a grid over the feasible region: let 𝑥 = 𝑥𝑙 + 𝑘𝛿, 𝑘 = 0,1,2,… where 𝛿 defines the

granularity of the grid.

2. Compute and compare the function values over the grid points to find the minimum.

28

For example, let the problem be defined as: Minimize 𝑒𝑥 subject to 𝑥2 ≤ 1. Then, to find a solution, we

define a grid over the feasible region: let = 0.01, 𝑥 = −1,−0.99,… ,−0.01,0,0.01,… ,0.99,1. Then,

𝑓(𝑥) = 𝑒−1, 𝑒−0.99, … , 𝑒−0.01, 1, 𝑒0.01, … , 𝑒0.99, 𝑒1. By comparison, 𝑓𝑚𝑖𝑛 = 𝑒−1 at 𝑥 = −1.

 Graphical Optimization in Two-Dimensions 3.2

Graphical optimization is most useful for optimization problems involving functions of two variables.

Graphical function minimization in two-dimensions is performed by plotting the contours of the objective

function along with the constraint boundaries on a two-dimensional grid. In Matlab ©, the grid points can

be generated with the help of ‘meshgrid’ function. Mathematica © also provide similar capabilities.

The following examples discuss the application of graphical method in engineering design optimization

problems involving two optimization variables.

Example 3.1: Soda can design problem

The problem is to design a soda can (choose diameter 𝑑 and height ℎ) to hold a volume of 200 ml in order

to minimize the manufacturing cost (a function of the surface area). It is required that ℎ ≥ 2𝑑.

The optimization problem is formulated as:

min
𝑑,𝑙

 𝑓 =
1

2
𝜋𝑑2 + 𝜋𝑑ℎ

Subject to: 1
4
 𝜋𝑑2ℎ − 200 = 0, 2𝑑 − ℎ ≤ 0

(1.19)

In order to graphically solve the design problem, we consider the following ranges for the variables:

𝑑 = 1 − 10𝑐𝑚; ℎ = 2 − 20𝑐𝑚. We use Matlab to plot the contours of the cost function and the

constraint boundaries (Figure). By inspection, the optimum solution is: 𝑑∗ = 5.03𝑐𝑚, ℎ∗ = 10.06𝑐𝑚.

29

Example 3.2: Hollow cylindrical cantilever beam design (Arora, p. 85)

We consider the minimum-weight design of a cantilever beam of length 𝐿, with hollow circular cross-

section (outer radius 𝑅𝑜, inner radius 𝑅𝑖) subjected to a point load 𝑃. The maximum bending moment on

the beam is given as 𝑃𝐿, the maximum bending stress is given as: 𝜎𝑎 =
𝑃𝐿𝑅𝑜

𝐼
, and the maximum shear

stress is given as: 𝜏 =
𝑃

3𝐼
(𝑅𝑜

2 + 𝑅0𝑅𝑖 + 𝑅𝑖
2), where 𝐼 =

𝜋

4
(𝑅𝑜

4 − 𝑅𝑖
4) is the moment of inertia of the cross-

section. The maximum allowable bending and shear stresses are given as 𝜎𝑎 and 𝜏𝑎, respectively.

Let the design variables be selected as the outer radius 𝑅𝑜 and the inner radius 𝑅𝑖; then, the optimization

problem is stated as follows:

Minimize 𝑓(𝑅0, 𝑅𝑖) = 𝜋𝜌𝐿(𝑅0
2 − 𝑅𝑖

2)

Subject to:
𝜎

𝜎𝑎
− 1 ≤ 0,

𝜏

𝜏𝑎
− 1 ≤ 0; 𝑅0, 𝑅𝑖 ≤ 0.2𝑚

The following data are provided for the problem: 𝑃 = 10𝑘𝑁, 𝐿 = 5𝑚, 𝜎𝑎 = 250𝑀𝑃𝑎, 𝜏𝑎 = 90𝑀𝑃𝑎,

𝐸 = 210𝐺𝑃𝑎, 𝜌 = 7850 𝑘𝑔/𝑚3. After substituting the values, and dropping the constant terms in 𝑓, the

optimization problem is stated as:

Minimize 𝑓(𝑅0, 𝑅𝑖) = 𝑅0
2 − 𝑅𝑖

2

Subject to: 𝑔1:
8×10−4𝑅𝑜

𝜋(𝑅0
4−𝑅𝑖

4)
− 1 ≤ 0; 𝑔2:

4(𝑅𝑜
2+𝑅0𝑅𝑖+𝑅𝑖

2)

27𝜋(𝑅0
4−𝑅𝑖

4)
− 1 ≤ 0; 𝑅0, 𝑅𝑖 ≤ 20𝑐𝑚

The graphical solution to the problem, obtained from Matlab, is shown in Figure 3.1. The optimal

solution is given as: 𝑅𝑜 = 0.12𝑚, 𝑅𝑖 = 0.115𝑚, 𝑓∗ = 0.001175.

Figure Error! No text of specified style in document.-1: the soda can design problem.

30

Figure 3.1: Graphical solution to the minimum-weight hollow cantilever beam design (Example 3.2)

Example 3.3: Symmetrical two-bar truss design (Arora, p. 59)

We wish to design a symmetrical two-bar truss to withstand a load 𝑊 = 50𝑘𝑁. The truss consists of two

steel tubes pinned together at the top and supported on the ground at the other (figure). The truss has a

fixed span 𝑠 = 2𝑚, and a height ℎ = √𝑙2 − 1, where 𝑙 is the length of the tubes; both tubes have a cross-

sectional area: 𝐴 = 2𝜋𝑅𝑡, where 𝑅 is the radius of the tube and 𝑡 is the thickness. The objective is to

design a minimum-weight structure, where total weight is 2𝜌𝑙𝐴.

The truss design is subject to the following constraints:

1. The height of the truss is to be limited as: 2 ≤ ℎ ≤ ℎ ≤

2. The tube thickness is to be limited as: 𝑅 ≤ 45𝑡;

3. The maximum allowable stress is given as: 𝜎𝑎 = 250𝑀𝑃𝑎;

4. To prevent buckling, tube loading should not exceed a critical value:
𝑊𝑙

2ℎ
≤

𝑃𝑐𝑟

𝐹𝑆
=

1

𝐹𝑆

𝜋2𝐸𝐼

(𝐾𝑙)2
 , where

𝐾 = 0.7, 𝐸 = 210𝐺𝑃𝑎, the moment of inertia: 𝐼 ≅ 𝜋𝑅3𝑡, and 𝐹𝑆 = 2 denotes a safety factor.

Let the design variables be selected as: ℎ, 𝑅, 𝑡; then, the optimization problem is formulated as:

Minimize 𝑓(ℎ, 𝑅, 𝑡) = 4𝜋𝜌√ℎ2 + 1𝑅𝑡

Subject to: 𝑔1:
𝑊√ℎ2+1

4𝜋ℎ𝑅𝑡𝜎𝑎
− 1 ≤ 0, 𝑔2:

0.49𝑊(ℎ2+1)
3
2.

𝜋3𝐸ℎ𝑅3𝑡
− 1 ≤ 0, 𝑔3: 𝑅 − 45𝑡 ≤ 0, 𝑔4: 2 ≤ ℎ ≤ 5.

In the above formulation, there are three design variables: ℎ, 𝑅, 𝑡. Consequently, we need to fix the value

of one variable in order to perform the graphical design with two variables. We arbitrarily fix ℎ = 3𝑚,

and graphically solve the resulting minimization problem stated, after dropping the constant terms in 𝑓, as

follows:

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.
00

1
0.0

01

0.0
01

0.0
01

0.
00

2

0.
00

2

0.0
02

0.0
02

0
.0

0
3

0.
00

3

0.
00

3

0.
00

4

0.
00

4

0.
00

4

0.
00

5

0.
00

5

0.
00

5

0.
00

6

0.
00

6

0.
00

6

0.
00

7

0.
00

7

0.
00

7

0.
00

8

0.
00

8

0.
00

8

0.
00

9

0.
00

9

0.
00

9

0
.0

1

0.
01

0.
01

X= 0.12

Y= 0.115

Level= 0.001175

Ro

R
i

Hollow Cylindrical Cantilever Beam Design

31

Minimize 𝑓(𝑅, 𝑡) = 𝑅𝑡

Subject to: 𝑔1:
1.677×10−5

𝑅𝑡
− 1 ≤ 0, 𝑔2:

3.966×10−8

𝑅3𝑡
− 1 ≤ 0, 𝑔3: 𝑅 − 45𝑡 ≤ 0

A graph of the objective function and the constraints for the problem is shown in the Figure 3.2. From the

figure, the optimum values of the design variables are: 𝑅 = 3.7𝑐𝑚, 𝑡 = 0.8𝑚𝑚, 𝑓∗ = 3 × 10−5.

Figure 3.2: Graphical solution to the minimum-weight symmetrical two-bar truss design (Example 3.3)

Example 3.4: Symmetrical three-bar truss design (Arora, p. 46, 86)

We consider the minimum-weight design of a symmetric three-bar truss supported over-head. Members 1

and 3 have the same cross-sectional area 𝐴1 and the middle member 2 has cross-sectional area 𝐴2. Let 𝑙

be the height of the truss, then the lengths of member 1 and 3 are √2𝑙 and that of member 2 is 𝑙.

A load 𝑃 at the joint is applied at an angle 𝜃, so that the horizontal and vertical components of the applied

load are given, respectively, as: 𝑃𝑢 = 𝑃 cos 𝜃 , 𝑃𝑣 = 𝑃 sin𝜃. The design variables for the problem are

selected as 𝐴1 and 𝐴2. The design objective is to minimize the total 𝑚𝑎𝑠𝑠 = 𝜌𝑙(2√2𝐴1 + 𝐴2).

The constraints in the problem are formulated as follows:

a) The stresses in members 1, 2 and 3, computed as: 𝜎1 =
1

√2
[
𝑃𝑢

𝐴1
+

𝑃𝑣

(𝐴1+√2𝐴2)
] ; 𝜎2 =

√2𝑃𝑣

(𝐴1+√2𝐴2)
; 𝜎3 =

1

√2
[−

𝑃𝑢

𝐴1
+

𝑃𝑣

(𝐴1+√2𝐴2)
], are to be limited by the allowable stress 𝜎𝑎 for the material.

b) The axial force in members under compression, given as: 𝐹𝑖 = 𝜎𝑖𝐴𝑖, is limited by the buckling load,

i.e., −𝐹𝑖 ≤
𝜋2𝐸𝐼

𝑙𝑖
2 , or −𝜎𝑖 ≤

𝜋2𝐸𝛽𝐴𝑖

𝑙𝑖
2 ≤ 𝜎𝑎 , where the moment of inertia is estimated as: 𝐼𝑖 = 𝛽𝐴𝑖

2,

𝛽 = constant.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-3

5
e

-0
0
5

5e-005

5e-005

0.000
1

0.0001

0.0001

0.00015

0.00015

0.0002

X= 0.037

Y= 0.0008

Level= 0.001

Two bar truss design

R(m)

t(
m

)

1
e

-0
0
5

1
e

-0
0
5

1e-005

1e-005
1e-005

2
e

-0
0
5

2e-005

2e-005

2e-005

3
e

-0
0
5

3e-005

3e-005

3e-005

4
e

-0
0
5

4e-005

4e-005

4e-005

32

c) The horizontal and vertical deflections of the load point, given as: 𝑢 =
√2𝑙𝑃𝑢

𝐴1𝐸
, 𝑣 =

√2𝑙𝑃𝑣

(𝐴1+√2𝐴2)𝐸
, are

to be limited by 𝑢 ≤ ∆𝑢 , 𝑣 ≤ ∆𝑣.

d) To avoid possible resonance, the lowest eigenvalue of the structure, given as: 𝜁 =
3𝐸𝐴1

𝜌𝑙2(4𝐴1+√2𝐴2)
,

where 𝜌 is the mass density should be higher than a specified frequency, i.e., 𝜁 ≥ (2𝜋𝜔0)
2.

e) The design variables are required to be greater than some minimum value, i.e., 𝐴1, 𝐴2 ≥ 𝐴𝑚𝑖𝑛.

For a particular problem, let 𝑙 = 1.0𝑚, 𝑃 = 100𝑘𝑁, 𝜃 = 30°, 𝜌 = 2800
𝑘𝑔

𝑚3 , 𝐸 = 70𝐺𝑃𝑎, 𝜎𝑎 =

140𝑀𝑃𝑎, ∆𝑢= ∆𝑣= 0.5 𝑐𝑚, 𝜔0 = 50𝐻𝑧, 𝛽 = 1.0, and 𝐴𝑚𝑖𝑛 = 2𝑐𝑚2. Then, 𝑃𝑢 =
√3𝑃

2
, 𝑃𝑣 =

𝑃

2
; and

the resulting optimal design problem is formulated as:

Minimize 𝑓(𝐴1, 𝐴2) = 2√2𝐴1 + 𝐴2

Subject to:

𝑔1: 2.5 × 10−4 [
√3

𝐴1
+

1

(𝐴1 + √2𝐴2)
] − 1 ≤ 0,

𝑔2: 2.5 × 10−4 [−
√3

𝐴1
+

1

(𝐴1 + √2𝐴2)
] − 1 ≤ 0,

𝑔3:
5 × 10−4

(𝐴1 + √2𝐴2)
− 1 ≤ 0,

𝑔4: 1.02 × 10−7 [
√3

𝐴1
2 −

1

𝐴1(𝐴1 + √2𝐴2)
] − 1 ≤ 0,

𝑔5:
3.5 × 10−4

𝐴1
− 1 ≤ 0,

𝑔6:
2 × 10−4

𝐴1 + √2𝐴2

− 1 ≤ 0,

𝑔7:
2 × 10−4

𝐴1
− 1 ≤ 0,

𝑔8:
2 × 10−4

𝐴2
− 1 ≤ 0,

𝑔9: 1.316 × 10−5(4𝐴1 + √2𝐴2) − 1 ≤ 0,

𝑔10: 2467𝐴1 − 1 ≤ 0.

The problem was graphically solved in Matlab (see Figure 3.3). The optimum solution is given as:

𝐴1 = 𝐴3 = 6𝑐𝑚2, 𝐴2 = 2 𝑐𝑚2, 𝑓∗ = 0.00486𝑐𝑚2.

33

Figure 3.3: Graphical solution to the minimum-weight symmetrical three-bar truss design (Example 3.4)

Appendix to Chapter 3: Matlab Code for Examples 3.2-3.4

Example 3.1: Soda can design

%soda can design
d=1:.05:10; h=2:.1:20;
[D,H]=meshgrid(d,h);

f=pi*D.*(D/2+H);
g1=pi/4*D.*D.*H-200;
g2=2*D-H;

figure, xlabel('D'), ylabel('H'), hold
contour(d,h, g1,[0 0],'r'),
contour(d,h, g2,[0 0],'r'), pause
[c1,h1]=contour(d,h,f); clabel(c1,h1),hold

Example 3.2: Cantilever beam design (Arora, Prob. 2.23, p. 64)

% cantilever beam design, Prob. 2.23 (Arora)
ro=.01:.005:.2;
ri=.01:.005:.2;
[Ro,Ri]=meshgrid(ro,ri);
F=Ro.*Ro-Ri.*Ri;
G1=8e-4/pi*Ro./(Ro.^4-Ri.^4)-1;
G2=4/27/pi*(Ro.*Ro+Ro.*Ri+Ri.*Ri)./(Ro.^4-Ri.^4)-1;
figure, hold
contour(ro,ri,G1,[0 0])
contour(ro,ri,G2,[0 0])
[c,h]=contour(ro,ri, F, .001:.001:.01);
clabel(c,h);

Example 3.3: Two-bar truss design (Arora, Prob. 2.16, p. 61)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

0
.0

0
0

5

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
1

5

0
.0

0
1

5

0
.0

0
1

5

0
.0

0
2

0
.0

0
2

0
.0

0
2

0
.0

0
2

5

0
.0

0
2

5

0
.0

0
2

5

0
.0

0
3

0
.0

0
3

0
.0

0
3

5

X= 0.0006

Y= 0.0002

Level= 0.004864

A1

A
2

34

% two-bar trus; prob. 2.16 (Arora)
W=50e3;
r=0:.001:.05;
t=0:.0001:.005;
[R,T]=meshgrid(r,t);
F=R.*T;
G1=sqrt(10)*W/12/pi./(250e6*R.*T)-1;
G2=4.9*sqrt(10)*W/3/pi/pi/pi./(210e9*R.^3.*T)-1;
G3=R-45*T;
figure, hold
contour(r,t,G1,[0 0]), pause
contour(r,t,G2,[0 0]), pause
contour(r,t,G3,[0 0]), pause
[c,h]=contour(r,t,F);
clabel(c,h)

Example 3.4: Symmetric three-bar truss (Arora, Prob. 3.29, p. 86)

%three-bar truss prob. 3.29 (Arora)
a1=0:1e-4:1e-3;
a2=0:1e-4:1e-3;
[A1,A2]=meshgrid(a1,a2);
F=2*sqrt(2)*A1+A2;
G1=2.5e-4*(sqrt(3)./A1+1./(A1+sqrt(2)*A2))-1;
G2=2.5e-4*(-sqrt(3)./A1+1./(A1+sqrt(2)*A2))-1;
G3=5e-4./(A1+sqrt(2)*A2)-1;
G4=1.02e-7*(sqrt(3)./A1./A1-1./A1./(A1+sqrt(2)*A2))-1;
G5=3.5e-4./A1-1;
G6=2e-4./(A1+sqrt(2)*A2)-1;
G7=2e-4./A1-1;
G8=2e-4./A2-1;
G9=1.316e-5*(A1+sqrt(2)*A2)-1;
G10=2467*A1-1;
figure, hold
contour(a1,a2, G1,[0 0]), pause
contour(a1,a2, G2,[0 0]), pause
contour(a1,a2, G3,[0 0]), pause
contour(a1,a2, G4,[0 0]), pause
contour(a1,a2, G5,[0 0]), pause
contour(a1,a2, G6,[0 0]), pause
contour(a1,a2, G7,[0 0]), pause
contour(a1,a2, G8,[0 0]), pause
contour(a1,a2, G9,[0 0]), pause
contour(a1,a2, G10,[0 0]), pause
[c,h]=contour(a1,a2,F);
clabel(c,h)

35

4 Mathematical Optimization

In this chapter we discuss the mathematical optimization problem, its formulation, and the techniques to

solve it. The mathematical optimization problem involves minimization (or maximization) of a real-

valued cost function by systematically choosing the values of a set of variables that are subject to

inequality and/or equality constraints. Both cost and constraint functions are assumed analytical so that

they can be locally approximated by Taylor series and their first and second derivatives can be computed.

The analytical techniques used to solve the optimization problem include determination of first and

second order necessary conditions that reveal a set of possible candidate points, which are then evaluated

using sufficient conditions for an optimum. In convex optimization problems the feasible region, i.e., the

set of points that satisfy the constraints, is a convex set and both object and constraint functions are also

convex. In such problems, the existence of a single global minimum is assured.

Learning Objectives: the learning goals in this chapter are:

1. Understand formulation of the unconstrained and constrained optimization problems

2. Learn to apply first and second order necessary conditions to solve optimization problems

3. Learn solution techniques used for convex optimization problems

4. Understand the concept of duality and the formulation of the dual problem

5. Learn the techniques used for post-optimality analysis for nonlinear problems

 The Optimization Problem 4.1

The general nonlinear optimization problem (the nonlinear programming problem) is defined as:

min
𝒙

 𝑓(𝒙)

Subject to {

ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙;

 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 𝑖, … ,𝑚;

𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈, 𝑖 = 1,… , 𝑛

(4.1)

The above problem assumes minimization of a multi-variable scalar cost function 𝑓(𝒙), where 𝒙 ∈ ℝ𝑛,

𝒙𝑇 = [𝑥1, 𝑥2, … , 𝑥𝑛], that is subjected to 𝑙 equality constraints and 𝑚 inequality constraints. Additionally,

lower and upper bounds on the optimization variables are considered, which may be grouped with the

inequality constraints.

Special cases involving variants of the general problem can be considered. For example, the absence of

both equality and inequality constraints specifies an unconstrained optimization problem; the problem

may only involve a single type of constraints; the linearity of the objective and constraint functions

specifies a linear programming problem (discussed in Chapter 5); and the restriction of optimization

variables to a discrete set of values specifies a discrete optimization problem (discussed in Chapter 6).

36

We begin with defining the feasible region for the optimization problem and a discussion of the existence

of points of minima or maxima of the objective function in that region.

Feasible Region. The set Ω = {𝑥: ℎ𝑖(𝒙) = 0, 𝑔𝑗(𝒙) ≤ 0, 𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈} is termed as the feasible

region for the problem. If the feasible region is a convex set, and additionally ℎ𝑖, 𝑖 = 1,… , 𝑙 are linear and

 𝑔𝑗 , 𝑗 = 1,… ,𝑚 are convex functions, then the problem is a convex optimization problem with some

obvious advantages, e.g., 𝑓 only has a single global minimum in Ω.

The Extreme Value Theorem in Calculus (attributed to Karl Weierstrass) provides sufficient conditions

for the existence of minimum (or maximum) of a function defined over a complex domain. The theorem

states: A continuous function 𝑓(𝒙) defined over a closed and bounded set 𝛺 ⊆ 𝐷(𝑓) attains its maximum

and minimum in 𝛺.

According to this theorem, if the feasible region Ω of the problem is closed and bounded, a minimum for

the problem exists. The rest of the book discusses various ways to find that minimum.

Finding the minimum is relatively easy in the case of linear programming problems, but could be

considerably difficult in the case of nonlinear problems with an irregular of the constraint surface. As a

consequence, numerical methods applied to a nonlinear problem may only return a local minimum.

Stochastic methods, such as Simulated Annealing, have been developed to find a global minimum with

some certainty in the case of nonlinear problems. These methods are, however, not covered in this text.

Finally, we note that the convexity property, if present, helps in finding a solution to the optimization

problem. If convexity can be ascertained through application of appropriate techniques, then we are

assured that any solution found in the process would be the global solution.

 Optimality criteria for the Unconstrained Problems 4.2

We begin by reviewing the concept of local and global minima and a discussion of the necessary and

sufficient conditions for existence of a solution.

Local Minimum. A point 𝒙∗ is a local minimum of 𝑓 if 𝑓(𝒙∗) ≤ 𝑓(𝒙) in a neighborhood of 𝒙∗ defined

by |𝒙 − 𝒙∗| < 𝛿 for some 𝛿 > 0.

Global Minimum. The point 𝒙∗ is a global minimum if 𝑓(𝒙∗) ≤ 𝑓(𝒙), 𝒙 ∈ Ω, where Ω is the feasible

region for the problem. Further, the point 𝒙∗ is a strong global minimum if: 𝑓(𝒙∗) < 𝑓(𝒙), 𝒙 ∈ Ω.

The local and global minima are synonymous in the case of convex optimization problems. In the

remaining cases, a distinction between the two needs to be made. Further, local or global minimum in the

case of non-convex optimization problems is not necessarily unique.

Necessary and Sufficient Conditions. The conditions that must be satisfied at the optimum point are

termed as necessary conditions. The set of points that satisfies the necessary conditions further includes

37

maxima and points of inflection. The sufficient conditions are then used to qualify the solution points. If a

candidate point satisfies the sufficient conditions, then it is indeed an optimum point. However, not being

able to satisfy the sufficient conditions does not preclude the existence of an optimum point.

We now proceed to derive the first and second order conditions of optimality in the case of unconstrained

optimization problems.

4.2.1 First Order Necessary Conditions (FONC)

We consider a multi-variable function 𝑓(𝒙) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) and wish to investigate the behavior of a

candidate point 𝒙∗. By definition, the point 𝒙∗ is a local minimum of 𝑓(𝒙) only if 𝑓(𝒙∗) ≤ 𝑓(𝒙) in the

neighborhood of 𝒙∗.

To proceed, let 𝛿𝒙 = 𝒙 − 𝒙∗ define a small neighborhood around 𝒙∗, and use first-order Taylor series

expansion of 𝑓 given as: 𝑓(𝒙) = 𝑓(𝒙∗) + ∇𝑓(𝒙∗)𝑇𝛿𝒙 to express the condition for local minimum as:

𝛿𝑓 = ∇𝑓(𝒙∗)𝑇𝛿𝒙 ≥ 0 (4.2)

We first note that the above condition is satisfied for ∇𝑓(𝒙∗) = 0. Further, since 𝛿𝒙 is arbitrary, ∇𝑓(𝒙∗)

must be zero to satisfy the above non-negativity condition on 𝛿𝑓. Therefore, the first-order necessary

condition (FONC) for optimality of 𝑓(𝒙∗) is stated as follows:

FONC: If 𝑓(𝒙) has a local minimum at 𝒙∗, then 𝛻𝑓(𝒙∗) = 0, or equivalently,
𝜕𝑓(𝒙∗)

𝜕𝑥𝑗
= 0, 𝑗 = 1,… , 𝑛.

The points that satisfy FONC are called stationary points of 𝑓(𝒙). Besides minima, these points include

maxima and the points of inflection.

4.2.2 Second Order Conditions (SOC)

Assume now that FONC are satisfied, i.e., ∇𝑓(𝒙∗) = 0. Then, we may use second-order Taylor series

expansion of 𝑓(𝒙) to write the optimality condition as:

𝛿𝑓 = 𝛿𝒙𝑇∇2𝑓(𝒙∗)𝛿𝒙 ≥ 0 (4.3)

Note that 𝛿𝑓 is a quadratic form in 𝛿𝒙. Moreover, as 𝛿𝒙 are arbitrary, the quadratic form is positive

(semi)definite if and only if the Hessian matrix, ∇2𝑓(𝒙∗), is positive (semi)definite. Therefore, the second

order necessary condition (SONC) is stated as:

SONC: If 𝒙∗ is a local minimizer of 𝑓(𝒙), then 𝛻2𝑓(𝒙∗) ≥ 0.

38

If the quadratic form is positive definite, then 𝑓(𝒙∗) < 𝑓(𝒙) in the neighborhood of 𝒙∗. Hence, a stronger

second order sufficient condition (SOSC) is stated as:

SOSC: If 𝒙∗ satisfies 𝛻2𝑓(𝒙∗) > 0, then 𝒙∗ is a local minimizer of 𝑓(𝒙).

Further, if ∇2𝑓(𝒙∗) < 0, then 𝒙∗ is a maxima; and, if ∇2𝑓(𝒙∗) is indefinite, then 𝒙∗ is an inflection point.

In the event that ∇𝑓(𝒙∗) = ∇2𝑓(𝒙∗) = 0, the lowest nonzero derivative must be even-ordered for

stationary points (necessary condition), and it must be positive for local minimum (sufficient condition).

Two examples of unconstrained optimization problems are presented below:

Example 4.1: Polynomial data-fitting

As an example of unconstrained optimization, consider the polynomial data-fitting problem defined

earlier in Sec. 2.11. The problem is to fit an 𝑛th degree polynomial: 𝑝(𝑥) = ∑ 𝑝𝑗𝑥
𝑗𝑛

𝑗=0 to a set of data

points: (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝑁 > 𝑛. In particular, we consider the case 𝑛 = 1, i.e., let the model be given as:

𝑦𝑖 = 𝑚𝑥𝑖 + 𝑏. The objective is to minimize the mean square error (MSE), also termed as the variance of

the data points. The resulting unconstrained minimization problem is formulated as:

min
𝑚,𝑏

𝑓(𝑚, 𝑏) =
1

2𝑁
∑ (𝑚𝑥𝑖 + 𝑏 − 𝑦𝑖)

2
𝑁

𝑖=1

Then, the FONC for the problem are evaluated as:

𝜕𝑓

𝜕𝑚
=

1

𝑁
∑ (𝑚𝑥𝑖 + 𝑏 − 𝑦𝑖)(𝑥𝑖)

𝑁

𝑖=1
= 0

𝜕𝑓

𝜕𝑏
=

1

𝑁
∑ (𝑚𝑥𝑖 + 𝑏 − 𝑦𝑖)

𝑁

𝑖=1
= 0

The above equations can be assembled in matrix form and solved for 𝑚, 𝑏:

(
1

1

𝑁
∑ 𝑥𝑖𝑖

1

𝑁
∑ 𝑥𝑖𝑖

1

𝑁
∑ 𝑥𝑖

2
𝑖

)(
𝑏
𝑚

) = (

1

𝑁
∑ 𝑦𝑖𝑖

1

𝑁
∑ 𝑥𝑖𝑦𝑖𝑖

)

The SONC for the problem evaluate as:

∇2𝑓 = (
1

1

𝑁
∑ 𝑥𝑖𝑖

1

𝑁
∑ 𝑥𝑖𝑖

1

𝑁
∑ 𝑥𝑖

2
𝑖

) ≥ 0

39

The determinant of the Hessian evaluates as:
1

𝑁
∑ 𝑥𝑖

2
𝑖 − (

1

𝑁
∑ 𝑥𝑖𝑖)

2
, which is a familiar expression for

variance in the case of independent and identically distributed random variables.

The first and second order conditions for a more general case of fitting 𝑛th order polynomial are stated as:

𝜕𝑓

𝜕𝑝𝑗
=

1

𝑁
∑ (𝑦𝑖 − (𝑝0 + 𝑝1𝑥𝑖 + ⋯+ 𝑝𝑛𝑥𝑖

𝑛))(−𝑥𝑖
𝑗
)

𝑁

𝑖=1
= 0

(

1 ⋯
1

𝑁
∑ 𝑥𝑖

𝑛
𝑖

⋮ ⋱ ⋮
1

𝑁
∑ 𝑥𝑖

𝑛
𝑖 ⋯

1

𝑁
∑ 𝑥𝑖

2𝑛
𝑖

) ≥ 0.

Finally, we note that since the data-fitting problem is convex, FONC are both necessary and sufficient for

a minimum.

Example 4.2: Open box problem

We wish to determine the dimensions of an open box of maximum volume that can be constructed form a

sheet of paper (8.5 × 11 in) by cutting squares from the corners and folding the sides upwards.

Let 𝑥 denote the width of the paper that is folded up, then the problem is formulated as:

max
𝑥

 𝑓(𝑥) = (11 − 2𝑥)(8.5 − 2𝑥)𝑥

The FONC for the problem evaluate as: 𝑓′(𝑥) = 2𝑥(19.5 − 4𝑥) − (11 − 2𝑥)(8.5 − 2𝑥) = 0.

Using Matlab Symbolic toolbox ‘solve’ command, we obtain two candidate solutions: 𝑥∗ = 1.585, 4.915.

Application of SOC results in: 𝑓′′(𝑥) = −39.95, 39.95, respectively, indicating a maximum of 𝑓(𝑥) at

𝑥∗ = 1.585 with 𝑓(𝑥∗) = 66.15 cu.in.

 Optimality Criteria for the Constrained Problems 4.3

The majority of engineering design problems involves constraints (LE, GE, EQ) that are functions of

optimization variables. In this section, we explore how constraints affect the optimality criteria. An

important consideration when applying the optimality criteria to problems involving constraints is

whether 𝒙∗ lies on a constraint boundary. This is implied in the case for problems involving only equality

constraints, which are discussed first.

4.3.3 Equality Constrained Problems

The optimality criteria for equality constrained problems involve the use of Lagrange multipliers. To

develop this concept, we consider a problem with a single equality constraint, stated as:

40

min
𝒙

 𝑓(𝒙)

subject to ℎ(𝒙) = 0
(4.4)

We first note that the constraint equation can be used to substitute one of the variables (say 𝑥𝑛) in the

objective function, and, hence, develop an unconstrained optimization problem in 𝑛 − 1 variables. This,

however, depends on the form of ℎ(𝒙) and may not always be feasible.

In order to develop more general optimality criteria, we follow Lagrange’s approach to the problem and

consider the variation in the objective and constraint functions at a stationary point, given as:

𝛿𝑓 = ∇𝑓(𝒙∗)𝑇𝛿𝒙 =
𝜕𝑓

𝜕𝑥1
𝛿𝑥1 + ⋯+

𝜕𝑓

𝜕𝑥𝑛
𝛿𝑥𝑛 = 0

𝛿ℎ = ∇ℎ(𝒙∗)𝑇𝛿𝒙 =
𝜕ℎ

𝜕𝑥1
𝛿𝑥1 + ⋯+

𝜕ℎ

𝜕𝑥𝑛
𝛿𝑥𝑛 = 0

(4.5)

where the partial derivatives are computed at the stationary point. We may combine these two conditions

via a scalar weight (Lagrange multiplier, 𝜆) to write:

∑ (
𝜕𝑓

𝜕𝑥𝑗
+ 𝜆

𝜕ℎ

𝜕𝑥𝑗
)𝛿𝑥𝑗

𝑛

𝑗=1
= 0 (4.6)

Since the variations 𝛿𝑥𝑗 are independent, the above condition implies that:
𝜕𝑓

𝜕𝑥𝑗
+ 𝜆

𝜕ℎ

𝜕𝑥𝑗
= 0, 𝑗 = 1,… , 𝑛.

Using the gradient notation, the FONC for the equality constrained problem are given as:

∇𝑓(𝒙∗) + 𝜆∇ℎ(𝒙∗) = 0

Since the equality constraints can be multiplied by −1 without changing the solution, the Lagrange

multiplier 𝜆 for the equality constraint is free in sign.

Next, assume multiple equality constraints: ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙, and define a Lagrangian function:

ℒ(𝒙, 𝝀) = 𝑓(𝒙) + ∑ 𝜆𝑖ℎ𝑖(𝒙)
𝑙

𝑖=1

(4.7)

Then, in order for 𝑓(𝒙) to have a local minimum at 𝒙∗, the following FONC must be satisfied:

𝜕ℒ

𝜕𝑥𝑗
=

𝜕𝑓

𝜕𝑥𝑗
+ ∑ 𝜆𝑖

𝜕ℎ𝑖

𝜕𝑥𝑗
𝑥𝑗

𝑙

𝑖=1
= 0; 𝑗 = 1,… , 𝑛

ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙

 (4.8)

Note that the FONC include the equality constraints. Collectively, they constitute 𝑛 + 𝑙 equations that

must be simultaneously solved for 𝑥𝑗, 𝑗 = 1,… , 𝑛 and 𝜆𝑖, 𝑖 = 1,… , 𝑙.

41

The FONC can be equivalently stated as:

∇𝒙 ℒ(𝒙∗, 𝝀∗) = 0, ∇𝝀 ℒ(𝒙∗, 𝝀∗) = 0 (4.9)

These conditions suggest that the Lagrangian function ℒ(𝒙, 𝝀) is stationary with respect to both 𝒙 and 𝝀 at

the point (𝒙∗, 𝝀∗). Therefore, minimization of ℒ(𝒙, 𝝀) amounts to an unconstrained optimization problem.

Further, the Lagrange Multiplier Theorem (Arora, p.135) states that if 𝒙∗is a regular point (defined below)

then the FONC result in a unique solution to 𝜆𝑖
∗, 𝑖 = 1,… , 𝑙.

SOSC for equality constrained problems are given as: ∇2ℒ(𝒙∗, 𝝀∗) = ∇2𝑓(𝒙∗) > 0. Further discussion on

SOC for constrained optimization problems is delayed till Sec. 4.4.3.

Finally, the above FONC further imply: ∇ 𝑓(𝒙∗) = −∑ 𝜆𝑖∇ℎ𝑖(𝒙
∗)𝑝

𝑖=1 . Algebraically, it means that the

cost function gradient is a linear combination of the constraint gradients. Geometrically, the negative of

the cost function gradient lies in the convex cone spanned by the constraint normals ∇ℎ𝑖(𝒙
∗), 𝑖 = 1,… 𝑙.

Accordingly, a feasible point 𝑥 is termed as regular if the constraint normal are linearly independent at

that point.

Example 4.3: We consider the following optimization problem:

min
𝑥1,𝑥2

 𝑓(𝑥1, 𝑥2) = −𝑥1𝑥2

Subject to: ℎ(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 − 1 = 0

We first note that the equality constraint can be used to develop an unconstrained problem in one variable,

given as: min𝑥1
𝑓(𝑥1) = −𝑥1√1 − 𝑥1

2 or min𝑥2
𝑓(𝑥2) = −𝑥2√1 − 𝑥2

2. Instead, we follow the

Lagrangian approach to solve the original problem below.

It is instructive to first review the problem from a graphical perspective (Figure 4.1). The figure shows the

feasible region, i.e., the perimeter of a unit circle superimposed on the level sets of the objective function.

By inspection, the optimum can be located in the first and the third quadrant where the level curves are

tangent to the circle.

The Lagrangian function for the problem is formulated as: ℒ(𝑥1, 𝑥2, 𝜆) = −𝑥1𝑥2 + 𝜆(𝑥1
2 + 𝑥2

2 − 1).

The FONC evaluate as: 2𝜆𝑥1 − 𝑥2 = 0, 2𝜆𝑥2 − 𝑥1 = 0, 𝑥1
2 + 𝑥2

2 − 1 = 0.

Thus, there are four candidate solutions at: (𝑥1
∗, 𝑥2

∗) = (±
1

√2
, ±

1

√2
) , 𝜆∗ = ±

1

2
 .

The SONC for the problem evaluate as: [
2𝜆 −1
−1 2𝜆

] ≥ 0. Note that SONC is only satisfied for 𝜆∗ =
1

2
.

Application of SONC reveals multiple minima at (𝑥1
∗, 𝑥2

∗) = (
1

√2
,

1

√2
) ∪ (−

1

√2
, −

1

√2
); 𝑓(𝑥1

∗, 𝑥2
∗) = −

1

2
.

We note that the SOSC are not satisfied for this problem. This is typical of problems involving multiple

local minima.

42

Figure 4.1: Level sets of the objective function superimposed on the equality constraint.

The above example underscores some of the pitfalls in the case of nonlinear optimization problems:

Application of FONC results in multiple nonlinear equations whose simultaneous solution reveals several

candidate points, which pertain to maxima, minima and points of inflection. The minima may then be

obtained via application of SOSC or via a comparison of function values at the individual points.

Example 4.4: Soda can design

The problem is to design a soda can (choose diameter 𝑑 and height ℎ) to hold a volume of 200 ml in order

to minimize the manufacturing cost (a function of the surface area).

The optimization problem is formulated as:

min
𝑑,𝑙

 𝑓 =
1

2
𝜋𝑑2 + 𝜋𝑑ℎ

Subject to: 1
4
 𝜋𝑑2ℎ − 200 = 0,

(1.20)

First, we can use the equality constraint to solve for ℎ as: ℎ =
800

𝜋𝑑2. This reduces the optimization problem

to the unconstrained problem in one variable:

min
𝑑

 𝑓 = 1

2
𝜋𝑑2 +

800

𝑑

43

By application of FONC, a solution is found as: 𝑑∗ = √
800

𝜋

3
= 6.34𝑐𝑚, with ℎ∗ = 𝑑∗ and 𝑓∗ = 200. The

application of SONC reveals
𝜕2𝑓

𝜕𝑑2 = 3𝜋 > 0. Thus (𝑑∗, ℎ∗) is a local minimum for the problem.

Instead, let us use the Lagrangian function approach to optimize the soda can design. Using a Lagrange

multiplier 𝜆, the Lagrangian function is formulated as:

ℒ(𝑑, ℎ, 𝜆) =
𝜋𝑑2

2
+ 𝜋𝑑ℎ + 𝜆 (

𝜋𝑑2ℎ

4
− 200)

The FONC evaluate as:

𝜕ℒ

𝜕𝑑
= 𝜋𝑑 + 𝜋ℎ + 𝜆

𝜋𝑑ℎ

2
= 0

𝜕ℒ

𝜕ℎ
= 𝜋𝑑 + 𝜆

𝜋𝑑2

4
= 0

𝜕ℒ

𝜕𝜆
=

𝜋𝑑2ℎ

4
− 200 = 0

The solution to the FONC is given as: ℎ∗ = 𝑑∗ = 6.34𝑐𝑚, 𝜆∗ = −0.63.

The SONC for the constrained problems are discussed later in Sec. 4.4.2.

4.3.4 Inequality Constrained Problems

We next consider optimization problems involving a single inequality constraint. The optimization

problem with a single inequality constraint is stated as:

min
𝒙

 𝑓(𝒙)

subject to 𝑔(𝒙) ≤ 0
(4.10)

A popular approach in this case is to add a slack variable to the inequality constraint to turn it into

equality constraint. Further, the slack variable is restricted to be non-negative to ensure constraint

compliance. Accordingly, we replace the inequality constraint with equality: 𝑔(𝒙) + s2 = 0. A

Lagrangian function for the problem is developed as:

ℒ(𝒙, 𝜆, 𝑠) = 𝑓(𝒙) + 𝜆(𝑔(𝒙) + s2) (4.11)

The resulting FONC evaluate as:

∇ℒ(𝒙∗, 𝜆∗, 𝑠∗) = ∇𝑓(𝒙∗) + 𝜆∗∇𝑔(𝒙∗) = 0

𝑔(𝒙∗) + s∗2 = 0

𝜕ℒ

𝜕𝑠
= 2𝜆∗𝑠∗ = 0

(4.12)

44

We note the additional FONC requirement, given as: 𝜆∗𝑠∗ = 0 This condition, known as the switching or

the complementarity condition, further evaluates as: 𝜆 = 0 (implying an inactive constraint) or 𝑠 = 0

(implying an active constraint). Each of these cases is to be explored for feasible solutions, which can be

checked for optimality via application of SOC.

We may also note that by substituting: s2 = −𝑔(𝒙∗), the FONC can be equivalently expressed as:

∇𝑓(𝒙∗) = 0, 𝑔(𝒙∗) ≤ 0, 𝜆∗𝑔(𝒙∗) = 0, which provides an equivalent characterization of the FONC in the

case of inequality constrained problems.

Finally, the above results can be extended to multiple inequality constraints by defining a Lagrangian

function, given as:

ℒ(𝒙, 𝜆, 𝑠) = 𝑓(𝒙) + ∑𝜆𝑖(𝑔𝑖(𝒙) + 𝑠𝑖
2)

𝑖

 (4.13)

Then, in order for 𝑓(𝒙) to have a local minimum at 𝒙∗, the following FONC must be satisfied:

𝜕ℒ

𝜕𝑥𝑗
=

𝜕𝑓

𝜕𝑥𝑗
+ ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥𝑗
𝑥𝑗

𝑚

𝑖=1
= 0; 𝑗 = 1,… , 𝑛

𝑔𝑖(𝒙) + 𝑠𝑖
2 = 0, 𝑖 = 1,… ,𝑚

𝜆𝑖𝑠𝑖 = 0, 𝑖 = 1,… ,𝑚

(4.14)

We note that in the case of 𝑚 inequality constraints application of the switching conditions results in 2𝑚

cases, each of which needs to be explored for feasibility and optimality.

Example 4.5: We consider the following optimization problem:

min
𝑥1,𝑥2

 𝑓(𝑥1, 𝑥2) = −𝑥1𝑥2

Subject to: 𝑔(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 − 1 ≤ 0

The graphical consideration of the equality constrained problem was earlier presented in Fig. 4.1. From

that figure, it is obvious that the inequality constrained problem will have a solution at the boundary of

the constraint set, i.e., at the perimeter of the circle. This view is supported by the analysis presented

below.

We first convert the inequality to equality constraint via: 𝑔(𝑥1, 𝑥2) + 𝑠2 = 𝑥1
2 + 𝑥2

2 − 1 + 𝑠2 = 0.

Then, the Lagrangian function is formulated as: ℒ(𝑥1, 𝑥2, 𝜆, 𝑠) = −𝑥1𝑥2 + 𝜆(𝑥1
2 + 𝑥2

2 + 𝑠2 − 1).

The resulting FONC evaluate as: 2𝜆𝑥1 − 𝑥2 = 0, 2𝜆𝑥2 − 𝑥1 = 0, 𝑥1
2 + 𝑥2

2 + 𝑠2 − 1 = 0, 𝜆𝑠 = 0.

The switching condition further evaluates as: 𝜆∗ = 0 or 𝑠∗ = 0. For 𝜆 = 0, we obtain: (𝑥1
∗, 𝑥2

∗) = (0,0),

𝑠∗ = ±1. For 𝑠 = 0, the optimal solution is given as: (𝑥1
∗, 𝑥2

∗) = (
1

√2
,

1

√2
) ∪ (−

1

√2
, −

1

√2
) with 𝜆∗ =

1

2
, and

𝑓(𝑥1
∗, 𝑥2

∗) = −
1

2
.

45

Example 4.6: Soda can design

The problem is to design a soda can (choose diameter 𝑑 and height ℎ) to hold at least 𝑉 = 200 ml in

order to minimize the manufacturing cost (a function of the surface area).

The optimization problem is formulated as:

min
𝑑,𝑙

 𝑓 =
1

2
𝜋𝑑2 + 𝜋𝑑ℎ

Subject to: 𝑉 −
𝜋𝑑2ℎ

4
≤ 0,

(1.21)

First, the inequality constraint is changed into equality by adding a slack variable as: 𝑉 −
𝜋𝑑2ℎ

4
+ 𝑠2 = 0.

Then, using a Lagrange multiplier 𝜆, the Lagrangian function is formulated as:

ℒ(𝑑, ℎ, 𝜆) =
𝜋𝑑2

2
+ 𝜋𝑑ℎ + 𝜆 (𝑉 −

𝜋𝑑2ℎ

4
+ 𝑠2)

The FONC evaluate as:

𝜕ℒ

𝜕𝑑
= 𝜋𝑑 + 𝜋ℎ + 𝜆

𝜋𝑑ℎ

2
= 0

𝜕ℒ

𝜕ℎ
= 𝜋𝑑 + 𝜆

𝜋𝑑2

4
= 0

𝜕ℒ

𝜕𝜆
= 𝑉 −

𝜋𝑑2ℎ

4
+ 𝑠2 = 0

𝜕ℒ

𝜕𝑠
= 2𝜆𝑠 = 0

The switching condition resolves as: 𝜆 = 0 (inactive constraint) or 𝑠 = 0 (active constraint). For 𝜆 = 0,

there is no feasible solution. For 𝑠 = 0, an isolated minimum exists as: ℎ∗ = 𝑑∗ = √
4𝑉

𝜋

3
𝑐𝑚; 𝜆∗ = −√

16𝜋

𝑉

3
.

 Optimality Criteria for General Optimization Problems 4.4

The general nonlinear optimization problem was defined in (4.1), where we can group the variable limits

with the inequality constraints. Thus, the general optimization problem is stated as:

min
𝒙

 𝑓(𝒙)

Subject to:
ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙

𝑔𝑗(𝒙) ≤ 0, 𝑗 = 𝑖, … ,𝑚

(4.15)

The feasible region for the problem is given as:

46

Ω = {𝒙: ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙; 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1,… ,𝑚} (4.16)

To solve the problem via the Lagrangian function approach, we first add slack variables 𝑠𝑗to the

inequality constraints; we then associate Lagrange multiplier vectors 𝒖 and 𝒗 with the inequality and

equality constraints, respectively, and develop a Lagrangian function, which is given as:

ℒ(𝒙, 𝒖, 𝒗, 𝒔) = 𝑓(𝒙) + ∑ 𝑣𝑖ℎ𝑖(𝒙)
𝑙

𝑖=1
+ ∑ 𝑢𝑗(𝑔𝑗(𝒙) + 𝑠𝑗

2
𝑚

𝑗=1
) (4.17)

The resulting FONC evaluate as:

1. Gradient conditions:
𝜕ℒ

𝜕𝑥𝑘
=

𝜕𝑓

𝜕𝑥𝑘
+ ∑ 𝑣𝑖

∗ 𝜕ℎ𝑖

𝜕𝑥𝑘

𝑙
𝑖=1 + ∑ 𝑢𝑗

∗ 𝜕𝑔𝑗

𝜕𝑥𝑘

𝑚
𝑗=1 = 0; 𝑘 = 1,… , 𝑛

2. Switching conditions: 𝑢𝑗
∗𝑠𝑗 = 0, 𝑗 = 1,… ,𝑚

3. Feasibility conditions: 𝑔𝑗(𝒙
∗) ≤ 0, 𝑗 = 1,… , 𝑚; ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑝

4. Non-negativity condition: 𝑢𝑗
∗ ≥ 0, 𝑗 = 1,… ,𝑚

5. Regularity condition: for those 𝑢𝑗
∗, that satisfy 𝑢𝑗

∗ > 0, ∇𝑔𝑗(𝒙
∗) are linearly independent

The above FONC are collectively known as the KKT (Krush-Kuhn-Tucker) conditions.

We note that 𝒙, 𝒖, 𝒗, 𝒔 are, respectively, 𝑛-, 𝑚-, 𝑚-, and 𝑙-dimensional vectors. Thus, the total number of

variables in the problem is: 𝑛 + 2𝑚 + 𝑙, meaning 𝑛 + 2𝑚 + 𝑙 simultaneous nonlinear equations must be

solved to obtain a candidate solution. Further, in accordance with the switching conditions, a total of 2𝑚

such solutions must be explored.

Further, since 𝑠𝑗
2 = −𝑔𝑗(𝒙) in the case of the inequality constraint, non-negativity of 𝑠𝑗

2 ensures

feasibility of the constraint. Therefore, 𝑠𝑗
2 = 0 implies an active constraint, with 𝑢𝑗

∗ > 0; whereas, an

inactive constraint is implied by: 𝑢𝑗
∗ = 0, 𝑠𝑗

2 > 0. For regular points the Lagrange Multiplier Theorem

(Arora, p.135) ensures a unique solution to the Lagrange multipliers 𝑣𝑖
∗ and 𝑢𝑗

∗.

Example 4.7: We add an equality constraint to Example 4.5 above to state the problem as:

min
𝑥1,𝑥2

 𝑓(𝑥1, 𝑥2) = −𝑥1𝑥2

Subject to: 𝑔(𝑥1, 𝑥2): 𝑥1
2 + 𝑥2

2 − 1 ≤ 0; ℎ(𝑥1, 𝑥2): 𝑥1
2 − 𝑥2 = 0

We first convert the inequality to equality constraint via: 𝑔(𝑥1, 𝑥2) + 𝑠2 = 𝑥1
2 + 𝑥2

2 − 1 + 𝑠2 = 0.

We then use Lagrange multipliers to formulate a Lagrangian function, given as:

ℒ(𝑥1, 𝑥2, 𝑢, 𝑣, 𝑠) = −𝑥1𝑥2 + 𝑢(𝑥1
2 + 𝑥2

2 + 𝑠2 − 1) + 𝑣(𝑥1
2 − 𝑥2).

The resulting KKT conditions evaluate as: 2𝑢𝑥1 + 2𝑣𝑥1 − 𝑥2 = 0, 2𝑢𝑥2 − 𝑣 − 𝑥1 = 0, 𝑥1
2 − 𝑥2 = 0,

𝑥1
2 + 𝑥2

2 + 𝑠2 − 1 = 0, 𝑢𝑠 = 0. From the switching condition: 𝑢∗ = 0 or 𝑠∗ = 0.

47

The former condition has no feasible solution. The latter condition evaluates as:

(𝑥1
∗, 𝑥2

∗) = (±0.786,0.618), 𝑢∗ = 0.527, 𝑣∗ = −0.134, 𝑓∗ = −0.486.

Example 4.8: Soda can design problem

The problem is to design a soda can (choose diameter 𝑑 and height ℎ) to hold 𝑉 = 200 ml of soda in

order to minimize the manufacturing cost (a function of the surface area). In addition 2𝑑 ≤ ℎ is desired.

The optimization problem is formulated as:

min
𝑑,𝑙

 𝑓 =
1

2
𝜋𝑑2 + 𝜋𝑑ℎ

Subject to: 𝑉 −
𝜋𝑑2ℎ

4
= 0, 2𝑑 − ℎ ≤ 0

(1.22)

Using a slack variable, the inequality constraint is changed into an equality as: 2𝑑 − ℎ + 𝑠2 = 0.

Then, using Lagrange multipliers 𝑢, 𝑣, the Lagrangian function is formulated as:

ℒ(𝑑, ℎ, 𝜆) =
𝜋𝑑2

2
+ 𝜋𝑑ℎ + 𝑢(2𝑑 − ℎ + 𝑠2) + 𝑣 (𝑉 −

𝜋𝑑2ℎ

4
)

The KKT conditions evaluate as:

𝜕ℒ

𝜕𝑑
= 𝜋𝑑 + 𝜋ℎ + 2𝑢 − 𝑣

𝜋𝑑ℎ

2
= 0

𝜕ℒ

𝜕ℎ
= 𝜋𝑑 − 𝑢 − 𝑣

𝜋𝑑2

4
= 0

𝜕ℒ

𝜕𝑢
= 2𝑑 − ℎ + 𝑠2 = 0

𝜕ℒ

𝜕𝑣
= 𝑉 −

𝜋𝑑2ℎ

4
= 0

𝜕ℒ

𝜕𝑠
= 2𝑢𝑠 = 0

The switching condition further resolves as: 𝑢 = 0 (inactive constraint) or 𝑠 = 0 (active constraint). For

𝑢 = 0, there is no feasible solution. For 𝑠 = 0, an isolated minimum exists at: 𝑑∗ = √
2𝑉

𝜋

3
, ℎ∗ =

2𝑑∗; 𝑢∗ =
𝜋𝑑∗

6
, 𝑣∗ =

10

3𝑑∗ ; 𝑓
∗ =

5

2
𝜋𝑑∗2

.

4.4.1 Optimality Criteria for Convex Optimization Problems

In this section we consider the class of optimization problems where the feasible region is a convex set

and the objective and constraint functions are convex. Consider the general optimization problem defined

in (4.15) with the feasible region given by (4.16). Then, Ω is a convex set if functions ℎ𝑖 are linear and 𝑔𝑗

are convex. If additionally 𝑓(𝒙) is a convex function, then the optimization problem is convex.

48

Assume that 𝑓(𝒙) is a convex function defined over a convex set Ω. Then, if 𝑓(𝒙) attains a local

minimum at 𝒙∗ ∈ Ω, then 𝒙∗ is also a global minimum over Ω. Furthermore, 𝑓(𝒙∗) is a local/global

minimum if and only if it satisfies the KKT conditions, i.e., the KKT conditions are both necessary and

sufficient for a global minimum in the case of convex optimization problems.

We, however, note that convexity is a sufficient but not necessary condition for a global minimum, i.e.,

nonexistence of convexity does not preclude the existence of a global minimum. An example of a convex

optimization problem is presented below.

Example 4.9: We consider the following optimization problem:

min𝑥1,𝑥2
 𝑓(𝑥1, 𝑥2) = 𝑥1

2 + 𝑥2
2 − 𝑥1𝑥2

subject to: 𝑔(𝑥1, 𝑥2): 𝑥1
2 + 𝑥2

2 − 1 ≤ 0; ℎ(𝑥1, 𝑥2): 𝑥1 + 𝑥2 − 𝑐 = 0

We note that in this case: ∇2𝑓 > 0, ∇2𝑔 > 0, and ℎ(𝒙) is linear; hence the problem is convex.

Next, we convert the inequality constraint to equality via: 𝑥1
2 + 𝑥2

2 − 1 + 𝑠2 = 0.

We then use Lagrange multipliers to formulate a Lagrangian function given as:

ℒ(𝑥1, 𝑥2, 𝑢, 𝑣, 𝑠) = 𝑥1
2 + 𝑥2

2 − 𝑥1𝑥2 + 𝑢(𝑥1
2 + 𝑥2

2 + 𝑠2 − 1) + 𝑣(𝑥1 + 𝑥2 − 𝑐).

The resulting KKT conditions evaluate as: (2𝑢 + 1)𝑥1 + 𝑣 − 𝑥2 = 0, (2𝑢 + 1)𝑥2 + 𝑣 − 𝑥1 = 0,

𝑥1 + 𝑥2 − 𝑐 = 0, 𝑥1
2 + 𝑥2

2 + 𝑠2 − 1 = 0, 𝑢𝑠 = 0. From the switching condition: 𝑢∗ = 0 or 𝑠∗ = 0.

The former condition evaluates as: (𝑥1
∗, 𝑥2

∗) = (
𝑐

2
,
𝑐

2
) , 𝑠∗ = ±√1 −

𝑐2

2
, 𝑣∗ =

𝑐

2
; the latter condition has no

feasible solution. Function evaluation at the sole candidate points results in: 𝑓(𝑥1
∗, 𝑥2

∗) = −
𝑐2

4
.

4.4.2 Second Order Conditions

Assume that 𝒙∗ satisfies the FONC (the KKT conditions). The second order necessary and sufficient

conditions use the Hessian of the Lagrangian function to investigate the behavior of the candidate point

𝒙∗. The Hessian of the Lagrangian is defined as:

∇2ℒ(𝒙, 𝒖, 𝒗, 𝒔) = ∇2𝑓(𝒙) + ∑ 𝑣𝑖∇
2ℎ𝑖(𝒙)

𝑙

𝑖=1
+ ∑ 𝑢𝑗∇

2𝑔𝑗(𝒙)
𝑚

𝑗=1
 (4.18)

When the optimization problem includes constraints, the active constraints play a role to limit the feasible

directions that move the solution closer to the optimum point. Specifically, any 𝒅 ≠ 0 satisfying active

constraints to the first order must lie in the constraint tangent hyperplane.

49

Second Order Necessary Condition (SONC). Assume that 𝒅 is a feasible vector that lies in the

constraint tangent hyperplane, i.e., {𝒅: ∇ℎ𝑖(𝒙)𝑇𝒅 = 0, ∇𝑔𝑗(𝒙)𝑇𝒅 = 0, 𝑗 ∈ ℐ} where ℐ is the set of active

inequality constraints. If 𝒙∗ is a local minimizer of 𝑓, then it satisfies the following SONC:

𝛿𝑓 = 𝒅𝑇∇2ℒ(𝒙∗)𝒅 ≥ 0 (4.19)

Second Order Sufficient Condition (SOSC). Assume that 𝒅 is a feasible vector that satisfies:

{𝒅: ∇ℎ𝑖(𝒙
∗)𝑇𝒅 = 0, ∇𝑔𝑗(𝒙

∗)𝑇𝒅 = 0, 𝑢𝑗
∗ > 0}. If 𝒙∗ satisfies 𝒅𝑇∇2ℒ(𝒙∗)𝒅 > 0, then 𝒙∗ is a local

minimizer of 𝑓(𝒙).

A stronger SOSC is given as: If ∇2ℒ(𝒙∗) > 0, then 𝒙∗ is a local minimizer of 𝑓(𝒙).

Note that if the Hessian of the Lagrangian ∇2ℒ(𝒙) is positive definite at 𝒙∗, then 𝒙∗ is an isolated local

minimum. However, if ∇2ℒ(𝒙) is not positive definite at 𝒙∗, then we cannot conclude that 𝒙∗ is not an

isolated local minimum.

Example 4.10: Second order conditions

We consider the optimization problem in Example 4.9. The constraint tangent hyperplane for active

constraints is computed as: [1 1]𝒅 = 0, or 𝒅 = [1 − 1]𝑇. The Hessian of the Lagrangian at the optimum

point (𝑥1
∗, 𝑥2

∗) = (
𝑐

2
,
𝑐

2
) is given as: ∇2ℒ(𝒙∗) = (

0 −1
−1 0

). The SONC evaluate as: 𝒅𝑇∇2ℒ 𝒅 = 2,

indicating that the candidate point is indeed an optimum point.

Example 4.11: design of rectangular beam (Arora, p.90, 193, 219)

The optimization problem is defined as (where 𝑏, 𝑑 represent the beam dimensions):

min
𝑏,𝑑

 𝑓(𝑏, 𝑑) = 𝑏𝑑

Subject to: 𝑔1 :
2.4×108

𝑏𝑑2 − 10 ≤ 0

 𝑔2 :
2.25×105

𝑏𝑑
− 2 ≤ 0

 𝑔3: 𝑑 − 2𝑏 ≤ 0

 𝑔4 : − 𝑏 ≤ 0

 𝑔5 : − 𝑑 ≤ 0

A Lagrangian function for the problem is written as:

∇2ℒ(𝑏, 𝑑, 𝑢, 𝑣) = 𝑏𝑑 + 𝑢1(2.4 × 108 − 10𝑏𝑑2 + 𝑠1
2) + 𝑢2(2.25 × 105 − 2𝑏𝑑 + 𝑠2

2) + 𝑢3(𝑑 − 2𝑏 + 𝑠3
2)

+ 𝑢4(−𝑏 + 𝑠4
2) + 𝑢5(−𝑑 + 𝑠5

2)

The KKT conditions evaluate as:

50

𝜕ℒ

𝜕𝑏
= 𝑑 − 10𝑑2𝑢1 − 2𝑑𝑢2 − 2𝑢3 = 0

𝜕ℒ

𝜕𝑑
= 𝑏 − 20𝑏𝑑𝑢1 − 2𝑏𝑢2 + 𝑢3 = 0

𝑢𝑖𝑠𝑖 = 0, 𝑢𝑖 ≥ 0, 𝑔𝑖 + 𝑠𝑖
2 = 0, 𝑠𝑖

2 ≥ 0; 𝑖 = 1 − 5

The switching conditions resolve into 32 distinct cases; however, 𝑠4 = 0 and/or 𝑠5 = 0 violate the

constraints and, hence, do not generate any candidate points. Therefore, we set 𝑢4 = 𝑢5 = 0 in the

Lagrangian function, and evaluate the remaining 8 cases for candidacy. The results are tabulated below:

𝑢1 𝑢2 𝑢3 Results

0 0 0 𝑏∗ = 0, 𝑑∗ = 0; 𝑓∗ = 0

0 0 1 𝑏∗ = 0, 𝑑∗ = 0; 𝑓∗ = 0

0 1 0 𝑏∗𝑑∗ = 𝑓∗ = 1.125 × 105

0 1 1 𝑏∗ = 237.17, 𝑑∗ = 474.34; 𝑓∗ = 1.125 × 105

1 0 0 NFS

1 0 1 NFS

1 1 0 𝑏∗ = 527.34, 𝑑∗ = 213.33; 𝑓∗ = 1.125 × 105

1 1 1 NFS

The case (𝑢1 = 0, 𝑠2 = 0, 𝑢3 = 0) above generates a family of optimal solutions with 𝑓∗ = 1.125 × 105.

These solutions conform to the limits: 𝑏∗ ≤ 527.34, 𝑑∗ ≥ 213.33, and 𝑏∗ ≥ 237.17, 𝑑∗ ≤ 474.34 with

associated 𝑢2 = 5.625 × 104.

The Hessian of the Lagrangian evaluates as: ∇2ℒ(𝒙∗) = [
2.25 × 105/𝑏2 2

2 2.25 × 105/𝑑2].

The constraint tangent hyperplane for the active constraint 𝑔2 is defined by:

[2.25 × 105/𝑏2𝑑 2.25 × 105/𝑏𝑑2]𝒅 = 0, or 𝒅 = [1 −𝑑/𝑏]𝑇.

The SONC evaluate as: 𝒅𝑇∇2ℒ(𝒙∗)𝒅 = 0, indicating there is no isolated minimum for the problem;

however, 𝑏∗𝑑∗ = 𝑓∗ = 1.125 × 105 constitutes global optimum.

 A Geometric Viewpoint 4.5

The optimality criteria for constrained optimization problems have geometrical connotations. The

following definitions help understand the geometrical viewpoint associated with the KKT conditions.

Active constraint set. The set of active constraints at 𝒙 is defined as: ℐ = {𝑖 ∪ 𝑗: ℎ𝑖(𝒙) = 0, 𝑔𝑗(𝒙) = 0}.

The set of active constraint normals is given as: 𝒮 = {∇ℎ𝑖(𝒙), ∇𝑔𝑗(𝒙), 𝑗 ∈ ℐ}.

Constraint tangent hyperplane. The constraint tangent hyperplane is defined by the set of vectors

𝒮⊥ = {𝒅: ∇ℎ𝑖(𝒙)𝑇𝒅 = 0, ∇𝑔𝑗(𝒙)𝑇𝒅 = 0, 𝑗 ∈ ℐ}.

51

Regular point. Assume 𝒙 is a feasible point. Then, 𝒙 is a regular point if the vectors in the active

constraint set 𝒮 are linearly independent.

Descent direction. A direction 𝒅 is a descent direction if the directional derivative of 𝑓 along 𝒅 is

negative, i.e., ∇𝑓(𝒙)𝑇𝒅 < 0.

Feasible direction. Assume that 𝒙 is a regular point. A vector 𝒅 is a feasible direction if ∇ℎ𝑖(𝒙)𝑇𝒅 = 0,

∇𝑔𝑗(𝒙)𝑇𝒅 < 0, 𝑗 ∈ ℐ; where the feasibility condition for each active inequality constraint defines a half

space. The intersection of those half spaces is a feasible cone within which a feasible vector 𝒅 should lie.

Extreme point. Assume 𝒙 is a feasible point. Then, 𝒙 is an extreme point if the active constraint set ℐ at 𝒙

is non-empty; otherwise it is an interior point.

Assume now that we are at an extreme point 𝒙 of the feasible region. We seek a search direction which is

both descent and feasible. If no such direction can be found then we have already reached the optimum.

Geometrical categorization of the optimal point rests on the following lemma.

Farka’s Lemma. For 𝑨 ∈ ℝ𝑛×𝑚, 𝒄 ∈ ℝ𝑛 only one of the two problems has a solution:

1. 𝑨𝑇𝒙 ≥ 𝟎, 𝒄𝑇𝒙 < 0

2. 𝒄 = 𝑨𝒚, 𝒚 ≥ 𝟎

Corollary. For any 𝑨 ∈ ℝ𝑛×𝑚, 𝒄 ∈ ℝ𝑛, we have 𝑨𝑇𝒙 ≥ 𝟎, 𝒄𝑇𝒙 ≥ 0 if and only if 𝒄 = 𝑨𝒚, 𝒚 ≥ 𝟎.

Farka’s lemma was used in the proof of Karush-Kuhn-Tucker (KKT) Theorem on NLP by Tucker. The

lemma states that if a vector 𝒄 does not lie in the convex cone: 𝑪 = {𝑨𝒚, 𝒚 ≥ 𝟎}, then there is a vector

𝒙, 𝑨𝑇𝒙 ≥ 𝟎, that is normal to a hyperplane separating 𝒄 from 𝑪.

To apply this lemma we consider a matrix 𝑨 whose columns represent the active constraint gradients at

the optimum point 𝑥∗, a vector 𝒄 that represents the objective function gradient ∇𝑓(𝒙∗), and 𝒅 represents

a search direction. Then, there is no 𝒅 satisfying the descent and feasibility conditions: ∇𝑓(𝒙∗)𝑇𝒅 < 0

and ∇𝑔𝑗(𝒙)𝑇𝒅 > 0, 𝑗 ∈ ℐ, if and only if the objective function gradient can be expressed as: −∇𝑓(𝒙∗) =

∑ 𝜆𝑗∇𝑔𝑗(𝒙
∗)𝑗∈ℐ , 𝜆𝑗 ≥ 0.

The above lemma also explains the non-negativity condition on Lagrange multipliers for inequality

constraints in the KKT conditions.

 Postoptimality Analysis 4.6

Postoptimality analysis refers to the study of the effects of parametric changes on the optimal solution. In

particular, we are interested in the objective function variation resulting from relaxing the constraint

limits. To study these changes, we consider the following perturbed optimization problem (Arora, p.153):

52

min
𝒙

 𝑓(𝒙)

Subject to ℎ𝑖(𝒙) = 𝑏𝑖, 𝑖 = 1,… , 𝑙; 𝑔𝑗(𝒙) ≤ 𝑒𝑗, 𝑗 = 𝑖, … ,𝑚
(4.20)

where 𝑏𝑖 and 𝑒𝑗 are small variations in the neighborhood of zero. Let the optimum point for the perturbed

problem be expressed as: 𝒙∗(𝒃, 𝒆), with the optimal cost given as: 𝑓∗(𝒃, 𝒆). Then, the implicit first order

derivatives of the cost function are computed as:
𝜕𝑓(𝒙∗)

𝜕𝑏𝑖
= −𝑣𝑖

∗,
𝜕𝑓(𝒙∗)

𝜕𝑒𝑗
= −𝑢𝑗

∗; and, the resulting cost

function variation due to constraint relaxation is given as:

𝛿𝑓(𝒙∗) = −∑𝑣𝑖
∗𝑏𝑖

𝑖

− ∑𝑢𝑗
∗𝑒𝑗

𝑗

 (4.21)

The above result implies that the non-zero Lagrange multipliers accompanying the active constraints

determine the cost function sensitivity to constraint relaxation. Non-active constraints have zero Lagrange

multipliers, and hence do not affect the solution. Further, if the Lagrange multipliers for active constraints

were to take on negative values, then constraint relaxation would result in a reduction in the optimum cost

function value, which is counter-intuitive.

The cost function variation resulting from changes to parameters embedded in the constraints, ℎ𝑖(𝑠) and

𝑔𝑗(𝑠), can be similarly examined by considering how individual constraint variations affect the cost

function, i.e.,

𝛿𝑓(𝒙∗) = ∑𝑣𝑖
∗𝛿ℎ𝑖

𝑖

+ ∑𝑢𝑗
∗𝛿𝑣𝑗

𝑗

 (4.22)

where, once again, we observe that Lagrange multipliers for the individual constraints determine the

sensitivity of 𝛿𝑓(𝒙∗) to the parameter variations related to those constraints.

Example 4.12: Consider the Example 4.7 above:

min
𝑥1,𝑥2

 𝑓(𝑥1, 𝑥2) = −𝑥1𝑥2

Subject to: 𝑔(𝑥1, 𝑥2): 𝑥1
2 + 𝑥2

2 − 1 ≤ 0; ℎ(𝑥1, 𝑥2): 𝑥1
2 − 𝑥2 = 0

A local minimum for the problem was earlier found as: (𝑥1
∗, 𝑥2

∗) = (±0.786,0.618), 𝑢∗ = 0.527, 𝑣∗ =

−0.134, 𝑓∗ = −0.486.

Next, we define the perturbed optimization problem as:

min
𝑥1,𝑥2

 𝑓(𝑥1, 𝑥2) = −𝑥1𝑥2

Subject to: 𝑔(𝑥1, 𝑥2): 𝑥1
2 + 𝑥2

2 − 1 ≤ 𝑒; ℎ(𝑥1, 𝑥2): 𝑥1
2 − 𝑥2 = 𝑏

The change in the optimal solution is given as: 𝛿𝑓 = 𝑓∗(𝑒, 𝑏) − 𝑓∗(0,0) = −𝑢∗𝑒 − 𝑣∗𝑏. Then, for

𝑒 = 0.1, the new optimum is: 𝑓∗ = −0.54. Similarly, for 𝑏 = 0.1, the new optimum is: 𝑓∗ = −0.35.

53

 Duality Theory 4.7

The duality theory associates with every optimization problem (termed as primal) a dual problem, in

which the Lagrange multipliers become the optimization variables. The practical importance of duality is

that dual feasible points serve as lower bound to the optimum cost. This fact has been used to develop

augmented Lagrangian methods of solving optimization problems.

4.7.1 Local Duality

To develop the duality concepts, we consider a problem with only equality constraints (Arora, p.220).

min
𝒙

 𝑓(𝒙)

subject to ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙
(4.23)

Using Lagrange multipliers, 𝑣𝑖, 𝑖 = 1,… , 𝑙, the Lagrangian function for the problem is defined as:

ℒ(𝒙, 𝒗) = 𝑓(𝒙) + ∑ 𝑣𝑖ℎ𝑖(𝒙)
𝑙

𝑖=1
= 𝑓(𝒙) + 𝒗𝑇𝒉

(4.24)

Let 𝛁𝒉 = [
𝜕ℎ𝑖

𝜕𝑥𝑗
] denote a matrix of constraint gradients, then, the FONC for a local minimum are given as:

∇𝑥ℒ(𝒙, 𝒗) = ∇𝑓(𝒙) + [𝛁𝒉]𝒗 = 0

ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙
 (4.25)

The SONC require the Hessian, defined as: 𝑯𝑥 = ∇2𝑓(𝒙) + ∑ 𝑣𝑖∇
2ℎ𝑖(𝒙)𝑙

𝑖=1 , to be positive definite.

The duality theory rests on the assumption that the Hessian of the Lagrangian is positive definite at the

minimum point, i.e., 𝑯𝑥(𝒙
∗, 𝒗∗) > 0. This ensures that ℒ(𝒙, 𝒗) is locally convex at 𝒙∗.

Next, consider the unconstrained problem: min𝒙 ℒ(𝒙, 𝒗), where (𝒙, 𝒗) is in the vicinity of (𝒙∗, 𝒗∗). A

solution is obtained via the application of FONC, and is defined as the dual function:

𝜙(𝒗) = ℒ(𝒙∗, 𝒗) = min
𝒙

ℒ(𝒙, 𝒗) = ℒ(𝒙(𝒗), 𝒗) = 𝑓(𝒙(𝒗)) + 𝒗𝑇𝒉(𝒙(𝒗))

The gradient and the Hessian of the dual function are computed as: ∇𝑣𝜙(𝒗) = 𝒉(𝒙(𝒗)) +
𝜕𝒙(𝒗)

𝜕𝒗

𝜕ℒ

𝜕𝒙
=

𝒉(𝒙(𝒗)). Since ∇𝑥𝑣ℒ(𝒙, 𝒗) =
𝜕𝒙(𝒗)

𝜕𝒗
𝑯𝒙(𝒙

∗) + 𝛁𝒉𝑇 = 0, hence 𝑯𝒗 = −𝛁𝒉𝑇(𝑯(𝒙))
−1

𝛁𝒉.

In terms of the dual function, the dual optimization problem is defined as:

max
𝒗

𝜙(𝒗)

54

Since the Hessian 𝑯𝒗 is negative definite, the dual problem is convex. Let the solution to the dual

problem be given as 𝒗∗ with 𝒙(𝒗∗), then the local duality theorem (Arora, p. 224) states that:

𝜙(𝒗∗) = 𝑓(𝒙∗) + 𝒗∗𝑇𝒉(𝒙∗) = 𝑓(𝒙∗)

Example 4.13: local duality

min
𝑥1,𝑥2

 𝑓(𝑥1, 𝑥2) = −𝑥1𝑥2

Subject to: ℎ(𝑥1, 𝑥2): (𝑥1 − 1)2 + (𝑥2 − 1)2 − 2 = 0

The Lagrangian function is given as: ℒ(𝒙, 𝒗) = −𝑥1𝑥2 + 𝑣((𝑥1 − 1)2 + (𝑥2 − 1)2 − 2)

The application of FONC result in an isolated minimum at: 𝒙∗ = (2,2), 𝑣∗ = 1.

The Hessian 𝐻𝑥 = [
2 −1

−1 2
] > 0.

Next, the FONC are solved for 𝒙(𝒗) to obtain: 𝑥1 = 𝑥2 =
2𝑣

2𝑣−1
.

The dual function is obtained as: 𝜙(𝒙) =
2𝑣(1−2𝑣)

(2𝑣−1)2
− 2𝑣.

The application of FONC to the dual problem gives: 𝑣∗ = 1 → 𝑥1
∗ = 𝑥2

∗ = 2.

The Hessian 𝐻𝑣 = 𝜙′′(𝑣) = −8 < 0

4.7.2 Strong and Weak Duality

We now consider a general optimization problem with both equality and inequality constraints (Griva,

Nash & Sofer, p.537); The Lagrangian function and its derivatives are given as:

ℒ(𝒙, 𝒖, 𝒗) = 𝑓(𝒙) + 𝒖𝑇𝒈 + 𝒗𝑇𝒉

∇ℒ(𝒙, 𝒖, 𝒗) = ∇𝑓(𝒙) + [𝛁𝒈]𝒖 + [𝛁𝒉]𝒗
(4.26)

where [𝛁𝒈], [𝛁𝒉] are Jacobian matrices containing individual constraint gradients as column vectors.

Let 𝒙∗ represent an optimal solution to the problem and let (𝒖∗, 𝒗∗) be the associated Lagrange

multipliers, then the Lagrangian function is stationary at the optimum point, i.e., ∇ℒ(𝒙∗, 𝒖∗, 𝒗∗) = 0. To

proceed further, we assume that the Hessian of the Lagrangian is positive definite, i.e., ∇2ℒ(𝒙, 𝒖, 𝒗) ≥ 𝟎,

in a neighborhood 𝒳 around (𝒙∗, 𝒖∗, 𝒗∗) in which 𝒙 = 𝒙(𝒖, 𝒗) is a differentiable function,

∇ℒ(𝒙(𝒖, 𝒗), 𝒖, 𝒗) = 0, and ∇2ℒ(𝒙(𝒖, 𝒗), 𝒖, 𝒗) is positive definite.

This allows us to define a dual function 𝜑(𝒖, 𝒗) as: 𝜑(𝒖, 𝒗) = min
𝒙∈𝒳

 ℒ(𝒙, 𝒖, 𝒗). Then, the dual

optimization problem is defined as:

max
𝒖≥𝟎,𝒗

 𝜑(𝒖, 𝒗) (4.27)

55

The dual problem may be solved via application of FONC. Let (𝒖∗, 𝒗∗) be the optimal solution to the dual

problem, then 𝜑(𝒖∗, 𝒗∗) = 𝑓(𝒙∗).

We now state the following duality theorem (Belegundu and Chandrupatla, p. 269):

Duality theorem: The following are equivalent:

1. 𝒙∗ together with (𝒖∗, 𝒗∗) solves the primal problem.

2. (𝒙∗, 𝒖∗, 𝒗∗) is a saddle point of the Lagrangian function ℒ(𝒙, 𝒖, 𝒗), i.e.,

ℒ(𝒙∗, 𝒖, 𝒗) ≤ ℒ(𝒙∗, 𝒖∗, 𝒗∗) ≤ ℒ(𝒙, 𝒖∗, 𝒗∗) (4.28)

3. (𝒙∗, 𝒖∗, 𝒗∗) solves the dual problem: max
𝒖≥𝟎,𝒗

ℒ(𝒙∗, 𝒖, 𝒗). Further, the two extrema are equal, i.e.,

ℒ(𝒙∗, 𝒖∗, 𝒗∗) = 𝑓(𝒙∗)

In (4.24) above, ℒ(𝒙∗, 𝒖, 𝒗) = min𝒙∈𝒳 ℒ(𝒙, 𝒖, 𝒗) represents a minimizer of ℒ when 𝒖 ≥ 𝟎, 𝒗 are fixed;

similarly, ℒ(𝒙, 𝒖∗, 𝒗∗) = max𝒖≥𝟎,𝒗 ℒ(𝒙, 𝒖, 𝒗) is a maximizer of ℒ when 𝒙 ∈ Ω is fixed. These two

functions, respectively, lower and upper bound the Lagrangian at the optimum point. Hence, 𝑓(𝒙∗) ≤

𝑓(𝒙) for any 𝒙 that is primal-feasible, and ℒ(𝒙, 𝒖, 𝒗) ≤ 𝑓(𝒙∗) for any 𝒙, 𝒖, 𝒗 that are dual feasible

(∇ℒ = 0,𝒖 ≥ 𝟎). Further, max𝒖≥𝟎,𝒗 ℒ(𝒙∗, 𝒖, 𝒗) ≤ min𝒙∈𝒳 ℒ(𝒙, 𝒖∗, 𝒗∗), which signifies weak duality.

We may note that in nonlinear problems achieving strong duality (equality in 4.24) is not always possible.

In general, a duality gap exists between the primal and dual solutions. Nevertheless, existence of strong

duality is ensured in the case of convex optimization problems that satisfy the positive definite

assumption on the Hessian matrix.

4.7.3 Duality in Convex Optimization Problems

In the case of convex optimization problems, if 𝒙∗ is a regular point that solves the primal problem, and if

𝒖∗, 𝒗∗ are the associated Lagrange multipliers, then (𝒙∗, 𝒖∗, 𝒗∗) is dual feasible and solves the dual

problem. To develop these concepts, we consider the following quadratic programming (QP) problem:

Minimize 𝑞(𝒙) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

Subject to: 𝑨𝒙 ≥ 𝒃 or 𝒃 − 𝑨𝒙 ≤ 𝟎
(4.29)

where 𝑸 is symmetric and positive definite. The Lagrangian function for the QP problem is given as:

ℒ(𝒙, 𝝀) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙 − 𝝀𝑇(𝑨𝒙 − 𝒃)

(4.30)

The FONC are: 𝑸𝒙 + 𝒄 − 𝑨𝑇𝝀 = 𝟎. Hence, the dual QP problem is defined as:

56

max
𝒙,𝝀≥𝟎

ℒ(𝒙, 𝝀) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙 − 𝝀𝑇(𝑨𝒙 − 𝒃)

Subject to 𝑸𝒙 + 𝒄 − 𝑨𝑇𝝀 = 𝟎

(4.31)

To obtain a solution, we first solve the constraint equation to get: 𝒙(𝝀) = 𝑸−1(𝑨𝑇𝝀 − 𝒄), and substitute it

in the objective function to redefine the dual problem in terms of the dual function as:

max
𝝀≥𝟎

𝜑(𝝀) =
1

2
𝝀𝑇(𝑨𝑸−1𝑨𝑇)𝝀 + (𝑨𝑸−1𝒄 + 𝒃)𝑇𝝀 −

1

2
𝒄𝑇𝑸−1𝒄

(4.32)

The gradient and Hessian of the dual function with respect to 𝝀 are computed as:

∇𝜑(𝝀) = (𝑨𝑸−1𝑨𝑇)𝝀 + 𝑨𝑸−1𝒄 + 𝒃, ∇2𝜑(𝝀) = 𝑨𝑸−1𝑨𝑇 (4.33)

 If the optimal point is a regular point, then matrix 𝑨 has full row rank. Then, from FONC, the solution to

the dual QP problem is given as:

𝝀 = (𝑨𝑸−1𝑨𝑇)−1(𝑨𝑸−1𝒄 + 𝒃)

(4.34)

where a non-negative solution 𝝀 ≥ 𝟎 has been assumed.

Example 4.6: convex optimization problem (Griva, Nash & Sofer, p.528)

Let the primal problem be defined as: min𝑥 𝑓(𝑥) = 𝑥2 subject to 𝑥 ≥ 1.

A solution to the primal problem is given as: 𝑥∗ = 1; 𝑓(𝑥∗) = 1. Then ∇ℒ(𝑥, 𝜆) = 2𝑥 + 𝜆 = 0, or 𝑥 =
𝜆

2
.

The Lagrangian function for the problem is formulated as: ℒ(𝑥, 𝜆) = 𝑥2 + 𝜆(1 − 𝑥). Then, ∇ℒ(𝑥, 𝜆) =

2𝑥 + 𝜆 = 0, or 𝑥 =
𝜆

2
. The dual problem as defined as: max

𝜆≥0
 𝜑(𝜆) = 𝜆 −

𝜆2

4
, with the solution: 𝜆∗ = 2.

We may note that the saddle point condition is satisfied, i.e.,

max
𝜆≥0

 𝜆 −
𝜆2

4
≤ ℒ(𝑥∗, 𝜆∗) = 1 ≤ min

𝑥≥1
 𝑥2

with equality satisfied on both sides.

4.7.4 Separable Problems

Dual methods are particularly powerful when applied to separable problems that are structured as:

min
𝒙

 𝑓(𝒙) = ∑𝑓𝑖(𝑥𝑖)

𝑖

Subject to: ∑ 𝑔𝑖(𝑥𝑖)𝑖 ≤ 0, ∑ ℎ𝑖(𝑥𝑖) = 0𝑖

(4.35)

The dual function for the separable problem is formulated as:

57

𝜑(𝒖, 𝒗) = min
𝒙

(∑𝑓𝑖(𝑥𝑖)

𝑖

+ 𝑢 ∑𝑔𝑖(𝑥𝑖)

𝑖

+ 𝑣 ∑ℎ𝑖(𝑥𝑖)

𝑖

)
(4.36)

which decomposes into m separate single-variable problems given as: min𝑥𝑖
𝑓𝑖(𝑥𝑖) + 𝑢𝑔𝑖(𝑥𝑖) + 𝑣ℎ𝑖(𝑥𝑖),

which can be relatively easy to solve. Thus, the formulation of a dual problem becomes simple.

The next example shows how local duality can be applied to engineering problems that are separable.

Example 4.8: truss design problem (Belegundu and Chandrupatla, p. 274)

A truss contains a total of 16 elements of length 𝐿𝑖 = 30 in, 𝑖 = 1,… ,12; 𝐿𝑖 = 30√2 in, 𝑖 = 13,… ,16 and

cross-sectional area 𝑥𝑖 (design variable). The truss bears a load 𝑃 = 25,000 lb at the tip. The weight of

the structure is to be minimized with a bound on tip deflection, 𝛿 ≤ 1 in. The problem is formulated as:

min
𝒙

∑ 𝐿𝑖𝑥𝑖

16

𝑖=1

Subject to: ∑ (
𝑐𝑖

𝑥𝑖
− 𝛼)16

𝑖=1 ≤ 0, 𝑥𝑖 ≥ 𝑥𝑖
𝐿

where 𝑐𝑖 =
𝑃𝐿𝑖𝑓𝑖

2

𝐸𝛿𝑈
, 𝛼 =

1

16
, 𝑥𝑖

𝐿 = 10−6 in.

The dual function is defined as: 𝜑(𝜇) = min𝑥𝑖≥𝑥𝑖
𝐿 ∑ 𝐿𝑖𝑥𝑖

16
𝑖=1 + 𝜇 (

𝑐𝑖

𝑥𝑖
− 𝛼),

which leads to individual problems of the form: min𝑥𝑖≥𝑥𝑖
𝐿 𝜓 = 𝐿𝑖𝑥𝑖 + 𝜇 (

𝑐𝑖

𝑥𝑖
− 𝛼).

Application of FONC gives: 𝑥𝑖
∗ = √

𝜇𝑐𝑖

𝐿𝑖
 if 𝑐𝑖 > 0, and 𝑥𝑖

∗ = 𝑥𝑖
𝐿 if 𝑐𝑖 = 0.

The resulting dual maximization problem is defined as: max𝜇 𝜑(𝜇) = 2∑ √𝑐𝑖𝐿𝑖√𝜇 − 𝜇16
𝑖=1 + 𝑐,

where 𝑐 is a constant. Application of FONC then gives: 𝜇 = (∑ √𝑐𝑖𝐿𝑖𝑖)
2
.

For the given data, a closed-form solution is obtained as: 𝜇∗ = 1358.2, 𝑓∗ = 1358.2 in3, and

𝒙 = [5.67 4.25 4.25 2.84 2.84 1.42 1.42 10−6 1.06 1.06 1.06 10−6 1.77 1.77 1.77 1.77] in.

58

5 Linear Programming Methods

Linear programming (LP) problems form an important subclass of the optimization problems. The

distinguishing feature of the LP problems is that the objective function and the constraints are linear

functions of the optimization variables. LP problems occur in many real-life economic situations where

profits are to be maximized or costs minimized with constraints on resources. Specialized procedures,

such as the Simplex method, were developed to solve the LPP. The simplex method divides the variables

into basic and nonbasic, the latter being zero, in order to develop a basic feasible solution (BFS). It then

iteratively updates basic variables thus generating a series of BFS, each of which carries a lower objective

function value than the previous. Each time, the reduced costs associated with nonbasic variables are

inspected to check for optimality. An optimum is reached when all the reduced costs are non-negative.

Learning Objectives: The learning objectives in this chapter are:

1. Understand the general formulation of a linear programming (LP) problem

2. Learn the Simplex method to solve LP problems and its matrix/tableau implementation

3. Understand the fundamental duality properties associated with LP problems

4. Learn sensitivity analysis applied to the LP problems

5. Grasp the formulation of KKT conditions applied to linear and quadratic programming problems

6. Learn to formulate and solve the linear complementarity problem (LCP)

 The Standard LP Problem 5.1

The general LP problem is described in terms of minimization (or maximization) of a scalar objective

function of 𝑛 variables, subject to 𝑚 constraints. These constraints may be specified as EQ (equality

constraints), GE (greater than or equal to inequalities), or LE (less than or equal to inequalities). The

variables 𝑥𝑗, 𝑗 = 1,… , 𝑛 may be unrestricted in sign/range, specified to be non-negative, or upper and/or

lower bounded.

Two common formulations of LP problems are:

1. min
𝑥𝑗

 𝑧 = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

Subject to: ∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖
𝑛
𝑗=1 , 𝑖 = 1,2,… , 𝑚; 𝑥𝑗

𝐿 ≤ 𝑥𝑗 ≤ 𝑥𝑗
𝑈, 𝑗 = 1,… , 𝑛

2. max
𝑥𝑗

 𝑧 = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

Subject to: ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 , 𝑖 = 1,2,… , 𝑚; 𝑥𝑗

𝐿 ≤ 𝑥𝑗 ≤ 𝑥𝑗
𝑈, 𝑗 = 1,… , 𝑛

While the general LP problem may be specified in different ways, the standard LP problem refers to a

problem involving minimization of a scalar cost function subject to only equality constraints, and with

optimization variables restricted to take on non-negative values. The inequality constraints can be

59

converted to equality by adding (subtracting) slack (surplus) variables to LE (GE) type constraints.

Further, the original variables can be replaced by new variables, which take on non-negative values.

The standard LP problem is defined as:

 min
𝑥𝑗

 𝑧 = ∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1

 Subject to: ∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑏𝑖
𝑛
𝑗=1 , 𝑥𝑗 ≥ 0; 𝑖 = 1,2,… ,𝑚

(5.1)

In the vector-matrix format, the standard LP problem is expressed as:

min
𝒙

𝑧 = 𝒄𝑇𝒙

subject to 𝑨𝒙 = 𝒃, 𝒙 ≥ 𝟎
(5.2)

where 𝑨 ∈ ℝ𝑚×𝑛; 𝒙, 𝒄 ∈ ℝ𝑛 , 𝒃 ∈ ℝ𝑚.

The standard LP problem has the following characteristics:

1. It involves minimization of a scalar cost function.

2. The variables can only take on non-negative values, i.e., 𝑥𝑗 ≥ 0.

3. The right hand side (rhs) is assumed to be non-negative, i.e., 𝑏𝑖 ≥ 0.

Additionally,

1. The constraints are assumed to be linearly independent, which implies that 𝑟𝑎𝑛𝑘(𝑨) = 𝑚.

2. The problem is assumed to be well-formulated, which implies that min𝒙 𝒄𝑇𝒙 < ∞.

When encountered, exceptions to the standard LP problem formulation are dealt as follows:

1. A maximization problem is changed to a minimization problem by taking negative of the cost

function, i.e., max𝒙 𝒄𝑇𝒙 ≡ min𝒙(−𝒄𝑇𝒙).

2. Any constant terms in 𝑧 can be dropped.

3. Any 𝑥𝑖 ∈ ℝ (unrestricted in sign) is replaced by 𝑥𝑖 = 𝑥𝑖
+ − 𝑥𝑖

− where 𝑥𝑖
+, 𝑥𝑖

− ≥ 0.

4. The inequality constraints are converted to equality constraints by the addition of slack variables

(to LE constraint) or subtraction of surplus variables (from GE constraint).

5. If any 𝑏𝑖 < 0, the constraint is first multiplied by −1, followed by the introduction of slack or

surplus variables.

 Solution to the LP Problem 5.2

We first note that the feasible set defined by linear equalities (and inequalities) in an LP problem is

convex. Further, the cost function is linear, hence convex. Therefore, the LP problem represents a convex

optimization problem, i.e., a single global minimum for the problem exists.

60

Further, due to only equality constraints present in the problem, the optimum solution, if it exists, lies on

the boundary of the feasible region, i.e., some of the constraints are active at the optimum point.

Algebraically, the LP problem represents a linear system of 𝑚 equations in 𝑛 unknowns. Accordingly,

a) If 𝑚 = 𝑛, the solution may be obtained from the constraints only.

b) If 𝑚 > 𝑛, some of the constraints may be redundant, or the system may be inconsistent.

c) If 𝑚 < 𝑛, the LP problem has an optimum solution, and can be solved using methods described

below.

Next, we consider the 𝑚 < 𝑛 case, and assume that matrix 𝑨 has full row rank; then, we arbitrarily

choose independent (nonbasic) variables, to solve for the remaining (𝑚) dependent (basic) variables. Let

the system be transformed into canonical form: 𝑰(𝑚)𝒙(𝑚) + 𝑸𝒙(𝑛−𝑚) = 𝒃; then, the general solution

includes (𝑛 − 𝑚) independent variables: 𝒙(𝑛−𝑚), and (𝑚) dependent variables: 𝒙(𝑚) = 𝒃 − 𝑸𝒙(𝑛−𝑚). A

particular solution to the linear system can be obtained by setting: 𝒙(𝑛−𝑚) = 𝟎, and obtaining: 𝒙(𝑚) = 𝒃.

5.2.1 The Basic Solution to the LP Problem

A basic solution 𝒙 to a standard LP problem satisfies two conditions:

1. 𝒙 is a solution to 𝑨𝒙 = 𝒃.

2. The columns of 𝑨 corresponding to the nonzero components of 𝒙 are linearly independent.

Since 𝑨 can have at the most 𝑚 independent columns, it implies that 𝒙 has at the most 𝑚 nonzero

components. Assume that 𝑨 has a full row rank; then, a basic solution is obtained by choosing 𝑛 − 𝑚

variables as zero. The resulting solution contains 𝑚 basic variables, 𝒙𝑩, and 𝑛 − 𝑚 nonbasic variables,

𝒙𝑵, the latter taking on zero values. The columns of 𝑨 corresponding to 𝒙𝑩 are termed as the basis

vectors.

Let 𝒙𝑇 = [𝒙𝐵, 𝒙𝑁] where the basic variables occupy leading positions; we accordingly partition the cost

function coefficients as: 𝒄𝑇 = [𝒄𝐵, 𝒄𝑁], and represent the constraint matrix as: 𝑨 = [𝑩,𝑵], where 𝑩 is a

𝑚 × 𝑚 nonsingular matrix and 𝑵 is a 𝑚 × (𝑛 − 𝑚) matrix; then, the original LP problem is reformulated

as:

min
𝒙

 𝑧 = 𝒄𝐵
𝑇𝒙𝐵 + 𝒄𝑁

𝑇 𝒙𝑁,

Subject to 𝑩𝒙𝐵 + 𝑵𝒙𝑁 = 𝒃, 𝒙𝐵 ≥ 𝟎, 𝒙𝑁 ≥ 𝟎
(5.3)

A BFS corresponding to the basis 𝑩 is represented as: 𝒙𝑇 = [𝒙𝐵, 𝟎], 𝒙𝑩 = 𝑩−1𝒃 > 𝟎. Since, by

assumption, 𝑟𝑎𝑛𝑘 (𝑨) = 𝑚, 𝑩 can be selected from the various permutations of the columns of 𝑨. Since

each basic solution has exactly 𝑚 non-zero components, the total number of basic solutions is finite, and

is given as: (
𝑛
𝑚

) =
𝑛!

𝑚!(𝑛−𝑚)!
.

61

Basic Feasible Solution. The set 𝒮 = {𝒙:𝑨𝒙 = 𝒃, 𝒙 ≥ 𝟎} represents the feasible region for the LP

problem. We note that a basic solution, 𝒙 ∈ 𝒮, that is in the feasible region is termed as a basic feasible

solution (BFS). Further, the feasible region is a polytope (polygon in 𝑛 dimensions), and each BFS

represents an extreme point (a vertex) of the polytope.

The number of BFS is smaller than number of basic solutions and can be determined by comparing the

objective function values at the various basic solutions.

The Basic Theorem of Linear Programming (e.g., Arora, p.201) states that if there is a feasible solution to

the LP problem, there is a BFS; and if there is an optimum feasible solution, there is an optimum BFS.

The basic LP theorem implies that an optimal solution must be a BFS and must coincide with one of the

vertices of the feasible region. This fact can be used to compare the objective function value at all the

BFS, and find the optimum by comparison if the number of vertices is small.

Finally, there can be multiple optimums at the boundary of feasible region if an active constraint

boundary is parallel to the level curves of the cost function.

 The Simplex Method 5.3

The simplex method iteratively solves the standard LP problem. It does so by starting from a known BFS

and successively moving to an adjacent BFS that carries a lower objective function value. Each move

involves replacing a single variable in the basis with a new variable. The previously nonbasic variable

entering the basis is termed as entering basic variable (EBV), and the one leaving it is termed as leaving

basic variable (LBV). An optimum is reached when no neighboring BFS with a lower objective function

value can be found.

5.3.1 The Simplex Algorithm

In order to mathematically formulate the simplex algorithm, let 𝒙𝑇 = [𝒙𝑩, 𝒙𝑵] represent the current BFS

to the LP problem (where 𝒙𝑵 = 𝟎), and let the constraints be expressed as: 𝑩𝒙𝐵 + 𝑵𝒙𝑁 = 𝒃. Then, we

can solve for 𝒙𝐵 as: 𝒙𝐵 = 𝑩−1(𝒃 − 𝑵𝒙𝑁), and substitute it in the objective function to obtain:

𝑧 = 𝒄𝐵
𝑇𝑩−1𝒃 + (𝒄𝑁

𝑇 − 𝒄𝐵
𝑇𝑩−1𝑵)𝒙𝑁 = 𝒚𝑇𝒃 + 𝒄̂𝑁

𝑇 𝒙𝑁 = 𝑧̂ + 𝒄̂𝑁
𝑇 𝒙𝑁 (5.4)

In the above equation, 𝒚𝑇 = 𝒄𝐵
𝑇𝑩−1 defines a vector of simplex multipliers (or Lagrange multipliers),

where 𝑦𝑖 > 0 represents an active constraint; 𝒄̂𝑁
𝑇 = 𝒄𝑁

𝑇 − 𝒚𝑇𝑵 represents the reduced costs for the

nonbasic variables (reduced costs are zero for the basic variables); and, 𝑧̂ = 𝒚𝑇𝒃 represents the objective

function value corresponding to the current BFS.

The significance of the reduced costs is as follows: let 𝑐̂𝑗 ∈ 𝒄̂𝑁
𝑇 ; then, assigning a nonzero value 𝛿𝑗 to the

nonbasic variable 𝑥𝑗 will change the objective function by 𝑐̂𝑗𝛿𝑗. Therefore, any 𝑐̂𝑗 < 0 has the potential to

62

decrease the value of 𝑧, and the corresponding 𝑥𝑗 may be selected as the EBV. It is customary to select

the variable 𝑥𝑗 with the lowest 𝑐̂𝑗 as the EBV.

To select a value 𝛿𝑞 for EBV, we examine the update to the basic solution 𝒙𝐵 from the introduction of

EBV 𝑥𝑞, which is given as: 𝒙𝐵 = 𝑩−1(𝒃 − 𝑨𝑞𝑥𝑞) = 𝒃̂ − 𝑨̂𝑞𝑥𝑞, where 𝑨𝑞 represents the 𝑞th column of 𝑨

that corresponds to the EBV. In order to maintain feasibility, 𝑥𝑞 can be increased so long as 𝒙𝐵 ≥ 𝟎.

An element wise consideration requires that: 𝑏̂𝑖 − 𝐴̂𝑖,𝑞𝑥𝑞 > 0. Therefore, the maximum value of 𝑥𝑞 is

𝛿𝑞 = min𝑖 {
𝑏̂𝑖

𝐴𝑖,𝑞
: 𝐴̂𝑖,𝑞 > 0} , which results in exactly one of the variables to go to zero (termed as LBV).

The process is repeated till the condition 𝑐̂𝑗 ≥ 0 is satisfied.

The steps involved in the Simplex algorithm are summarized below.

The Simplex Algorithm (Griva, Nash & Sofer, p.131):

1. Initialize: Find an initial BFS to start the algorithm; accordingly, determine 𝒙𝑩, 𝒙𝑵, 𝑩, 𝑵,

𝒚𝑇 = 𝒄𝐵
𝑇𝑩−1, 𝑧̂ = 𝒚𝑇𝒃.

2. Optimality test: Compute 𝒄̂𝑁
𝑇 = 𝒄𝑁

𝑇 − 𝒚𝑇𝑵. Then, evaluate 𝒄̂𝑁
𝑇 associated with current nonbasic

variables. If all 𝑐̂𝑗 > 0, the optimal has been reached. Otherwise, select a variable 𝑥𝑞 with 𝑐̂𝑞 < 0

as EBV.

3. Ratio test: Compute 𝑨̂𝑞 = 𝑩−1𝑨𝑞. Determine: min𝑖 {
𝑏̂𝑖

𝐴𝑖,𝑞
: 𝐴̂𝑖,𝑞 > 0} =

𝑏̂𝑝

𝐴𝑝,𝑞
. Set 𝐴̂𝑝,𝑞 as the pivot

element.

4. Update: Assign 𝑥𝑞 ←
𝑏̂𝑝

𝐴𝑝,𝑞
, 𝒙𝐵 ← 𝒃̂ − 𝐴̂𝑞𝑥𝑞 , 𝑧̂ ← 𝑧̂ + 𝑐̂𝑞𝑥𝑞. Update 𝒙𝑩, 𝒙𝑵, 𝑩, 𝑵.

The following example illustrates the application of simplex algorithm to LP problems.

Example 5.1: The Simplex algorithm

We consider the following LP problem:

max
𝑥1,𝑥2

𝑧 = 3𝑥1 + 2𝑥2

Subject to: 2𝑥1 + 𝑥2 ≤ 12, 2𝑥1 + 3𝑥2 ≤ 16; 𝑥1 ≥ 0, 𝑥2 ≥ 0

The problem is first converted to standard LP form by changing the sign of the objective function and

adding slack variables 𝑠1, 𝑠2 to the LE constraints. The resulting optimization variables, cost coefficients,

and constraint coefficients are given below:

𝒙𝑇 = [𝑥1 𝑥2 𝑠1 𝑠2], 𝒄𝑇 = [−3 − 2 0 0], 𝑨 = [
2
2

1
3

1
0

0
1
] , 𝒃 = [

12
16

]

The steps of the Simplex algorithm for the problem are shown below:

63

Step 1:

𝒙𝐵 = [
𝑠1

𝑠2
] = [

12
16

] , 𝒙𝑁 = [
𝑥1

𝑥2
] = [

0
0
] , 𝒄𝐵

𝑇 = [0,0], 𝒄𝑁
𝑇 = [−3,−2], 𝑩 = 𝑰, 𝒃̂ = 𝒃 = [

12
16

], 𝑧̂ = 0,

 𝒚𝑇 = [0,0], 𝒄̂𝑁
𝑇 = 𝒄𝑁

𝑇 = [−3,−2], 𝑥𝑞 = 𝑥1, 𝐴̂1 = [
2
2
] , {

𝑏̂𝑖

𝐴𝑖,1
: 𝐴̂𝑖,1 > 0} = {6, 8}, 𝐴̂𝑝,𝑞 = 𝐴̂1,1

Update: 𝑥1 ← 6, 𝒙𝐵 ← [
0
4
] , 𝑧̂ ← −18

Step 2:

𝒙𝐵 = [
𝑥1

𝑠2
] = [

6
4
] , 𝒙𝑁 = [

𝑥2

𝑠1
] = [

0
0
] , 𝒄𝐵

𝑇 = [−3, 0], 𝒄𝑁
𝑇 = [−2, 0], 𝑩 = [

2
2

0
1
] , 𝑵 = [

1
3

1
0
] , 𝒃̂ = [

6
4
],

𝒚𝑇 = [−3/2, 0], 𝒄̂𝑁
𝑇 = [−1/2, 3/2], 𝑥𝑞 = 𝑥2, 𝐴̂1 = [

1/2
2

] , {
𝑏̂𝑖

𝐴𝑖,1
: 𝐴̂𝑖,1 > 0} = {12, 2}, 𝐴̂𝑝,𝑞 = 𝐴̂2,2

Update: 𝑥2 ← 2, 𝒙𝐵 ← [
5
0
] , 𝑧̂ ← −19

Step 3:

𝒙𝐵 = [
𝑥1

𝑥2
] = [

5
2
] , 𝒙𝑁 = [

𝑠1

𝑠2
] = [

0
0
] , 𝒄𝐵

𝑇 = [−3,−2], 𝒄𝑁
𝑇 = [0, 0], 𝑩 = [

2
2

1
3
] , 𝑵 = 𝑰,

𝒚𝑇 = [−5/4, −1/4], 𝒄̂𝑁
𝑇 = [5/4, 1/4]

Since all 𝑐̂𝑗 > 0, an optimal has been reached and 𝑧𝑜𝑝𝑡 = −19.

5.3.2 Tableau Implementation of the Simplex Algorithm

It is customary to use tableaus to capture the essential information about the LP problem. A tableau is an

augmented matrix that includes the constraints, the right-hand-side (rhs), and the coefficients of the cost

function (represented in the last row). Each preceding row of the tableau represents a constraint equation,

and each column represents a variable.

In the tableau method, the basis is represented by unit vectors. When a pivot element 𝐴̂𝑝,𝑞 has been

identified, Gauss-Jordan eliminations are used to reduce 𝐴𝑞 to a unit vector. The tableau method

implements the simplex algorithm by iteratively computing the inverse of the basis (𝑩) matrix.

Consider a standard linear program with n variables and m equality constraints. Assume that an initial

BFS has been identified. The information is entered in the tableau as shown below:

Basic 𝒙𝑩 𝒙𝑵 Rhs

𝒙𝑩 𝑩 𝑵 𝒃

−𝒛 𝒄𝐵
𝑇 𝒄𝑁

𝑇 0

In the above, basic variables are identified in the left-most column, the next 𝑚 columns pertain to basis

vectors and the right-most column represents the rhs.

64

Next, by pre-multiplying the initial tableau with the matrix: [
𝑩−1 0
−𝒚𝑇 1

] , 𝒚𝑇 = 𝒄𝐵
𝑇𝑩−1, we obtain the

tableau representation in the current basis:

Basic 𝒙𝑩 𝒙𝑵 Rhs

𝒙𝑩 𝑰 𝑩−1𝑵 𝑩−1𝒃

−𝒛 𝟎 𝒄𝑁
𝑇 − 𝒚𝑇𝑵 − 𝒚𝑇𝒃

where 𝒚𝑇 represents the vector of Lagrange multipliers, 𝒄𝑁
𝑇 − 𝒚𝑇𝑵 represents the reduced costs for

nonbasic variables, and 𝒚𝑇𝒃 represents the current objective function value.

The steps involved in tableau implementation of the Simplex method are given below:

1. Formulate the problem as a standard LP problem.

2. Identify an initial BFS and fill the initial tableau: the columns correspond to the variables; the

rows correspond to the constraints; the last column corresponds to the rhs; the last row contains

the cost function coefficients.

3. Perform Gauss-Jordan eliminations to reduce the basis to unit vectors.

4. Check optimality: if 𝒄̂𝑁 ≥ 0, the current BFS is optimal.

5. Examine 𝒄̂𝑁; identify the column with most negative 𝑐̂𝑗 as EBV column 𝐴𝑞.

6. Perform the ratio test:
𝑏𝑖

𝐴𝑖,𝑞
, 𝐴̂𝑖,𝑞 > 0, 𝑖 = 1,… ,𝑚, to determine the smallest positive ratio

𝑏𝑖

𝐴𝑝,𝑞
. If

all 𝐴̂𝑖,𝑞 ≤ 0, the problem is unbounded.

7. identify the pivot element 𝐴̂𝑝,𝑞. Perform Gauss-Jordan eliminations to reduce 𝐴𝑞 to a unit vector.

8. Return to 4.

Some abnormal terminations of the Simplex algorithm are described as follows:

1. If the reduced cost for a nonbasic variable in the final tableau is zero, then there exists a

possibility for multiple optimum solutions with equal cost function value. This happens when

cost function contours (level curves) are parallel to one of the constraint boundaries.

2. If the reduced cost is negative but the pivot step cannot be completed due to all coefficients in the

LBV column being negative, it reveals a situation where the cost function is unbounded below.

3. If, at some point during Simplex iterations, a basic variable attains a zero value, it is called

degenerate variable and the corresponding BFS is termed as degenerate solution. The degenerate

row hence forth becomes the pivot row, with no improvement in the objective function.

Example 5.2: the Tableau method

We rework Example 5.1 using the tableau method. The optimization problem is stated as:

max
𝑥1,𝑥2

𝑧 = 3𝑥1 + 2𝑥2

Subject to: 2𝑥1 + 𝑥2 ≤ 12, 2𝑥1 + 3𝑥2 ≤ 16; 𝑥1 ≥ 0, 𝑥2 ≥ 0

65

The problem is first converted to the standard LP form. Then, the constraints and the cost function

coefficients are entered in an initial simplex tableau, where the EBV, LBV, and the pivot element are

identified underneath the tableau:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒔𝟏 2 1 1 0 12

𝒔𝟐 2 3 0 1 16

𝒛 -3 -2 0 0 0

EBV: 𝑥1, LBV: s1, pivot: (1,1)

The subsequent simplex iterations result in the series of tableaus appearing below:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒙𝟏 1 0.5 0.5 0 6

𝒔𝟐 0 2 -1 1 4

−𝒛 0 -0.5 1.5 0 18

EBV: 𝑥2, LBV: s2, pivot: (2,2)

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒙𝟏 1 0 0.75 -0.25 5

𝒙𝟐 0 1 -0.5 0.5 2

−𝒛 0 0 1.25 0.25 19

At this point, since all reduced costs are positive, an optimum has been reached with:

𝑥1
∗ = 5, 𝑥2

∗ = 2, 𝑧𝑜𝑝𝑡 = −19.

5.3.1 Obtaining an Initial BFS

The starting point of the simplex algorithm is a valid BFS. This is trivial in the case of a maximization

problems modeled with LE constraints (Example 5.1), where an obvious initial BFS is to choose the slack

variables as the basic variables. Initial BFS is not so obvious when the problem involves GE or EQ

constraints. It is so because the feasible region in the problem does not normally include the origin. Then,

in order to initiate the simplex algorithm, we need to choose an initial 𝑩 matrix, such that 𝑩𝒙𝐵 = 𝒃 yields

a non-negative solution for 𝒙𝐵. The two-phase Simplex method described below obtains an initial BFS by

first solving an auxiliary LP problem.

The two-phase Simplex method works as follows: we add a set of 𝑚 auxiliary variables, 𝒙̃, to the original

optimization variables, 𝒙, and define an auxiliary LP problem where the auxiliary objective function is

selected to reduce the auxiliary variables. The auxiliary problem is defined as:

min
𝑥̃𝑖

∑ 𝑥̃𝑖

𝑚

𝑖=1

Subject to: 𝑨𝒙 + 𝒙̃ = 𝒃, 𝒙 ≥ 𝟎, 𝒙̃ ≥ 𝟎

(5.5)

66

The auxiliary problem is solved in Phase I of the Simplex algorithm. We note that 𝒙̃ = 𝒃 is a valid BFS

for the auxiliary problem and serves as a starting point for Phase I Simplex algorithm. Further, since only

the GE and EQ constraints require auxiliary variables, their number can be accordingly chosen less than

or equal to 𝑚.

The starting tableau for the Phase I Simplex algorithm is given as:

Basic 𝒙𝑩 𝒙𝑵 𝒙̃ Rhs

𝒙𝑩 𝑩 𝑵 𝑰 𝒃

−𝒛 𝒄𝐵
𝑇 𝒄𝑁

𝑇 𝟎 0

−𝒛𝒂 𝟎 𝟎 𝟏𝑻 0

where 𝟏𝑇 = [1,… ,1] represents a unit vector. The first step in the Phase I Simplex is to make auxiliary

variables the basic variables. This is done by row reductions aimed to generate unit vectors in the basis

columns, which results in the following tableau:

Basic 𝒙𝑩 𝒙𝑵 𝒙̃ Rhs

𝒙𝑩 𝑩 𝑵 𝑰 𝒃

−𝒛 𝒄𝐵
𝑇 𝒄𝑁

𝑇 𝟎 0

−𝒛𝒂 −𝟏𝑇𝑩 −𝟏𝑇𝑵 𝟎 −𝟏𝑇𝒃

The Phase I Simplex algorithm continues till all the reduced costs in the auxiliary objective row become

non-negative and the auxiliary objective function value reduces to zero, thus signaling the end of Phase I.

If the auxiliary objective value at the end of Phase I does not equal zero, it indicates that no feasible

solution to the original problem exists.

Once the auxiliary problem has been solved, we turn to the original problem, and drop the auxiliary

objective (𝑧𝑎) row and the auxiliary variable (𝒙̃) columns from the current tableau (or ignore them). We

then follow up with further Simplex iterations using the original objective (𝑧) in Phase II of the algorithm

till an optimum value for 𝑧 is obtained.

Two examples involving GE and EQ constraints are solved below to illustrate the implementation of the

two-phase Simplex algorithm.

Example 5.3: Two-phase Simplex algorithm for GE constraints

We consider the following LP problem:

max
𝑥1,𝑥2

 𝑧 = 3𝑥1 + 2𝑥2

Subject to: 3𝑥1 + 2𝑥2 ≥ 12, 2𝑥1 + 3𝑥2 ≤ 16, 𝑥1 ≥ 0, 𝑥2 ≥ 0

We first convert the problem to standard form by subtracting surplus variable (𝑠1) from GE constraint and

adding slack variable (𝑠2) to LE constraint. The standard form LP problem is given as:

67

min
𝑥1,𝑥2

 𝑧 = −3𝑥1 − 2𝑥2

Subject to: 3𝑥1 + 2𝑥2 − s1 = 12, 2𝑥1 + 3𝑥2 + s2 = 16; 𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0

There is no obvious BFS to start the simplex algorithm. To solve the problem using two-phase simplex

method, we add an auxiliary variable 𝑎1 to GE constraint and define the following auxiliary LP problem:

min
𝑥1,𝑥2

 𝑧𝑎 = 𝑎1

Subject to: 3𝑥1 + 2𝑥2 − 𝑠1 + 𝑎1 = 12, 2𝑥1 + 3𝑥2 + 𝑠2 = 16; 𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝑎1 ≥ 0

The starting tableau for the auxiliary problem (Phase I) is given as:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒂𝟏 Rhs

 3 2 -1 0 1 12

𝒔𝟐 2 3 0 1 0 16

−𝒛 -3 -2 0 0 0 0

−𝒛𝒂 0 0 0 0 1 0

We first bring 𝑎1 into the basis by reducing the 𝑎1 column to a unit vector.

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒂𝟏 Rhs

𝒔𝟏 3 2 -1 0 1 12

𝒔𝟐 2 3 0 1 0 16

−𝒛 -3 -2 0 0 0 0

−𝒛𝒂 -3 -2 1 0 0 -12

EBV: 𝑥1, LBV: 𝑠1, pivot: (1,1)

This is followed by an additional Simplex iteration to reach the end of Phase I. The final tableau for phase

I is shown below:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒂𝟏 Rhs

𝒙𝟏 1 2/3 -1/3 0 1/3 4

𝒔𝟐 0 5/3 2/3 1 -2/3 8

−𝒛 0 0 -1 0 1 12

−𝒛𝒂 0 0 0 0 1 0

Since the auxiliary variable is now nonbasic and the auxiliary objective has a zero value, the auxiliary

problem has been solved. To return to the original problem, we drop the 𝑧𝑎 row and the 𝑎1 column from

the tableau. The resulting tableau below represents a valid BFS: 𝑥1 = 4, 𝑠2 = 8 to start Phase II.

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒙𝟏 1 2/3 -1/3 0 4

𝒔𝟐 0 5/3 2/3 1 8

−𝒛 0 0 -1 0 12

68

EBV: s1, LBV: s2, pivot: (2,3)

Phase II: To continue, we perform an iteration of the Simplex algorithm leading to the final tableau:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒙𝟏 1 3/2 0 1/2 8

𝒔𝟏 0 5/2 1 3/2 12

−𝒛 0 5/2 0 3/2 24

At this point the original LP problem has been solved and the optimal solution is given as:

𝑥1
∗ = 8, 𝑥2

∗ = 0, 𝑧∗ = −24.

The second example of the two-phase simplex method involves equality constraints and variable bounds.

Example 5.4: Two-phase Simplex algorithm for EQ constraints

We consider the following LP problem:

min
𝑥1,𝑥2

 𝑧 = 2𝑥1 + 𝑥2

Subject to: 𝑥1 + 𝑥2 = 3, 0 ≤ 𝑥1 ≤ 2, 0 ≤ 𝑥2 ≤ 2

We first add slack variables 𝑠1, 𝑠2 to the LE constraints. The resulting standard LP problem is given as:

min
𝑥1,𝑥2

 𝑧 = 2𝑥1 + 𝑥2

Subject to: 𝑥1 + 𝑥2 = 3, 𝑥1 + s1 = 2, 𝑥2 + s2 = 2; 𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0

Note that no obvious BFS for the problem exists. In order to solve the problem via two-phase simplex

method, we add an auxiliary variable 𝑎1 to the EQ constraint and define the following auxiliary problem:

min
𝑥1,𝑥2

 𝑧𝑎 = 𝑎1

Subject to: 𝑥1 + 𝑥2 + 𝑎1 = 3, 𝑥1 + 𝑠1 = 2, 𝑥2 + 𝑠2 = 2; 𝑥1, 𝑥2, 𝑠1, 𝑠2, 𝑎1 ≥ 0

The starting tableau for the auxiliary problem is given below:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒂𝟏 Rhs

 1 1 0 0 1 3

𝒔𝟏 1 0 1 0 0 2

𝒔𝟐 0 1 0 1 0 2

−𝒛 2 1 0 0 0 0

−𝒛𝒂 0 0 0 0 1 0

First, the auxiliary variable is made basic by producing a unit vector in the 𝑎1 column. This is followed by

additional Simplex iterations to reach the Phase I solution as shown in the tableaus below:

69

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒂𝟏 Rhs

𝒂𝟏 1 1 0 0 1 3

𝒔𝟏 1 0 1 0 0 2

𝒔𝟐 0 1 0 1 0 2

−𝒛 2 1 0 0 0 0

−𝒛𝒂 -1 -1 0 0 0 -3

EBV: 𝑥1, LBV: 𝑠1, pivot: (2,1)

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒂𝟏 Rhs

𝒂𝟏 0 1 -1 0 1 1

𝒙𝟏 1 0 1 0 0 2

𝒔𝟐 0 1 0 1 0 2

−𝒛 0 1 2 0 0 -4

−𝒛𝒂 0 -1 1 0 0 -1

EBV: 𝑥2, LBV: 𝑎1, pivot: (1,2)

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒂𝟏 Rhs

𝒙𝟐 0 1 -1 0 1 1

𝒙𝟏 1 0 1 0 0 2

𝒔𝟐 0 0 1 1 -1 1

−𝒛 0 0 -1 0 -1 -5

−𝒛𝒂 0 0 0 0 1 0

At this point, since the reduced costs are non-negative and the auxiliary objective has a zero value; Phase

I Simplex is completed with the initial BFS: 𝑥1 = 2, 𝑥2 = 1. After dropping the auxiliary variable column

and the auxiliary objective row, the starting tableau for Phase II Simplex is given as:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒙𝟐 0 1 -1 0 1

𝒙𝟏 1 0 1 0 2

𝒔𝟐 0 0 1 1 1

−𝒛 0 0 -1 0 -5

The optimum is reached in one iteration and the final tableau is given as:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒙𝟐 0 1 0 1 2

𝒙𝟏 1 0 0 -1 1

𝒔𝟐 0 0 1 1 1

−𝒛 0 0 0 1 -4

Since the reduced costs are non-negative, the current solution is optimal, i.e., 𝑥1
∗ = 1, 𝑥2

∗ = 2, 𝑧∗ = 4.

Later, we show that this problem is more easily solved via dual Simplex method (Sec. 5.4.2).

70

5.3.2 Final Tableau Properties

The final tableau from the simplex algorithm has certain fundamental properties that relate to the initial

tableau. To reveal those properties, we consider the following optimization problem:

max
𝒙

 𝑧 = 𝒄𝑇𝒙

Subject to: 𝑨𝒙 ≤ 𝒃, 𝒙 ≥ 𝟎
(5.6)

Adding surplus variables to the constraints results in the following standard LP problem:

min
𝒙

 𝑧 = −𝒄𝑇𝒙

Subject to: 𝑨𝒙 + 𝑰𝒔 = 𝒃, 𝒙 ≥ 𝟎
(5.7)

An initial tableau for this problem is given as:

Basic 𝒙 𝒔 Rhs

𝒔 𝑨 𝑰 𝒃

−𝒛 −𝒄𝑇 𝟎 0

Assuming that the same order of the variables is maintained, then at the termination of the Simplex

algorithm the final tableau is given as:

Basic 𝒙 𝒔 Rhs

𝒙𝑩 𝑨̃ 𝑺 𝒃̃

−𝒛 𝒄̂𝑇 𝒚𝑇 𝒚𝑇𝒃

The coefficients in the final tableau are related to those in the initial tableau as follows:

𝑨̃ = 𝑺𝑨, 𝒃̃ = 𝑺𝒃, 𝒄̂𝑇 = 𝒚𝑇𝑨 − 𝒄𝑇 , 𝑧∗ = 𝒚𝑇𝒃 (5.8)

Thus, given the initial tableau (𝑨,𝒃, 𝒄𝑇) and the final coefficients in the slack variable columns: (𝒚𝑇 , 𝑺),

we can reconstruct the final tableau as:

[𝑇𝑎𝑏]final = [
𝑺 𝟎
𝒚𝑇 1

] [𝑇𝑎𝑏]initial
(5.9)

Therefore, in a computer implementation of the Simplex algorithm, only the coefficients: 𝑨, 𝒃, 𝒄𝑇 , 𝒚𝑇 , 𝑺

need to be stored in order to recover the final tableau when the algorithm terminates.

 Postoptimality Analysis 5.4

Postoptimality analysis, or sensitivity analysis, aims to study how variations in the original problem

parameters affect the optimum solution. It serves the following purposes:

71

1. To help in managerial decision making, regarding the potential effects of increase/decrease in

resources or raising/lowering the prices.

2. To analyze the effect of modeling errors, reflected in the uncertainty in parameter values in the

coefficient matrices (𝑨,𝒃, 𝒄𝑇) on the final LP solution.

In postoptimality analysis, we are interested to explore the effects of parametric changes in 𝑏𝑖, 𝑐𝑗 , and 𝐴𝑖𝑗

on the optimal solution. There are five basic parametric changes affecting the LP solution (Arora, p.229):

1. Changes in cost function coefficients, 𝑐𝑗; these changes affect the level curves of the function.

2. Changes in resource limits, 𝑏𝑖; these changes affect the set of active constraints.

3. Changes in constraint coefficients, 𝑎𝑖𝑗; these changes affects the active constraint gradients.

4. The effect of including additional constraints

5. The effect of including additional variables

The final tableau contains the necessary information needed to study the effects of parameter changes on

the optimal solution. As long as the parameter changes conform to certain bounds, the optimal solution to

the altered problem can be computed from the original problem and the information in the final tableau.

Recovery of the Lagrange multipliers. Let the standard LP problem be solved via the Simplex method;

then, the Lagrange multipliers are recovered from the final tableau as follows (Arora, p.358):

1. For LE constraint, the Lagrange multiplier, 𝑦𝑗 ≥ 0, equals the reduced cost coefficient in the

slack variable column.

2. For GE/EQ constraint, the Lagrange multiplier equals the reduced cost coefficient in the artificial

variable column, where 𝑦𝑗 ≤ 0 for GE type, and 𝑦𝑗 is unrestricted in sign for EQ type constraint.

The Lagrange multipliers represent the derivative of cost function with respect to rhs parameters. In

particular, for minimization problems modeled with LE and EQ type constraints, 𝑦𝑖 = −
𝜕𝑓

𝜕𝑏𝑖
. Then, the

resulting change in the cost function due to resource variation is computed as: Δ𝑓 = −𝑦𝑖Δ𝑏𝑖.

To proceed further, we recall, from Sec. 5.3.1, that the instantaneous cost function value in the Simplex

algorithm is represented as: 𝑧 = 𝒚𝑇𝒃 + 𝒄̂𝑁
𝑇 𝒙𝑁, where 𝒚𝑇 = 𝒄𝐵

𝑇𝑩−1 and 𝒄̂𝑁
𝑇 = 𝒄𝑁

𝑇 − 𝒚𝑇𝑵. Then, by

expanding it as: 𝑧 = ∑ 𝑦𝑖𝑏𝑖𝑖 + ∑ 𝑐̂𝑗𝑥𝑗𝑗 , where 𝑐̂𝑗 = 𝑐𝑗 − 𝒚𝑇𝛿𝑵𝑗 (𝑵𝑗 represents the 𝑗th column of 𝑵), and

taking the differentials with respect to 𝑏𝑖, 𝑐𝑗, we obtain:

 𝛿𝑧 = ∑ 𝑦𝑖𝛿𝑏𝑖𝑖 + ∑ 𝛿𝑐̂𝑗𝑥𝑗𝑗 , 𝛿𝑐̂𝑗 = 𝛿𝑐𝑗 − 𝒚𝑇𝛿𝑵𝑗

The above formulation may be used to analyze the effects of changes to 𝑏𝑖, 𝑐𝑗, and 𝑵𝑗 on 𝑧. Those results

are summarized below (Belegundu & Chandrupatla, p.167):

1. Changes to the resource constraints (rhs). A change in 𝑏𝑖 has the effect of moving the

associated constraint boundary. Then,

72

a) If the constraint is currently active (𝑦𝑖 > 0), the change will affect the current basic solution,

𝑥𝑩 = 𝒃̃, as well as 𝑧𝑜𝑝𝑡. If the new 𝑥𝑩 is feasible, then 𝑧𝑜𝑝𝑡 = 𝒚𝑇𝒃 is the new optimum value.

If the new 𝑥𝑩 is infeasible, then dual Simplex steps may be used to restore feasibility.

b) If the constraint is currently non-active (𝑦𝑖 = 0), then 𝑧𝑜𝑝𝑡 and 𝑥𝑩 are not affected.

2. Changes to the objective function coefficients. Changes to 𝑐𝑗 affect the level curves of 𝑧. Then,

a) If 𝑐𝑗 ∈ 𝒄𝐵, then since the new 𝑐̂𝑗 ≠ 0, Gauss-Jordan eliminations are needed to return 𝑥𝑗 to the

basis. If optimality is lost in the process (any 𝑐̂𝑗 < 0), further Simplex steps will be needed to

restore optimality. If optimality is not affected, then 𝑧𝑜𝑝𝑡 = 𝒚𝑇𝒃 is the new optimum.

b) If 𝑐𝑗 ∈ 𝒄𝑁, though it does not affect 𝑧, still 𝑐̂𝑗 needs to be recomputed and checked for

optimality.

3. Changes to the coefficient matrix. Changes to the coefficient matrix affect the constraint

boundaries. For a change in 𝑨𝑗 (𝑗th column of 𝑨),

a) If 𝑨𝑗 ∈ 𝑩, then Gauss-Jordan eliminations are needed to reduce 𝐴𝑗 to a unit vector; then

𝑐̂𝑗 needs to be recomputed and checked for optimality.

b) If 𝑨𝑗 ∈ 𝑵, then the reduced cost 𝑐̂𝑗 needs to be recomputed and checked for optimality.

4. Adding Variables. If we add a new variable 𝑥𝑛+1 to the problem, then the cost function is

updated as: 𝑧 = 𝒄𝑇𝒙 + 𝑐𝑛+1𝑥𝑛+1. In addition, a new column 𝐴𝑛+1 is added to the constraint

matrix. The associated reduced cost is computed as: 𝑐𝑛+1 − 𝒚𝑇𝐴𝑛+1. Then, if this cost is positive,

optimality is maintained; otherwise, further Simplex iterations are needed to recover optimality.

5. Adding inequality Constraints. Assume that we add an inequality constraint to the problem.

Adding a constraint adds a row and the associated slack/surplus variable adds a column to the

tableau. In this case, we need to check if adding a column to the basis affects the current

optimum. We define an augmented 𝑩 matrix as: 𝑩 = [
𝑩 0
𝒂𝐵

𝑇 1
], where 𝑩−1 = [

𝑩−1 0
𝒂𝐵

𝑇𝑩−1 1
], and

write the augmented final tableau as:

Basic 𝒙𝑩 𝒙𝑵 Rhs

𝒙𝑩 𝑰 𝑩−1𝑵 𝑩−1𝒃

𝒙𝒏+𝟏 𝑰 𝒂𝐵
𝑇𝑩−1𝑵 𝒂𝐵

𝑇𝑩−1𝒃 + 𝑏𝑛+1

−𝒛 𝟎 𝒄𝑁
𝑇 − 𝒚𝑇𝑵 −𝒚𝑇𝒃

Then, if 𝒂𝐵
𝑇𝑩−1𝒃 + 𝑏𝑛+1 > 0, optimality is maintained. If not, we choose this row as the pivot

row and apply dual Simplex steps (Sec. 5.5.2) to recover optimality.

The following problem adopted from (Belegundu & Chandrupatla, p.122) is used to illustrate the ideas

presented in this section.

Example 5.5: Postoptimality Analysis

73

A vegetable farmer has the choice to grow tomatoes, green peppers, or cucumbers on his 200 acre farm.

The man-days/per acre needed for growing the three vegetables are 6,7 and 5, respectively. A total of 500

man-hours are available. The yield/acre for the three vegetables are in the ratios: 4.5:3.6:4.0. We wish to

determine the optimum crop combination that maximizes total yield.

The optimization problem was solved using the Simplex method. The initial and the final tableaus for the

problem are reproduced below:

Initial:

Basic 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒔𝟏 𝒔𝟐 Rhs

𝒔𝟏 1 1 1 1 0 200

𝒔𝟐 6 7 5 0 1 500

−𝒛 -4.5 -3.6 -4 0 0 0

Final:

Basic 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒔𝟏 𝒔𝟐 Rhs

𝒔𝟏 -0.2 -0.4 0 1 -0.2 100

𝒙𝟑 1.2 1.4 1 0 0.2 100

−𝒛 0.3 2 0 0 0.8 400

From the final tableau, the optimum crop combination is given as: 𝑥1
∗ = 0, 𝑥2

∗ = 0, 𝑥3
∗ = 100, with

𝑧∗ = 400. Further, the simplex multipliers for the constraints are: 𝒚𝑇 = [0, 0.8], with 𝑧∗ = 𝒚𝑇𝒃 = 400.

Next, without re-solving the problem, we wish to answer the following questions:

a) If an additional 50 acres are added, what is the expected change in yield? The answer is found

from: 𝑧∗ = 𝒚𝑇(𝒃 + ∆) where ∆= [50,0]𝑇, with 𝑧∗ = 400, i.e., there is no expected change in

yield. This also means that the land area constraint is not binding in the current optimum solution.

b) If an additional 50 man-days are added, what is the expected change in yield? The answer is

found from: 𝑧∗ = 𝒚𝑇(𝒃 + ∆) where ∆= [0, 50]𝑇, with 𝑧∗ = 440 i.e., the yield increases by 40

units. This also means that the man-days constraint is binding in the optimum solution.

c) If the yield/acre for tomatoes increases by 10%, how is the optimum affected? The answer is

found by re-computing the reduced costs as: 𝒄̂𝑇 = 𝒚𝑇𝑨 − 𝒄𝑇 = [−0.15, 2, 0]. Since a reduced

cost is now negative, additional Simplex steps are needed to regain optimality. This is done and

the new optimum is: 𝑥1
∗ = 83.33, 𝑥2

∗ = 0, 𝑥3
∗ = 0 with 𝑧∗ = 412.5.

d) If the yield/acre for cucumbers drops by 10%, how is the optimum be affected? The answer is

found by re-computing the reduced costs as: 𝒄̂𝑇 = 𝒚𝑇𝑨 − 𝒄𝑇 = [0.3, 2, 0.4]. The reduced costs

are non-negative, but 𝒙𝟑 is no more a basic variable. Regaining the basis results in reduced cost

for 𝒙1 becoming negative. Additional Simplex steps are performed to regain optimality, and the

new optimum is: 𝑥1
∗ = 83.33, 𝑥2

∗ = 0, 𝑥3
∗ = 0 with 𝑧∗ = 375.

e) If the man-hours needed to grow green peppers increase to 5/acre, how is the optimum affected?

The answer is found by re-computing the reduced cost: 𝑐̂2 = 𝑦𝑇𝐴2 − 𝑐2 = 0.4. Since 𝑥2 was non-

basic and the revised reduced cost is non-negative, there is no change in the optimum solution.

74

Ranging the RHS Parameters. Ranges for permissible changes to the rhs parameters that maintain

feasibility of the optimum solution are of interest. These ranges can be computed from the information

contained in the final tableau as follows: From the final tableau, 𝒃̃ = 𝑺𝒃. Assume that the rhs is changed

to 𝒃 + Δ, where ΔT = [δ1, δ2, … , δ𝑚]. Then, the updated basic solution is given as: 𝑺(𝒃 + 𝚫), where for

feasibility 𝑺(𝒃 + Δ) ≥ 0 is desired. By inspecting the values in the new 𝒙𝑩, we can compute the

allowable parameter ranges Δ that maintains feasibility, as shown in the following example. These ranges

are also reported by the commercial software.

Example 4.6: Ranging RHS Parameters

We consider the optimization problem solved in Examples 5.2. From the final tableau, we obtain the

following information:

𝑺 = [
0.75 −0.25
−0.5 0.5

] , 𝒚𝑇 = [1.25 0.25,], 𝑺𝒃 = [
5
2
] , 𝒚𝑇𝒃 = 19.

Then, 𝑺(𝒃 + Δ) = [
5 + 0.75𝛿1 − 0.25𝛿2

2 − 0.5𝛿1 + 0.5𝛿2
] ≥ 0

By inspection, we determine that: −6.67 ≤ 𝛿1 ≤ 4; −4 ≤ 𝛿2 ≤ 20.

 Duality Theory for the LP Problems 5.5

In this section we extend the Lagrangian duality (Sec. 4.5) to the LP problems. Duality theory applies to

practical LP problems in engineering and economics. In engineering, for example, the primal problem in

electric circuit theory may be posed in terms of electric potential, and its dual in terms of current flow.

Similarly, an optimization problem in mechanics may be modeled with strains, and its dual modeled with

stresses. In economics, if the primal problem seeks to optimize price per unit of product, its dual may seek

to minimize cost per unit of resources.

The LP duality is defined in the following terms: associated with every LP problem is a dual problem that

is formulated in terms of dual variables, i.e., the Lagrange multipliers. In the symmetric form of duality,

the primal (P) and the dual (D) LP problems are stated as:

(P) max𝒙 𝑧 = 𝒄𝑇𝒙, subject to 𝑨𝒙 ≤ 𝒃, 𝒙 ≥ 𝟎

(D) min𝒚 𝑤 = 𝒚𝑇𝒃, subject to 𝒚𝑇𝑨 ≥ 𝒄𝑇 , 𝒚 ≥ 𝟎
(5.10)

where 𝒙 ∈ ℝ𝑛 denotes the primal variables and 𝒚 ∈ ℝ𝑚 denotes the dual variables. Based on the

definition of duality, the dual of the dual (D) is the same as primal (P).

 In the symmetric form of duality, when (P) is given in the standard LP form, the (D) takes the following

form:

(P) min𝒙 𝑧 = 𝒄𝑇𝒙, subject to 𝑨𝒙 = 𝒃, 𝒙 ≥ 𝟎 (5.11)

75

3

2

A

B

C

D 1

2

1

2

3

4

3

(D) max𝒚 𝑤 = 𝒚𝑇𝒃, subject to 𝒚𝑇𝑨 ≤ 𝒄𝑇

where Lagrange multipliers 𝒚 for the equality constraints in the dual formulation are unrestricted in sign.

The above dual formulation was obtained via the equivalence: 𝑨𝒙 = 𝒃

⇔ 𝑨𝒙 ≥ 𝒃,−𝑨𝒙 ≥ −𝒃

⇔[𝑨 −

𝑨] [
𝒙
𝒙
] ≥ [

𝒃
−𝒃

]. The associated dual variable vector is given as: [𝒖𝑇 , 𝒗𝑇]. We obtain the above result by

designating dual variables as: 𝒚 = 𝒖 − 𝒗; 𝒖, 𝒗 ≥ 𝟎, so that 𝒚 is unrestricted in sign.

The following example is used to explain LP duality.

Example 5.6: Duality in LP problems

To illustrate duality, we consider the problem of sending goods

from node A to node D in a simplified network (Pedregal, p. 45).

Assuming that the total quantity to be shipped equals 1, let 𝑥𝑖𝑗

denote the fractional quantity to be shipped via link 𝑖𝑗 with

associated transportation cost 𝑐𝑖𝑗 (shown in the figure). Then, the

primal objective is to minimize the transportation costs and the

primal problem is formulated as:

min
𝒙

𝑧 = 2𝑥𝐴𝐵 + 3𝑥𝐴𝐶 + 𝑥𝐵𝐶 + 4𝑥𝐵𝐷 + 2𝑥𝐶𝐷

Subject to: 𝑥𝐴𝐵 = 𝑥𝐵𝐶 + 𝑥𝐵𝐷 , 𝑥𝐴𝐶 + 𝑥𝐵𝐶 = 𝑥𝐶𝐷 , 𝑥𝐵𝐷 + 𝑥𝐶𝐷 = 1 (equivalently, 𝑥𝐴𝐵 + 𝑥𝐴𝐶 = 1);

𝑥𝐴𝐵, 𝑥𝐵𝐶 , 𝑥𝐴𝐶 , 𝑥𝐵𝐷 , 𝑥𝐶𝐷 ≥ 0

Alternatively, we may consider 𝑦𝐼 to be the price of goods at node 𝐼, and 𝑦𝐼 − 𝑦𝐴, as the profit to be made

in transferring the goods from 𝐴 to 𝐼. Then, the dual objective is to maximize the profit at node 𝐷. Then,

if we arbitrarily assign: 𝑦𝐴 = 0, the dual formulation is given as:

max
𝒚

𝑦𝐷

Subject to: 𝑦𝐵 ≤ 2, 𝑦𝐶 ≤ 3, 𝑦𝐶 − 𝑦𝐵 ≤ 1, 𝑦𝐷 − 𝑦𝐵 ≤ 4, 𝑦𝐷 − 𝑦𝐶 ≤ 2

Finally, we note that both problems can be formulated in terms of following coefficient matrices:

𝐴 = [
1 0
0 1
0 0

−1 −1
0 0
0 1

0

−1
1

] , 𝑏 = [
0
0
1
] , 𝑐𝑇 = [2 3 1 4 2].

5.5.1 Fundamental Duality Properties

Duality theory confers fundamental properties on the optimization problem that relate the primal and dual

linear programs. Specifically, these properties specify bounds on the two objectives and are useful in

76

developing computational procedures to solve the primal and dual problems. These properties are stated

below for the symmetric form of duality where (P) solves the maximization problem.

Weak Duality. Let 𝒙 denote a feasible solution to (P) and 𝒚 a feasible solution to (D), then,

𝒚𝑇𝒃 ≥ 𝒚𝑇𝐀𝒙 ≥ 𝒄𝑇𝒙, i.e., 𝑤(𝒚) ≥ 𝑧(𝒙), where the difference between these two objective functions,

𝒃𝑇𝒚 − 𝒄𝑇𝒙, is referred to as the duality gap. Further, if 𝒄𝑇𝒙 = 𝒃𝑇𝒚, then 𝒙 is an optimal solution to (P),

and 𝒚 an optimal solution to (D).

As a consequence of weak duality, if the primal (dual) problem is unbounded, then the dual (primal)

problem is infeasible (i.e., the feasible region is empty).

Strong Duality. If the primal (dual) problem has a finite optimal solution, then so does the dual (primal)

problem; further, these two optimums are equal, i.e., 𝑤𝑜𝑝𝑡 = 𝒚𝑇𝒃 = 𝒚𝑇𝐀𝒙 = 𝒄𝑇𝒙 = 𝑧𝑜𝑝𝑡.

Further, if 𝒙 is the optimal solution to (P), then 𝒚𝑇 = 𝒄𝐵
𝑇𝑩−1 is the optimal solution to (D), which can be

seen from: 𝑤 = 𝒚𝑇𝒃 = 𝒄𝐵
𝑇𝑩−1𝒃 = 𝒄𝐵

𝑇𝑥𝑩 = 𝒄𝑇𝒙 = 𝑧.

The optimality of (P) implies the feasibility of (D), and vice versa. In particular, 𝑥𝑩 ≥ 𝟎 (or, 𝒙 ≥ 𝟎)

implies primal feasibility and dual optimality; whereas, 𝒄̂𝑁
𝑇 ≥ 𝟎 (or, 𝒄̂ = 𝒄 − 𝑨𝑇𝒚 ≥ 𝟎) implies primal

optimality and dual feasibility.

Complementary Slackness. At the optimal point, we have: 𝒙𝑇𝒄 = 𝒙𝑇𝑨𝑇𝒚, implying: 𝒙𝑇(𝒄 − 𝑨𝑇𝒚) =

∑ 𝑥𝑗(𝑐 − 𝐴𝑇𝑦)𝑗𝒋 = 0, which shows that it is not possible to have both 𝑥𝑗 > 0 and (𝐴𝑇𝑦)𝑗 < 𝑐𝑗 at the

optimum.

Thus, if the 𝑗th primal variable is basic, i.e., 𝑥𝑗 > 0, then the 𝑗th dual constraint is binding, i.e., (𝐴𝑇𝑦)𝑗 =

𝑐𝑗; and, if the 𝑗th primal variable is non-basic, i.e., 𝑥𝑗 = 0, then the 𝑗th dual constraint is non-binding, i.e.,

(𝐴𝑇𝑦)𝑗 < 𝑐𝑗.

5.5.2 The Dual Simplex Method

The dual simplex method involves application of the simplex method to the dual problem. The dual

simplex algorithm iterates outsides of the feasible region: it initializes with and moves through the dual

feasible (primal infeasible) solutions. As such, the dual simplex method provides a convenient alternative

to the two-phase simplex method in the event the optimization problem has no obvious feasible solution

(Sec. 5.3.2).

To develop the dual simplex algorithm, we consider the minimization problem formulated with dual

variables (5.10). We note that primal optimality (𝒄̂ ≥ 𝟎) corresponds to dual feasibility (𝒚𝑇𝑨 ≥ 𝒄𝑇), and

primal feasibility (𝒙 ≥ 𝟎) corresponds to dual optimality. We therefore assume that the objective function

coefficients are positive and the rhs is partly negative (some 𝑏𝑖 < 0). The dual simplex algorithm then

proceeds in a similar fashion to the primal algorithm except that:

77

1. The points generated during dual simplex iterations are primal infeasible as some basic variables

have negative values.

2. The solutions are always optimal (but infeasible) in the sense that the reduced cost coefficients

for nonbasic variables are non-negative.

3. An optimal is reached when a feasible solution with non-negative values for the basic variables

has been found.

A tableau implementation of the dual Simplex algorithm proceeds as follows: after subtracting the surplus

variables from GE constraints to convert them to equalities, we multiply those constraints by −1. We then

enter the constraints and the cost function coefficients in a tableau, noting that the initial basic solution is

infeasible.

At each iteration, the pivot element in the dual simplex method is determined as follows:

1. A pivot row 𝐴𝑞
𝑇 is selected as the row that has the basic variable with most negative value.

2. The ratio test to select the pivot column is conducted as: min𝑖 {
𝑐𝑗

−𝐴𝑞,𝑗
: 𝑐𝑗 > 0, 𝐴𝑞,𝑗 < 0}.

The dual simplex algorithm terminates when the rhs has become non-negative.

5.5.3 Recovery of the Primal Solution

The final tableaus resulting from the application of simplex methods to the primal and dual problems are

closely related. In particular, the elements in the last row of the final dual tableau replicate the elements in

the last column of the final primal tableau, and vice versa. This fact allows the recovery of primal solution

from the final dual tableau.

Let the dual problem be solved using standard simplex method, then the value of the ith primal variable

equals the reduced cost coefficient of the slack or surplus variable associated with the ith dual constraint

in the final dual tableau. In addition, if the dual variable is nonbasic, then its reduced cost coefficient

equals the value of the slack or surplus variable for the corresponding primal constraint.

To reveal the above relationships, we consider the dual problem in (5.12), which, after subtracting surplus

variables, is represented in the following equivalent form:

min
𝒚

 𝑤 = 𝒚𝑇𝒃

Subject to: 𝒚𝑇𝑨 − 𝑰𝒔 = 𝒄𝑇 , 𝒚 ≥ 𝟎
(5.12)

An initial tableau for the dual problem, with 𝒔 as the basic variables, is given as:

Basic 𝒚 𝒔 Rhs

𝒔 −𝑨𝑇 𝑰 −𝒄

−𝒘 𝒃𝑇 𝟎 0

78

Assuming that the same order of the variables is maintained, the final tableau at the termination of dual

simplex algorithm may be given as:

Basic 𝒙 𝒔 Rhs

𝒚𝑩 𝑨̃ 𝑺 𝒄̃

−𝒘 𝒃̂𝑇 𝒙𝑇 −𝑧∗

where we note that the primal variables appear in the last row under the slack/surplus variable columns.

Then, the coefficients in the final tableau are related to those in the initial tableau as follows:

𝑨̃ = −𝑺𝑨𝑇 , 𝒄̃ = −𝑺𝒄, 𝒃̂𝑇 = 𝒃𝑇 − 𝒙𝑇𝑨𝑇 , 𝑧∗ = 𝒄𝑇𝒙 (5.13)

The following examples illustrate the efficacy of the dual Simplex algorithm.

Example 5.7: Dual Simplex algorithm

We consider the dual of Example 5.1 where the original LP problem was defined as:

max
𝑥1,𝑥2

𝑧 = 3𝑥1 + 2𝑥2

Subject to: 2𝑥1 + 𝑥2 ≤ 12, 2𝑥1 + 3𝑥2 ≤ 16; 𝑥1 ≥ 0, 𝑥2 ≥ 0

Using the symmetric form of duality, the dual optimization problem is defined as:

min
𝑦1,𝑦2

𝑤 = 12𝑦1 + 16𝑦2

Subject to: 2𝑦1 + 2𝑦2 ≥ 3, 𝑦1 + 3𝑦2 ≥ 2; 𝑦1 ≥ 0, 𝑦2 ≥ 0

We subtract surplus variables from the GE constraints and multiply them with −1 before entering them in

the initial tableau. We then follow with dual simplex iterations. The resulting series of tableaus is given

below:

Basic 𝒚𝟏 𝒚𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒔𝟏 -2 -2 1 0 -3

𝒔𝟐 -1 -3 0 1 -2

−𝒘 12 16 0 0 0

EBV: 𝑦1, LBV: s1, pivot: (1,1)

Basic 𝒚𝟏 𝒚𝟐 𝒔𝟏 𝒔𝟐 rhs

𝒚𝟏 1 1 -1/2 0 3/2

𝒔𝟐 0 -2 -1/2 1 -1/2

−𝒘 0 4 6 0 -18

LBV: s2, EBV: 𝑦2, pivot: (2,2)

Basic 𝒚𝟏 𝒚𝟐 𝐬𝟏 𝐬𝟐 Rhs

𝒚𝟏 1 0 -3/4 1/2 5/4

79

𝒚𝟐 0 1 1/4 -1/2 ¼

−𝒘 0 0 5 2 -19

At this point the dual LP problem is solved and the optimal solution is: 𝑦1 = 1.25, 𝑦2 = 0.25,𝑤𝑜𝑝𝑡 = 19.

We note that the first feasible solution obtained above is also the optimal solution. We further note that:

a) The optimal value of the objective function for (D) is the same as the optimal value for (P).

b) The optimal values for the basic variables for (P) appear as reduced costs associated with non-

basic variables in (D).

As an added advantage, the dual simplex method obviates the need for the two-phase simplex method to

obtain a solution when an initial BFS is not readily available. This is illustrated by re-solving Example 5.3

using the dual simplex algorithm.

Example 5.8: Dual Simplex algorithm

We consider the dual problem of Example 5.3. The original LP problem is stated as:

max
𝑥1,𝑥2

 𝑧 = 3𝑥1 + 2𝑥2

Subject to: 3𝑥1 + 2𝑥2 ≥ 12, 2𝑥1 + 3𝑥2 ≤ 16, 𝑥1 ≥ 0, 𝑥2 ≥ 0

The GE constraint in the problem is first multiplied by −1; the problem is then converted to dual problem

using the symmetric form of duality. The dual optimization problem is given as:

min
𝑦1,𝑦2

 𝑧1 = −12𝑦1 + 16𝑦2

Subject to: −3𝑦1 + 2𝑦2 ≥ 3,−2𝑦1 + 3𝑦2 ≥ 1; 𝑦1 ≥ 0, 𝑦2 ≥ 0

The series of tableaus leading to the optimal solution via the dual simplex method is given below:

Basic 𝒚𝟏 𝒚𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒔𝟏 3 -2 1 0 -3

𝒔𝟐 2 -3 0 1 -2

−𝒘 -12 16 0 0 0

LBV: s1, EBV: 𝑦2, pivot: (1,2)

Basic 𝒚𝟏 𝒚𝟐 𝒔𝟏 𝒔𝟐 Rhs

𝒚𝟐 -3/2 1 -1/2 0 3/2

𝒔𝟐 -5/2 0 -3/2 1 5/2

−𝒘 12 0 8 0 -24

At this point the dual LP problem is solved with the optimal solution: 𝑦1
∗ = 0, 𝑦2

∗ = 1.5, 𝑤∗ = 24. We

note that this is the same solution obtained for Example 5.3. We further note that the reduced costs for

nonbasic variables match with the optimal values of the primal basic variables.

The final dual Simplex example involves a problem with equality constraints.

80

Example 5.9: Equality Constraints

We re-consider Example 5.4 where the optimization problem was given as:

min
𝑥1,𝑥2

 𝑧 = 2𝑥1 + 𝑥2

Subject to: 𝑥1 + 𝑥2 = 3, 0 ≤ 𝑥1, 𝑥2 ≤ 2

In order to solve this problem via the dual Simplex method, we replace the equality constraint with twin

inequality constraints: {𝑥1 + 𝑥2 = 3} ↔ {𝑥1 + 𝑥2 ≤ 3, 𝑥1 + 𝑥2 ≥ 3}. Next, we multiply GE constraint

with −1, and add slack variables to all inequalities. Finally, we identify: 𝑠1, 𝑠2, 𝑠3, 𝑠4 as basic variables,

and construct an initial tableau for the dual simplex method. This is followed by two iterations of the dual

simplex algorithm leading to the optimum. The resulting tableaus for the problem are given below:

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 Rhs

𝒔𝟏 1 1 1 0 0 0 3
𝒔𝟐 -1 -1 0 1 0 0 -3
𝒔𝟑 1 0 0 0 1 0 2

𝒔𝟒 0 1 0 0 0 1 2

−𝒛 2 1 0 0 0 0 0

LBV: s2, EBV: 𝑥2, pivot: (2,2)

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 Rhs

𝒔𝟏 0 0 1 1 0 0 0
𝒙𝟐 1 1 0 -1 0 0 3
𝒔𝟑 1 0 0 0 1 0 2

𝒔𝟒 -1 0 0 1 0 1 -1

−𝒛 1 0 0 1 0 0 −3

LBV: s4, EBV: 𝑥1, pivot: (2,2)

Basic 𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 Rhs

𝒔𝟏 0 0 1 1 0 0 0
𝒙𝟐 0 1 0 0 0 1 2
𝒔𝟑 0 0 0 1 1 1 1

𝒙𝟏 1 0 0 -1 0 -1 1

−𝒛 0 0 0 2 0 1 −4

The dual Simplex algorithm terminates with 𝑧𝑜𝑝𝑡 = 4. Once again, the reduced costs for nonbasic

variables match the primal variables.

 Optimality Conditions for LP Problems 5.6

81

This section discusses the application of FONC for optimality to the LP problems. The first order

optimality conditions in the case of general optimization problems are known as the KKT conditions. For

convex optimization problems, the KKT conditions are both necessary and sufficient for optimality.

5.6.1 KKT Conditions for LP Problems

To derive the KKT conditions for the LP problems, we consider a maximization problem proposed in

(5.10) above. Using slack variables, the problem is converted into standard form as:

min
𝒙

 𝑧 = −𝒄𝑇𝒙

subject to 𝑨𝒙 − 𝒃 + 𝒔 = 𝟎, 𝒙 ≥ 𝟎
(5.14)

Next, we use Lagrange multiplier vectors 𝒚, 𝒖 for the equality and inequality constraints to write the

Lagrangian function as:

ℒ(𝒙, 𝒖, 𝒗) = −𝒄𝑇𝒙 − 𝒖𝑇𝒙 + 𝒚𝑇(𝑨𝒙 − 𝒃 + 𝒔) (5.15)

Then, the first order KKT conditions for the optimality of the solution vector are:

Feasibility: 𝑨𝒙 − 𝒃 + 𝒔 = 𝟎

Optimality: 𝑨𝑇𝒚 − 𝒄 − 𝒖 = 𝟎

Complementarity: 𝒖𝑇𝒙 + 𝒚𝑇𝒔 = 𝟎 (or, 𝑢𝑖𝑥𝑖 = 0, 𝑦𝑖𝑠𝑖 = 0)

Non-negativity: 𝒙 ≥ 𝟎, 𝒔 ≥ 𝟎, 𝒖 ≥ 𝟎, 𝒚 ≥ 𝟎

The above equations need to be simultaneously solved for the unknowns: 𝒙, 𝒔, 𝒖, 𝒗 to find the optimum.

By substituting 𝒔, 𝒖 from the first two equations into the third, the optimality conditions are reduced to:

𝒚𝑇(𝑨𝒙 − 𝒃) = 𝟎, 𝒙𝑇(𝒄 − 𝑨𝑇𝒚) = 𝟎, 𝒙 ≥ 𝟎, 𝒚 ≥ 𝟎 (5.16)

Therefore, the following duality conditions are implied at the optimum point:

a) Lagrange multipliers for the active (binding) constraints are positive (𝑦𝑖 > 0), and

b) Dual constraints associated with basic variables are binding (𝒂𝑖
𝑇𝑦𝑖 = 𝑐𝑗).

Alternatively, we can solve the optimality conditions by partitioning the problem into basic and nonbasic

variables as: 𝒙𝑇 = [𝒙𝐵
𝑇 , 𝒙𝑁

𝑇]; 𝒄𝑇 = [𝒄𝐵
𝑇 , 𝒄𝑁

𝑇]; 𝑨 = [𝑩, 𝑵]; 𝒖𝑇 = [𝒖𝐵
𝑇 , 𝒖𝑁

𝑇]. Then, the optimality

conditions are given as:

[𝑩
𝑇

𝑵𝑇] 𝒚 − [
𝒖𝐵

𝒖𝑁
] − [

𝒄𝐵

𝒄𝑁
] = [

𝟎
𝟎
] , [𝒙𝐵 𝒙𝑁] [

𝒖𝐵

𝒖𝑁
] = 𝟎

82

Since 𝒙𝐵 ≠ 0, 𝒖𝐵 = 0. Then, from the first equation, 𝒚𝑇 = 𝒄𝐵
𝑇𝑩−1, and from the second equation,

𝒖𝑁
𝑇 = 𝒄𝐵

𝑇𝑩−1𝑵 − 𝒄𝑁
𝑇 = 𝒄̂𝑁

𝑇 . Thus, the reduced cost coefficients for nonbasic variables are the Lagrange

multipliers for the inequality constraints that are required to be non-negative at the optimum, i.e., 𝒖𝑁 > 0.

We can extend the optimality conditions to the dual problem formulated in (5.10). For the symmetric

form of duality, the KKT conditions for the primal and dual problems are given as (Belegundu and

Chandrapatla, p.161):

 Primal Dual

Feasibility: 𝑨𝒙 + 𝒔 = 𝒃 𝑨𝑇𝒚 − 𝒖 = 𝒄

Optimality: 𝒄 = 𝑨𝑇𝒚 − 𝒖 𝒃 = 𝑨𝒙 + 𝒔

Complementarity: 𝒖𝑇𝒙 + 𝒚𝑇𝒔 = 𝟎

Non-negativity: 𝒙 ≥ 𝟎, 𝒔 ≥ 𝟎, 𝒖 ≥ 𝟎, 𝒚 ≥ 𝟎

We note that the optimality condition for (P) is equivalent to the feasibility condition for (D) and vice

versa, i.e., by interchanging the feasibility and optimality conditions, we may view the problem as primal

or dual. It also shows that if (P) is unbounded, then (D) is infeasible, and vice versa.

5.6.2 A Geometric Viewpoint

Further insight into the solution is obtained from geometrical consideration of the problem. Towards that

end, let 𝑨 be expressed in terms of row vectors as: 𝑨𝑇 = [𝒂1
𝑇 , 𝒂2

𝑇 , … , 𝒂𝑚
𝑇], where 𝒂𝑖

𝑇 represents a vector

normal to the constraint: 𝒂𝑖
𝑇𝒙 + 𝑠𝑖 = 𝑏𝑖. Similarly, let −𝒆𝑗 denote a vector normal to the non-negativity

constraint: −𝑥𝑗 ≤ 0. Then, the optimality requires that there exist real numbers, 𝑦𝑖 ≥ 0, 𝑖 = 1,… ,𝑚 and

𝑢𝑗 ≥ 0, 𝑗 = 1,… , 𝑛, such that the following conditions hold:

𝒄 = ∑ 𝑦𝑖𝑖 𝒂𝑖
𝑇 − ∑ 𝑢𝑗𝑗 𝒆𝑗

∑ 𝑦𝑖𝑠𝑖𝑖 + ∑ 𝑢𝑗𝑥𝑗𝑗 = 0
(5.17)

Let the Lagrange multipliers be grouped as: 𝜇𝑖 ∈ { 𝑦𝑖 , 𝑢𝑗}, and let 𝑁𝑖 ∈ {𝒂𝑖
𝑇 , −𝒆𝑗} denote the set of active

constraint normals, then the complementarity condition is expressed as: 𝒄 = −∇𝑧 = ∑ 𝜇𝑖𝑖∈ℐ 𝑁𝑖 , where ℐ

denotes the set of active constraints.

The above condition states that at the optimal point the negative of objective function gradient lies in the

convex cone spanned by the active constraint normals. When this condition holds, the descent-feasible

cone is empty, i.e., we cannot move in a direction that further decreases the objective function without

leaving the feasible region.

This result is consistent with Farkas Lemma, which for the LP problems is stated as follows:

83

Farka’s Lemma (Belegundu and Chandrupatla, p.204): Given a set of vectors, 𝒂𝑖, 𝑖 = 1,… ,𝑚, and a

vector 𝒄, there is no vector 𝒅 satisfying the conditions 𝒄𝑇𝒅 < 0 and 𝒂𝑖
𝑇𝒅 > 0, 𝑖 = 1,… ,𝑚, if and only if 𝒄

can be written as: 𝒄 = ∑ 𝜇𝑖𝒂𝑖
𝑚
𝑖=1 , 𝜇𝑖 ≥ 0.

Example 5.10: Optimality Conditions for the LP problem

We reconsider example 5.1 that was formulated as:

max
𝑥1,𝑥2

 𝑧 = 3𝑥1 + 2𝑥2

Subject to: 3𝑥1 + 2𝑥2 ≥ 12, 2𝑥1 + 3𝑥2 ≤ 16, 𝑥1 ≥ 0, 𝑥2 ≥ 0

Application of the optimality conditions results in the following equations:

𝑥1(2𝑣1 + 2𝑣2 − 2) + 𝑥2(𝑣1 + 3𝑣2 − 3) = 0

𝑣1(2𝑥1 + 𝑥2 − 12) + 𝑣2(2𝑥1 + 3𝑥2 − 16) = 0

We split these into four equations and use Matlab symbolic toolbox to solve them, which gives the

following candidate solutions:

{𝑥1, 𝑥2, 𝑣1, 𝑣2} = (0,0,0,0), (6,0,1,0), (8,0,0,1), (5,2,0,1), (0,12,3,0), (0,5.33,0,1), (8 −
3𝑧

2
, 𝑧, 0,1)

Then, it can be verified that the optimality conditions hold only in the case of: {𝑥1, 𝑥2, 𝑣1, 𝑣2} = (5,2,01).

The optimum value of the objective function is: 𝑧∗ = 17.

 The Quadratic Programming Problem 5.7

Theory developed for the LP problems easily extends to the quadratic programming (QP) problems. The

QP problem arises frequently in convex programming when the energy associated with a structure is to be

minimized. An example is the finite element analysis (FEA) problem in structures.

The QP problem involves minimization of a quadratic cost function subject to linear constraints, and is

described as:

min 𝑞(𝒙) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

Subject to: 𝑨𝒙 ≥ 𝒃, 𝒙 ≥ 𝟎

(5.18)

where 𝑸 is symmetric positive semidefinite. We first note that the feasible region for the QP problem is

convex; further, for the given condition on 𝑸, 𝑞(𝒙) is convex. Therefore, QP problem is a convex

optimization problem, and the KKT conditions are both necessary and sufficient for a global solution.

5.7.1 Optimality Conditions for QP Problems

84

To derive KKT conditions for the QP problem, we consider a Lagrangian function that includes Lagrange

multipliers 𝒖, 𝒗 for the non-negativity and inequality constraints. The Lagrangian function and its

gradient are given as:

ℒ(𝒙, 𝒖, 𝒗) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙 − 𝒖𝑇𝒙 − 𝒗𝑇(𝑨𝒙 − 𝒃 − 𝒔)

∇ℒ(𝒙, 𝒖, 𝒗) = 𝑸𝒙 + 𝒄 − 𝒖 − 𝑨𝑇𝒗
(5.19)

where 𝒔 is a vector of slack variables. The resulting KKT conditions for the QP problem are given as:

Feasibility: 𝑨𝒙 − 𝒔 = 𝒃

Optimality: 𝑸𝒙 + 𝒄 − 𝒖 − 𝑨𝑇𝒗 = 𝟎

Complementarity: 𝒖𝑇𝒙 + 𝒗𝑇𝒔 = 𝟎

Non-negativity: 𝒙 ≥ 𝟎, 𝒔 ≥ 𝟎, 𝒖 ≥ 𝟎, 𝒗 ≥ 𝟎

By eliminating variables 𝒔, 𝒖 we can concisely express the KKT conditions as:

𝒙𝑇(𝑸𝒙 + 𝒄 − 𝑨𝑇𝒗) = 𝟎, 𝒗𝑇(𝑨𝒙 − 𝒃) = 𝟎, 𝒙 ≥ 𝟎, 𝒗 ≥ 𝟎 (5.20)

Alternatively, we may combine the optimality and feasibility conditions in a matrix form as:

[𝑸 −𝑨𝑇

𝑨 𝟎
] [

𝒙
𝒗
] + [

𝒄
−𝒃

] − [
𝒖
𝒔
] = [

𝟎
𝟎
]

(5.21)

Next, let: 𝑴 = [𝑸 −𝑨𝑇

𝑨 𝟎
] , 𝒛 = [

𝒙
𝒗
] , 𝒘 = [

𝒖
𝒔
] , 𝒒 = [

𝒄
−𝒃

] ; then, the problem is transformed as:

𝑴𝒛 + 𝒒 = 𝒘, where the complementarity conditions are: 𝒘𝑇𝒛 = 𝟎. The resulting problem is known in

linear algebra as the Linear Complementarity Problem (LCP) and is solved in Sec. 5.8 below.

The QP problem may additionally include linear equality constraints of the form: 𝑪𝒙 = 𝒅, in which case

the problem is defined as:

min 𝑞(𝒙) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

Subject to: 𝑨𝒙 ≥ 𝒃, 𝑪𝒙 = 𝒅, 𝒙 ≥ 𝟎
(5.22)

We similarly add slack variables to the inequality constraint, and formulate the Lagrangian function as:

ℒ(𝒙, 𝒖, 𝒗) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙 − 𝒗𝑇(𝑨𝒙 − 𝒃 − 𝒔) − 𝒖𝑇𝒙 + 𝒘𝑇(𝑪𝒙 − 𝒅) (5.23)

The modified KKT conditions are given as:

Feasibility: 𝑨𝒙 − 𝒃 − 𝒔 = 𝟎, 𝑪𝒙 = 𝒅

Optimality: 𝑸𝒙 + 𝒄 − 𝒖 − 𝑨𝑇𝒗 + 𝑪𝑇𝒘 = 𝟎

Complementarity: 𝒖𝑇𝒙 + 𝒗𝑇𝒔 = 𝟎

85

Non-negativity: 𝒙 ≥ 𝟎, 𝒔 ≥ 𝟎, 𝒖 ≥ 𝟎, 𝒗 ≥ 𝟎

where the Lagrange multipliers 𝒘 for the equality constraints are not restricted in sign. By introducing:

𝒘 = 𝐲 − 𝐳; 𝐲, 𝐳 ≥ 𝟎, we can represent the combined optimality and feasibility conditions as:

[
𝑸 −𝑨𝑇

𝑨
𝑪

𝟎
𝟎

] [
𝒙
𝒗
] − [

𝑰 𝟎
𝟎 𝑰
𝟎 𝟎

] [
𝒖
𝒔
] + [

𝑪𝑇 −𝑪𝑇

𝟎
𝟎

𝟎
𝟎

] [
𝒚
𝒛
] + [

𝒄
−𝒃
−𝒅

] = [
𝟎
𝟎
𝟎
]

(5.24)

The above problem can be similarly solved via the LCP framework, which is introduced in Sec. 5.8.

5.7.2 The Dual QP Problem

We reconsider the QP problem (5.22) and observe that the Lagrangian function (5.23) is stationary at the

optimum with respect to 𝒙,𝒖, 𝒗. Then, as per Lagrangian duality (Sec. 4.5), it can be used to define the

following dual QP problem (called Wolfe’s dual):

max
𝒙,𝒖,𝒗

ℒ(𝒙, 𝒖, 𝒗) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙 − 𝒖𝑇𝒙 + 𝒗𝑇(𝑨𝒙 − 𝒃)

Subject to: ∇ℒ(𝒙, 𝒖, 𝒗) = 𝑸𝒙 + 𝒄 − 𝒖 + 𝑨𝑇𝒗 = 𝟎, 𝒙 ≥ 𝟎, 𝒗 ≥ 𝟎
(5.25)

By relaxing the non-negativity condition on the design variable 𝒙, we can eliminate 𝒖 from the

formulation, which results in a simpler dual problem defined as:

max
𝒙,𝒗≥𝟎

ℒ(𝒙, 𝒗) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙 + 𝒗𝑇(𝑨𝒙 − 𝒃)

Subject to: 𝑸𝒙 + 𝒄 + 𝑨𝑇𝒗 = 𝟎
(5.26)

The implicit function theorem allows us to express the solution vector 𝒙 in the vicinity of the optimum

point as a function of the Lagrange multipliers 𝒗 as: 𝒙 = 𝒙(𝒗). The Lagrangian expressed as an implicit

function Φ(𝒗) of the multipliers is termed as the dual function, which is obtained as a solution to the

following minimization problem:

Φ(𝒗) = min
𝒙

ℒ(𝒙, 𝒗) =
1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙 + 𝒗𝑇(𝑨𝒙 − 𝒃) (5.27)

The solution is obtained by solving the FONC (the constraint in (5.30)) for 𝒙 as:

𝒙(𝒗) = −𝑸−1(𝑨𝑇𝒗 + 𝒄) (5.28)

and substituting it in the Lagrangian function to obtain:

Φ(𝒗) = −
1

2
(𝑨𝑇𝒗 + 𝒄)𝑇𝑸−1(𝑨𝑇𝒗 + 𝒄) − 𝒗𝑇𝒃

 = −1

2
𝒗𝑇(𝑨𝑸−1𝑨𝑇)𝒗 − (𝒄𝑇𝑸−1𝑨𝑇 + 𝒃𝑇)𝒗 − 1

2
𝒄𝑇𝑸−1𝒄

(5.29)

86

In terms of the dual function, the dual QP problem is defined as:

max
𝒗≥𝟎

 Φ(𝒗) = −
1

2
𝒗𝑇(𝑨𝑸−1𝑨𝑇)𝒗 − (𝒄𝑇𝑸−1𝑨𝑇 + 𝒃𝑇)𝒗 −

1

2
𝒄𝑇𝑸−1𝒄 (5.30)

The dual problem can be solved by application of FONC, where the gradient and Hessian of Φ(𝒗) are

given as:

∇Φ = −𝑨𝑸−1(𝑨𝑇𝒗 + 𝒄) − 𝒃, ∇2Φ = −𝑨𝑸−1𝑨𝑇 (5.31)

From ∇𝒗Φ = 0, we obtain the solution to the Lagrange multipliers as:

𝒗 = −(𝑨𝑸−1𝑨𝑇)−1(𝑨𝑇𝑸−1𝒄 + 𝒃) (5.32)

where the non-negativity of 𝒗 is implied. The solution to the design variables is obtained from (5.32) as:

𝒙 = 𝑸−1𝑨𝑇(𝑨𝑸−1𝑨𝑇)−1(𝑨𝑇𝑸−1𝒄 + 𝒃) −𝑸−1𝒄 (5.33)

The dual methods have been successfully applied in structural mechanics. As an example of the dual QP

problem, we consider a one-dimensional finite element analysis (FEA) problem involving two nodes.

Example 5.10: Finite Element Analysis (Belegundu and Chandrupatla, p. 187)

Let 𝑞1, 𝑞2 represent nodal displacements in the simplified two node structure, and assume that a load

𝑃 = 60𝑘𝑁 is applied at node 1. Let 𝒒𝑇 = [𝑞1, 𝑞2] represent the vector of nodal displacements; then, the

FEA problem is formulated as minimization of the potential energy function given as:

min
𝒒

∏ =
1

2
𝒒𝑇𝑲𝒒 − 𝒒𝑇𝒇

Subject to: 𝑞2 ≤ 1.2

The stiffness matrix 𝑲 for the problem is given as: 𝑲 =
105

3
[

2 −1
−1 1

]
𝑁

𝑚
.

For this problem: 𝑸 = 𝑲, 𝒇 = [𝑃, 0]𝑇 , 𝒄 = −𝒇, 𝑨 = [0 1], 𝒃 = 1.2.

Further, 𝑨𝑸−1𝑨𝑇 = 6 × 10−5, 𝒄𝑇𝑸−1𝑨𝑇 = −1.8, 𝒄𝑇𝑸−1𝒄 = 1.08 × 10−5.

We use (5.33) to obtain the dual function as: Φ(𝒗) = −3 × 10−5𝑣2 − 0.6𝑣 − 1.08 × 10−5.

From (5.36) the solution to Lagrange multiplier is: 𝑣 = 1 × 104.

Then, from (5.37), the optimum solution to the design variables is: 𝑞1 = 1.5 𝑚𝑚, 𝑞2 = 1.2 𝑚𝑚.

The optimum value of potential energy function is: ∏ = 129 𝑁𝑚.

 The Linear Complementary Problem 5.8

87

The application of optimality conditions to LP and QP problems leads to the Linear Complementary

Problem (LCP), which can be solved using Simplex based methods. The LCP aims at finding vectors that

satisfy linear equality, non-negativity, and complementarity conditions. When used in the context of

optimization, the LCP simultaneously solves both primal and dual problems.

The general LCP problem is defined as follows: Given a real symmetric positive definite matrix 𝑴 and a

vector, 𝒒, find a vector 𝒛 ≥ 𝟎, such that: 𝒘 = 𝑴𝒛 + 𝒒 ≥ 𝟎, 𝒘𝑇𝒛 = 𝟎.

In the case of QP problem, we define: 𝑴 = [𝑸 −𝑨𝑇

𝑨 𝟎
] , 𝒛 = [

𝒙
𝒗
] , 𝒘 = [

𝒖
𝒔
] , 𝒒 = [

𝒄
−𝒃

], to cast the

problem into the LCP framework. Further, if 𝑸 is positive semidefinite, so is 𝑴, resulting in a convex

LCP, which can be solved by Simplex methods, in particular, the Lemke’s algorithm.

Toward finding a solution to the LCP, we observe that if all 𝑞𝑖 ≥ 0, then 𝒛 = 𝟎 solves the LCP. It is,

therefore, assumed that one or more 𝑞𝑖 < 0. Lemke’s algorithm introduces an artificial variable, 𝑧0,

where 𝑧0 = |min(𝑞𝑖)|, to cast LCP into Phase I Simplex framework. The resulting problem is given as:

min 𝑧0

Subject to: 𝑰𝒘 − 𝑴𝒛 − 𝒆𝑧0 = 𝒒, 𝒘𝑇𝒛 = 𝟎, 𝒘 ≥ 𝟎, 𝒛 ≥ 𝟎
(5.34)

where 𝒆 = [1 1 ⋯1]𝑇, and 𝑰 is an identity matrix. The linear constraint is used to define the starting

tableau for the Simplex method, where an initial BFS is given as: 𝒘 = 𝒒 + 𝒆𝑧0 ≥ 0, 𝒛 = 0. The

algorithm starts with a pivot operation aimed to bring 𝑧0 into the basis. Thereafter, the EBV is selected as

complement of the LBV in the previous iteration. Thus, if 𝑤𝑟 leaves the basis, 𝑧𝑟 enters the basis in the

next tableau, or vice versa, which maintains the complementarity condition 𝑤𝑟𝑧𝑟 = 0. The algorithm

terminates when 𝑧0 has become nonbasic.

Lemke’s Algorithm for solving LCP (Belegundu and Chandrupatla, p. 178):

1. If all 𝑞𝑖 > 0, then LCP solution is: 𝑧0 = 0,𝒘 = 𝒒, 𝒛 = 𝟎. No further steps are necessary.

2. If some 𝑞𝑖 < 0, select 𝑧0 = |min(𝑞𝑖)| to construct the initial tableau.

3. Choose the most negative 𝑞𝑖 row and the 𝑧0 column to define the pivot element. In the first step

𝑧0 enters the basis, 𝑤𝑖 corresponding to most negative 𝑞𝑖 exits the basis. Henceforth, all 𝑞𝑖 ≥ 0.

4. If basic variable in column 𝑖 last exited the basis, its complement in column 𝑗 enters the basis. (At

first iteration, 𝑤𝑖 exits and 𝑧𝑖 enters the basis). Perform the ratio test for column 𝑗 to find the least

among 𝑞𝑖/(positive row element 𝑖). The basic variable corresponding to row 𝑖 now exits the basis.

If there are no positive row elements, there is no solution to the LCP

5. If the last operation results in the exit of the basic variable 𝑧0, then the cycle is complete, stop.

Otherwise go to step 3.

Two examples of Lemke’s algorithm are presented below:

Example 5.11: Lemke’s algorithm

We consider the following QP problem:

88

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 − 𝑥1𝑥2 − 𝑥1 + 2𝑥2

Subject to: 𝑥1 + 𝑥2 ≤ 5, 𝑥1 + 2𝑥2 ≤ 10; 𝑥1, 𝑥2 ≥ 0

For the given problem: 𝑸 = [
2 −1
−1 2

] , 𝒄𝑇 = [−1 2], 𝑨 = [
1 1
1 2

] , 𝒃 = [
5
10

] , 𝑧0 = −1.

The resulting initial tableau for the problem is given as:

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟎 𝒒

𝒘𝟏 1 0 0 0 -2 1 -1 -1 -1 -1

𝒘𝟐 0 1 0 0 1 -2 -1 -2 -1 2

𝒘𝟑 0 0 1 0 1 1 0 1 -1 5

𝒘𝟒 0 0 0 1 1 2 0 0 -1 10

pivot(1,9)

We begin by a pivot step aimed at bringing 𝑧0 into the basis as represented by the following tableau:

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟎 𝒒

𝒛𝟎 -1 0 0 0 2 -1 1 1 1 1

𝒘𝟐 -1 1 0 0 3 -3 0 -1 0 3

𝒘𝟑 -1 0 1 0 3 0 1 1 0 2

𝒘𝟒 -1 0 0 1 3 1 1 1 0 3

Pivot(1,5)

This is followed by further simplex iterations that maintain the complementarity conditions. The

algorithm terminates when 𝑧0 exits the basis. The resulting series of tableaus is given below:

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟎 𝒒

𝒛𝟏 -0.5 0 0 0 1 -0.5 0.5 0.5 0.5 0.5

𝒘𝟐 0.5 1 0 0 0 -1.5 -1.5 -2.5 -1.5 1.5

𝒘𝟑 0.5 0 1 0 0 1.5 -0.5 -0.5 -1.5 0.5

𝒘𝟒 0.5 0 0 1 0 2.5 -0.5 -0.5 -1.5 1.5

The algorithm terminates after two steps as 𝑧0 has exited the basis. The basic variables are given as:

𝑧1, 𝑤2, 𝑤3, 𝑤4, so that the complementarity conditions are satisfied, and the optimum solution is given as:

𝑥1 = 0.5, 𝑥2 = 0, 𝑓∗ = −0.25.

As the second LCP example, we reconsider the one-dimensional finite element analysis (FEA) problem

that was solved earlier (Example 5.8).

Example 5.12: Finite Element Analysis (Belegundu and Chandrupatla, p. 187)

The problem is stated as:

89

min
𝒒

∏ =
1

2
𝒒𝑇𝑲𝒒 − 𝒒𝑇𝒇

Subject to: 𝑞2 ≤ 1.2

In the above problem, 𝒒𝑇 = [𝑞1, 𝑞2] represents a vector of nodal displacements. A load 𝑃, where 𝑃 =

60𝑘𝑁, is applied at node 1, so that 𝒇 = [𝑃, 0]𝑇 . The stiffness matrix 𝑲 is given as: 𝑲 =
105

3
[

2 −1
−1 1

]
𝑁

𝑚
.

For this problem: 𝑸 = 𝑲, 𝒄 = −𝒇, 𝑨 = [0 1], 𝒃 = 1.2, 𝑧0 = −1.

The initial and the following tableaus leading to the solution of the problem are given as:

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟎 𝒒

𝒘𝟏 1 0 0 -66667 33333 0 -1 -60000

𝒘𝟐 0 1 0 33333 -33333 -1 -1 0

𝒘𝟑 0 0 1 0 1 0 -1 1.2

Pivot(1,7)

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟎 𝒒

𝒛𝟎 -1 0 0 66667 -33333 0 1 60000

𝒘𝟐 -1 1 0 100000 -66667 -1 0 60000

𝒘𝟑 -1 0 1 66667 -33332 0 0 60001.2

Pivot(2,4)

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟎 𝒒

𝒛𝟎 -0.33 -0.67 0 0 11111 0.67 1 20000

𝒛𝟏 -0.00001 0.00001 0 1 -0.67 -0.00001 0 0.6

𝒘𝟑 -0.33 -0.67 1 0 11112 0.67 0 20001.2

Pivot(3,5)

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟎 𝒒

𝒛𝟎 -0.00003 -0.00006 -0.9999 0 0 0.00006 1 0.59995

𝒛𝟏 -0.00003 -0.00003 0.0006 1 0 0.00003 0 1.79996

𝒛𝟐 -0.00003 -0.00006 0.0009 0 1 0.00006 0 1.79995

Pivot(1,6)

Basic 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟎 𝒒

𝒛𝟑 -0.5 -1 -16667 0 0 1 16668 10000

𝒛𝟏 -0.000015 0 0.5 1 0 0 -0.4 1.5

𝒛𝟐 -0.0 0 1 0 1 0.0 -1 1.2

The algorithm terminates when 𝑧0 has exited the basis. The final solution to the problem is given as:

𝑧1 = 1.5 𝑚𝑚, 𝑧2 = 1.2 𝑚𝑚, ∏ = 129 𝑁𝑚.

90

 Non-Simplex Methods for Solving LP Problems 5.9

The non-simplex methods to solve LP problems include the interior-point methods that iterate through the

interior of the feasible region, and attempt to decrease the duality gap between the primal and dual

feasible solutions. These methods can have good theoretical efficiency and practical performance that is

comparable with the simplex methods. In particular, the primal-dual interior-point method has been

particularly successful in the case of LP problems (Griva, Nash & Sofer, p. 321).

To introduce the primal-dual method, we consider asymmetrical form of duality where the primal and

dual problems are described as:

(P) min𝒙 𝑧 = 𝒄𝑇𝒙

 subject to: 𝑨𝒙 = 𝒃, 𝒙 ≥ 𝟎

(D) max𝒙 𝑤 = 𝒃𝑇𝒚

 subject to: 𝑨𝑇𝒚 + 𝒔 = 𝒃, 𝒔 ≥ 𝟎

(5.35)

In order for 𝒙 and 𝒚 to be the feasible solutions to the primal and dual problems at the optimum, they

must satisfy the following complementary slackness condition: 𝑥𝑗𝑠𝑗 = 0, 𝑗 = 1,… , 𝑛.

The primal-dual method begins with: 𝑥𝑗𝑠𝑗 = 𝜇, for some 𝜇 > 0, and iteratively reduces the values of 𝜇,

generating a series of vectors: 𝒙(𝜇), 𝒚(𝜇), 𝒔(𝜇) along the way, in an effort to reduce the duality gap:

𝒄𝑇𝒙 − 𝒃𝑇𝒚 = 𝑛𝜇.

To develop the primal-dual algorithm, let the updates to the current estimates: 𝒙, 𝒚, 𝒔, be given as:

𝒙 + ∆𝒙, 𝒚 + ∆𝒚, 𝒔 + ∆𝒔; then, these updates are required to satisfy the following feasibility and

complementarity conditions: 𝑨(𝒙 + ∆𝒙) = 𝒃, 𝑨𝑇(𝒚 + ∆𝒚)(𝒔 + ∆𝒔) = 𝒄, (𝒙 + ∆𝒙)𝑇(𝒔 + ∆𝒔) = 𝟎.

Accordingly,

𝑨∆𝒙 = 𝟎, 𝑨𝑇∆𝒚 + ∆𝒔 = 𝟎

(𝑥𝑗 + ∆𝑥𝑗)(𝑠𝑗 + ∆𝑠𝑗) ≅ 𝑥𝑗𝑠𝑗 + 𝑥𝑗∆𝑠𝑗 + 𝑠𝑗∆𝑥𝑗 = 𝜇
(5.36)

where the latter condition has been linearized for ease of implementation. To proceed further, define:

𝑿 = 𝑑𝑖𝑎𝑔(𝒙), 𝑺 = 𝑑𝑖𝑎𝑔(𝒔), 𝒆 = [1,… ,1]𝑇 , to express the complementarity condition as: 𝑿𝑺𝒆 = 𝜇𝒆.

Next, let 𝑫 = 𝑺−1𝑿, 𝒗(𝜇) = (𝜇𝑰 − 𝑿𝑺)𝒆, then a solution to the linear system (5.16) is given as:

∆𝒙 = 𝑺−1𝒗(𝜇) − 𝑫∆𝒔

∆𝒚 = −(𝑨𝑫𝑨𝑇)−1𝑨𝑺−1𝒗(𝜇)

∆𝒔 = −𝑨𝑇∆𝒚

(5.37)

In practice, to ensure primal and dual feasibility, the following update rule for the solution vectors has

been suggested (Griva, Nash & Sofer, p. 324):

91

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘∆𝒙𝑘, 𝒚𝑘+1 = 𝒚𝑘 + 𝛼𝑘∆𝒚𝑘, 𝒔𝑘+1 = 𝒔𝑘 + 𝛼𝑘∆𝒔𝑘

𝛼𝑘 < min(𝛼𝑃 , 𝛼𝐷) , 𝛼𝑃 = min
∆𝑥𝑗<0

−
𝑥𝑗

Δ𝑥𝑗
, 𝛼𝐷 = min

∆𝑠𝑗<0
−

𝑠𝑗

Δ𝑠𝑗

(5.38)

An initial estimate that satisfies (5.9) is needed to start the primal-dual method. To find that estimate, let

the constraint equation for the primal problem (5.7) be written as: 𝑰𝒙𝐵 + 𝑸𝒙𝑁 = 𝒃; then, for some 𝒙0, 𝒚0,

a set of feasible vectors satisfying (5.9) is obtained as: 𝒙 = [
𝒙0

𝒃 − 𝑸𝒙0
] , 𝒚 = 𝒚0, 𝒔 = [

𝒄 − 𝑨𝑇𝒚0

−𝒚0
].

Further, the bounding parameter 𝜇 is updated in successive iterations as: 𝜇𝑘+1 = 𝛾𝜇𝑘 , 0 < 𝛾 < 1, where

𝛾 = 0.1 is considered a reasonable choice.

The primal-dual algorithm is given as follows:

Primal-Dual Algorithm:

Given 𝑨, 𝒃, 𝒄

Initialize: select: 𝜖 > 0, 𝜇 > 0, 0 < 𝛾 < 1, 𝑁 (maximum number of iterations).

Find initial 𝒙, 𝒚, 𝒔 > 𝟎 to satisfy (5.9).

For 𝑘 = 1,2,…

1. Check termination: if 𝒙𝑇𝒔 − 𝑛𝜇 < 𝜖, or if 𝑘 > 𝑁, quit.

2. Use (5.16) to compute the updates vectors.

3. Use (5.17) to compute 𝛼𝑘 and perform the update.

4. Set 𝜇 ⟵ 𝛾𝜇.

An example of the primal-dual algorithm is presented below.

Example 5.11: Primal-Dual Algorithm

We re-consider Example 5.1 where the original optimization problem was given as:

max
𝑥1,𝑥2

𝑧 = 3𝑥1 + 2𝑥2

Subject to: 2𝑥1 + 𝑥2 ≤ 12, 2𝑥1 + 3𝑥2 ≤ 16; 𝑥1 ≥ 0, 𝑥2 ≥ 0

The coefficient matrices for the problem are: 𝑨 = [
2 1
2 3

1 0
0 1

] , 𝒃 = [
12
16

] , 𝒄𝑇 = [−3 −2].

To initialize the primal-dual algorithm, we select the following parameters:

𝒙0 = [2, 2]𝑇 , 𝒚0 = [−1,−1]𝑇 𝜖 = 10−6, 𝜇 = 10, 𝛾 = 0.1, 𝑁 = 10.

Then, the initial estimates for the variables are: 𝑥𝑇 = [2, 2, 6, 6], 𝑦𝑇 = [−1,−1], 𝑠𝑇 = [1, 2, 1, 1].

The variable updates for the first eight iterations are given below; the last column contains the residual:

92

𝒙𝟏 𝒙𝟐 𝒔𝟏 𝒔𝟐 𝒙𝑻𝒔 − 𝒏𝝁

 5.6923 0.6154 0.0001 2.7693 22.0000

 5.5478 0.6773 0.2272 2.8726 -95.2300

 4.8849 2.0767 0.1535 0.0000 -2.3342

 4.9945 1.9904 0.0205 0.0398 -1.2668

 5.0008 1.9983 0.0000 0.0034 -0.0507

 5.0000 2.0000 0.0001 0.0001 -0.0017

 5.0000 2.0000 0.0000 0.0000 -0.0002

 5.0000 2.0000 0.0000 0.0000 -0.0000

The optimum solution is given as: 𝑥1
∗ = 5.0, 𝑥2

∗ = 2.0, which agrees with the results of Example 5.1.

93

6 Discrete Optimization

This chapter is devoted to the study of solution approaches for the discrete optimization problems, that

involve decision making when the variables must be chosen from a discrete set. Many real world design

problems fall in this category. For example, variables in optimization problems arising in production

and/or transportation of goods represent discrete quantities that can only take on integer values. Further,

scheduling and networking problems (e.g., assigning vehicles to transportation networks, frequency

assignment in cellular phone networks, etc.) are often modeled with variables that can only take on binary

values. The integer programming problem and binary integer programming problem are special cases of

optimization problems where solution choices are limited to discrete sets.

Discrete optimization is closely related to combinatorial optimization that aims to search for the best

object from a set of discrete objects. Classical combinatorial optimization problems include the

econometric problems (knapsack problem, capital budgeting problem), scheduling problems (facility

location problem, fleet assignment problem) and network and graph theoretic problems (traveling

salesman problem, minimum spanning tree problem, vertex/edge coloring problem, etc.). Combinatorial

optimization problems are NP-complete, meaning they are non-deterministic polynomial time problems,

hence finding a solution in finite time is not guaranteed. Heuristic search algorithms are, therefore,

commonly employed to solve combinatorial optimization problems. Considerable research has also been

devoted to finding computation methods that utilize polyhedral structure of the integer programs.

Learning Objectives. The learning aims in this chapter are:

1. Study the structure and formulation of a discrete optimization problem.

2. Learn common solution approaches to the discrete optimization problems.

3. Learn to use the branch-and-bound and cutting plane methods to solve the mixed integer

programming problem.

 Discrete Optimization Problems 6.1

A discrete optimization problem involving maximization of a scalar cost function may be formulated in

one of the following ways:

1. An integer programming (IP) problem is formulated as:

max𝒙 𝑧 = 𝒄𝑇𝒙,

subject to 𝑨𝒙 ≤ 𝒃, 𝒙 ∈ ℤ𝑛, 𝒙 ≥ 𝟎

2. A binary integer programming (BIP) problem is formulated as:

max𝒙 𝑧 = 𝒄𝑇𝒙,

subject to 𝑨𝒙 ≤ 𝒃, 𝒙 ∈ {0,1}𝑛

94

3. A combinatorial optimization (CO) problem is formulated as:

max𝒙 𝑧 = 𝒄𝑇𝒙,

subject to 𝑨𝒙 ≤ 𝒃, 𝑥𝑖 ∈ {0,1} (𝑖 ∈ 𝐵), 𝑥𝑖 ∈ ℤ (𝑖 ∈ 𝐼)

4. A Mixed integer programming (MIP) problem is formulated as:

max𝒙 𝑧 = 𝒄𝑇𝒙,

subject to 𝑨𝒙 ≤ 𝒃, 𝑥𝑖 ≥ 0, 𝑥𝑖 ∈ ℤ, 𝑖 = 1,… , 𝑛𝑑; 𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈, 𝑖 = 𝑛𝑑 + 1,… , 𝑛

5. Finally, a general mixed variable design optimization problem may be formulated as:

min𝒙 𝑓(𝒙),

subject to ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙; 𝑔𝑗(𝑥) ≤ 0, 𝑗 = 𝑖, … , 𝑚; 𝑥𝑖 ∈ 𝐷, 𝑖 = 1,… , 𝑛𝑑; 𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤

𝑥𝑖𝑈, 𝑖 = 𝑛𝑑 + 1,… , 𝑛

In the following, we discuss solution approaches to linear discrete optimization problems (1 − 4 above).

 Solution Approaches to Discrete Problems 6.2

We first note that the discrete optimization problems may be solved by enumeration, i.e., an ordered

listing of all solutions. The number of combinations to be evaluated to solve the problem is given as:

𝑁𝑐 = ∏ 𝑞𝑖
𝑛𝑑
𝑖=1 , where 𝑛𝑑 is the number of design variables and 𝑞𝑖 represents the number of discrete values

for the design variable 𝑥𝑖. This approach is, however, not practically feasible as the 𝑁𝑐 increases rapidly

with increase in 𝑛𝑑 and 𝑞𝑖.

Further, two common approaches to solve linear discrete optimization problems are:

1. The branch and bound (BB) technique that divides the problem into a series of subprograms, such

that any solution to the original problem is contained in exactly one of the subprograms.

2. The cutting plane method that iteratively refines the solution by adding additional linear

inequality constraints (cuts) aimed at excluding non-integer solutions to the problem.

Besides these two approaches, other approaches for solving discrete optimization problems include

heuristic methods, such as tabu (neighborhood) search, hill climbing, simulated annealing, genetic

algorithms, evolutionary programming, and particle swarm optimization. These topics are, however, not

discussed here.

In the following, we begin with the methods to solve an LP problem involving integral coefficients,

followed by the BIP problems, and finally the IP/MIP problems.

95

 Linear Programming Problems with Integral Coefficients 6.3

In this section, we consider an LP problem modeled with integral coefficients, described as:

min
𝒙

 𝑧 = 𝒄𝑇𝒙

Subject to 𝑨𝒙 = 𝒃, 𝒙 ≥ 𝟎, 𝑨 ∈ ℤ𝑚×𝑛, 𝒃 ∈ ℤ𝑚, 𝒄 ∈ ℤ𝑛
(6.1)

We further assume that 𝑨 is totally unimodular, i.e., every square submatrix 𝑪 of 𝑨, has det(𝑪) ∈ {0,±1}.

Then, every vertex of the feasible region (equivalently, every BFS of the LP problem) is integral. In

particular, the optimal solution returned by the Simplex algorithm is integral. Thus, total unimodularity of

A is a sufficient condition for integral solution to the LP problem.

To show that an arbitrary BFS, 𝒙, is integral, let 𝒙𝐵 represent the elements of 𝒙 corresponding to the basis

columns, then there is a square nonsingular submatrix 𝑩 of 𝑨, such that 𝑩𝒙𝐵 = 𝒃. Further, by

unimodularity assumption, det(𝑩) = ±1, hence 𝑩−1 = ±𝐴𝑑𝑗 𝑩, where 𝐴𝑑𝑗 represents the adjoint matrix,

and is integral. Therefore, 𝒙𝐵 = 𝑩−1𝒃 is integral.

Further, if 𝑨 is totally unimodular, so is [𝑨 𝑰]. This relates to problems involving inequality constraints:

𝑨𝒙 ≤ 𝒃, which, when converted to equality via addition of slack variable 𝒔 are represented as: 𝑨𝒙 + 𝑰𝒔 =

𝒃. Then, if 𝑨 ∈ ℤ𝑚×𝑛 is totally unimodular and 𝒃 ∈ ℤ𝑚, all BFSs to the problem have integral

components.

We, however, note that total unimodularity of 𝑨 is a sufficient but not necessary condition for an integral

solution. Indeed, a necessary condition for integral solutions to LP problem is that each 𝑚 × 𝑚 basis

submatrix 𝑩 of 𝑨 has determinant equal to ±1.

Example 6.1: Integer BFS

We consider the following LP problem with integer coefficients:

max
𝒙

 𝑧 = 2𝑥1 + 3𝑥2

Subject to: 𝑥1 ≤ 3, 𝑥2 ≤ 5, 𝑥1 + 𝑥2 ≤ 7, 𝒙 ∈ ℤ2, 𝒙 ≥ 𝟎

Following the introduction of slack variables, the constraint matrix and the right hand side are given as:

𝑨 = [
1
0
1

0
1
1

1
0
0

0
1
0

0
0
1
], 𝒃 = [

3
5
7
], where 𝑨 is unimodular and 𝒃 ∈ ℤ3. Then, using the simplex method, the

optimal integral solution is obtained as: 𝒙𝑇 = [2,5,1,0,0], with 𝑧∗ = 19.

 Binary Integer Programming Problems 6.4

In this section, we discuss solution of the BIP problem defined as:

96

min
𝒙

 𝑧 = 𝒄𝑇𝒙

Subject to 𝑨𝒙 ≥ 𝒃, 𝑥𝑖 ∈ {0,1}, 𝑖 = 1,… , 𝑛

(6.2)

Additionally, it is assumed that 𝒄 ≥ 𝟎.

We note that this is not a restrictive assumption, as any variable 𝑥𝑖 with negative 𝑐𝑖 in the objective

function can be replaced by: 𝑥𝑖
′ = 1 − 𝑥𝑖. Further, under not-too-restrictive assumptions most LP

problems can be reformulated in the BIP framework. For example, if the number of variables is small, and

the bounds 𝑥𝑚𝑖𝑛 < 𝑥𝑖 < 𝑥𝑚𝑎𝑥 on the design variables are known, then each 𝑥𝑖 can be represented as a

binary number using 𝑘 bits, where 2𝑘+1 ≥ 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛. The resulting problem involves selection of the

bits and is a BIP problem.

The BIP problem can be solved by implicit enumeration. In this process, obviously infeasible solutions

are eliminated and the remaining ones are evaluated (i.e., enumerated) to find the optimum. The search

starts from 𝑥𝑖 = 0, 𝑖 = 1,… , 𝑛, which is optimal. If this is not feasible, then we systematically adjust

individual variable values till feasibility is attained.

The implicit enumeration procedure is coded in the following algorithm that does not require an LP

solver:

Binary Integer Programming Algorithm (Belegundu and Chandrupatla, p. 364):

1. Initialize: set 𝑥𝑖 = 0, 𝑖 = 1,… , 𝑛; if this solution is feasible, we are done.

2. For some 𝑖, set 𝑥𝑖 = 1. If the resulting solution is feasible, then record it if either this is the first

feasible solution, or if it improves upon a previously recorded feasible solution.

3. Backtrack (set 𝑥𝑖 = 0) if a feasible solution was reached in the previous step, or if feasibility

appears impossible in this branch.

4. Choose another 𝑖 and return to 2.

The progress of the algorithm is graphically recorded in a decision-tree using nodes and arcs, with node 0

representing the initial solution (𝑥𝑖 = 0, 𝑖 = 1,… , 𝑛), and node 𝑖 representing a change in the value of

variable 𝑥𝑖. From node 𝑘, if we choose to raise variable 𝑥𝑖 to one, then we draw an arc from node 𝑘 to

node 𝑖. At node 𝑖 the following possibilities exist:

1. The resulting solution is feasible, hence no further improvement in this branch is possible.

2. Feasibility is impossible from this branch.

3. The resulting solution is not feasible, but feasibility or further improvements are possible.

In the first two cases, the branch is said to have been fathomed. If that happens, we then backtrack to node

𝑘, where variable 𝑥𝑖 is returned to zero. We next seek another variable to be raised to one. The algorithm

continues till all branches have been fathomed, and returns an optimum 0-1 solution.

Example 6.2: Implicit enumeration (Belegundu and Chandrupatla, p. 367)

97

A machine shaft is to be cut at two locations to given dimensions 1, 2, using one of the two available

processes, A and B. The following information on process cost and three-sigma standard deviation is

available. The problem requires that the combined maximum allowable tolerance be limited to 12mils:

Process\Job Job1 Job2

Cost SD Cost SD

Process A $65 ±4mils $57 ±5mils

Process B $42 ±6mils $20 ±10mils

Let 𝑥𝑖, 𝑖 = 1 − 4 denote the available processes for both jobs, and let 𝑡𝑖 denote their associated tolerances.

The BIP problem is formulated as:

min
𝒙

 𝑧 = 65𝑥1 + 57𝑥2 + 42𝑥3 + 20𝑥4

Subject to: 𝑥1 + 𝑥2 = 1, 𝑥3 + 𝑥4 = 1,∑ 𝑡𝑖𝑖 ≤ 12, 𝑥𝑖 ∈ {0,1}, 𝑖 = 1,… ,4.

The problem is solved via implicit enumeration; the resulting decision-tree is represented below:

 Integer Programming Problems 6.5

This section discusses the solution approaches to the IP problem, formulated as:

max
𝒙

 𝑧 = 𝒄𝑇𝒙

Subject to 𝑨𝒙 ≤ 𝒃, 𝒙 ∈ ℤ𝑛, 𝒙 ≥ 𝟎
(6.3)

The optimization problem that results when integrality constraint is ignored is termed as the LP relaxation

of the IP problem. The LP relaxation provides an upper bound on the IP solution. While a naïve solution

to the IP problem may be to round off the non-integer LP relaxation solution, in general, this approach

does not guarantee a satisfactory solution to IP problem.

Fig 6.1: The decision tree for Example 6.2 (NFI: No further improvement)

1

4 3

𝑓 = 107

NFI

0

NFI

𝑥3 = 1

𝑥4 = 1

2

4 3

𝑓 = 99

Optimum

𝑥3 = 1

𝑥4 = 1

NFI

𝑥2 = 1 𝑥1 = 1

98

In the following, we discuss two popular methods for solving IP problems. These are: the branch and

bound method and the cutting plane method. Both methods begin by first solving the LP relaxation

problem and subsequently using the LP solution to bind the IP solution.

6.5.1 The Branch and Bound Method

The BB method is the most widely used method for solving the IP problems. The method has its origins

in computer science, where search over a large finite space is performed by using bounds on the objective

function to prune the search tree.

The BB method iteratively solves an IP problem using the following steps: it first obtains the LP

relaxation solution; next, it introduces integrality constraints to define subprograms that effectively divide

the feasible region into smaller subsets (branching); it then calculates objective function bounds for each

subprogram (bounding); finally, it uses those bounds to discard non-promising solutions from further

consideration (fathoming). The procedure ends when every branch has been fathomed and an optimum

integer solution, if one exists, has been found.

A decision tree is used to record the progress of the BB algorithm, where the LP relaxation solution is

represented as node 0. At each node k, the algorithm sequences through the following phases:

1. Selection. If some variables in the simplex solution at node k have non-integer values, the

algorithm selects the one with the lowest index (or the one with greatest economic impact) for

branching.

2. Branching. The solution at node k is partitioned into two mutually exclusive subsets, each

represented by a node in the decision tree and connected to node k by an arc. It involves

imposition of two integer constraints (𝑥𝑖 ≤ 𝐼, 𝑥𝑖 ≥ 𝐼 + 1, 𝐼 = ⌊𝑥𝑖⌋), thus generating two new

subprograms where each solution to the original IP problem is contained in exactly one of the

subprograms.

3. Bounding. In this phase, upper bounds on the optimal subproblem solutions are established.

Solving a subprogram via LP solver results in one of the following possibilities:

a. There is no feasible solution.

b. The solution does not improve upon an available IP solution.

c. An improved IP solution is returned and is recorded as current optimal.

d. A non-integer solution that is better than the current optimal is returned.

4. Fathoming. In the first three cases above the current branch is excluded from further

consideration. The algorithm then backtracks to the most recently unbranched node in the tree

and continues with examining the next node in a last in first out (LIFO) search strategy.

The process ends when all branches have been fathomed, and an integer optimal solution to the problem,

if one exists, has been found.

Let 𝑁𝐹 denote the set of nodes not yet fathomed, 𝐹 denote the feasible region for the original IP problem,

𝐹𝑅 denote the feasible region for the LP relaxation problem, 𝐹𝑘 denote the feasible region at node 𝑘, 𝑆𝑘

99

denote the subproblem defined as: max𝒙 𝑧𝑘 = 𝒄𝑇𝒙 , 𝒙 ∈ 𝐹𝑘, and let 𝑧𝐿 denote the lower bound on the

optimal solution. Then, the BB algorithm is given as follows:

Branch-and-bound Algorithm (Sierksma, p. 219):

Initialize: set 𝐹0 = 𝐹𝑅 , 𝑁𝐹 = {0}, 𝑧𝐿 = −∞.

While 𝑁𝐹 ≠ ∅,

1. Select a label 𝑘 ∈ 𝑁𝐹.

2. Determine if there exists an optimal solution (𝑧𝑘 , 𝒙𝑘) to 𝑆𝑘, else set 𝑧𝑘 = −∞.

3. If 𝑧𝑘 > 𝑧𝐿 , then if 𝒙𝑘 ∈ 𝐹, set 𝑧𝐿 = 𝑧𝑘.

4. If 𝑧𝑘 ≤ 𝑧𝐿 , set 𝑁𝐹 = 𝑁𝐹\{𝑘}.

5. If 𝑧𝑘 > 𝑧𝐿 and 𝒙𝑘 ∉ 𝐹, partition 𝐹𝑘into two or more subsets as follows: choose a variable

𝑥𝑖 ∈ 𝒙𝑘 with fractional value, 𝑥𝑖 = 𝐼 + 𝛿𝑖 , 𝐼 = ⌊𝑥𝑖⌋, 0 < 𝛿𝑖 < 1. Define two new

subprograms: 𝐹𝑘1
= 𝐹𝑘 ∩ {𝑥𝑖 ≤ 𝐼}, 𝐹𝑘2

= 𝐹𝑘2
∩ {𝑥𝑖 ≥ 𝐼 + 1}. Set 𝑁𝐹 = 𝑁𝐹 ∪ {𝑘1, 𝑘2}.

Example 6.3: Branch and bound algorithm

We consider the following IP problem (Belegundu and Chandrupatla, p. 383): A tourist bus company

having a budget of $10M is considering acquiring a fleet with a mix of three models: a 15-seat van

costing $35,000, a 30-seat minibus costing $60,000, and a 60-seat bus costing $140,000. A total capacity

of 2000 seats is required. At least one third of the vehicles must be the big buses. If the estimated profits

per seat per month for the three models are: $4, $3, and $2 respectively, determine the number of vehicles

of each type to be acquired to maximize profit.

Let 𝑥1, 𝑥2, 𝑥3 denote the quantities to be purchased for each of the van, minibus, and big bus; then, the

optimization problem is formulated as:

Maximize 𝑧 = 60𝑥1 + 90𝑥2 + 120𝑥3

Subject to: 35𝑥1 + 60𝑥2 + 140𝑥3 ≤ 1000, 15𝑥1 + 30𝑥2 + 60𝑥3 ≥ 2000, 𝑥1 + 𝑥2 − 2𝑥3 ≤ 0;

 𝑥1, 𝑥2, 𝑥3 ≥ 0 and integer

Following steps are taken to solve the problem. The progress is also shown in a decision tree in Fig. 6.2:

1. 𝑆0: the LP relaxation problem (𝐹0 = 𝐹𝑅) is first solved and produces an optimum solution:

𝑥1
∗ = 0, 𝑥2

∗ = 7.69, 𝑥3
∗ = 3.85, 𝑓∗ = 1153.8, which serves as an upper bound for IP solution.

2. 𝑆1: 𝐹0 ∪ {𝑥3 ≤ 3} is solved and produces an integer solution: 𝑥1
∗ = 0, 𝑥2

∗ = 6, 𝑥3
∗ = 3, 𝑓∗ = 900.

This is recorded as current optimum.

3. 𝑆2: 𝐹0 ∪ {𝑥3 ≥ 4} produces a non-integer solution: 𝑥1
∗ = 1.6, 𝑥2

∗ = 6.4, 𝑥3
∗ = 4, 𝑓∗ = 1152.

4. 𝑆3: 𝐹2 ∪ {𝑥2 ≤ 6} produces a non-integer solution: 𝑥1
∗ = 2.1, 𝑥2

∗ = 6, 𝑥3
∗ = 4.05, 𝑓∗ = 1151.4.

5. 𝑆4: 𝐹3 ∪ {𝑥3 ≤ 4} produces an integer solution: 𝑥1
∗ = 2, 𝑥2

∗ = 6, 𝑥3
∗ = 4, 𝑓∗ = 1140. This is

recorded as the new optimum and the branch is fathomed.

6. 𝑆5: 𝐹3 ∪ {𝑥3 ≥ 5} produces a non-integer solution: 𝑥1
∗ = 8.57, 𝑥2

∗ = 0, 𝑥3
∗ = 5, 𝑓∗ = 1114.3,

which is lower than the current optimum, so the branch is fathomed.

7. 𝑆6: 𝐹2 ∪ {𝑥2 ≥ 7} produces a non-integer solution: 𝑥1
∗ = 0.57, 𝑥2

∗ = 7, 𝑥3
∗ = 4, 𝑓∗ = 1144.3

100

8. 𝑆7: 𝐹6 ∪ {𝑥1 ≤ 0} produces a non-integer solution: 𝑥1
∗ = 0, 𝑥2

∗ = 7.33, 𝑥3
∗ = 4, 𝑓∗ = 1140, which

does not improve upon the current optimum. The branch is fathomed.

9. 𝑆8: 𝐹6 ∪ {𝑥1 ≥ 1} has no feasible solution. The branch is fathomed.

10. All branches having been fathomed, the optimal solution is: 𝑥∗ = (2,6,4), 𝑓∗ = 1140.

Fig. 6.2: The decision tree for Example 6.3.

6.5.2 The Cutting Plane Method

Proposed by Gomory in 1958, the cutting plane method or Gomory’s method similarly begins with

solving the LP relaxation problem. It then trims the feasible region by successively adding linear

constraints aimed to prune the non-integer solutions without losing any of the integer solutions. The new

constraints are referred as Gomory cuts. The process is repeated till an optimal integer solution has been

obtained (Belegundu and Chandrupatla, p. 372; Chong and Zak, p. 438).

To develop the cutting plan method, we assume that the partitioned constraint matrix for the LP relaxation

problem is given in canonical form as:

𝑰𝒙𝐵 + 𝑨𝑁𝒙𝑁 = 𝒃 (6.4)

where 𝒙𝐵 and 𝒙𝑁 refer to the basic and nonbasic variables. The current BFS is given as: 𝒙𝐵 = 𝒃, 𝒙𝑁 = 𝟎.

Next, we consider the ith component of the solution: 𝑥𝑖 + ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=𝑚+1 = 𝑏𝑖, and use the floor operator

to separate it into integer and non-integer parts as:

𝑥𝑖 + ∑ (⌊𝑎𝑖𝑗⌋ + 𝛼𝑖𝑗)𝑥𝑗

𝑛

𝑗=𝑚+1

= ⌊𝑏𝑖⌋ + 𝛽𝑖
(6.5)

Then, since ⌊𝑎𝑖𝑗⌋ ≤ 𝑎𝑖𝑗, a feasible solution that satisfies (6.5) also satisfies:

𝑆0: 𝐹0 = 𝐹𝑅

𝒙∗ = (0, 7.69, 3.85), 𝑓∗ = 1153.8

𝑆1: 𝐹0 ∪ {𝑥3 ≤ 3}

𝒙∗ = (0, 6,3), 𝑓∗ = 900

𝑆2: 𝐹0 ∪ {𝑥3 ≥ 4}

𝒙∗ = (1.6, 6.4, 4), 𝑓∗ = 1152

𝑆3: 𝐹2 ∪ {𝑥2 ≤ 6}
𝒙∗ = (2.1, 6, 4.05), 𝑓∗ = 1151.4

𝑆6: 𝐹2 ∪ {𝑥2 ≥ 7}

𝒙∗ = (0.57, 7, 4), 𝑓∗ = 1144.3

𝑆4: 𝐹3 ∪ {𝑥3 ≤ 4}

𝒙∗ = (2, 6, 4), 𝑓∗ = 1140

𝑆5: 𝐹3 ∪ {𝑥3 ≥ 5}

𝒙∗ = (8.57, 0, 5), 𝑓∗ = 1114.3

𝑆7: 𝐹6 ∪ {𝑥1 ≤ 0}

𝒙∗ = (0, 7.33, 4), 𝑓∗ = 1140

𝑆8: 𝐹6 ∪ {𝑥1 ≥ 1}

𝑁𝐹𝑆

101

𝑥𝑖 + ∑ ⌊𝑎𝑖𝑗⌋𝑥𝑗

𝑛

𝑗=𝑚+1

≤ 𝑏𝑖
(6.6)

Whereas, an integer feasible solution can be characterized by:

𝑥𝑖 + ∑ ⌊𝑎𝑖𝑗⌋𝑥𝑗

𝑛

𝑗=𝑚+1

≤ ⌊𝑏𝑖⌋
(6.7)

The integer feasible solution also satisfies the difference of the two inequalities, which is given as:

∑ 𝛼𝑖𝑗𝑥𝑗

𝑛

𝑗=𝑚+1

≥ 𝛽𝑖
(6.8)

The above inequality is referred to as the Gomory cut. We note that, since the left-hand-side equals zero,

the optimal non-integer BFS does not satisfy this inequality. Thus, introduction of the inequality

constraint (6.8) makes the current LP solution infeasible without losing any IP solutions.

The solution process proceeds as follows: the constraint introduced by Gomory cut is first brought into

standard form by subtracting a surplus variable. The resulting problem is solved using simplex method for

a new optimal BFS, which is then inspected for non-integer components. The process is repeated till an

integer BFS has been obtained.

The cutting plane algorithm generates a family of polyhedra which satisfy: Ω ⊃ Ω1 ⊃ Ω2 ⊃ ⋯ ⊃ Ω ∩ ℤ𝑛,

where Ω = {𝑥 ∈ ℝ𝑛: 𝑨𝒙 ≤ 𝒃} denote the polyhedral associated with the LP relaxation problem. Note that

the cutting plane algorithm terminates in finite steps.

Example 6.4: Cutting Plane method

We consider the IP problem in Example 6.3 above where the LP relaxation solution was found as:

𝑥1
∗ = 0, 𝑥2

∗ = 7.69, 𝑥3
∗ = 3.85, 𝑓∗ = 1153.8. The final tableau for the LP relaxation solution is given as:

Basic 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒔𝟏 𝒔𝟐 𝒔𝟑 Rhs

𝒙𝟐 0.808 1 0 0.539 0.039 0 7.69

𝒙𝟑 -0.096 0 1 -0.231 0.019 0 3.85

𝐬𝟑 0.173 0 0 0.115 0.115 1 123.1

−𝐳 0.115 0 0 2.077 0.577 0 1153.8

The following series of cuts then produces an integer optimum solution:

No. Cut Optimal solution

1. 0.808𝑥1 + 0.539𝑠1 + 0.039𝑠2 − 𝑠4 = 0.692 𝑥1
∗ = 0.857, 𝑥2

∗ = 7, 𝑥3
∗ = 3.929, 𝑓∗ = 1152.9

102

2. 0.833𝑠1 + 0.024𝑠2 + 0.881𝑠4 − 𝑠5 = 0.929 𝑥1
∗ = 2.162, 𝑥2

∗ = 5.946, 𝑥3
∗ = 4.054, 𝑓∗ = 1151.3

3. 0.054𝑠1 + 0.973𝑠2 + 0.135𝑠5 − 𝑠6 = 0.946 𝑥1
∗ = 2.083, 𝑥2

∗ = 5.972, 𝑥3
∗ = 4.028, 𝑓∗ = 1145.8

4. 0.056𝑠1 + 0.139𝑠5 + 0.972𝑠6 − 𝑠7 = 0.972 𝑥1
∗ = 2, 𝑥2

∗ = 6, 𝑥3
∗ = 4, 𝑓∗ = 1140

103

7 Numerical Optimization Methods

This chapter describes the numerical methods used for solving unconstrained and constrained

optimization problems. The methods described here have been used to develop computational algorithms

and are used in commercially available optimization software. The process of computationally solving the

optimization problem is termed as mathematical programming and includes both linear and nonlinear

programming. The basic numerical method to solve the nonlinear problem is the iterative solution method

that initializes from an initial guess, and iteratively refines it in an effort to reach the minimum (or

maximum) of a multi-variable objective function. The iterative scheme is essentially a two-step process

that seeks to determine: a) a search direction that does not violate the constraints and along which the

objective function value decreases; and, b) a step size that minimizes the function value along the chosen

search direction. The algorithm terminates when either a minimum has been found, indicated by the

function derivative being approximately zero, or when a certain maximum number of iterations has been

exceeded indicating that there is no feasible solution to the problem.

Learning Objectives: The learning objectives in this chapter are:

1. Understand numerical methods employed for solving optimization problems

2. Learn the approaches to numerically solve the line search problem in one-dimension

3. Learn the direction finding algorithms, including gradient and Hessian methods

4. Learn the sequential linear programming (SLP) and sequential quadratic programming (SQP)

techniques

 The Iterative Method 7.1

The general numerical optimization method begins with an initial guess and iteratively refines it so as to

asymptotically approach the optimum. To illustrate the iterative method of finding a solution, we consider

an unconstrained nonlinear programming problem defined, where 𝒙 denotes the set of optimization

variables, as:

min
𝒙

 𝑓(𝒙) (7.1)

Let 𝒙𝑘 denote the current estimate of the minimum; then, the solution algorithm seeks an update, 𝒙𝑘+1,

that results in: 𝑓(𝒙𝑘+1) < 𝑓(𝒙𝑘), termed as the descent condition. In the general iterative scheme, the

optimization variables are updated as per the following rule:

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘 (7.2)

In the above, 𝒅𝑘 represents a search direction and 𝛼𝑘 is the step size along that direction. The iterative

method thus involves a two-step process:

104

1. Finding the suitable search direction 𝒅𝑘 along which the function value locally decreases and any

constraints are obeyed.

2. Performing line search along 𝒅𝑘 to find 𝒙𝑘+1 such that 𝑓(𝒙𝑘+1) attains its minimum value.

We first consider the problem of finding a descent direction 𝒅𝑘. The same can be determined by checking

the directional derivative of 𝑓(𝒙𝑘) along 𝒅𝑘, given as the scalar product: 𝛻𝑓(𝒙𝑘)
𝑇
𝒅𝑘. If the directional

derivative of the function 𝑓(𝒙𝑘) along 𝒅𝑘 is negative, then the descent condition is satisfied. Further, 𝒅𝑘

is a descent direction only if it satisfies: 𝛻𝑓(𝒙𝑘)
𝑇
𝒅𝑘 < 0. If 𝒅𝑘 is a descent direction, then we are assured

that at least for small positive values of 𝛼𝑘, 𝑓(𝒙𝑘 + 𝛼𝑘𝒅𝑘) < 𝑓(𝒙𝑘).

Assuming a suitable search direction 𝒅𝑘 has been determined, we next seek to determine a suitable step

length 𝛼𝑘 , where an optimal value of 𝛼𝑘 minimizes 𝑓(𝒙𝑘+1). Since both 𝒙𝑘 and 𝒅𝑘 are known, the

projected function value along 𝒅𝑘 depends on 𝛼𝑘 alone and can be expressed as:

𝑓(𝒙𝑘 + 𝛼𝑘𝒅𝑘) = 𝑓(𝒙𝑘 + 𝛼𝒅𝑘) = 𝑓(𝛼) (7.3)

The problem of choosing 𝛼 to minimize 𝑓(𝒙𝑘+1) along 𝒅𝑘 thus amounts to a single-variable functional

minimization problem, known as the line search problem, defined as:

min
𝛼

𝑓(𝛼) = 𝑓(𝒙𝑘 + α𝒅𝑘) (7.4)

Assuming that a solution exists, it is found at a point where the derivative of the function goes to zero.

Thus, by setting 𝑓′(𝛼) = 0, we can solve for the desired step size 𝛼 and update the current estimate 𝒙𝑘.

As an example of the line search problem, we consider minimizing a quadratic function:

𝑓(𝒙) =
1

2
 𝒙𝑇𝑨𝒙 − 𝒃𝑇𝒙, 𝛻𝑓 = 𝑨𝒙 − 𝒃 (7.5)

where 𝑨 is a symmetric positive definite matrix. Let 𝒅 be a given descent direction; then, the line search

problem reduces to the following minimization problem:

min
𝛼

 𝑓(𝛼) = (𝒙𝑘 + 𝛼𝒅)
𝑇
𝑨(𝒙𝑘 + 𝛼𝒅) − 𝒃𝑇(𝒙𝑘 + 𝛼𝒅) (7.6)

A solution is found by setting 𝑓′(𝛼) = 𝒅𝑇𝑨(𝒙𝑘 + 𝛼𝒅) − 𝒅𝑇𝒃 = 0, and is given as:

𝛼 = −
𝒅𝑇(𝑨𝒙𝑘 − 𝒃)

𝒅𝑇𝑨𝒅
= −

𝛻𝑓(𝒙𝑘)𝑇𝒅

𝒅𝑇𝑨𝒅
 (7.7)

An update then follows as: 𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝒅.

In the following, we first discuss numerical methods used to solve the line search problem in Sec. 7.2,

followed by a discussion of the methods to solve the direction finding problem in Sec. 7.3.

105

 Computer Methods for Solving the Line Search Problem 7.2

In order to solve the line search problem, we assume that a suitable search direction 𝒅𝑘 has been

determined, and wish to minimize the objective function: 𝑓(𝒙𝑘 + 𝛼𝒅𝑘) = 𝑓(𝛼) along 𝒅𝑘. We further

assume that 𝒅𝑘 is a descent direction, i.e., it satisfies: ∇𝑓(𝒙𝑘)𝑇𝒅𝑘 < 0, so that only positive values of 𝛼

need to be considered. Then, the line search problem reduces to finding a solution to (7.4) above.

In the following, we address the problem of finding the minimum of a function, 𝑓(𝑥), 𝑥 ∈ ℝ, where we

additionally assume that the function is unimodal, i.e., it has a single local minimum. Prominent computer

methods for solving the line search problem are described below.

7.2.1 Interval Reduction Methods

The interval reduction methods are commonly used to solve the line search problem. These methods find

the minimum of a unimodal function in two steps:

a) Bracketing the minimum to an interval

b) Reducing the interval of uncertainty to desired accuracy

The bracketing step aims to find a three-point pattern, such that for 𝑥1, 𝑥2, 𝑥3, 𝑓(𝑥1) ≤ 𝑓(𝑥2) > 𝑓(𝑥3).

The bracketing algorithm can be started from any point in the domain of 𝑓(𝑥), though a good guess will

reduce the number of steps involved. In the following description of the bracketing algorithm 𝑓𝑖 denotes

𝑓(𝑥𝑖).

Bracketing Algorithm (Belegundu & Chandrupatla p.54):

1. Initialize: choose 𝑥1, ∆, 𝛾 (e.g., 𝛾 = 1.618)

2. Set 𝑥2 = 𝑥1 + ∆; evaluate 𝑓1, 𝑓2

3. If 𝑓1 < 𝑓2, set 𝑥0 ← 𝑥1, 𝑥1 ← 𝑥2, 𝑥2 ← 𝑥0, ∆= −∆

4. Set ∆= 𝛾∆, 𝑥3 = 𝑥2 + ∆; evaluate 𝑓3

5. If 𝑓2 ≥ 𝑓3, set 𝑓1 ← 𝑓2, 𝑓2 ← 𝑓3, 𝑥1 ← 𝑥2, 𝑥2 ← 𝑥3; then go to step 3

6. Quit; points 1,2, and 3 satisfy 𝑓1 ≥ 𝑓2 < 𝑓3.

Next, we assume that the minimum has been bracketed to a closed interval [𝑥𝑙 , 𝑥𝑢]. The interval

reduction step aims to iteratively reduce the interval in order to find the minimum. The general approach

is to designate two additional points inside the interval, and then determine whether the three left one or

the three right ones satisfy the three-point pattern. A common interval reduction approach is to use either

the Fibonacci or the Golden Section methods; both methods are based on the golden ratio derived from

Fibonacci’s sequence.

106

Fibonacci’s Method. The Fibonacci’s method uses Fibonacci numbers to achieve maximum interval

reduction in a given number of steps. The Fibonacci number sequence is generated as: 𝐹0 = 𝐹1 = 1, 𝐹𝑖 =

𝐹𝑖−1 + 𝐹𝑖−2, 𝑖 ≥ 2. Fibonacci numbers have some interesting properties, among them:

1. The ratio 𝜏 = lim𝑛→∞
𝐹𝑛−1

𝐹𝑛
=

√5−1

2
= 0.618034 is known as the golden ratio.

2. Using Fibonacci numbers, the number of interval reductions required to achieve a desired

accuracy 𝜀 is the smallest 𝑛 such that 1/𝐹𝑛 < 𝜀, and can be specified in advance.

3. For given 𝐼1 and 𝑛, we have 𝐼2 =
𝐹𝑛−1

𝐹𝑛
𝐼1, 𝐼3 = 𝐼1 − 𝐼2, 𝐼4 = 𝐼2 − 𝐼3, etc.

The Fibonacci algorithm is given as follows:

Fibonacci Algorithm (Belegundu & Chandrupatla p.60):

Initialize: specify 𝑥1, 𝑥4 (𝐼1 = |𝑥4 − 𝑥1|), 𝜀, 𝑛:
1

𝐹𝑛
< 𝜀

Compute 𝛼1 =
𝐹𝑛−1

𝐹𝑛
; 𝑥2 = 𝛼1𝑥1 + (1 − 𝛼1)𝑥4, evaluate 𝑓2

For 𝑖 = 1,… , 𝑛 − 1

1. Introduce 𝑥3 = (1 − 𝛼𝑖)𝑥1 + 𝛼𝑖𝑥4, evaluate 𝑓3

2. If 𝑓2 < 𝑓3, set 𝑥4 ← 𝑥1, 𝑥1 ← 𝑥3

3. Else set 𝑥1 ← 𝑥2, 𝑥2 ← 𝑥3, 𝑓2 ← 𝑓3

4. Set 𝛼𝑖+1 =
𝐼𝑛−𝑖−1

𝐼𝑛−𝑖

Golden Section Method. The golden section method uses the golden ratio
𝐼𝑖+1

𝐼𝑖
= 𝜏 = 0.618034 for

interval reduction in the above Fibonacci algorithm. This results in uniform interval reduction strategy

independent of the number of trials. Further, since the final interval 𝐼𝑛 is related to the initial interval 𝐼1

as: 𝐼𝑛 = 𝜏𝑛−1𝐼1, given 𝐼1 and a desired 𝐼𝑛, the number of interval reductions may be computed as:

𝑛 = ⌊
ln 𝐼𝑛−ln 𝐼1

ln 𝜏
+

3

2
⌋, where ⌊∙⌋ represents the floor function.

The golden section method can be integrated with the three-point bracketing algorithm by choosing 𝛾 =
1

𝜏

and renaming 𝑥3 as 𝑥4. Stopping criteria for the golden section algorithm may be specified in terms of

desired interval size, reduction in function value, or the number of interval reductions.

Next, the bracketing step can also be combined with the interval reduction step, and the integrated

bracketing and interval reduction algorithm is given below.

Integrated Bracketing and Golden Section Algorithm (Belegundu & Chandrupatla p.65):

Initialize: specify 𝑥1, ∆, 𝜏 = 0.618034, 𝜀

1. Set 𝑥2 = 𝑥1 + ∆; evaluate 𝑓1, 𝑓2

2. If 𝑓1 < 𝑓2, set 𝑥0 ← 𝑥1, 𝑥1 ← 𝑥2, 𝑥2 ← 𝑥0, ∆= −∆

3. Set ∆=
∆

𝜏
, 𝑥4 = 𝑥2 + ∆; evaluate 𝑓4

107

4. If 𝑓2 ≥ 𝑓4, set 𝑓1 ← 𝑓2, 𝑓2 ← 𝑓4, 𝑥1 ← 𝑥2, 𝑥2 ← 𝑥4; then go to step 3

5. Introduce 𝑥3 = (1 − 𝜏)𝑥1 + 𝜏𝑥4, evaluate 𝑓3

6. If 𝑓2 < 𝑓3, set 𝑥4 ← 𝑥1, 𝑥1 ← 𝑥3

7. Else set 𝑥1 ← 𝑥2, 𝑥2 ← 𝑥3, 𝑓2 ← 𝑓3

8. Check stopping criteria: If |𝑥1 − 𝑥3| < 𝜀, quit; else go to 5

7.2.2 Approximate Search Algorithms

The calculations of the exact step size in the line search step are time consuming. In most cases,

approximate function minimization suffices to advance to the next iteration. Since crude minimization

methods may give rise to convergence issues, additional conditions on both 𝒅𝑘 and 𝛼𝑘 are prescribed to

ensure convergence of the numerical algorithm. These conditions include, for 𝒅𝑘: a) sufficient descent

condition, and b) gradient related condition; and for 𝛼𝑘: a) sufficient decrease condition, and b) non trivial

condition. They are described below.

Sufficient Descent Condition. The sufficient descent condition, or the angle condition guards against 𝒅𝑘

becoming too close to 𝛻𝑓(𝒙𝑘). The condition is normally stated as: −
𝛻𝑓(𝒙𝑘)

𝑇
𝒅𝑘

‖𝛻𝑓(𝒙𝑘)‖‖𝒅𝑘‖
≥ 𝜖 > 0 for a small 𝜖.

Alternatively, the sufficient descent condition may be specified as: 𝛻𝑓(𝒙𝑘)
𝑇
𝒅𝑘 < 𝑐‖𝛻𝑓(𝒙𝑘)‖

2
, 𝑐 > 0.

Gradient Related Condition. The search direction is gradient related if ‖𝒅𝑘‖ ≥ 𝑐‖𝛻𝑓(𝒙𝑘)‖, 𝑐 > 0.

This condition aids in convergence.

Sufficient Decrease Condition. The sufficient decrease condition on 𝛼𝑘 ensures that a nontrivial

reduction in the function value is obtained at each step. The condition is derived from Taylor series

expansion of 𝑓(𝒙𝑘 + 𝛼𝑘𝒅𝑘) and is stated as: 𝑓(𝒙𝑘 + 𝛼𝑘𝒅𝑘) − 𝑓(𝒙𝑘) ≤ 𝜇 𝛼𝑘𝛻𝑓(𝒙𝑘)
𝑇
𝒅𝑘 , 0 < 𝜇 < 1.

Arjimo’s Rule. An alternative sufficient decrease condition, referred to as Arjimo’s rule, is given as:

𝑓(𝛼) ≤ 𝑓(0) + 𝜇𝛼𝑓′(0), 0 < 𝜇 < 1 (7.8)

Curvature Condition. A curvature condition is added to Arjimo’s rule to improve convergence. The

curvature condition is given as:

|𝑓′(𝛼)| ≤ 𝜂|𝑓′(0)|, 0 ≤ 𝜂 < 1 (7.9)

Further, the curvature condition implies that: |∇𝑓(𝒙𝑘 + 𝛼𝑘𝒅𝑘)
𝑇
𝒅𝑘| ≤ 𝜂 | ∇𝑓(𝒙𝑘)

𝑇
𝒅𝑘| , 0 ≤ 𝜂 < 1.

Conditions (7.8) and (7.9) together with 𝜇 ≤ 𝜂 are known as Wolfe conditions, which are commonly used

by all line search algorithms. A line search based on Wolfe conditions proceeds by bracketing the

minimizer in an interval, followed by estimating it via polynomial approximation. These two steps are

explained below:

108

Bracketing the Minimum. In the bracketing step we seek an interval [𝛼, 𝛼] such that 𝑓′(𝛼) < 0 and

𝑓′(𝛼) > 0. Since for any descent direction, 𝑓′(0) < 0, therefore, 𝛼 = 0 serves as initial lower bound on

𝛼. To find an upper bound, increasing 𝛼 values, e.g., 𝛼 = 1,2, …, are tried. Assume that for some 𝛼𝑖 > 0,

𝑓′(𝛼𝑖) < 0 and 𝑓′(𝛼𝑖+1) > 0; then, 𝛼𝑖 serves as an upper bound.

Estimating the Minimum. Once the minimum has been bracketed to a small interval, a quadratic or

cubic polynomial approximation is used to find the minimizer. If the polynomial minimizer 𝛼̂ satisfies

Wolfe’s condition for the desired 𝜂 value (say 𝜂 = 0.5) and the sufficient decrease condition for the

desired 𝜇 value (say 𝜇 = 0.2), it is taken as the function minimizer, otherwise 𝛼̂ is used to replace one of

the 𝛼 or 𝛼, and the polynomial approximation step repeated.

Quadratic curve Fitting. Assuming that the interval [𝛼𝑙 , 𝛼𝑢] contains the minimum of a unimodal

function, 𝑓(𝛼), it can be approximated by a quadratic function: 𝑞(𝛼) = 𝑎0 + 𝑎1𝛼 + 𝑎2𝛼
2. A quadratic

approximation uses three points {𝛼𝑙 , 𝛼𝑚, 𝛼𝑢}, where the mid-point of the interval may be used for 𝛼𝑚.

The quadratic coefficients {𝑎0, 𝑎1, 𝑎2} are solved from: 𝑓(𝛼𝑖) = 𝑎0 + 𝑎1𝛼𝑖 + 𝑎2𝛼𝑖
2, 𝛼𝑖𝜖{𝛼𝑙 , 𝛼𝑚, 𝛼𝑢},

which results in the following expressions:

𝑎2 =
1

𝛼𝑢 − 𝛼𝑚
 [
𝑓(𝛼𝑢) − 𝑓(𝛼𝑙)

𝛼𝑢 − 𝛼𝑙
−

𝑓(𝛼𝑚) − 𝑓(𝛼𝑙)

𝛼𝑚 − 𝛼𝑙
] ;

𝑎1 =
1

𝛼𝑚 − 𝛼𝑙
(𝑓(𝛼𝑚) − 𝑓(𝛼𝑙)) − 𝑎2(𝛼𝑙 + 𝛼𝑚);

𝑎0 = 𝑓(𝛼𝑙) − 𝑎1𝛼𝑙 − 𝑎2𝛼𝑙
2

(7.10)

The minimum for 𝑞(𝛼) can be computed by setting 𝑞′(𝛼) = 0, and is given as: 𝛼𝑚𝑖𝑛 = −
𝑎1

2𝑎2
. An explicit

formula for 𝛼𝑚𝑖𝑛 in terms of the three interval points can also be derived and is given as:

𝛼𝑚𝑖𝑛 = 𝛼𝑚 −
1

2

(𝛼𝑚 − 𝛼𝑙)
2(𝑓(𝛼𝑚) − 𝑓(𝛼𝑢)) − (𝛼𝑚 − 𝛼𝑢)2(𝑓(𝛼𝑚) − 𝑓(𝛼𝑙))

(𝛼𝑚 − 𝛼𝑙)(𝑓(𝛼𝑚) − 𝑓(𝛼𝑢)) − (𝛼𝑚 − 𝛼𝑢)(𝑓(𝛼𝑚) − 𝑓(𝛼𝑙))

(7.11)

An example of the approximate search algorithm is now presented.

Example 7.1: Approximate search algorithm

We wish to approximately solve the following minimization problem: min𝛼 𝑓(𝛼) = 𝑒−𝛼 + 𝛼2.

We use Arjimo’s rule with: 𝜇 = 0.2, and 𝛼 = 0.1, 0.2,…, to estimate the minimum. The Matlab

commands used for this purpose and the corresponding results appear below:

>> f=inline('x.*x+exp(-x)'); mu=0.2; al=0:.1:1;

>> feval(f,al)

1.0000 0.9148 0.8587 0.8308 0.8303 0.8565 0.9088

0.9866 1.0893 1.2166 1.3679

>> 1-mu*al

109

1.0000 0.9800 0.9600 0.9400 0.9200 0.9000 0.8800

0.8600 0.8400 0.8200 0.8000

Then, according to Arjimo’s condition, an estimate of the minimum is given as: 𝛼 = 0.5. Further, since

𝑓′(0) < 0 and 𝑓′(𝛼) > 0, the minimum is bracketed by [0, 0.5]. We next use quadratic approximation

of the function over {0,
𝛼

2
, 𝛼} to estimate the minimum as follows:

al=0; ai=0.25; au=0.5;

a2 = ((f(au)-f(al))/(au-al)-(f(ai)-f(al))/(ai-al))/(au-ai);

a1 = (f(ai)-f(al))/(ai-al)-a2*(al+ai);

xmin = -a1/a2/2 = 0.3531

An estimate of the minimum is given as: 𝛼̂ = 0.3531. We note that the exact solution is given as:

𝛼𝑚𝑖𝑛 = 0.3517 .

Next, we describe the computer methods for finding the search direction. Our initial focus is on

unconstrained problems. The constrained problems are discussed later in Sec. 7.4.

 Computer Methods for Finding the Search Direction 7.3

The computer methods for finding the search direction 𝒅𝑘 are normally grouped into first order and

second order methods, where the order refers to the derivative order of the function approximation used.

Thus, first order methods refer to the gradient-based methods, while the second order methods

additionally involve the Hessian matrix in the computations. The gradient based quasi-Newton methods

are overwhelmingly popular when it comes to implementation. The popular search methods are described

below.

7.3.1 The Steepest Descent Method

Attributed to Cauchy, the steepest descent method is the simplest of the gradient methods. The method

involves choosing 𝒅𝑘 as the direction of maximum decrease in the function value, i.e., the direction

opposite to the gradient vector at the current estimate point.

The steepest descent method is characterized by: 𝒅𝑘 = −𝛻𝑓(𝒙𝑘), leading to the following update rule:

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘 ∙ 𝛻𝑓(𝒙𝑘) (7.12)

where the step size 𝛼𝑘 to minimize 𝑓(𝒙𝑘+1) along 𝒅𝑘 can be analytically or numerically determined

using methods described in Sec. 7.2.

110

As an example, in the case of a quadratic function: 𝑓(𝒙) =
1

2
𝒙𝑇𝑨𝒙 − 𝒃𝑇𝒙, 𝛻𝑓 = 𝑨𝒙 − 𝒃, the steepest

descent method with exact line search results in the following update rule:

𝒙𝑘+1 = 𝒙𝑘 − 𝛼 ∙ 𝛻𝑓(𝒙𝑘); 𝛼 =
∇ 𝑓(𝒙𝑘)

𝑇
∇ 𝑓(𝒙𝑘)

∇ 𝑓(𝒙𝑘)𝑇𝐀∇ 𝑓(𝒙𝑘)
 (7.13)

The above update can be equivalently described in terms of a residual: 𝒓𝑘 = 𝒃 − 𝑨𝒙𝑘 as:

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒓𝑘; 𝛼𝑘 =
𝒓𝑘

𝑇𝒓𝑘

𝒓𝑘
𝑇𝐴𝒓𝑘

 (7.14)

The steepest descent algorithm is given below.

Steepest Descent Algorithm:

Initialize: choose 𝒙0

For 𝑘 = 0,1,2,…

1. Compute 𝛻𝑓(𝒙𝑘)

2. Check convergence: if ‖𝛻𝑓(𝒙𝑘)‖ < 𝜖, stop.

3. Set 𝒅𝑘 = −𝛻𝑓(𝒙𝑘)

4. Line search problem: Find min𝛼≥0 𝑓(𝒙𝑘 + 𝛼𝒅𝑘)

5. Set 𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝒅𝑘.

Note that a line search that minimizes 𝑓(𝛼) along the steepest-descent direction may not result in the

lowest achievable function value over all search directions. This could happen, for example, when the

current gradient 𝛻𝑓(𝒙𝑘) points away from the local minimum, as is shown in the following example.

Example 7.2: Steepest Descent

We consider minimizing 𝑓(𝒙) = 0.1𝑥1
2 + 𝑥2

2 from an initial estimate 𝒙0 = (5,1), 𝑓(𝒙0) = 3.5. The

gradient of 𝑓(𝒙) is computed as 𝛻𝑓(𝒙) = [
0.2𝑥1

2𝑥2
], and 𝛻𝑓(𝒙0) = [

1
2
]. Using the steepest-descent rule, the

line search problem is given as: min𝛼 𝑓(𝛼) = 0.1(5 − 𝛼)2 + (1 − 2𝛼)2. The exact solution is found by

setting 𝑓′(𝛼) = 8.2𝛼 − 5 = 0, or 𝛼 = 0.61. Therefore, 𝒙1 = [
 4.39
−0.22

], and 𝑓(𝒙1) = 1.98.

Next, to show that the steepest descent method is not particularly effective, we try an arbitrary search

direction 𝒅0 = [
−1
0

], which gives 𝑓(𝛼) = 0.1(5 − 𝛼)2+1, and a similar minimization results in 𝑓′(𝛼) =

0.2𝛼 − 1 = 0, or 𝛼 = 5, for which, 𝒙1 = [
0
1
], and 𝑓(𝒙1) = 1, which provides a better estimate of the

actual minimum (0,0).

A further weakness of the steepest descent method is that it becomes slow as the minimum is approached.

This can be seen by examining the function derivative 𝑓′(𝒙𝑘 + 𝛼𝒅𝑘), which is computed as:

111

𝑑

𝑑𝛼𝑘
𝑓(𝒙𝑘 + 𝛼𝑘𝒅𝑘) = ∇ 𝑓(𝒙𝑘+1)

𝑇
𝒅𝑘 (7.15)

The above result implies that the gradient ∇ 𝑓(𝒙𝑘+1) is normal to 𝒅𝑘, i.e., in the case of steepest descent,

normal to ∇ 𝑓(𝒙𝑘). This implies a zigzag type progression towards the minimum that results in its slow

progress.

Due to its above weaknesses, the steepest descent method does not find much use in practice.

Rate of Convergence. The steepest-descent method displays linear convergence. In the case of quadratic

functions, its rate constant (Section 2.11) is bounded by the following inequality (Griva, Nash & Sofer

2009, p406):

𝐶 =
𝑓(𝒙𝑘+1) − 𝑓(𝒙∗)

𝑓(𝒙𝑘) − 𝑓(𝒙∗)
≤ (

𝑐𝑜𝑛𝑑(𝑨) − 1

𝑐𝑜𝑛𝑑(𝑨) + 1
)

2

 (7.16)

The above result uses 𝑓(𝒙𝑘) − 𝑓(𝒙∗), which converges at the same rate as ‖𝒙𝑘 − 𝒙∗‖. Further, when

using steepest-descent method with general nonlinear functions, the bound holds for 𝑨 = ∇2𝑓(𝑥∗).

Preconditioning. As with all gradient methods, preconditioning aimed at reducing the condition number

of the Hessian matrix can be employed to aid convergence of the steepest-descent method. To illustrate

this point, we consider the cost function: 𝑓(𝒙) = 0.1𝑥1
2 + 𝑥2

2 = 𝒙𝑇𝑨𝒙,𝑨 = 𝑑𝑖𝑎𝑔(0.1, 1), and define a

linear transformation: 𝒙 = 𝑷𝒚, where 𝑷 = 𝑑𝑖𝑎𝑔(√10, 1). Then, the objective function is transformed as:

𝑓(𝒙) = 𝒚𝑇𝑷𝑇𝑨𝑷𝒚, where the matrix product 𝑷𝑇𝑨𝑷 = 𝑰 has a condition number of unity, indicating that

the steepest-descent method will now converge in a single iteration.

7.3.2 Conjugate-Gradient Methods

Conjugate-gradient (CG) methods employ conjugate vectors with respect to the Hessian matrix, as search

directions in successive iterations; these directions hold the promise to minimize the function in 𝑛 steps.

The CG methods are popular in practice due to their low memory requirements and strong local and

global convergence properties.

Let 𝒅0, 𝒅2, … , 𝒅𝑛−1, where 𝒅𝑖𝑇𝑨𝒅𝑗 = 0, 𝑖 ≠ 𝑗, denote conjugate directions with respect to 𝑨 matrix, and

let 𝒈𝑘 denote the function gradient, ∇ 𝑓(𝒙𝑘). Then, starting from 𝒅0, taken to be the steepest descent

direction, we can use the following procedure to generate 𝑨-conjugate directions:

𝒅0 = −𝒈0; 𝒅
𝑘+1 = −𝒈𝑘+1 + 𝛽𝑘𝒅𝑘 𝑘 ≥ 0 (7.17)

Next, application of the conjugacy condition results in:

112

𝒅𝑘𝑇
𝑨𝒅𝑘+1 = −𝒅𝑘𝑇

𝑨𝑔𝑘+1 + 𝛽𝑘𝒅𝑘𝑇
𝑨𝒅𝑘 = 0, or 𝛽𝑘 =

𝒈𝑘+1
𝑇 𝑨𝒅𝑘

𝒅𝑘𝑇
𝑨𝒅𝑘

 (7.18)

The above expression can be further simplified if additional assumptions regarding the function and the

line search algorithm are made as shown in the following cases.

1. In the case of a quadratic function since 𝒈𝑘+1 − 𝒈𝑘 = 𝑨(𝒙𝑘+1 − 𝒙𝑘) = 𝛼𝑘𝑨𝒅𝑘, therefore, by

substituting 𝑨𝒅𝑘 =
1

𝛼𝑘
(𝒈𝑘+1 − 𝒈𝑘) in (7.18), we obtain: 𝛽𝑘 =

𝒈𝑘+1
𝑇 (𝒈𝑘+1−𝒈𝑘)

𝒅𝑘𝑇
(𝒈𝑘+1−𝒈𝑘)

 (the Hestenes-

Stiefel formula).

2. In the case of exact line search, 𝑔𝑘+1
𝑇 𝒅𝑘 = 0; thus, 𝛽𝑘 =

𝒈𝑘+1
𝑇 (𝒈𝑘+1−𝒈𝑘)

𝒈𝑘
𝑇𝒈𝑘

 (the Polak-Ribiere

formula).

3. Since 𝒈𝑘+1
𝑇 𝒅𝑘 = 𝒈𝑘+1

𝑇 (−𝒈𝑘 + 𝛽𝑘−1𝒅
𝑘−1) = 0, where for quadratic functions, 𝒈𝑘+1 = 𝒈𝑘 +

𝛼𝑘𝑨𝒅𝑘; therefore, by exact line search condition, 𝒈𝑘+1
𝑇 𝒈𝑘 = 𝛽𝑘−1(𝒈𝑘 + 𝛼𝑘𝑨𝒅𝑘)𝑇𝒅𝑘−1 = 0,

resulting in 𝛽𝑘 =
𝒈𝑘+1

𝑇 𝒈𝑘+1

𝒈𝑘
𝑇𝒈𝑘

 (the Fletcher-Reeves formula).

Other versions of 𝛽𝑘 have also been proposed.

The significance of the conjugacy property is apparent in the case of quadratic functions, if we formulate

a solution as: 𝑦 = ∑ 𝛼𝑖𝒅
𝑖𝑛

𝑖=1 , which is composed of 𝑛 conjugate vectors. Then, the minimization problem

is decomposed into a set of one-dimensional problems given as:

min
𝑦

 𝑓(𝒚) = ∑ min
𝛼𝑖

(
1

2
𝛼𝑖

2𝒅𝑖𝑇𝑨𝒅𝑖 − 𝛼𝑖𝒃
𝑇𝒅𝑖)

𝑛

𝑖=1
 (7.19)

By setting the derivative with respect to 𝛼𝑖 equal to zero, we obtain: 𝛼𝑖𝒅
𝑖𝑇𝑨𝒅𝑖 − 𝒃𝑇𝒅𝑖 = 0, leading to:

𝛼𝑖 =
𝒃𝑇𝒅𝑖

𝒅𝑖𝑇𝑨𝒅𝑖
. This shows that the CG method iteratively determines conjugate directions 𝒅𝑖 and their

coefficients 𝛼𝑖.

A Conjugate-gradient algorithm that uses residuals: 𝒓𝑖 = 𝒃 − 𝑨𝒙𝑖, 𝑖 = 1,2,… , 𝑛, is given below:

Conjugate-Gradient Algorithm (Griva, Nash & Sofer, p454):

Init: Choose 𝒙0 = 𝟎, 𝒓0 = 𝒃, 𝒅(−1) = 0, 𝛽0 = 0.

For 𝑖 = 0,1,…

1. Check convergence: if ‖𝒓𝑖‖ < 𝜖, stop.

2. If 𝑖 > 0, set 𝛽𝑖 =
𝒓𝑖
𝑇𝒓𝑖

𝒓𝑖−1
𝑇 𝒓𝑖−1

3. Set 𝒅𝑖 = 𝒓𝑖 + 𝛽𝑖𝒅
𝑖−1; 𝛼𝑖 =

𝒓𝑖
𝑇𝒓𝑖

𝒅𝑖𝑇𝑨𝒅𝑖
 ; 𝒙𝑖+1 = 𝒙𝑖 + 𝛼𝑖𝒅

𝑖; 𝒓𝑖+1 = 𝒓𝑖 − 𝛼𝑖𝑨𝒅𝑖.

113

Preconditioning. In all gradient-based methods, the convergence rates improve when the Hessian matrix

has a low condition number. Preconditioning, or scaling, aimed at reducing the condition number,

therefore, helps to speed up the convergence rates. Preconditioning involves a linear transformation:

𝒙 = 𝑷𝒚, where 𝑷 is invertible.

In the case of CG method, as a result of preconditioning, the conjugate directions are modified as:

𝒅0 = −𝑷𝒈0; 𝒅
𝑘+1 = −𝑷𝒈𝑘+1 + 𝛽𝑘𝒅𝑘 𝑘 ≥ 0 (7.20)

The modified CG parameter (in the case of Fletcher-Reeves formula) is given as: 𝛽𝑘 =
𝒈𝑘+1

𝑇 𝑷𝒈𝑘+1

𝒈𝑘
𝑇𝑷𝒈𝑘

.

Finally, the CG algorithm is modified to include preconditioning as follows:

Preconditioned Conjugate-Gradient Algorithm (Griva, Nash & Sofer, p475):

Initialize: Choose 𝒙0 = 𝟎, 𝒓0 = 𝒃,𝒅(−1) = 0, 𝛽0 = 0.

For 𝑖 = 0,1,…

1. Check convergence: if ‖𝒓𝑖‖ < 𝜖, stop.

2. Set 𝒛𝑖 = 𝑷−1𝒓𝑖. If 𝑖 > 0, set 𝛽𝑖 =
𝒓𝑖
𝑇𝒛𝑖

𝒓𝑖−1
𝑇 𝒛𝑖−1

.

3. Set 𝒅𝑖 = 𝒛𝑖 + 𝛽𝑖𝒅
𝑖−1; 𝛼𝑖 =

𝒓𝑖
𝑇𝒛𝑖

𝒅𝑖𝑇𝑨𝒅𝑖
 ; 𝒙𝑖+1 = 𝒙𝑖 + 𝛼𝑖𝒅

𝑖; 𝒓𝑖+1 = 𝒓𝑖 − 𝛼𝑖𝑨𝒅𝑖.

Rate of Convergence. Conjugate gradient methods achieve superlinear convergence, which degenerates

to linear convergence if the initial direction is not chosen as the steepest descent direction. In the case of

quadratic functions, the minimum is reached exactly in 𝑛 iterations. For general nonlinear functions,

convergence in 2𝑛 iterations is to be expected. Nonlinear CG methods typically have the lowest per

iteration computational costs of all gradient methods.

Example 7.3: Conjugate-gradient method

We wish to solve the following minimization problem: min𝒙 𝑓(𝑥1, 𝑥2) = 𝑥1
2 + 0.5𝑥2

2 − 𝑥1𝑥2, where:

∇𝑓(𝒙)𝑇 = [2𝑥1 − 𝑥2, 𝑥2 − 𝑥1].

Let 𝑥0 = (1,1), then: ∇𝑓(𝒙0) = 𝒈0 = [1, 0]𝑇, and we set 𝒅0 = −𝒈0 = [−1,0]𝑇, which results in:

𝒙1 = [1 − 𝛼, 1]𝑇, and: 𝑓(𝛼) = (1 − 𝛼)2 + 𝛼 − 0.5. Setting 𝑓′(𝛼) = 0, we obtain: 𝛼 = 0.5, and the

solution estimate is updated as 𝒙1 = [0.5, 1]𝑇.

In the second iteration, we set 𝒅1 = −𝒈1 + 𝛽0𝒅
0, where 𝒈1 = [0, 0.5]𝑇 , 𝛽0 =

‖𝒄1‖

‖𝒄0‖
= 0.25. Accordingly,

𝒅1 = [−0.25,−0.5]𝑇 , 𝒙2 = (1 − 0.5𝛼)[0.5, 1]𝑇, and 𝑓(𝛼) = 0.25(1 − 0.5𝛼)2. Again, by setting

𝑓′(𝛼) = 0, we obtain 𝛼 = 2, which gives 𝒙2 = [0, 0]. We note that the minimum of a quadratic function

of two variables is reached in two iterations.

114

7.3.3 Newton’s Method

Newton’s method for finding the zero of a nonlinear function was earlier introduced in Section 2.11. Here

we apply Newton’s method to solve the nonlinear equation resulting from the application of FONC:

∇𝑓(𝒙) = 0. We can use a linear approximation to ∇𝑓(𝒙) to apply this condition as:

∇𝑓(𝒙𝑘 + 𝒅) ≅ ∇𝑓(𝒙𝑘) + ∇2𝑓(𝑥𝑘) 𝒅 = 𝟎 (7.21)

Then, the variable update is solved from a system of linear equations given as:

∇2𝑓(𝒙𝑘)𝒅 = −∇𝑓(𝒙𝑘) or 𝑯𝑘𝒅 = 𝒈𝑘 (7.22)

The above equation leads to the following update rule:

𝒙𝑘+1 = 𝒙𝑘 − (∇2𝑓(𝒙𝑘))
−1

∇𝑓(𝒙𝑘) or 𝒙𝑘+1 = 𝒙𝑘 − 𝑯𝑘
−1𝒈𝑘 (7.23)

Equivalently, the above formula can also be obtained by minimizing a second order Taylor series

approximation of 𝑓(𝒙) given as:

𝑓(𝒙𝑘 + 𝒅) = 𝑓(𝒙𝑘) + ∇𝑓(𝒙𝑘)𝑇𝒅 +
1

2
 𝒅𝑇𝑯𝑘𝒅 (7.24)

Then, the FONC for minimization of the function are: 𝑯𝑘𝒅 + 𝒈𝑘 = 𝟎.

This implies that at every iteration Newton’s method approximates 𝑓(𝒙) by a quadratic function: 𝑞𝑘(𝒅);

it then solves the minimization problem: min𝒅 𝑞𝑘(𝒅), and updates the current estimate as: 𝒙𝑘+1 = 𝒙𝑘 +

𝒅. Further, the solution assumes that 𝑞𝑘(𝒅) is convex, i.e., 𝑯𝑘 = ∇2𝑓(𝒙𝑘) is positive-definite.

The application of Newton’s method relies on the positive-definite assumption for 𝑯𝑘 = ∇2𝑓(𝒙𝑘). Only

then we are assured that ∇𝑓(𝒙𝑘)𝑇𝒅 = −∇𝑓(𝒙𝑘)𝑇𝑯𝑘∇𝑓(𝒙𝑘) satisfies the descent condition.

If ∇2𝑓(𝒙𝑘) is positive-definite, then a factorization of the form: ∇2𝑓(𝒙𝑘) = 𝑳𝑫𝑳𝑇, where 𝑑𝑖𝑖 > 0, can be

used to solve for the resulting system of linear equations, given as: (𝑳𝑫𝑳𝑇)𝒅 = −∇𝑓(𝒙𝑘). If at any point

𝑫 is found to have negative entries, i.e., if 𝑑𝑖𝑖 ≤ 0, then it should be replaced by a positive value, such as

|𝑑𝑖𝑖|. This correction amounts to adding a diagonal matrix 𝑬, such that ∇2𝑓(𝒙𝑘) + 𝑬 is positive-definite.

Marquardt Modification to Newton’s Method. Marquardt proposed the following modification to the

Newton’s method in order to ensure that the Hessian matrix stays positive definite. The Marquardt’s

equation to solve for the update is given as:

(𝑯𝑘 + 𝜆𝑰)𝒅 = −𝒈𝑘

where 𝜆 may be varied to ensure that the Hessian stays positive definite. A similar approach is used in

the Trust region methods (Sec. 7.4.5).

115

Modified Newton’s Method. The classical Newton’s method assumes a fixed step size of 1; hence, it

does not guarantee convergence to the minimum. A modified Newton’s method includes a variable step

size 𝛼𝑘, and is given as:

𝒙𝑘+1 = 𝒙𝑘 − 𝛼𝑘𝑯𝑘
−1𝒈𝑘

Note that line search methods can be used at each step to find 𝛼𝑘. An algorithm for modified Newton’s

method is given below.

Newton’s Method (Griva, Nash, & Sofer, p. 373):

Initialize: Choose 𝒙0, specify 𝜖

For 𝑘 = 0,1,…

1. Check convergence: If ‖∇𝑓(𝒙𝑘)‖ < 𝜖, stop

2. Factorize modified Hessian as ∇2𝑓(𝒙𝑘) + 𝑬 = 𝑳𝑫𝑳𝑇and solve (𝑳𝑫𝑳𝑇)𝒅 = −∇𝑓(𝒙𝑘) for 𝒅

3. Perform line search to determine 𝛼𝑘 and update the solution estimate as 𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘 𝒅𝑘

Rate of Convergence. Newton’s method achieves quadratic rate of convergence in the close

neighborhood of the optimal point, and superlinear rate of convergence otherwise.

The main drawback of the Newton’s method is its computational cost: the Hessian needs to be computed

at every step, and a linear system of equations needs to be solved to obtain the update. Due to its high

computational and storage costs, classic Newton’s method is rarely used in practice.

7.3.4 Quasi-Newton Methods

Quasi-Newton methods that use low-cost approximations to the Hessian matrix are among the most

widely used methods for nonlinear problems. These methods represent a generalization of one-

dimensional secant method, which approximates the second derivative as: 𝑓′′(𝑥𝑘) ≅
𝑓′(𝑥𝑘)−𝑓′(𝑥𝑘−1)

𝑥𝑘−𝑥𝑘−1
.

In the multi-dimensional case, the secant update translates into the following equations:

∇2𝑓(𝒙𝑘)(𝒙𝑘 − 𝒙𝑘−1) ≅ 𝛻𝑓(𝒙𝑘) − 𝛻𝑓(𝒙𝑘−1) (7.25)

In the quasi-Newton methods, a positive definite approximation 𝑯𝑘 to the Hessian matrix is used to

satisfy the secant condition:

𝑯𝑘(𝒙𝑘 − 𝒙𝑘−1) = 𝛻𝑓(𝒙𝑘) − 𝛻𝑓(𝒙𝑘−1) (7.26)

The secant condition places 𝑛 constraints on the structure of 𝑯𝑘, where further constraints may be added

to completely specify 𝑯𝑘 as well as to preserve its symmetry.

116

Note that the Hessian in the case of a quadratic function, 𝑞(𝒙) =
1

2
𝒙𝑇𝑸𝒙 − 𝒃𝑇𝒙, obeys the secant

condition, 𝑸𝒔𝑘 = 𝒚𝑘, which shows that a symmetric positive-definite 𝑯𝑘 in a quasi-Newton method

locally approximates quadratic behavior.

The quasi-Newton methods aim to iteratively update 𝑯𝑘 via one of the two schemes:

1. A direct update: 𝑯𝑘+1 = 𝑯𝑘 + ∆𝑯𝑘, 𝑯0 = 𝑰; or

2. An inverse update: 𝑭𝑘+1 = 𝑭𝑘 + ∆𝑭𝑘 , 𝑭 = 𝑯−1, 𝑭0 = 𝑰.

Using 𝑯𝑘 or 𝑭𝑘, the current search direction can be solved in either of the two ways:

1. From 𝑯𝑘𝒅 = −∇𝑓(𝒙𝑘), in the case of direct Hessian update, or

2. From: 𝒅 = −𝑭𝑘∇𝑓(𝒙𝑘), in the case of inverse Hessian update.

To proceed further, let 𝒔𝑘 = 𝒙𝑘+1 − 𝒙𝑘 = 𝛼𝒅𝑘, 𝒚𝑘 = 𝛻𝑓(𝒙𝑘+1) − 𝛻𝑓(𝒙𝑘); then, a symmetric rank-one

update formula for 𝑯𝑘 is given as (Griva, Nash & Sofer, p.414):

𝑯𝑘+1 = 𝑯𝑘 +
(𝒚𝑘 − 𝑯𝑘𝒔𝑘)(𝒚𝑘 − 𝑯𝑘𝒔𝑘)𝑇

(𝒚𝑘 − 𝑯𝑘𝒔𝑘)
𝑇𝒔𝑘

 (7.27)

The above formula, while obeying the secant condition, 𝑯𝑘+1𝒔𝑘 = 𝒚𝑘, does not ensure that 𝑯𝑘 remains

positive-definite. A class of symmetric rank-two update formulas that ensures positive-definiteness of 𝑯𝑘

are defined by:

𝑯𝑘+1 = 𝑯𝑘 −
(𝑯𝑘𝒔𝑘)(𝑯𝑘𝒔𝑘)𝑇

𝒔𝑘
𝑇𝑯𝑘𝒔𝑘

+
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

+ 𝜙(𝒔𝑘
𝑇𝑯𝑘𝒔𝑘)𝒗𝑘𝒗𝑘

𝑇 (7.28)

where 𝒗𝑘 =
𝒚𝑘

𝒚𝑘
𝑇𝒔𝑘

−
𝑯𝑘𝒔𝑘

𝒔𝑘
𝑇𝑯𝑘𝒔𝑘

 and 𝜙 ∈ [0,1].

Two popular choices for 𝜙 are: 𝜙 = 0 and 𝜙 = 1, resulting in the well-known DFP (Davison, Fletcher,

and Powell) and BGFS (Broyden, Fletcher, Goldfarb, and Shanno) update formulas.

The DFP formula results in the following inverse Hessian update:

𝑭𝑘+1 = 𝑭𝑘 −
(𝑭𝑘𝒚𝑘)(𝑭𝑘𝒚𝑘)

𝑇

𝒚𝑘
𝑇𝑭𝑘𝒚𝑘

+
𝒔𝑘𝒔𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

 (7.29)

The BFGS formula results in a direct Hessian update:

𝑯𝑘+1 = 𝑯𝑘 −
(𝑯𝑘𝒔𝑘)(𝑯𝑘𝒔𝑘)𝑇

𝒔𝑘
𝑇𝑯𝑘𝒔𝑘

+
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

 (7.30)

In the particular case of quadratic functions, 𝑞(𝒙) =
1

2
𝒙𝑇𝑸𝒙 − 𝒃𝑇𝒙, we have: 𝒚𝑘 = 𝛼𝑯𝑘𝒔𝑘. Hence, the

Hessian update is reduced to:

117

DFP: 𝑭𝑘+1 = 𝑭𝑘 − (1 − 𝛼)
𝒔𝑘𝒔𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

BFGS: 𝑯𝑘+1 = 𝑯𝑘 + (𝛼 − 1)
(𝑯𝑘𝒔𝑘)(𝑯𝑘𝒔𝑘)𝑇

𝒔𝑘
𝑇𝑯𝑘𝒔𝑘

The quasi-Newton algorithm is given below.

Quasi-Newton Algorithm (Griva, Nash & Sofer, p.415):

Initialize: Choose 𝒙0, 𝑯0 (e.g., 𝑯0 = 𝑰), specify 𝜀

For 𝑘 = 0,1,…

1. Check convergence: If ‖∇𝑓(𝒙𝑘)‖ < 𝜀, stop

2. Solve 𝑯𝑘𝒅 = −∇𝑓(𝒙𝑘) for 𝒅𝑘

3. Solve min𝛼 𝑓(𝒙𝑘 + 𝛼𝒅𝑘) for 𝛼𝑘, and update 𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘 𝒅𝑘

4. Compute 𝒔𝑘 , 𝒚𝑘, and update 𝑯𝑘 as per (7.29) or (7.30)

Rate of Convergence. Quasi-Newton methods achieve superlinear convergence, thus rivaling the second

order methods for solving nonlinear programming (NP) problems.

Example 7.4: Quasi-Newton method

As an example, we consider the following optimization problem:

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) = 2𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2

We have 𝑯 = [
4 − 1
−1 2

] , ∇𝑓 = 𝑯 [
𝑥1

𝑥2
]. Let 𝒙0 = [

1
1
] , 𝑓0 = 4, 𝑯0 = 𝑰, 𝑭0 = 𝑰; then,

Step 1: 𝒅0 = −∇𝑓(𝑥0) = [
−3
−1

], 𝑓(𝛼) = 2(1 − 3𝛼)2 + (1 − 𝛼)2 − (1 − 3𝛼)(1 − 𝛼), and by putting

𝑓′(𝛼) = 0, we get 𝛼 =
5

16
. Then, 𝒔1 = 𝛼𝒅0 = −

5

16
[
3
1
], 𝒙1 = [

0.625
0.6875

] , 𝑓1 = 0.875.

Hessian update:

𝒔1 = [
−0.9375
−0.3125

] , 𝒚1 = [
−3.4375
0.3125

] , 𝑭1 = [
1.1934 0.0645
0.0645 1.0215

] , 𝑯1 = [
0.3812 −0.2062

−0.2062 0.9313
].

Step 2: Using either update formula, we obtain: 𝒅1 = [
0.4375

−1.3125
] ; then, 𝑓(𝛼) = 5.36𝛼2 − 3.83𝛼 +

0.875 → 𝛼 = −0.3572, 𝒙2 = [
0.2188
0.2188

].

7.3.5 Trust-Region Methods

The trust-region methods locally employ a quadratic approximation 𝑞𝑘(𝒙𝑘) to the nonlinear objective

function; they were originally proposed to solve the nonlinear least-squares problems, but have since been

adapted to solve more general optimization problems.

118

The quadratic approximation is given as: 𝑞(𝒙) =
1

2
𝒙𝑇𝑸𝒙 − 𝒃𝑇𝒙, and is valid in a limited neighborhood

Ω𝑘 = {𝒙: ‖𝚪(𝒙 − 𝒙𝑘)‖ ≤ ∆𝑘} of 𝒙𝑘, where 𝚪 is a scaling parameter. The method then aims to find a

𝒙𝑘+1 ∈ Ω𝑘 , which results in sufficient decrease in 𝑓(𝒙). At each iteration 𝑘, trust-region algorithm solves

a constrained optimization sub-problem defined by:

min
𝒅

𝑞𝑘(𝒅) = 𝑓(𝒙𝑘) + ∇𝑓(𝒙𝑘)𝑇𝒅 +
1

2
𝒅𝑇∇2𝑓(𝒙𝑘)𝒅

subject to ‖𝒅‖ ≤ ∆𝑘
(7.31)

Using a Lagrangian function approach the first order necessary conditions are given as:

(∇2𝑓(𝒙𝑘) + 𝜆𝑰)𝒅𝑘 = −∇𝑓(𝒙𝑘), 𝜆(‖𝒅‖ − ∆𝑘) = 0 (7.32)

where 𝜆 ≥ 0 is the Lagrange multiplier associated with the inequality constraint, and (∇2𝑓(𝒙𝑘) + 𝜆𝑰) is a

positive-definite matrix. The quality of the quadratic approximation is estimated by the reliability index:

𝛾𝑘 =
𝑓(𝒙𝑘)−𝑓(𝒙𝑘+1)

𝑞𝑘(𝒙𝑘)−𝑞𝑘(𝒙𝑘+1)
. If this ratio is close to unity, the trust region may be expanded in the next iteration.

The resulting search direction 𝒅𝑘 is a function of the Lagrange multiplier 𝜆: 𝒅𝑘 = 𝒅𝑘(𝜆). For sufficiently

large ∆𝑘 and a positive-definite ∇2𝑓(𝒙𝑘), 𝜆 → 0, and 𝒅𝑘(𝜆) reduces to the Newton’s direction. Whereas,

for ∆𝑘= 0, 𝜆 → ∞, and 𝒅𝑘(𝜆) aligns with the steepest-descent direction. Thus, as 𝜆 varies between 0 and

∞, the 𝒅𝑘(𝜆) varies between Newton’s direction and the steepest descent direction.

The trust-region algorithm is given as follows:

Trust-Region Algorithm (Griva, Nash & Sofer, p.392):

Initialize: Choose 𝒙0, ∆0; specify 𝜀, 0 < 𝜇 < 𝜂 < 1 (e.g., 𝜇 =
1

4
; 𝜂 =

3

4
)

For 𝑘 = 0,1,…

1. Check convergence: If ‖∇𝑓(𝒙𝑘)‖ < 𝜀, stop

2. Solve min𝒅 𝑞𝑘(𝒅) subject to ‖𝒅‖ ≤ ∆𝑘

3. Compute 𝛾𝑘,

a. if 𝛾𝑘 < 𝜇, set 𝒙𝑘+1 = 𝒙𝑘 , ∆𝑘+1=
1

2
∆𝑘

b. else if 𝛾𝑘 < 𝜂, set 𝒙𝑘+1 = 𝒙𝑘 + 𝒅𝑘 , ∆𝑘+1= ∆𝑘

c. else set 𝒙𝑘+1 = 𝒙𝑘 + 𝒅𝑘 , ∆𝑘+1= 2∆𝑘

 Computer Methods for Solving the Constrained Problems 7.4

The numerical methods devised for solving constrained nonlinear optimization problems fall into two

broad categories: the first category includes penalty, barrier, and augmented Lagrangian methods that are

an extension of the methods developed for unconstrained problems; these are collectively known as the

119

transformation methods. The second category includes methods that iteratively approximate the nonlinear

problem as a series of LP or QP problems and use the LP or QP methods to solve it.

Prominent computer methods for solving constrained optimization problems are described in this and the

following section. The following discussion considers a general optimization problem, described as:

min
𝒙

 𝑓(𝒙)

Subject to {

ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑝;

 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 𝑖, … ,𝑚;

𝑥𝑖𝐿 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑈, 𝑖 = 1,… , 𝑛.

(7.33)

7.4.1 Penalty and Barrier Methods

The Penalty and Barrier methods are extensions of the numerical methods developed for solving

unconstrained optimization problems. Both methods employ a composite of objective and constraint

functions where the constraints are assigned a high violation penalty. Once a composite function has been

defined for a set of penalty parameters, it can be minimized using any of the unconstrained optimization

techniques. The penalty parameters can be adjusted in successive iterations.

The Penalty and Barrier methods fall under sequential unconstrained minimization techniques (SUMTs).

Because of their simplicity, SUMTs have been extensively developed and used in engineering design

problems. The SUMTs generally employ a composite function of the following form (Arora, p. 477):

Φ(𝒙, 𝑟) = 𝑓(𝒙) + 𝑃(𝑔(𝒙), ℎ(𝒙), 𝒓) (7.34)

where 𝑔(𝒙) and ℎ(𝒙) are, respectively, the inequality and equality constraints, and 𝒓 is a vector of penalty

parameters. Depending on their region of iteration, these methods are further divided into Penalty or

Barrier methods as described below:

Penalty Function Method. A penalty function method that iterates through the infeasible region of

space, employs a quadratic loss function of the following form:

𝑃(𝑔(𝒙), ℎ(𝒙), 𝒓) = 𝑟 (∑ (𝑔𝑖
+(𝒙))

2

𝑖
+ ∑ (ℎ𝑖(𝒙))

2

𝑖
) ; 𝑔𝑖

+(𝒙) = max(0, 𝑔𝑖(𝒙)) , 𝑟 > 0 (7.35)

Barrier Function Method. A barrier method that iterates through the feasible region of space, and is

only applicable to inequality constrained problems, employs a log barrier function of the following form:

𝑃(𝑔(𝒙), ℎ(𝒙), 𝒓) =
1

𝑟
∑ log (−𝑔𝑖(𝑥))

𝑖
 (7.36)

For both penalty and barrier methods, convergence implies that as 𝑟 → ∞, 𝒙(𝑟) → 𝒙∗, where 𝒙(𝑟)

minimizes Φ(𝒙, 𝑟). To improve convergence, 𝑟 may be replaced by a sequence {𝑟𝑘}. We, however, note

120

that since the Hessian of the unconstrained function becomes ill-conditioned for large 𝑟, both methods are

ill-behaved near the constraint boundary.

7.4.2 The Augmented Lagrangian Method

As an alternative to the penalty and barrier methods described above, the augmented Lagrangian (AL)

methods add a quadratic penalty term to the Lagrangian function that also includes multipliers for

penalizing individual constraint violations. The resulting AL method is generally more effective than

penalty and barrier methods, and is commonly employed to solve Finite Element Analysis problems.

The augmented Lagrangian method is introduced below using an equality constrained optimization

problem, given as (Belegundu and Chandrupatla, p. 276):

min
𝒙

 𝑓(𝒙)

Subject to: ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙
(7.37)

The augmented Lagrangian function for the problem is defined as:

𝒫(𝒙, 𝒗, 𝑟) = 𝑓(𝒙) + ∑(𝑣𝑗ℎ𝑗(𝒙) +
1

2
𝑟ℎ𝑗

2(𝒙))

𝑗

 (7.38)

In the above, 𝑣𝑗 are the Lagrange multipliers and the additional term defines an exterior penalty function

with 𝑟 as the penalty parameter. The gradient and Hessian of the AL are computed as:

∇𝒫(𝒙, 𝒗, 𝑟) = ∇𝑓(𝒙) + ∑(𝑣𝑗 + 𝑟ℎ𝑗(𝒙))

𝑗

∇ℎ𝑗(𝒙)

∇2𝒫(𝒙, 𝒗, 𝑟) = ∇2𝑓(𝒙) + ∑((𝑣𝑗 + 𝑟ℎ𝑗(𝒙)) ∇2ℎ𝑗(𝒙) + 𝑟∇ℎ𝑗
T∇ℎ𝑗(𝒙))

𝑗

(7.39)

While the Hessian of the Lagrangian may not be uniformly positive definite, a large enough value of 𝑟

makes the Hessian of AL positive definite at 𝒙. Next, since the AL is stationary at the optimum, then,

paralleling the developments in the duality theory (Sec. 5.7), we can solve the above optimization

problem via a min-max framework as follows: first, for given 𝑟 and 𝒗, a dual function is defined via the

following minimization problem:

𝜓(𝒗) = min
𝒙

 𝒫(𝒙, 𝒗, 𝑟) = 𝑓(𝒙) + ∑(𝑣𝑗ℎ𝑗(𝒙) +
1

2
𝑟 (ℎ𝑗(𝒙))

2
)

𝑗

 (7.40)

This step is followed by a maximization problem defined as: max𝒗 𝜓(𝒗).

121

The derivative of the dual function is computed as:
𝑑𝜓

𝑑𝑣𝑗
= ℎ𝑗(𝒙) + ∇𝜓𝑇 𝑑𝒙

𝑑𝑣𝑗
, where the latter term is zero,

since ∇𝜓 = ∇𝒫 = 0. Further, an expression for the Hessian is given as:
𝑑2𝜓

𝑑𝑣𝑖𝑑𝑣𝑗
= ∇ℎ𝑖

𝑇 𝑑𝒙

𝑑𝑣𝑗
, where the

𝑑𝒙

𝑑𝑣𝑗

term can be obtained by differentiating ∇𝜓 = 0, which gives: ∇ℎ𝑗 + ∇2𝒫 (
𝑑𝒙

𝑑𝑣𝑗
) = 0, or ∇2𝒫 (

𝑑𝒙

𝑑𝑣𝑗
) =

−∇ℎ𝑗. Therefore, the Hessian is computed as:

𝑑2𝜓

𝑑𝑣𝑖𝑑𝑣𝑗
= −∇ℎ𝑖

𝑇(∇2𝒫)−1∇ℎ𝑗 (7.41)

The AL method proceeds as follows: we choose a suitable 𝑣, and solve the minimization problem in

(7.40) to define 𝜓(𝑣). We then solve the maximization problem to find the solution that minimizes the

AL. The latter step can be done using gradient-based methods. For example, the Newton update for the

maximization problem is given as:

𝒗𝑘+1 = 𝒗𝑘 − (
𝑑2𝜓

𝑑𝑣𝑖𝑑𝑣𝑗
)

−1

𝒉 (7.42)

For large 𝒓, the update may be approximated as: 𝑣𝑗
𝑘+1 = 𝑣𝑗

𝑘 + 𝑟𝑗ℎ𝑗, 𝑗 = 1,… , 𝑙 (Belegundu and

Chandrupatla, p. 278).

For inequality constrained problems, the AL may be defined as (Arora, p. 480):

𝒫(𝒙, 𝒖, 𝑟) = 𝑓(𝒙) + ∑{
𝑢𝑖𝑔𝑖(𝒙) +

1

2
𝑟𝑔𝑖

2(𝒙), if 𝑔𝑗 +
𝑢𝑗

𝑟
≥ 0

−
1

2𝑟
𝑢𝑖

2, if 𝑔𝑗 +
𝑢𝑗

𝑟
< 0𝑖

 (7.43)

The AL algorithm is given below.

The Augmented Lagrangian Algorithm (Arora, p. 480)

Initialize: estimate 𝑥0, 𝑢0 ≥ 0, 𝑣0, 𝑟 > 0; choose 𝛼 > 0, 𝛽 > 1, 𝜖 > 0, 𝜅 > 0, 𝐾 = ∞

For 𝑘 = 1,2,…

1. Solve 𝒙𝑘 = min
𝒙

 𝒫(𝒙, 𝒖, 𝒗, 𝑟𝑘)

2. Evaluate ℎ𝑖(𝒙
𝑘), 𝑖 = 1, . . , 𝑙; 𝑔𝑗(𝒙

𝑘), 𝑗 = 1,… ,𝑚;

compute 𝐾̅ = 𝑚𝑎𝑥 {|ℎ𝑖|, 𝑖 = 1,… , 𝑙;max (𝑔𝑗, −
𝑢𝑗

𝑟𝑘
) , 𝑗 = 1,… ,𝑚}

3. Check termination: If 𝐾̅ ≤ 𝜅 and ‖∇𝒫(𝒙𝑘)‖ ≤ 𝜖 𝑚𝑎𝑥{1, ‖𝒙𝑘‖}, quit

4. If 𝐾̅ < 𝐾 (i.e., constraint violations have improved), set 𝐾 = 𝐾̅

Set 𝑣𝑖
𝑘+1 = 𝑣𝑖

𝑘 + 𝑟𝑘ℎ𝑖(𝒙
𝑘); 𝑖 = 1,… , 𝑙. Set 𝑢𝑗

𝑘+1 = 𝑢𝑗
𝑘 + 𝑟𝑘𝑚𝑎𝑥 {𝑔𝑗(𝒙

𝑘), −
𝑢𝑗

𝑘

𝑟𝑘
} ; 𝑗 = 1,… ,𝑚.

122

5. If 𝐾̅ >
𝐾

𝛼
 , (i.e., constraint violations did not improve by a factor 𝛼), set 𝑟𝑘+1 = 𝛽𝑟𝑘

Example 7.5: Design of cylindrical water tank (Belegundu and Chandrupatla, p. 278)

We consider the design of an open-top cylindrical water tank. We wish to maximize the volume of the

tank for a given surface area 𝐴0. Let 𝑑 be the diameter and ℎ be the height; then, the optimization

problem is formulated as:

max
𝑑,𝑙

𝑓(𝑑, 𝑙) =
𝜋𝑑2𝑙

4

subject to ℎ:
𝜋𝑑2

4
+ 𝜋𝑑𝑙 − 𝐴0 = 0

We drop the constant
𝜋

4
, convert to a minimization problem, assume

4𝐴0

𝜋
= 1, and redefine the problem as:

min
𝑑,𝑙

𝑓̅(𝑑, 𝑙) = −𝑑2𝑙

subject to ℎ: 𝑑2 + 4𝑑𝑙 − 1 = 0

A Lagrangian function for the problem is formulated as: ℒ(𝑑, 𝑙, 𝜆) = −𝑑2𝑙 + 𝜆(𝑑2 + 4𝑑𝑙 − 1)

The FONC for the problem are: −2𝑑𝑙 + 2𝜆(𝑑 + 2𝑙) = 0,−𝑑2 + 4𝑑𝜆 = 0, 𝑑2 + 4𝑑𝑙 − 1 = 0 .

Using FONC, the optimal solution is given as: 𝑑∗ = 2𝑙∗ = 4𝜆∗ =
1

√3
.

The Hessian at the optimum point is given as: ∇2ℒ(𝑑∗, 𝑙∗, 𝜆∗) = [
−2𝜆 −4𝜆
−4𝜆 0

]. It is evident that the

Hessian is not positive definite.

Next, the AL for the problem is formed as:

𝒫(𝑑, 𝑙, 𝜆, 𝑟) = −𝑑2𝑙 + 𝜆(𝑑2 + 4𝑑𝑙 − 1) +
1

2
𝑟(𝑑2 + 4𝑑𝑙 − 1)2

The dual function is defined as: 𝜓(𝜆) = min𝑑,𝑙 𝒫(𝑑, 𝑙, 𝜆, 𝑟).

The dual optimization problem is then formulated as: max
𝑑,𝑙

 𝜓(𝜆).

A plot of 𝜓(𝜆) vs. 𝜆 shows a concave function with 𝜆∗ = 𝜆𝑚𝑎𝑥 = 0.144.

The optimum values for the design variables are the same as above: 𝑑∗ = 2𝑙∗ = 0.577.

 Sequential Linear Programming 7.5

The sequential linear programming (SLP) method aims to sequentially solve the nonlinear optimization

problem as a series of linear programs. In particular, we employ the first order Taylor series expansion to

iteratively develop and solve a new LP subprogram to solve the KKT conditions associated with the NP

problem. SLP methods are generally not robust, and have been mostly replaced by SQP methods.

To develop the SLP method, let 𝒙𝑘 denote the current estimate of design variables and let 𝒅 denote the

change in variable; then, we express the first order expansion of the objective and constraint functions in

the neighborhood of 𝒙𝑘 as:

123

𝑓(𝒙𝑘 + 𝒅) = 𝑓(𝒙𝑘) + ∇𝑓(𝒙𝑘)
𝑇
𝒅

𝑔𝑖(𝒙
𝑘 + 𝒅) = 𝑔𝑖(𝒙

𝑘) + ∇𝑔𝑖(𝒙
𝑘)

𝑇
𝒅, 𝑖 = 1,… ,𝑚

ℎ𝑗(𝒙
𝑘 + 𝒅) = ℎ𝑗(𝒙

𝑘) + ∇ℎ𝑗(𝒙
𝑘)

𝑇
𝒅, 𝑗 = 1,… , 𝑙

(7.44)

To proceed further, let: 𝑓𝑘 = 𝑓(𝒙𝑘), 𝑔𝑖
𝑘 = 𝑔𝑖(𝒙

𝑘), ℎ𝑗
𝑘 = ℎ𝑗(𝒙

𝑘); and define: 𝑏𝑖 = −𝑔𝑖
𝑘, 𝑒𝑗 = −ℎ𝑗

𝑘,

𝒄 = ∇𝑓(𝒙𝑘), 𝒂𝑖 = ∇𝑔𝑖(𝒙
𝑘), 𝒏𝑗 = ∇ℎ𝑗(𝒙

𝑘), 𝑨 = [𝒂1, 𝒂2, … , 𝒂𝑚], 𝑵 = [𝒏1, 𝒏2, … , 𝒏𝑙]. Then, after

dropping the constant term 𝑓𝑘 from the objective function, we define the following LP subprogram for

the current iteration of the NP problem (Arora, p. 498):

min
𝒅

𝑓̅ = 𝒄𝑇𝒅

Subject to: 𝑨𝑇𝒅 ≤ 𝒃, 𝑵𝑇𝒅 = 𝒆
(7.45)

where 𝑓 ̅represents the linearized change in the original cost function and the columns of 𝑨 and 𝑵

represent, respectively, the gradients of inequality and equality constraints. Since the objective and

constraint functions are now linear, the resulting LP subproblem can be converted to standard form and

solved via the Simplex method. Problems with a small number of variables can also be solved graphically

or by application of KKT conditions to the LP problem.

The following points regarding the SLP method should be noted:

1. Since both positive and negative changes to design variables 𝒙𝑘 are allowed, the variables 𝑑𝑖 are

unrestricted in sign and, therefore, must be replaced by 𝑑𝑖 = 𝑑𝑖
+ − 𝑑𝑖

− in the Simplex algorithm.

2. In order to apply the simplex method to the problem, the rhs parameters 𝑏𝑖, 𝑒𝑗 are assumed non-

negative, or else, the respective constraint must be multiplied with −1.

3. SLP methods require additional constraints of the form, −∆𝑖𝑙
𝑘≤ 𝑑𝑖

𝑘 ≤ ∆𝑖𝑢
𝑘 , termed as move limits,

to bind the LP solution. These limits represent the maximum allowed change in 𝑑𝑖 in the current

iteration. They are generally selected as a percentage (1-100%) of the design variable values.

They serve dual purpose of binding the LP solution and obviating the need for line search in the

current iteration. Restrictive move limits tend to make the SLP problem infeasible.

The SLP algorithm is presented below:

SLP Algorithm (Arora, p. 508):

Initialize: choose 𝒙0, 𝜀1 > 0, 𝜀2 > 0.

For 𝑘 = 0,1,2,…

1. Choose move limits ∆𝑖𝑙
𝑘 , ∆𝑖𝑢

𝑘 as some fraction of current design 𝒙𝑘

2. Compute 𝑓𝑘, 𝒄, 𝑔𝑖
𝑘 , ℎ𝑗

𝑘, 𝑏𝑖, 𝑒𝑗

3. Formulate and solve the LP subproblem for 𝒅𝑘

4. If 𝑔𝑖 ≤ 𝜀1; 𝑖 = 1,… ,𝑚; |ℎ𝑗| ≤ 𝜀1; 𝑖 = 1,… , 𝑝; and ‖𝒅𝑘‖ ≤ 𝜀2, stop

5. Substitute 𝒙𝑘+1 ← 𝒙𝑘 + 𝛼𝒅𝑘 , 𝑘 ← 𝑘 + 1.

124

The SLP algorithm is simple to apply, but should be used with caution as it can easily run into

convergence problems. The selection of move limits is one of trial and error and can be best achieved in

an interactive mode.

An example is presented to explain the SLP method:

Example 7.6: Sequential Linear Programming

We perform one iteration of the SLP algorithm for the following NLP problem:

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2

Subject to: 1 − 𝑥1
2 − 𝑥2

2 ≤ 0; −𝑥1 ≤ 0,−𝑥2 ≤ 0

The NLP problem is convex and has a single minimum at 𝒙∗ = (
1

√2
,

1

√2
). The objective and constraint

gradients are: ∇𝑓𝑇 = [2𝑥1 − 𝑥2, 2𝑥2 − 𝑥1], ∇𝑔1
𝑇 = [−2𝑥1, −2𝑥2], ∇𝑔2

𝑇 = [−1,0], ∇𝑔3
𝑇 = [0,−1].

Let 𝒙0 = (1, 1), so that 𝑓0 = 1, 𝒄𝑇 = [1 1]; further, let 𝜀1 = 𝜀2 = 0.001; then, using SLP method, the

resulting LP problem at the current step is defined as:

min
𝑑1,𝑑2

𝑓(𝑥1, 𝑥2) = 𝑑1 + 𝑑2

Subject to: [
−2 −2
−1 0
0 −1

] [
𝑑1

𝑑2
] ≤ [

1
1
1
]

Since the LP problem is unbounded, we may use 50% move limits to bind the solution. The resulting

update is given as: 𝒅∗ = [−
1

2
, −

1

2
]
𝑇

, so that 𝒙1 = [
1

2
,

1

2
]
𝑇
, with resulting constraint violations given as:

𝑔𝑖 = {
1

2
, 0, 0}. We note that smaller move limits in this step could have avoided resulting constraint

violation.

The SLP algorithm is not robust as move limits need to be imposed to force a solution. In the following, a

sequential quadratic problem that obviates the need for move limits is formulated and solved.

 Sequential Quadratic Programming 7.6

The sequential quadratic programming (SQP) method improves on the SLP method by discarding the

move limits in favor of more robust ways of binding the solution. Specifically, SQP adds ‖𝒅‖ to the

objective, where 𝒅 represents the search direction. The resulting QP subproblem is defined as follows

(Arora, p. 514):

min
𝒅

𝑓̅ = 𝒄𝑇𝒅 +
1

2
𝒅𝑇𝒅 (7.46)

125

Subject to, 𝑨𝑇𝒅 ≤ 𝒃, 𝑵𝑇𝒅 = 𝒆

We make the following observations regarding the QP problem:

1. Since the QP subproblem represents a convex programming problem, a unique global minimum,

if one exists, can be obtained.

2. From a geometric perspective, 𝑓 ̅represents the equation of a hypersphere with its center at – 𝒄,

and the search direction 𝒅 points to the center of the hypersphere.

3. When there are no active constraints, application of FONC:
𝜕𝑓̅

𝜕𝒅
= 𝒄 + 𝒅 = 0, results in the search

direction: 𝒅 =–𝒄, which conforms to the steepest descent direction.

4. When constraints are present, the QP solution amounts to projecting the steepest-descent

direction onto the constraint hyperplane; the resulting search direction is termed as constrained

steepest-descent (CSD) direction.

The QP subproblem can be analytically solved via the Lagrangian function approach. To do that, we add

a slack variable 𝒔 to the inequality constraint, and construct a Lagrangian function given as:

ℒ(𝒅, 𝒖, 𝒗) = 𝒄𝑇𝒅 +
1

2
 𝒅𝑇𝒅 + 𝒖𝑇(𝑨𝑇𝒅 − 𝒃 + 𝒔) + 𝒗𝑇(𝑵𝑇𝒅 − 𝒆) (7.47)

Then, the KKT conditions for a minimum are:

𝛁ℒ = 𝒄 + 𝒅 + 𝑨𝒖 + 𝑵𝒗 = 𝟎, 𝑨𝑇𝒅 + 𝒔 = 𝒃, 𝑵𝑇𝒅 = 𝒆 , 𝒖𝑇𝒔 = 𝟎, 𝒖 ≥ 𝟎, 𝒔 ≥ 𝟎 (7.48)

Further, by writing 𝒗 = 𝒚 − 𝒛, 𝒚 ≥ 𝟎, 𝒛 ≥ 𝟎, these conditions are expressed in matrix form as:

[
𝑰 𝑨

𝑨𝑇 𝟎
𝑵𝑇 𝟎

𝟎
𝑰
𝟎

𝑵 −𝑵
𝟎 𝟎
𝟎 𝟎

]

[

𝒅
𝒖
𝒔
𝒚
𝒛]

= [
−𝒄
𝒃
𝒆

], or 𝑷𝑿 = 𝑸 (7.49)

where the complementary slackness conditions, 𝒖𝑇𝒔 = 𝟎, translate as: 𝑿𝑖𝑿𝑖+𝑚 = 0, 𝑖 = 𝑛 + 1,⋯ , 𝑛 + 𝑚.

The solution to the above problem can be obtained via LCP framework (Sec. 5.7.1).

Once a search direction 𝒅 has been determined, a step-size along 𝒅 needs to be computed by solving the

line search problem. The descent function approach, discussed below, is used to resolve the line search

step in the SQP solution process.

7.6.1 Descent Function Approach

In SQP methods, the line search solution is based on minimization of a descent function that penalizes

constraint violations. The following descent function has been proposed in literature (Arora, p. 521):

126

Φ(𝒙) = 𝑓(𝒙) + 𝑅𝑉(𝒙) (7.50)

where 𝑓(𝒙) represents the cost function value, 𝑉(𝒙) represents the maximum constraint violation, and

𝑅 > 0 is a penalty parameter. The descent function value at the current iteration is expressed as:

Φ𝑘 = 𝑓𝑘 + 𝑅𝑉𝑘, 𝑅 = max {𝑅𝑘, 𝑟𝑘} (7.51)

where 𝑅𝑘 is the current value of the penalty parameter, 𝑟𝑘 is the current sum of the Lagrange multipliers,

and 𝑉𝑘 is the maximum constraint violation in the current step. The latter parameters are computed as:

𝑟𝑘 = ∑ 𝑢𝑖
𝑘𝑚

𝑖=1 + ∑ |𝑣𝑗
𝑘|

𝑝
𝑗=1

𝑉𝑘 = max {0; 𝑔𝑖, 𝑖 = 1, . . . , 𝑚; |ℎ𝑗|, 𝑗 = 1,… , 𝑝}
(7.52)

where absolute values of the Lagrange multipliers and constraint violations for equality constraints are

used. Next, the line search subproblem is defined as:

min
𝛼

Φ(𝛼) = Φ(𝒙𝑘 + 𝛼𝒅𝑘) (7.53)

The above problem may be solved via the line search methods described in Sec. 7.2. An algorithm for

solving the SQP problem is presented below:

SQP Algorithm (Arora, p. 526):

Initialize: choose 𝒙0, 𝑅0 = 1, 𝜀1 > 0, 𝜀2 > 0.

For 𝑘 = 0,1,2,…

1. Compute 𝑓𝑘, 𝑔𝑖
𝑘, ℎ𝑗

𝑘 , 𝒄, 𝑏𝑖, 𝑒𝑗; compute 𝑉𝑘.

2. Formulate and solve the QP subproblem to obtain 𝒅𝑘 and the Lagrange multipliers 𝒖𝑘 and 𝒗𝑘.

3. If 𝑉𝑘 ≤ 𝜀1 and ‖𝒅𝑘‖ ≤ 𝜀2, stop.

4. Compute 𝑅; formulate and solve line search subproblem to obtain 𝛼

5. Set 𝒙𝑘+1 ← 𝒙𝑘 + 𝛼𝒅𝑘 , 𝑅𝑘+1 ← 𝑅, 𝑘 ← 𝑘 + 1.

It can be shown that the above algorithm is convergent, i.e., Φ(𝒙𝑘) ≤ Φ(𝒙0), and that 𝒙𝑘 converges to

the KKT point in the case of general constrained optimization problems (Arora, p. 525).

7.6.2 SQP with Approximate Line Search

The SQP algorithm can be used with approximate line search methods, similar to Arjimo’s rule (Sec.

7.2.2) as follows: let 𝑡𝑗, 𝑗 = 0,1,… denote a trial step size, 𝒙𝑘+1,𝑗 denote the trial design point, 𝑓𝑘+1,𝑗 =

𝑓(𝒙𝑘+1,𝑗) denote the function value at the trial solution, and Φ𝑘+1,𝑗 = 𝑓𝑘+1,𝑗 + 𝑅𝑉𝑘+1,𝑗 denote the

127

penalty function at the trial solution. The trial solution is required to satisfy the following descent

condition:

Φ𝑘+1,𝑗 + 𝑡𝑗𝛾‖𝒅𝑘‖
2

≤ Φ𝑘,𝑗, 0 < 𝛾 < 1 (7.54)

where a common choice for 𝛾 is: 𝛾 =
1

2
. Further, 𝑡𝑗 = 𝜇𝑗 , 𝜇 =

1

2
, 𝑗 = 0,1,2,…. The above descent

condition ensures that the constraint violation decreases at each step of the method. The following

example illustrates the application of approximate line search algorithm.

Example 7.7: Sequential Quadratic Programming with Approximate Line Search

We consider the above NL problem, given as:

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2

subject to 𝑔1: 1 − 𝑥1
2 − 𝑥2

2 ≤ 0, 𝑔2 : − 𝑥1 ≤ 0, 𝑔3 : − 𝑥2 ≤ 0.

where the gradient functions are computed as: ∇𝑓𝑇 = [2𝑥1 − 𝑥2, 2𝑥2 − 𝑥1], ∇𝑔1
𝑇 = [−2𝑥1, −2𝑥2],

∇𝑔2
𝑇 = [−1,0], ∇𝑔3

𝑇 = [0,−1].

Let 𝑥0 = (1, 1); then, 𝑓0 = 1, 𝒄 = [1, 1]𝑇 , 𝑔1(1,1) = 𝑔2(1,1) = 𝑔3(1,1) = −1. Since, at this point,

there are no active constraints, 𝑉0 = 0, the preferred search direction is: 𝒅 = −𝒄 = [−1,−1]𝑇; the line

search problem is defined as: min𝛼 Φ(𝛼) = 𝑓(𝒙0 + 𝛼𝒅0) = (1 − 𝛼)2.

This problem can be analytically solved by setting Φ′(𝛼) = 0, with the solution: 𝛼 = 1, resulting in

𝑥1 = (0, 0); however, this analytical solution results in a large constraint violation that is undesired.

Use of the approximate line search method for the problem results in the following computations:

let 𝑡0 = 1, 𝑅0 = 10, 𝛾 = 𝜇 =
1

2
; then 𝒙1,0 = (0,0), ‖𝒅0‖2 = 2, 𝑓1,0 = 0, 𝑉1,0 = 1, Φ1,0 = 10, and the

descent condition Φ1,0 +
1

2
‖𝒅0‖2 ≤ Φ0 = 1 is not met. We then try 𝑡1 =

1

2
 to obtain: 𝒙1,1 = (

1

2
,
1

2
) ,

V1,1 =
1

2
, Φ1,1 = 5

1

4
, and the descent condition fails again; next, for 𝑡2 =

1

4
 , we get: 𝒙1,2 = (

3

4
,
3

4
) ,

V1,2 = 0, Φ1,2 =
9

16
, and the descent condition checks as: Φ1,2 +

1

8
‖𝒅0‖2 ≤ Φ0. Therefore, we set:

𝛼 = 𝑡2 =
1

4
, 𝒙1 = 𝒙1,2 = (

3

4
,
3

4
) with no constraint violation.

7.6.3 The Active Set Strategy

The computational cost of solving the QP subproblem can be substantially reduced by only including the

active constraints in the subproblem. Accordingly, if the current design point 𝒙𝑘 ∈ Ω, where Ω denotes

the feasible region, then, for some small 𝜀 > 0, the set of potentially active constraints is defined as:

ℐ𝑘 = {𝑖: 𝑔𝑖
𝑘 > −𝜀; 𝑖 = 1,… ,𝑚}⋃{𝑗: 𝑗 = 1,… , 𝑝}.

128

In the event 𝒙𝑘 ∉ Ω, let the current maximum constraint violation be given as: 𝑉𝑘 = max {0; 𝑔𝑖
𝑘, 𝑖 =

1, . . . , 𝑚; |ℎ𝑗
𝑘|, 𝑗 = 1,… , 𝑝}; then, the active constraint set is defined in the following manner: ℐ𝑘 =

{𝑖: 𝑔𝑖
𝑘 > 𝑉𝑘 − 𝜀; 𝑖 = 1,… ,𝑚}⋃{𝑗: |ℎ𝑗

𝑘| > 𝑉𝑘 − 𝜀; 𝑗 = 1,… , 𝑝}.

Note that an inequality constraint at the current design point can be characterized in the multiple ways: as

active (if 𝑔𝑖
𝑘 = 0), as 𝜀-active (if 𝑔𝑖

𝑘 > −𝜀), as violated (𝑖𝑓 𝑔𝑖
𝑘 > 0), or as inactive (if 𝑔𝑖

𝑘 ≤ −𝜀);

whereas, an equality constraint is either active (ℎ𝑗
𝑘 = 0) or violated (ℎ𝑗

𝑘 ≠ 0).

The gradients of those constraints not in ℐ𝑘 do not need to be computed, however, the numerical

algorithm using the potential constraint strategy must be proved to be convergent. Further, from a

practical point of view, it is desirable to normalize all constraints with respect to their limit values, so that

a uniform 𝜀 value can be used to check for a constraint condition at the design point.

Using the active set strategy, the active inequality constraints being known, they can be treated as equality

constraints. We, therefore, assume that only equality constraints are present in the active set, and define

the QP subproblem as:

min
𝒅

𝑓̅ = 𝒄𝑇𝒅 +
1

2
𝒅𝑇𝒅

Subject to: 𝑵̅𝑇𝒅 = 𝒆̅
(7.55)

Then, using the Lagrangian function approach, the optimality conditions are given as: 𝑵̅𝒗 + 𝒄 + 𝒅 = 𝟎,

𝑵̅𝑇𝒅 − 𝒆̅ = 𝟎. They can be simultaneously solved to eliminate the Lagrange multipliers as follows: from

the optimality conditions we solve for 𝒅 as: 𝒅 = −𝒄 − 𝑵̅𝒗, and substitute it in the constraint equation to

get: 𝑵̅𝑇𝑵̅𝒗 = −𝑵̅𝑇(𝒄 + 𝒅). Next, we substitute 𝒗 back in the optimality condition to get:

𝒅 = −[𝑰 − 𝑵̅(𝑵̅𝑇𝑵̅)−1𝑵̅𝑇]𝒄 + 𝑵̅(𝑵̅𝑇𝑵̅)−1𝒆 (7.56)

or, more compactly as: 𝒅 = 𝒅1 + 𝒅2, where 𝒅1 in the above expression defines a matrix operator:

𝑷 = 𝑰 − 𝑵̅(𝑵̅𝑇𝑵̅)−1𝑵̅𝑇 , 𝑷𝑷 = 𝑷, that projects the gradient of the cost function onto the tangent

hyperplane defined by: {𝒅: 𝑵̅𝑇𝒅 = 0}. The same can also be obtained as a solution to the following

minimization problem: min
𝒅

 ‖𝒄 − 𝒅‖2 subject to 𝑵̅𝑇𝒅 = 𝟎 (Belegundu and Chandrupatla, p. 243).

The second part of 𝒅 defines a vector that points toward the feasible region. Further, these two

components are orthogonal, i.e., 𝒅1
𝑇𝒅2 = 0. Thus, we may interpret 𝒅 as a combination of a cost

reduction step 𝒅1 and a constraint correction step 𝒅2. If there are no constraint violations, i.e., if 𝒆̅ = 𝟎,

then 𝒅2 = 𝟎, and 𝒅 aligns with the projected steepest descent direction.

7.6.4 SQP Update via Newton’s Update

129

The Newton’s method can be effectively used to solve the SQP subproblem. In order to derive the SQP

update via Newton’s method, we consider the following design optimization problem involving only

equality constraints (Arora, p. 554):

min
𝒙

 𝑓(𝒙)

Subject to: ℎ𝑖(𝒙) = 0, 𝑖 = 1,… , 𝑙
(7.57)

The Lagrangian function for the problem is constructed as:

ℒ(𝒙, 𝒗) = 𝑓(𝒙) + 𝒗𝑇𝒉(𝒙) (7.58)

The KKT conditions for a minimum are given as:

∇ℒ(𝒙, 𝒗) = ∇𝑓(𝒙) + 𝑵𝒗 = 𝟎, 𝒉(𝒙) = 𝟎 (7.59)

where 𝑵 = ∇𝒉𝑇(𝒙) is the Jacobian matrix whose ith columns represents the gradient ∇ℎ𝑖.

The Newton’s method is employed to compute the change in the design variables and Lagrange

multipliers as follows: using first order Taylor series expansion for ∇ℒ𝑘+1 and 𝒉𝑘+1, we obtain:

[∇
2ℒ 𝑵

𝑵𝑇 0
]
𝑘

[
∆𝒙
∆𝒗

]
𝑘

= −[
∇ℒ
𝒉

]
𝑘

 (7.60)

The first equation above may be expanded as: ∇2ℒ∆𝒙𝑘 + 𝑵(𝒗𝑘+1 − 𝒗𝑘) = −(∇𝑓𝑘(𝒙) + 𝑵𝒗𝑘), and

simplified as: ∇2ℒ∆𝒙𝑘 + 𝑵𝒗𝑘+1 = −∇𝑓𝑘(𝒙), resulting in the following Newton-Raphson iteration:

[∇
2ℒ 𝑵

𝑵𝑇 0
]
𝑘

[∆𝒙𝑘

∆𝒗𝑘+1] = − [
∇𝑓
𝒉

]
𝑘

 (7.61)

It is interesting to note that the above result can also be obtained via a QP problem defined in terms of

incremental variables, defined as follows:

min
∆𝒙

𝟏

𝟐
∆𝒙𝑇 ∇2ℒ ∆𝒙 + ∇𝑓𝑇∆𝒙

Subject to: ℎ𝑖(𝒙) + 𝑛𝑖
T∆𝒙 = 0, 𝑖 = 1,… , 𝑙

(7.62)

The Lagrangian function for the problem is formulated as:

ℒ(∆𝒙, 𝒗) =
1

2
∆𝒙𝑇 ∇2ℒ ∆𝒙 + ∇𝑓𝑇∆𝒙 + 𝒗𝑇(𝒉 + 𝑵∆𝒙) (7.63)

The resulting KKT conditions for an optimum are given as: ∇𝑓 + ∇2ℒ ∆𝒙 + 𝑵𝒗 = 𝟎, 𝒉 + 𝑵∆𝒙 = 𝟎. In

matrix form, these KKT conditions are similar to those used in the Newton-Raphson update.

130

7.6.5 SQP with Hessian Update

The above Newton’s implementation of SQP algorithm uses Hessian of the Lagrangian function for the

update. Since Hessian computation is relatively costly, an approximate to the Hessian may instead be

used. Towards that end, let 𝑯 = ∇2ℒ, then the modified QP subproblem is defined as (Arora, p. 557):

min
𝒅

𝑓̅ = 𝒄𝑇𝒅 +
1

2
𝒅𝑇𝑯𝒅

Subject to, 𝑨𝑇𝒅 ≤ 𝒃, 𝑵𝑇𝒅 = 𝒆

(7.64)

We note that quasi-Newton methods (Sec. 7.3.4) solve the unconstrained minimization problem by

solving a set of linear equations given as: 𝑯𝑘𝒅𝑘 = −𝒄𝑘 for 𝒅𝑘, where 𝑯𝑘 represents an approximation to

the Hessian matrix. In particular, the popular BFGS method uses the following Hessian update:

𝑯𝑘+1 = 𝑯𝑘 + 𝑫𝑘 + 𝑬𝑘 (7.65)

where 𝑫𝑘 =
𝒚𝑘𝒚𝑘𝑇

𝒚𝑘𝑇
𝒔𝑘

, 𝑬𝑘 =
𝒄𝑘𝒄𝑘𝑇

𝒄𝑘𝑇
𝒅𝑘

, 𝒔𝑘 = 𝛼𝑘𝒅𝑘, 𝒚𝑘 = 𝒄𝑘+1 − 𝒄𝑘 , 𝒄𝑘 = ∇𝑓(𝒙𝑘).

The BFGS Hessian update is modified to apply to the constrained optimization problems as follows: let

𝒔𝑘 = 𝛼𝑘𝒅𝑘, 𝒛𝑘 = 𝑯𝑘𝒔𝑘 , 𝒚𝑘 = ∇ℒ(𝒙𝑘+1) − ∇ℒ(𝒙𝑘), 𝒔𝑘𝑇
𝒚𝑘 = 𝜉1, 𝒔𝑘𝑇

𝒛𝑘 = 𝜉2; further, define:

𝒘𝑘 = 𝜃𝒚𝑘 + (1 − 𝜃)𝒛𝑘, where 𝜃 = min {1,
0.8𝜉2

𝜉2−𝜉1
}, 𝒔𝑘𝑇

𝒘𝑘 = 𝜉3; then, the Hessian update is given as:

𝑯𝑘+1 = 𝑯𝑘 + 𝑫𝑘 − 𝑬𝑘 , 𝑫𝑘 =
1

𝜉3
𝒚𝑘𝒚𝑘𝑇

, 𝑬𝑘 =
1

𝜉2
𝒛𝑘𝒛𝑘𝑇

.

The modified SQP algorithm is given as follows:

Modified SQP Algorithm (Arora, p. 558):

Initialize: choose 𝒙0, 𝑅0 = 1, 𝑯0 = 𝐼; 𝜀1, 𝜀2 > 0.

For 𝑘 = 0,1,2,…

1. Compute 𝑓𝑘, 𝑔𝑖
𝑘, ℎ𝑗

𝑘 , 𝒄, 𝑏𝑖, 𝑒𝑗, and 𝑉𝑘. If 𝑘 > 0, compute 𝑯𝑘

2. Formulate and solve the modified QP subproblem for search direction 𝒅𝑘 and the Lagrange

multipliers 𝒖𝑘 and 𝒗𝑘.

3. If 𝑉𝑘 ≤ 𝜀1 and ‖𝒅𝑘‖ ≤ 𝜀2, stop.

4. Compute 𝑅; formulate and solve line search subproblem to obtain 𝛼

5. Set 𝒙𝑘+1 ← 𝒙𝑘 + 𝛼𝒅𝑘 , 𝑅𝑘+1 ← 𝑅, 𝑘 ← 𝑘 + 1.

Example 7.8: SQP with Hessian Update

As an example, we consider the above NL problem, given as:

min
𝑥1,𝑥2

 𝑓(𝑥1, 𝑥2) = 𝑥1
2 − 𝑥1𝑥2 + 𝑥2

2,

131

subject to 𝑔1: 1 − 𝑥1
2 − 𝑥2

2 ≤ 0; 𝑔2: −𝑥1 ≤ 0, 𝑔3:−𝑥2 ≤ 0,

The objective and constraint gradients for the problem are obtained as:

∇𝑓𝑇 = [2𝑥1 − 𝑥2, 2𝑥2 − 𝑥1], ∇𝑔1
𝑇 = [−2𝑥1, −2𝑥2], ∇𝑔2

𝑇 = [−1,0], ∇𝑔3
𝑇 = [0,−1].

To proceed, let 𝑥0 = (1,1), so that, 𝑓0 = 1, 𝑔1(1,1) = 𝑔2(1,1) = 𝑔3(1,1) = −1; since all constraints

are initially inactive, the preferred search direction is: 𝒅 = −𝒄 = [−1,−1]𝑇; then, using approximate line

search we obtain: 𝛼 =
1

4
, leading to: 𝒙1 = (

3

4
,
3

4
).

For the Hessian update, we have: 𝑓1 = 0.5625, 𝑔1 = −0.125, 𝑔2 = 𝑔3 = −0.75; 𝒄1 = [0.75, 0.75];

and, for 𝛼 = 0.25, 𝒔0 = [−0.25,−0.25] = 𝒛0 = 𝒚0, 𝜉1 = 𝜉2 = 0.125, 𝜃 = 1, 𝒘0 = 𝒚0, 𝜉3 = 𝜉1;

therefore, Hessian update is computed as: 𝑫0 = 8 [
1 1
1 1

] , 𝑬0 = 8 [
1 1
1 1

] , 𝑯1 = 𝑯0.

For the next step, the QP problem is defined as:

min𝑑1,𝑑2
𝑓̅ =

3

4
(𝑑1 + 𝑑2) +

1

2
(𝑑1

2 + 𝑑2
2)

Subject to: −
3

2
(𝑑1 + 𝑑2) ≤ 0,−𝑑1 ≤ 0,−𝑑2 ≤ 0

Using a Lagrangian function approach, the solution is found from application of KKT conditions, which

results in the following systems of equations: 𝑷𝒙 = 𝒒, where 𝒙𝑇 = [𝑑1, 𝑑2, 𝑢1, 𝑢2, 𝑢3, 𝑠1, 𝑠2, 𝑠3], and,

𝑷 =

[

1 0
0 1

−1.5 −1.5
−1 0
0 −1

−1.5 −1 0
−1.5 0 −1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1]

, 𝒒 =

[

−0.75
−0.75
0.125
0.75
0.75]

The complementary slackness conditions are given as: 𝑢𝑖𝑠𝑖 = 0, 𝑖 = 1,2,3. The solution found from the

simplex method is given as: 𝒙𝑇 = [0.188, 0.188, 0, 0, 0,0.125, 0.75, 0.75]. We note that in this case as

the number of variables is small, taking the complementarity conditions into account, there are eight basic

solutions, only one of which is feasible and is given as: 𝑿𝑇 = [0.188, 0.188, 0, 0, 0,0.125, 0.75, 0.75].

132

References

Arora, JS 2004, Introduction to Optimum Design, 2
nd

 edn, Elsevier Academic Press, San Diego, CA

Belegundu, AD and Chandrupatla TR 2012, Optimization Concepts and Applications in Engineering, 2
nd

edn (reprinted), Cambridge University Press, New York.

Boyd, S & Vandenberghe, L 2004, Convex Optimization, Cambridge University Press, New York.

Chong, EKP & Zak, SH 2013, An Introduction to Optimization, 4
th
 edn. John Wiley & Sons, New Jersey.

Ferris, MC, Mangasarian, OL & Wright, SJ 2007, Linear Programming with Matlab, SIAM,

Philadelphia, PA

Ganguli, R 2012, Engineering Optimiztion A Modern Approach, Universities Press, Hyderabad (India).

Griva, I, Nash, SG & Sofer, A 2009, Linear and Nonlinear Optimization, 2
nd

 edn, SIAM, Philadelphia,

PA.

Kelly, CT 1995, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, PA.

Luenberger, DG &Ye, Y 2008, Linear and Nonlinear Programming, 3
rd

 edn, Springer, New York.

Pedregal, P 2004, Introduction to Optimization, Springer-Verlag, New York.

Sierksma, G 2002, Linear and Integer Programming: Theory and Practice, 2
nd

 edn, Marcel Dekker,

Monticello, NY

Vanderbei, RJ 2007, Linear Programming: Foundations and Extensions, 3
rd

 edn, Springer, New York.

Yang, X-S 2010, Engineering Optimization, John Wiley & Sons, New Jersey.

Hager, WW & Zhang, H-C 2006, ‘A survey of nonlinear conjugate gradient methods’, Pacific Journal of

Optimization, vol. 2, pp. 35-58.

Hemmecke, R, Lecture notes on discrete optimization,

https://www-m9.ma.tum.de/foswiki/pub/SS2011/DiscOpt/DiscOpt.pdf

Eisenbrand, F, Course notes for linear and discrete optimization,

https://class.coursera.org/linearopt-001/lecture/index

https://www-m9.ma.tum.de/foswiki/pub/SS2011/DiscOpt/DiscOpt.pdf
https://class.coursera.org/linearopt-001/lecture/index

