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PREFACE 

Quantities which depend on space and/or time variables are often governed by differential 
equations which are based on underlying physical principles. Partial differential equations (PDEs) 
not only accurately express these principles, but also help to predict the behavior of a system from 
an initial state of the system and from given external influences. Thus, it is hard to overestimate 
the relevance of PDEs in all forms of science and engineering, or any endeavor which involves 
reasonably smooth, predictable changes of measurable quantities. 

Having taught from the material in this book for ten years with much feedback from 
students, we have found that the book serves as a very readable introduction to the subject for 
undergraduates with a year and a half of calculus, but not necessarily any more. In particular, 
one need not have had a linear algebra course or even a course in ordinary differential equations to 
understand the material. As the title suggests, we have concentrated only on what we feel are the 
absolutely essential aspects of the subject, and there are some crucial topics such as systems of 
PDEs which we only touch on. Yet the book certainly contains more material than can be 
covered in a single semester, even with an exceptional class. Given the broad relevance of the 
subject, we suspect that a demand for a second semester surely exists, but has been largely unmet, 
partly due to the lack of books which take the time and space to be readable by sophomores. A 
glance at the table of contents or the index reveals some subjects which are regarded as rather 
advanced (e.g., maximum principles, Fourier transforms, quasi-linear PDEs, spherical harmonics, 
PDEs on manifolds, complex variable theory, conditions under which Fourier series are uniformly 
convergent). However, despite general impressions given (perhaps unwittingly) by mathematical 
gurus, any valid mathematical result or concept, regardless of how "advanced" it is, can be broken 
down into elementary, trivial pieces which are easily understood by all who desire to do so. With 
regard to the so--<:alled "advanced" topics in this book, we feel that we have accomplished this to 
a degree which surprised even us. For us it was a constant and worthwhile challenge to make the 
book completely self---(;ontained for those who have only been through the typical 
freshman/sophomore calculus sequence, even if they forgot most of it. We have successfully 
taught students who did not recall how to solve y' (x) = y(x) with y(O) = 1 at the beginning of 
the semester, as was the case with over half of our students according to initial survey tests. 
However, before the semester's end, these same students could prove and understand the 
Maximum Principle for the heat equation and could easily deduce the continuous dependence of 
solutions on initial and boundary data. In essence, "advanced topics" are rarely difficult per se, 
but they may seem so, if (for the sake of elegance) too little time is spent explaining and 
motivating them. 

We have avoided the temptation to first prove unmotivated results in great generality and 
then use them to deduce an abundance of particular cases. By and large, we have introduced 
results and techniques inductively through many solved examples. By the time students have 
seen enough examples, they can often anticipate, as well as understand, the argument for the 
general case. In particular, we have found that, in spite of the fact that Sturm-Liouville Theory 
provides a uniform approach to boundary-value problems, it is not so wise to teach it first to 
students who are barely familiar with sines and cosines, and then cover the elementary 
boundary-value problems as special cases. We have proceeded in the opposite manner. After we 
have handled a variety of simple boundary conditions for the heat equation and treated Fourier 

ix 
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series, the student is prepared to study and appreciate Sturm-Liouville Theory as a natural 
continuation of what has been learned without it. Proceeding from examples to theorems may 
result in a book which is physically longer, but students learn more rapidly and effectively this 
way. In short, it is easier to build from the ground up than from the roof down. In the process, 
we may have sacrificed some degree of elegance, but we have not sacrificed rigor. Nearly every 
basic result is proved rigorously at some stage, or at least we give a reference (e.g., for the 
convergence of eigenfunction expansions on manifolds). We certainly do not recommend proving 
everything in class, since this would severely limit the range of the material covered, but instead 
the interested student may be directed to the many detailed, thoroughly digestible proofs in the 
text. On the point of rigor, we mention that many solutions of PDEs are expressible in terms of 
integrals of Greens functions against boundary and/or initial data. In most PDE texts, such 
integral formulas are derived (if at all) under the assumption that solutions of the PDEs actually 
exist. To be honest, one should have the tools to check that the functions defined by such integral 
formulas actually solve the given problem. This necessarily entails the use of Leibniz's rule for 
differentiation under an integral, sometimes when the interval of integration is unbounded. One 
feature of this book, which appears to be absent in other texts, is that there is a complete, 
elementary proof of Leibniz's rule in the Appendix. To experts, this may be surprising, since 
many standard proofs entail the use of the Lebesgue Dominated Convergence Theorem. However, 
in the Appendix, we have proven a suitable version of dominated convergence which avoids the 
notion of Lebesgue measure and integration. (The idea originated in [Lewin, 1986, 1987].) 

Solving problems is the major part of learning any mathematical subject. This book 
contains many problems which range from the purely routine to those which will challenge even 
the most brilliant student. Sometimes one finds that although some students can arrive at a 
solution to a problem through mimicking procedures, they still may not be able to interpret or use 
the solution or even understand why the expression they have found is actually a solution of the 
problem. We have tried to counter this tragedy by including many exercises which require the 
student to think, draw some conclusions, and express themselves, instead of simply implementing 
purely computational procedures. Since some students will do anything to get the answer in the 
back of the book, we have been sparing with the answers. However, a solution manual (with 
complete solutions to all but the most trivial problems) is available to instructors only. We 
personally worked out each of the problems. 

Since the whole book cannot be covered in a single semester, instructors who are limited to 
a single semester must decide which sections or chapters to cover. Given the demand, instructors 
might consider the introduction of a second semester of PDEs. Below, we summarize the material 
covered in the chapters and sections. Following this, some suggestions are given on what sections 
must, should or could be included in a one-semester or two-quarter course. 

Acknowledgements. It is our pleasure to acknowledge the comments and suggestions of our 
colleagues and students. In particular, we thank Hans Broderson, Karl Heinz Dovermann, 
Christopher Mawata, Ken Rogers, Mi-Soo Smith, Wayne Smith, David Stegenga, Joel Weiner, 
George Wilkens, and Les Wilson, who have adopted the notes in their courses. We also 
acknowledge Paolo Agliano and Paul Kohs who helped us with the typing and the graphics. In 
addition, a warm mahalo is due to the secretarial staff of the Department of Mathematics at the 
University of Hawaii. A special mahalo nui loa is due to Pat Goldstein who cheerfully helped us 
with mueh of the clerical work. Last, but not least, we wish to thank our families for their 
patience and support during the preparation of this work. 

Honolulu, 1992 David Bleecker & George Csordas 
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Chapter-by-£hapter synopsis and suggestions for the instructor 

Chapter 1 (Review and Introduction): If the students have had a course in ODEs, then Section 
1.1 can be skipped, or assigned as reading. Some coverage of Sections 1.2 and 1.3 is necessary for 
a general overview of PDEs and their applications, and for an introduction to certain topics, such 
as separation of variables and the superposition principle. These concepts are used often in the 
sequel. 

Chapter 2 (First-Order PDEs): For instructors who regard first--{)rder PDEs as devoid of any 
real application, we urge them to read the introduction to Chapter 2, before deciding to skip 
Chapter 2 entirely. Not only are there wide applications to birth and death processes (e.g., the 
evolution of population densities), continuum mechanics and the development of shocks in traffic 
flow, but also the student sees how a change of variables can greatly simplify a PDE. 
Incidentally, we elected not to include examples and drill exercises for putting second--{)rder, 
linear PDEs (with constant coefficients) into the standard normal forms (e.g, by rotation of axes, 
etc.), for the simple reason that second--{)rder PDEs which arise in applications are already in a 
standard form. However, a complete statement of the Classification Theorem is given in Section 
1.2, and a complete proof is given in the Appendix A.I. To compensate for lack of practice in 
change of variables drill for second--{)rder PDEs, there are plenty of change--{)f-variable problems 
for first--{)rder PDEs in Chapter 2. First--{)rder PDEs which arise in applications are seldom in 
the standard form of a parametrized ODE. While Chapters 3-9 do not depend on Chapter 2, 
instructors should seriously consider doing at least Section 2.1 in which aux + buy + cu = f(x,y) 

is solved, when a, b, and c are constants. The case of variable coefficients is covered in Section 
2.2, and the quasi-linear case is covered in Section 2.3. The fully nonlinear case is covered in the 
purely optional Section 2.4. 

Chapter 3 (The Heat Equation): Section 3.1 begins with a derivation of the heat equation. The 
simplest initial/boundary-value problems are solved without first introducing Fourier series. 
Here, we use separation of variables to find product solutions of the heat equation which meet the 
homogeneous boundary conditions B.C. and then find a linear combination which meets the initial 
condition. In Chapter 3, initial temperatures are chosen so that they are expressible (via 
trigonometric identities) as finite linear combinations of sines or cosines of the appropriate form. 
Students then naturally ask what can be done if this is not the case. In other words, they are 
naturally motivated for the introduction of Fourier series which is the topic of Chapter 4. In 
Section 3.2, uniqueness of solutions of various initial/boundary-value problems for the heat 
equation is proved, by showing that for homogeneous B.C. of the first or second kind, the 
mean-square of the temperature is non-increasing. The Maximum Principle provides a second 
approach. We first illustrate the Maximum Principle through a number of examples and we show 
that it easily leads to continuous (uniform) dependence of solutions on initial/boundary data. The 
proof of the Maximum Principle is then given at the end of Section 3.2. Section 3.3 deals with the 
case of various simple B.C. which are time-independent, but possibly inhomogeneous. In Section 
3.4, the case of time-<lependent B.C. and heat sources are handled by means of Duhamel's 
principle. Section 3.4 can be skipped or covered later if time permits, and Section 3.3 can be 
covered quickly and lightly. However, Section 3.1 is certainly part of any first PDE course, and 
we strongly recommend that Section 3.2 be covered in some detail. 

Chapter 4 (Fourier Series and Sturm-Liouville Theory): Students see the need for Fourier series 
in Chapter 3. In Section 4.1, we introduce the notion of functional orthogonality, and the 
definition of Fourier series of a function as a formal expression which mayor may not converge to 
the function. Many examples are computed, and the question of convergence is motivated. An 
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estimate for the number of terms needed to uniformly approximate a C2 function is stated (but 
the proof is deferred until Section 4.2). We provide a technique for obtaining much sharper 
estimates by means of integral estimates of the tail of a Fourier series. Section 4.2 contains 
detailed proofs of the convergence of Fourier series under various assumptions. We gently 
introduce the difference between pointwise convergence and uniform convergence. Pointwise 

convergence is proved for piecewise C1 functions and uniform convergence for continuous piecewise 

C1 functions. Without the luxury of time, we recommend that the lengthier proofs be skipped or 
assigned for reading. However, certainly one should get across the general idea that the smoother 
a function is on a circle, the more rapid is the convergence of its Fourier series. In Section 4.3, we 
introduce Fourier sine and cosine series which are used to handle (at least formally) the case (left 
dangling in Chapter 3) that the initial temperature was not a finite linear combination of the 

appropriate form. It is emphasized that infinite sums of C2 functions need not be C2, and hence 
the formal solutions obtained need not be strict solutions. However, by truncating the series at a 
large enough number of terms one can often meet the I.C. within any positive error, which is all 
that is needed for applications. The validity of formal solutions under certain assumptions is 
deferred to Chapter 7. Sturm-Liouville Theory is covered in Section 4.4. At this point the 
student is ready to savor this subject which extends what is known already to the case of 
inhomogeneous rods and boundary conditions of the third kind. We provide a convincing sketch 
of a proof of the infinitude of the eigenvalues for Sturm-Liouville problems, by means of the 
Sturm Comparison Theorem. Practically none of the rest of the book depends on Section 4.4, 
except the statement found in Chapter 9 (Section 9.5) that Bessel functions have infinitely many 
zeros. Thus, in the face of time pressures, it is possible to omit Section 4.4 entirely, although one 
should at least tell students what it is about. We have found that Section 4.3 can and should be 
covered rapidly, and that one should stress the statements of the theorems in Section 4.2, but not 
necessarily the details of the proofs. Section 4.1 should be covered in detail, as it is frequently 
used later. 

Chapter 5 (The Wave Equation): In Section 5.1, the wave equation for a transversely vibrating 
string is derived from Newton's equation. Some care is taken to explain why the assumption of 
transverse vibrations actually implies a linear wave equation instead of an approximately linear 
equation. The dubious assumption of "small" vibrations is thus eliminated. The simplest 
initial/boundary-value problems for a finite string are solved. Uniqueness of solutions of these 
problems is also proved in Section 5.1, using the energy-integral method. In Section 5.2, we cover 
D'Alembert's solution of wave problems on the infinite string. Consequences of D'Alembert's 
solution, such as finite propagation speed are covered, and the method of images for semi-infinite 
strings is explained. For finite strings, the method of images provides an alternative to the 
Fourier series approach. The continuous dependence of solutions for the finite string on initial 
conditions is also an easy consequence of D'Alembert's formula and the method of images. In 
Section 5.3 a variety of boundary conditions for the string are handled. Also, the inhomogeneous 
wave equation (Le., with forcing term) is treated via both Duhamel's principle and the Fourier 
series approach. Section 5.1 should be covered in some detail, with the complete derivation 
possibly assigned as reading. Section 5.2 is equally crucial, but if time is running short Section 5.3 
can simply be summarized, so that students are aware of what is covered in case they need it. 

Chapter 6 (Laplace's Equation): In Section 6.1, Laplace's equation is motivated and it is shown 
that solutions may be interpreted as steady-state temperature distributions. The Dirichlet and 
Neumann problems are introduced. Section 6.2 concerns the solution of these problems on a 
rectangle. Since students are familiar with separation of variables and superposition, this material 
can be done quickly. Uniqueness and the Maximum Principle are motivated and utilized, but 
proofs are deferred until Section 6.4. In Section 6.3, we solve Dirichlet and Neumann problems on 
annuli and disks using polar coordinates. The Mean-Value Theorem and Poisson's Integral 
Formula are carefully proved, and the regularity of harmonic functions is demonstrated. In 
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Section 6.4, the Maximum Principle for harmonic functions on bounded domains is proved along 
with continuous dependence of solutions of the Dirichlet problem on boundary data. The 
importance of these results has been amply demonstrated to students in the previous sections. 
Section 6.5 is on the application of complex variable theory to Laplace's equation. We assume no 
knowledge of complex-variables. We do not cover Cauchy's theorem, contour integration, or 
residue theory, for the simple reason that we do not need it. However, the intimate connection 
between complex analytic functions and harmonic functions is brought out and exploited. 
Moreover, the concept and use of conformal mapping to solve problems in steady-state 
temperatures, fluid flow and electrostatics are handled without any difficulty. All of the material 
in Chapter 6 is important, and if too much time is spent on material in previous chapters, it may 
not be possible to cover all of Chapter 6. For a class of mostly engineers, it may be wiser to cover 
Section 6.5 instead of Section 6.4, if a choice must be made, whereas for mathematics majors the 
reverse choice is desirable. 

Chapter 7 (Fourier Transforms): It will take an exceptional class to reach Chapter 7 in one 
semester, without skipping all but the most essential material in the previous chapters. However, 
if students are likely to take a full complex variable course in the future, many concepts in 
Chapter 6 will be treated in that course. Then, skipping much of Chapter 6 and proceeding with 
Chapter 7 becomes an attractive possibility. Of course, the possibility of introducing a second 
semester (or more quarters) of PDEs should be contemplated. The demand is there. In Section 
7.1, we introduce complex Fourier series and define the Fourier transform. Many examples are 
computed. In Section 7.2, we develop the basic properties of Fourier transforms which make them 
a useful tool for finding solutions of PDEs (i.e., differentiation is carried to a multiplication 
operator, and multiplication of transforms corresponds to convolution). The idea that the 
regularity of a function increases the rate of decay of its Fourier transform (and vice versa), is 
brought out. Although, this is typically regarded as an advanced topic, we treat it in an 
elementary way, and it is a close relative of the idea (covered in Section 3.2) that the smoothness 
of a function on a circle increases the rate of decay of its Fourier coefficients. Section 7.3 covers 
use of the Inversion Theorem, inverse Fourier transforms, and Parseval's equality. The proof of 
the Inversion Theorem is deferred to a supplement at the end of Chapter 7. In Section 7.4, 
Fourier transforms are applied to solving PDEs. One may wish to cover Sections 7.1 to 7.3 
quickly and concentrate on Section 7.4. Here, we solve the heat problem on the infinite rod, and 
the Dirichlet problem for the half plane. We felt that it was a good idea to emphasize the fact 
that Fourier transform methods not only presume that a solution of a problem exists, but also 
that it has certain decay properties. Thus, integral formulas for solutions obtained in this fashion 
should be checked independently through a careful application of Leibniz's rule for differentiating 
under the integral. For a class of mostly engineers, this point can be made, without going through 
the details of the verification. Although a derivation of D'Alembert's formula for the wave 
equation is given in Chapter 5, we also show how to get it by Fourier transform techniques and 
the Dirac delta distribution is discussed. In Section 7.5, heat problems for semi-infinite and finite 
rods are solved via the method of images. The validity of formal infinite-sum solutions, found in 
Chapter 4, is now handled with ease. Also, Fourier sine and cosine transformations are introduced 
and applied. 

Chapter 8 (Numerical Solutions of PDEs): While the solution of PDEs by numerical methods 
could constitute a whole course, we offer an introduction to the subject in Chapter 8. Our aim is 
not to present, without proof or motivation, a huge number of algorithms. Instead, we have 
concentrated on the foundations of the numerical approach, and we work mostly with the familiar 
heat equation to illustrate the nature and possible pitfalls of the numerical approach. To broaden 
the horizons, we do provide an optional overview of other numerical methods for other PDEs for 
the interested reader in Section 8.4. In Section 8.1, the "big 0" notation is introduced. There is 
discussion of Taylor's Theorem which is the basi's for the approximation of partial derivatives by 
finite differences. This allows the approximation of PDE problems by a finite system of equations 
for the values of the unknown function at grid points. For the heat equation, these systems are 
easily solved by the explicit method in Section 8.2. Moreover, in the case of the heat equation, 
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the discretization error (i.e., the difference of the numerical solution from the actual solution) is 
proved to approach zero as the grid point separation goes to zero, at least in the absence of 
round-off errors. In Section 8.3, we obtain exact solutions for a finite grid by means of the theory 
of difference equations. We then examine how systematic round-off errors lead to the conclusion 
that best results are not always obtained by taking the grid size as small as possible. Continuing 
with the simple case of the heat equation, we obtain theoretical estimates for optimal grid sizes, 
which are born out to be correct in concrete examples. We believe that it is better to discuss in 
some depth a number of crucial issues for a single equation, than only briefly comment on a lot of 
PDEs and techniques. Again, Section 8.4 provides some overview and plenty of references for 
further study. 

Chapter 9 (PDEs in Higher Dimensions): In Section 9.1 the fundamental ideas in Chapters 3 
though 7 are extended in a straightforward manner to the case of several cartesian spatial 
coordinates. We solve dynamic heat problems on rectangles and cubes, and consider Laplace's 
equation on a solid rectangle. Double Fourier transforms and series are easily motivated and 
introduced. In Section 9.2, it is made clear that the primary objects from which solutions of the 
heat, wave and potential problems are constructed are the eigenfunctions of the Laplace operator 
which meet the B.C.. This basic fact is often hidden behind the process of separation of variable 
and the plethora of special functions which thereby arise in various coordinate systems. A great 
variety of series expansions for functions all fall into the category of eigenfunction expansions. In 
Section 9.2, we also prove a uniform convergence result for double Fourier series, and discuss 
simple properties of double Fourier transforms. In Section 9.3, we begin our study of the standard 
PDEs in terms of spherical coordinates. The spherical harmonics are defined as eigenfunctions of 
the Laplace operator on a sphere. They arise as the angular part of eigenfunctions of the Laplace 
operator on space and can be expressed through associated Legendre functions. We solve a 
number of heat and wave problems with spherical symmetry. The threHimensional version of 
D'Alembert's formula is derived and Huygen's principle is discussed. The determination of all 
eigenvalues and spherical harmonics, dimensions of eigenspaces, etc. is covered in Section 9.4. 

There is a complete proof of the uniform convergence of the Laplace series for C2 functions on a 
sphere. Moreover, a number of problems with angular dependence (e.g., heat flow in a ball) are 
solved through the use of spherical harmonics and spherical Bessel functions. In Section 9.5, we 
consider PDEs in cylindrical coordinate systems and some more PDEs in spherical coordinates, 
but with nontrivial potentials, such as Schrodinger's equation. The special functions which arise 
in the process are discussed. While spherical Bessel functions can be expressed in terms of sines 
and cosines, the cylindrical Bessel functions (of integer order) cannot, which is why we did not 
handle cylindrical coordinates before spherical ones. We consider a number of applications, 
ranging from the vibrating circular drum, to the determination of the energy levels and wave 
functions for the (nonrelativistic) hydrogen atom and the degeneracy of the energy levels which 
forms the basis for the periodic table. Section 9.6 deals with the standard heat, wave and 

potential problems on compact submanifolds with boundary in IRn. Laplace operators are defined 
on these objects in an easily understood way. Although, we do not prove the existence theory for 
eigenfunctions and eigenvalues in this general setting, some of the more readable references are 
cited. Admittedly, the eigenfunctions are difficult to concretely compute or approximate, but 
once the eigenfunctions are given, the solution of the standard heat, wave and potential problems 
on manifolds proceeds in a way which is quite analogous to the many special cases covered in the 
rest of the book. This last section essentially unifies and consolidates these special cases into a 
single framework. Moreover, there is some discussion of Weyl's asymptotic formula for the 
eigenvalues of the Laplace operator, and the geometric information about the manifold which can 
be "heard" from the eigenvalues which may be interpreted as frequencies of vibration. 
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In constructing a one-semester or two-quarter course, we suggest selecting sections from 
the list below, keeping the indicated priorities in mind. In addition, 1.1 should be covered if your 
students are weak in ODEs. Sections which are marked with stars can or should be covered in 
only 2 hours, whereas most instructors will want to spend about 3 hours on the other sections. 
Leave time for tests and going over some of the homework. Chapters 8 and 9 are probably best 
left for a second semester or possibly as sources of projects for advanced, gifted and/or highly 
motivated students. In some schools where students have strong backgrounds or interests in 
computers one may wish to cover Chapter 8 in lieu of Chapter 7. 

crucial sections: 1.2, 1.3*, 3.1, 3.2, 4.1, 4.2, 4.3*, 5.1, 5.2, 6.1 *, 6.2*, 6.3 

highly desirable sections: 2.1,3.3*,5.3*,6.4,6.5,7.1*,7.2*,7.3*,7.4 

luxury sections: 2.2, 2.3, 2.4, 3.4, 4.4, 7.5 
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CHAPTER 1 

REVIEW AND INTRODUCTION 

In this chapter, we review those aspects of ordinary differential equations (ODEs) which 
will be needed in the sequel. We also provide an overview of the applications of partial 
differential equations (PDEs), and introduce the reader to some elementary techniques, such as 
separation of variables. The review of ODEs in Section 1.1 is self-contained, since experience 
dictates that a remedial study of this material is often sorely needed. Even those whose 
mathematical knowledge of ODEs is sufficient may find the applied examples and problems 
(dealing with biology, fluid flow, electronics, mechanical vibrations, resonance, etc.) interesting 
and challenging. Section 1.2 gives the reader a perspective on the uses, of PDEs in various 
scientific applications, such as gravitation, electrostatics, thermodynamics, acoustics, and minimal 
soap film surfaces. Some of the material (e.g., the use of Green's functions and integral 
operators), will not be universally appreciated upon a first reading. Indeed, students will find 
certain aspects of Section 1.2 more illuminating at later stages in their course of study. In Section 
1.3, the studies of ODEs and PDEs are contrasted, with regard to the differences in the typical 
forms for general solutions. We illustrate how side conditions are used to extract particular 
solutions from general ones. Moreover, the method of separation of variables is also covered in 
this section. 

1 



2 Chapter 1 Review and Introduction 

1.1 A Review of Ordinary Differential Equations 

A differential equation is an equation involving an unknown function and its derivatives. If 
the unknown is a function of more than one variable, then the differential equation is called a 
partial differential equation (henceforth, abbreviated PDE), since the derivatives of the unknown 
function are partial derivatives. In an ordinary differential equation (ODE), the unknown 
function depends on a single variable. Before studying PDEs, a review of certain basics of ODEs 
is desirable, because solutions of PDEs can often be found by solving related ODEs. The following 
review of first-order ODEs (separable and linear) and homogeneous second-order linear ODEs 
with constant coefficients will suffice for our purposes. 

First-Order ODEs 

A first-order ODE is separable, if it can be written in the form 

f(y) ~ = g(x) , (1) 

where y is an unknown function of the independent variable x. 

One solves such an equation by integrating (if possible) both sides with respect to x. Integrating 
the left side yields 

J f(y) ~ dx = J f(y) dy = F(y) + C1 , 

where F(y) is an antiderivative of f(y) (i.e., F'(y) = f(y)) and C1 is an arbitrary constant. 

Integrating the right side of (1) also, and letting G(x) denote an antiderivative of g(x), we then 
obtain 

F(y) + C1 = G(x) + C2 or F(y) = G(x) + C , (2) 

where we have incorporated the arbitrary constants C1 and C2 into the single arbitrary constant 

C = C2- C1• In practice, one can obtain (2) by first rewriting (1) in terms of differentials 

f(y)dy = g(x)dx . (3) 

Then, integrating both sides of (3) yields (2). Note that in (3) the variables x and y are on 
different sides of the equation, and hence the term "separable equation" is used. If possible, one 
solves (2) for y in terms of x. However, there may be more than one value (or possibly no value) 
for y, given x and C. Observe that for a fixed value of C, equation (2) will usually define a curve 
in the xy-plane, but there is no guarantee that this curve will be the graph of a function of x. 
Nevertheless, the family of curves obtained by allowing C to vary in (2), is usually considered to 
adequately represent the set of solutions of (1) or (3). 
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Example 1. A certain population has P(t) individuals at time t, and its rate of growth is 
proportional to its size (i.e., P' (t) = aP (t) , for some constant a > 0 ). Find P (t) in terms of 
the initial population P(O) and a. 

Solution. The equation P' (t) = aP( t) is separable, since we can write it in the form 

dP v= adt. 

Integrating, we obtain (assuming P > 0) log(P) = at + C or P(t) = exp(at + C) = eCeat . 

Since P(O) = eC, the desired solution is 

P( t) = P(O)eat . 

Note that the same technique will work in the more general case where P'(t) = a(t)f(P(t)) for 
given functions a(t) and f(P), since this equation is also separable. However, the technique fails 
for P' (t) = t + P( t) and many other equations which are not separable. 0 

Example 2. A particle is carried along by a fluid flow in the xy-plane. Suppose that the velocity 
of the fluid at the arbitrary point (x,y) is 2yi + 4xj (i.e., the direction and magnitude of the fluid 
flow varies from point to point). Find the path traced out by the particle, if it is known to pass 
through the point (1,3). 

Solution. The slope of the path of a particle at (x,y) is the ratio 4x/2y (assuming that y * 0) of 
the components of the fluid velocity vector at (x,y). Assuming that the path is the graph of a 
function y of x, we then obtain the ODE y I (x) = 4x/2y , which is separable (2y dy = 4x dx). 
Integrating, we obtain the family of streamlines (cf. Figure 1) 

(4) 

Figure 1 
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which are hyperbolas. The streamline passing through (1,3) is the upper branch of the hyperbola 
2 2 2 1 

(4) with C = 3 - 2(1) = 7 ,namely y(x) = (2x + 7)7. 0 

Another type of first-order ODE which arises in the sequel is the first-order linear ODE 

a(x)y' (x) + b(x)y(x) = c(x) , (5) 

where a(x), b(x) and c(x) are given continuous functions. Assuming that a(x) f. 0 , we may 
divide (5) by a(x), obtaining a.n ODE in standard form, in the following sense. 

We will say that the first-order linear ODE 

y' (x) + p(x)y(x) = q(x) 

is in standard form. 

If we replace q(x) by 0, the resulting equation 

y' (x) + p(x)y(x) = 0 

is called the related homogeneous equation for (6). Unlike (6), (7) is always separable: 

~ = -p(x) dx y (y f. 0) . 

Thus, by integrating (8), we obtain the following general solution Yh(x) of (7) : 

Yh(x) = C ·exp[-P(x)] ,where P(x):: J p(x) dx . 

The integrating factor for equation (6) is defined to be 

m(x) :: exp[P(x)] = exp U p(x) dX] . 

Note that by (9) we have m(x)Yh(x) = C. Thus, 

o = ~ [m(x)Yh(x)] = m(x)Yh(x) + m'(x)Yh(x) 

(6) 

(7) 

(8) 

(9) 

(10) 

= m(x)Yh(x) + m(x)p(x)Yh(x) = m(x)[Yh(x) + P(x)Yh(x)] (11) 

where we have used the fact that m' (x) = exp[P(x)]P' (x) = m(x)p(x). For a solution y(x) of 
(6) with q(x) ¢ 0, we do not have m(x)y(x) = C , but the computation in (11) yields 
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~ [m(x)y(x)] = m(x)[y' (x) + p(x)y(x)] = m(x)q(x) (12) 

Integrating (12), we obtain 

m(x)y(x) = f m(x)q(x) dx + C 

or 

y(x) = [m(x)]-1 {fm(x)q(x) dx + C} . (13) 

Note that (13) reduces to (9) when q(x) == O. While one may simply use formula (13) to write 
down the solution of (6), it is preferable to remember the steps of the solution process. (For a 
summary of these steps see the end of this section.) 

Example 3. Sclve (1+x2)y' + 2xy = 3x2 . 

Solution. First, put the equation into the standard form (6), namely 

y' + [2x/(1+x2)]y = 3x2/(1+x2) . 

The integrating factor for equation (14) (cf. (10)) is 

m(x) = exp[f {2x/(1+x2)} dx] = exp[log(1+x2)] = 1+x2 . 

Equation (12) tells us that if we mUltiply both sides of (14) by m(x), then we will obtain 

~ [m(x)y(x)] = m(x)q(x) = 3x2 . 

(14) 

(15) 

Integrating both sides of (15), we get m(x)y(x) = x3 + C or y(x) = (x3+C)/(1+x2). 0 

Example 4. Consider two identical cans, A and B. Assume that syrup will leak out of either can 
at a rate which is proportional to the volume V of the syrup in the can, say V'(t) = -kV(t) , 
where k > 0 , due to the leakage. Suppose that the initial volume of syrup in can A is V A (0), 

while can B is initially empty. If can A begins leaking into can B at t = 0 , find the volume 
VB (t) of syrup in can B at an arbitrary time t > 0 . 

Solution. The rate of change of VB (t) is 

(16) 

Since V~ (t) = -kV A (t) , we find, as in Example 1, that V A (t) = VA (O)e-kt . Thus, by (16) 
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Multiplying by the integrating factor ekt , we obtain (via (12)) 

~t [ektVB(t)] = kVA(O) or VB(t) = e-kt[ktVA(O) + C]. 

Since VB(O) = 0, we know that C = o. So, VB(t) = ktVA(O)e-kt . 0 

Example 5. Suppose that tank A contains salt water with 4 pounds of salt per 100 gallons. 
Tank B is initially filled with 100 gallons of pure water. Over a period of one hour, the water in 
tank B is drained at the rate of 3 gallons per minute. The water in tank A flows into tank B at 
the rate of 5 gallons per minute, as tank B is drained. How many pounds of salt are dissolved in 
tank B at the end of the hour? Assume that tank B is well-mixed at all times and does not 
overflow. 

Solution. Let S(t) denote the number of pounds of salt in tank B at time t. At time t, tank B 
loses salt (via draining) at the rate of 3 gallons per minute, times the amount of salt per gallon in 
tank B, namely, 3S(t)/(100 + (5-3)t) lbs./min .. The rate at which tank B gains salt from tank 
A . is 5 times 4/100 lbs./min.. Thus, the net rate of salt increase in tank B is given by 
S'(t) = [-3S(t)/(100 + 2t)] + 1/5. Hence, 

S'(t) + [3S(t)/(100 + 2t)] = 1/5. (17) 

3 
The integrating factor is m(t) = exp[~ log(100 + 2t)] = (100 + 2t)!. Multiplying (17), on both 

sides, by the integrating factor, we obtain 

~t [m(t)S(t)] = i (100 + 2t)~ and S(t) = (100 + 2t)-1 ['l!(100 + 2t)~ + C] . 

3 5 
Since S(O) = 0 , we have C = - 'l!·105 and S(t) = 'l!(100 + 2tf"""2"((100 + 2t)! - 105). Finally, 

S(60) ~ 7.574Ibs.. 0 

Second-Order Linear ODEs with Constant Coefficients 

We will need a good understanding of the homogeneous second-order linear equation 

ay"(x) + by' (x) + cy(x) = 0 , (18) 

where the coefficients a,b, and c are real constants. If a = 0 , then (18) is either a linear 
first-order ODE, or (if also b = 0) trivial. Thus, we assume that a f. O. The usual method of 
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solving (18) is to first assume that a solution is of the form y(x) = erx for some constant r. 
Substituting this y(x) into (18), we obtain 

alxr2 + blxr + clx = lX(ar2 + br + c) = 0 . 

Thus, r must satisfy the quadratic equation ar2 + br + c = 0 , known as the auxiliary equation 

for (18). Let d = b2 - 4ac. There are three Cases: d > 0, d = 0 and d < 0 . 
If d > 0 , then there are two distinct real roots, namely 

_ -b + ya 
r l - 2a and _ -b -ya 

r2 - 2a 

In this case, the general solution of (18) is the superposition (or linear combination) 

(19) 

where ci and c2 are arbitrary constants. Recall that the superposition of two solutions of a 

homogeneous linear equation is also a solution (cf. Problem 7). Moreover, if the equation is 
second--order and the ratio of two particular solutions is not constant (I.e., they are linearly 
independent), then any solution is a superposition of these two solutions (d. Problem 20). 

If d = 0 , then there is only one solution of ar2 + br + c = 0 ,namely r = -b/2a , which 

is a root of multiplicity 2. However, we recall that, in addition to lX, there must be another 

linearly independent solution of (18). By trying a solution of the form f(x)lx, one finds f"(x) = 
o (d. Problem 9). Thus, choosing f(x) = x , we obtain another linearly independent solution, 

xlx. Hence, when d = 0 , the general solution of (18) is 

(20) 

where r = -b/2a. If d < 0, the roots of ar2 + br + c = 0 are complex, namely 

_ -b + iv'@I 
r l - 2a and 

_ -b - ii@I 
r2 - 2a ' (21) 

where has the property that i2 = -1. (Thus, i cannot be a real number.) Now set 

r1 = ll' + ifJ and r2 = ll' - ifJ (22) 

where ll' and fJ are real numbers. Then it can be shown that 
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(23) 

where c3 and c4 are arbitrary constants, satisfies (18). In order to construct a more useful form of 

the solution (23) (for the details see Problem 11) we use Euler's formula 

eiy = cos(y) + i sin(y) . (24) 

[The Swiss-born mathematician and physicist, Leonhard Euler (1707-1783), made important 
contributions to many areas of mathematics and celestial mechanics. The number e is named 
after him.]. Euler's formula can be established by setting z = iy in the power series expansion of 

the complex exponential eZ : 

Z <;/Xl zn z z2 z3 
e =£ ;:;,-=I+ II + 2T +:rr+'" n=O n. ... 

(25) 

Now using the relation e( a+i,B)x = ellXei,Bx and Euler's formula, we can express (23) in the form 

y(x) = eax[c3(cos(,Bx)+isin(,Bx)) + c4(cos(,Bx)-isin(,Bx))]. (26) 

Setting c1 = c3 + c4 and c2 = i( c3 - c4) , (26) becomes 

(27) 

Finally, with the notation of (22) and (21), we obtain from (27) the following general solution of 
(18), in the case when d < 0 : 

(28) 

The foregoing results may be summarized as follows: 
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Consider the ODE 

ay"(x) + by' (x) + cy(x) = 0 , (29) 

where a,b and c are real constants and a # o. Let r1 and r2 be the roots of the associated 

auxiliary equation ar2 + br + c = o. Let d = b2 - 4ac , and let c1, c2 denote arbitrary 

constants. 

1. If r1 and r2 are real and distinct (i.e., d > 0), then the general solution of (29) is 

(30) 

2. If r1 = r2 = r (i.e. d = 0), then the general solution of (29) is 

(31) 

3. If r1 = a + ifJ and r2 = a - ifJ (i.e., d < 0), then the general solution of (29) is 

(32) 

Example 6. An object of mass m is attached to a spring which lies along the x-axis, as shown in 
Figure 2 below. With Hooke's law in effect, when the object is displaced to the position x, the 
spring exerts a force -kx (toward the origin, since the constant k is positive) on the object. Let 
x( t) be the position of the object at time t. The object is also subject to a force, say due to air 
resistance, which is -bx' (t) , for a constant b > O. If the object is released from the position Xo 
at time t = 0, find the position of the object at any time t > 0 , using Newton's second law of 
motion mx"(t) = F(t) , where F(t) is the total force on the object at time t. [The English 
scientist Robert Hooke (1635-1703) and mathematician/physicist Isaac Newton (1642-1727) were 
often at odds, in particular, over the division of credit for the inverse-square law of gravity.] 

o x 
Figure 2 

Solution. Since the total force on the object is F(t) = -kx(t) - bx'(t) , Newton's second law 
yields the ODE 

mx"(t) + bx'(t) + kx(t) = O. (33) 
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Here d = b2 - 4mk. All three cases d > 0 , d = 0 and d < 0 are possible. They are referred to 
as over-damped, critically-damped and under-damped (or oscillatory) respectively. The 
solutions in these cases are 

(34) 

(35) 

x(t) = e-tbt/m[ClCOS(~JTGT.t/m) + c2sin(~JTGT·t/m)] (d < 0). (36) 

The constants c1 and c2 are found from the given initial conditions x(O) = x and x' (0) = 0 . 
o 

For (34), we have that 

x(O) = C1 +C2 = Xo and x'(O) = im [(/<I-b)c\-(/<I+ b)c2] 0 

imply c1 = M1 + (b//<I)]xo and c2 = M1 - (b//<I)]xo . 

Hence, (34) becomes 

x(t) = xoe-tbt/m [~(et/<I· tim + e -t/<I· tim) + (b//<I) .~(et/<I· tim _ e -t/<I· tim)] 

= xoe-tbt/m[cosh(~/<I.t/m) + (b//<I)sinh(~/<I·t/m)] . (37) 

The hyperbolic sine and cosine often occur naturally, when initial conditions are imposed. They 

are defined by sinh(x) = ~(ex - e -x) and cosh(x) = ~(ex + e -x). The interested reader who is 

unfamiliar with these functions and their relation to the usual sine and cosine, should consult 
Problem 18. The computation of the values for c\ and c2 in (35) and (36) is suggested in 

Problem 12. For certain values of b, m and k, the solutions are graphed in Figure 3 below. 0 

Figure 3 
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Example 7. Equation (18) also arises in electrical circuit theory. Suppose that a battery of 
voltage V, a resistor of resistance R, a coil of inductance L and a capacitor of capacitance C are 
placed in series as shown below in Figure 4. We wish to find the most general expression for the 
current i{t) in this circuit as a function of time t. [The flow of current in this circuit is governed 
by the second law of the German physicist Gustav Kirchhoff (1824-1887), who is famous for his 
contributions in electronics and spectroscopy.] 

Solution. Kirchhoff's second law asserts that the sum of the voltage drops across the elements of 
any closed loop in a circuit must be zero. At time t, the voltage drop across the resistor is R 
times the current i{t). The voltage drop across the coil is L i'{tj. (This drop is due to the fact 
that an increasing current in a coil creates a changing magnetic field. which induces an opposing 
electric field and induces a voltage drop across the coil.) The voltage drop across a capacitor is 
1/C times the total amount of charge (Ji{t) dt) which it has accumulated on one of its plates. 
By Kirchhoff's second law, 

R i{t) + L i'{t) + 6 fi{t) dt - V = 0 , (38) 

and differentiating, we obtain 

L i"{t) + Ri'{t) + 6i{t) = o. (39) 

Hence, the current i{t) behaves just as the displacement of an object attached to a spring as in 
Example 6, with m = L , b = Rand k = 1/C. In particular, with these new values, formulas 
(34),(35) and (36) give us the general solutions for i{t) in the three cases. 0 

We will not cover the general case of the inhomogeneous equation 

aY"(t) + by'(t) + cy{t) = f{t) (40) 

which would arise in Example 6 when there is an. external driving force f{t), or in Example 7 when 
the voltage source is variable [f{t) = V'{t)]. One could solve (40) by adding a particular solution 
to the general solution of the related homogeneous equation with f{t) replaced by O. A particular 
solution can be obtained by the method of variation of parameters which can be found in most 
ODE books. However, as an illustration of resonance and the utility of the complex approach, we 
will find a particular solution of (40) in the important case when f{ t) is of the form Acos{ wt) or 
Asin{wt), for a constant amplitude A and angular frequency w. 



12 Chapter 1 Review and Introduction 

Example 8. Find a particular solution of (40) with abc f. 0, in the case when f(t) = Acos(wt) or 
f( t) = Asin( wt) for a real constant w, by using the following approach. Determine a complex 

constant C, such that y(t) = Ceiwt solves (40) with f(t) = Aeiwt . Then show that the real and 
imaginary parts of y( t) will be the desired particular solutions. 

Solution. Substituting the trial solution y(t) = Ceiwt into (40) with f(t) = Aeiwt , we obtain 

Ceiwt [a(iw)2 + biw + c] = Aeiwt or C· [( c - aw2) + ibw] = A. (41) 

Using the identity (r + is)(r - is) = r2 + s2 , we see that 

[r + is]-l = (r - is)/(r2 + s2) . 

Thus, multiplying by [(c-aw2) + ibw]-l in (41), we obtain 

and 
C = A[(c - aw2) - ibw]/[(c - aw2)2 + b2w2] 

y(t) = Ceiwt = C[cos(wt) + isin(wt)] 

= A[(c -aw2)cos(wt) + bw sin(wt)]/[(c - aw2)2 + b2w2] 

+ iA[(c -:aw2)sin(wt) - bw cos(wt)]/[(c - aw2)2 + b2w2] 
= YR(t) + IYI(t) , 

( 42) 

(43) 

where the last equation defines the real and imaginary parts of the solution y(t) of (40) with f(t) 

= Aeiwt = Acos(wt) + iAsin(wt). Since 

ay" + by' + cy = (aYR + bYR + cYR) + i(aYI + bYi + cYI) , (44) 

we see that YR(t) solves (40) with f(t) = Acos(wt) , while YI(t) solves (40) with f(t) = ASin(wt) . 

If the frequency w is allowed to vary, then the amplitude A[(c - aw2)2 + b2w2]-t (d. Figure 5 

below) of YR and YI is largest, when w is chosen so that h(w) = (c - aw2)2 + b2w2 is minimal. 

w 

- I 

Figure 5 
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By setting hI (W) = 0 , these resonant frequencies wR are found to be 

1 

wR = ± [ ~ _ ~[~] 2] 2 , ( 45) 

unless 2ac - b2 < 0 , in which case wR = 0 yields the maximum amplitude. Observe that if 

2 21 
b - 4ac < 0 , then I wRI is less than the natural frequency v = 1v'f<IT /2al = [(cia) - !(b/a) F 
which occurs in (32). Note that 

which shows that I wRI /1/ ---; 1 as (b2/ac) ---; O. In the above argument, we have assumed that 

A does not depend on w. In applications to electronics, A is usually proportional to w, in which 
case (45) does not apply. As an illustration see Problem 13. 0 

Special Systems of ODEs 

Occasionally we will meet a system of linear ODEs of the form 

X I (t) = ax( t) + by( t) 

y/(t) = cx(t) -+- dy(t) , 

(46a) 

(46b) 

where a,b,c, and d are given real constants and x(t) and y(t) are unknown functions. We are 
required to solve the system (46a) (46b) for x(t) and y(t),' given the initial values x(O) and y(O). 
If b = 0 , we can solve the first order ODE (46a) for x(t). Then we substitute the solution x(t) 
into (46b), and solve the resulting first-{)rder ODE for y(t). If b f:. 0 , we differentiate both sides 
of (46a) and use (46b) as follows: 

x"(t) = ax/(t) + by/(t) = ax/(t) + b(cx(t) + dy(t)) 

= ax/(t) + bcx(t) + d·(x/(t) -ax(t)), 

where we have used 46(a) for the last equality. Thus, x(t) must satisfy 

x"(t) - (a + d)x/(t) + (ad - bc)x(t) = O. ( 47) 

This familiar second-{)rder ODE is solved for x(t), using the initial values x(O) and X/(O) 
ax(O) + by(O). There is no need to solve (46b) for y(t), since by (46a) 

y(t) = (x/(t) -ax(t))/b. (48) 

The above ideas suffice to solve certain other types of systems of ODEs which arise in the sequel, 
and there will be no need for differential operator/matrix methods. 



14 Chapter 1 Review and Introduction 

Example 9. In Examr.le 2, calculate the position (x(t),y(t)) of the particle at any time t, given 
that x(O) = 1 and ytO) = 3 . 

Solution. The velocity vector at time tis x/(t)i + y/(t)j. Thus, we have the system 

x/(t) = 2y(t) 

yl (t) = 4x(t) . 

As above, differentiating (49a) and using (49b) we get 

x"(t) = 2y /(t) = 8x(t) or x"(t) - 8x(t) = O. 

2 Since r - 8 = 0 , we have r = ±2.j2 , and the general solution is 

but we need x(O) = 1 and Xl (0) = 2y(0) = 6. These conditions yield 

Using (49a), 

( 
Cl = ~ + ! . .j2 

c2 = ~ - ! . .j2 

y(t) = t Xl (t) = .j2[ c1e2.j2. t _ c2e-2y'2. t] . 

(49a) 

(49b) 

As t varies, the point (x(t),y(t)) traces out a branch of the hyperbola y2 - 2x2 = 7 (cf. (4) in 

Example 2 with C = 7), because one can verify that [y(t)]2 - 2[x(t)]2 = 7. The parametric 

representation (x(t),y(t)) for this curve gives us much more information than y2 - 2x2 = 7 
does, since (x(t),y(t)) gives us the particle's position at any time t. 0 

Example 10. The weight w( t) of a certain animal grows at a rate WI (t) = Cs( t) - K , where s( t) 
is the size of the animal's food supply and K, C > 0 are constants. We assume that s(O) and 
w(O) are positive. If s(t) ever becomes 0, then it remains at O. The animal has starved to death, 
if w(t) drops to O. The heavier the animal gets, the more it eats from its food supply which 
ordinarily would grow at a rate proportional to s(t) in the animal's absence. Thus, while the food 

supply lasts, s I (t) = As( t) - Bw( t) , for constants A, B > O. Show that if A 2 < 4BC , then the 
animal will eventually starve to death (after a number of diet/binge cycles), unless w(O) = 

AK/BC and s(O) = K/C ,in which case w(t) and s(t) are constant. (The case where A2> 4BC 
is the subject of Problem 19.) 
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Solution. We have the system 

s'(t) = As(t) - Bw(t) 

w' (t) = Cs(t) - K . 

Differentiating the first equation and using the second, we have 

s"(t) - As' (t) + BCs(t) = BK . 
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(50a) 

(50b) 

(51) 

The general solution of (51) is the constant particular solution K/C plus the general solution of 
the related homogeneous equation 

s"(t) - AS'(t) + BCs(t) = 0 . (52) 

Equation (52) is of the form (18), with a = 1 , b = -A and c = BC. Thus, d = b2 - 4ac 

= A 2 - 4BC. If A 2 < 4BC ,then d < 0 and the general solution of (51) is 

(53) 

The function in brackets can be written as (c~ + c;)~cos[(IfGT·t/2) + 8] for some constant 0 (cf. 
Problem 10). Thus, if c1 and C2 are not both zero, the solution will oscillate about K/C with the 

growing amplitude (c~ + c;)~e~At , as the animal diets and indulges with greater intensity. 

Eventually this amplitude will be greater than K/C (provided w(t) remains positive), and s(t) 
must drop to zero at some time, say to, during the next cycle. Thus, if the animal is still alive at 

time to' then after to' w' (t) = -K , and w( t) drops steadily to zero. If c1 and c2 are both zero, 

then s(t) = K/C ,and (50a) then says that w(t) = AK/BC. Figure 6 shows that w(t) might 
drop to zero while s( t) is still positive. 0 
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Summary 1.1 

1. First-order separable ODEs: To solve the first-order separable ODE f(y) ~ = g(x) , write 

it in the form f(y)dy = g(x)dx and integrate: 

I f(y) dy = I g(x) dx + C , 

2. First-order linear ODEs: The general solution of the first-order linear ODE 

y' (x) + p(x)y(x) = q(x) , (Sl) 

which is in standard form, can be obtained as follows, 

(a) Multiply both sides of (Sl) by the integrating factor m(x) = exp{f p(x) dx} and check that 

~ [m(x)y(x)] = m(x)q(x) , 

(b) Integrate both sides of (S2) to obtain m(x)y(x) = Im(x)q(x) dx + C , 

where C is an arbitrary constant, 

(c) The general solution of (Sl) is then 

y(x) = [m(x)]-l{fm(x)q(x) dx + C} , 

(S2) 

3. Homogeneous second-order linear ODEs: To determine the general solution of the 
homogeneous second-order linear ODE 

ay"(X) + by'(x) + cy(x) = 0, (S3) 

where a,b,c are real constants and a f= 0 , first find the roots rl and 1'2 of the associated 

'I' ,2 b 0 auxi lary equatIOn al' + r + c = , 

Let ci and c2 denote arbitrary constants and let y(x) denote the general solution of (S4), 

(i) If r l and 1'2 are real and distinct, then y(x) = clllX + c2er2x , 

(ii) If rl = r2 = 1', then y(x) = cllx + c2xlx , 

(iii) If rl = ll' + i(J and r2 = ll' - i(J, then y(x) = ell'x[clcos((Jx) + c2sin((Jx)] , 
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4. Linear systems: To solve the linear system of ODEs 

x'(t) = ax(t) + by(t) 

y'(t) = cx(t) + dy(t) , 

17 

(A) 

(B) 

where I't,b,c, and d are real constants, with given initial values x(O) and y(O), consider the 
following cases. 

Case 1. If b = 0 , solve (A) for x(t) and substitute the solution into (B). 
Then solve the resulting ODE for y(t). 

Case 2. If b f. 0, differentiate both sides of (A) with respect to t , and then use (B) to get 

x" - (a + d)x' + (ad - bc)x = 0 . 

Using the initial values x(O) and x'(O) = ax(O) + bl(O), we first solve the above 
second-order ODE for x(t), and then set y(t) = [x'(t) - ax(t)J/b by (A). 

Exercises 1.1 

1. Find the general solutions of the following separable equations: 

(a) ~=xy 

2 
(d) Qy = tiL ax ~ 

(g) dx t x+t ([f=e 

(b) ~~ = x(1-x) 

() dX 2.() 0 e dt + x sm t = 

(i) T' (t) + 3T(t) = 0 . 

2. A radioactive substance decays at a rate proportional to the amount of the substance present. 
If 64% of the substance remains after 10 years, what percentage will remain after 15 years? 

3. Torricelli's law states that (under certain ideal circumstances) fluid will leak out of a hole at 
the base of a container at a rate proportional to the square root of the height of the fluid's surface 
from the base. Suppose that a cylindrical container is initially filled to a depth of one foot. If it 
takes one minute for three quarters of the fluid to leak out, how long will it take for all of the fluid 
to leak out ? [Italian Evangelista Torricelli (1608-1647) succeeded Galileo as professor of 
mathematics at the Florentine Academy, and following a suggestion of Galileo, invented the 
mercury barometer. ] 
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4. Solve the following first-order linear equations, subject to the given conditions: 

(a) y'(x) + 2y(x) = eX, y(O) = 1 (b) x'(t) - (2/t)x(t) = 1 , x(l) = () 

(c) sin(x)y'(x) -cos(x)y(x) = sin(2x), y(7r/2) = 0 (d) x'(t) + xit ) = t2 , x(O) = 0 

(e) 3 ~ + 6xy = 6e-x , y(O) = 1 (f) ~ = 3y + e2x , y(O) = 0 

(g) x'(t) + x(t)cos(t) = 0, x(7r) = 100 ) Qr ( 2 -x-x2-x3 () (h dx + 1 +2x+3x )y = e , y 0 = 3 

(.) dx 3x 
I dt + 2t+100 0, x(-49.5) = 1 . 

5. A population P of bacteria grows at a rate (say b· P , b > 0) proportional to its size, but it is 
destroyed at a steadily increasing rate (say c· t , c > 0) by a spot of mold which starts growing at 
t = o. Under what circumstances will the mold completely consume the bacteria? 
Hint. Solve P'(t) = bP(t) - ct in terms of b, c, P(O) and t. Under what condition(s) (on P(O), 
b and c) will P(t) drop to zero for some t > 0 ? 

6. Find the general solution, y(x), of the following second-order homogeneous linear ODEs. 

(a) y" = 0 

(d) y" + y' = 0 

(g) 2y" + 5y' + 2y = 0 

(i) y"-4y' +4y=0 

(b) y" - 3y = 0 

(e) y" -3y' = 0 

(c) y" + 3y = 0 

(f) 4y" + 3y' + 5y = 0 

(h) y" -6y' + 13y = 0 

(j) y" + 10 y' + 25y = 0 . 

7. Find the particular solutions y( t), meeting the given initial data, of the following second-order 
homogeneous linear ODEs. 

(a) y"-5y'+6y=0; y(0)=1,y'(0)=2 (b) y"-4y'+4y=0; y(O)=O,y'(O)=l 

(c) y" + y = 0; y(O) = a, y'(O) = b (d) y" - y = 0; y(O) = a, y'(O) = b 

(e) 5y" + 8y' + 5y = 0; y(O) = 0 , y' (0) = 1 (f) 5y" + Sy' + 5y = 0; y(O) = 1 , y' (0) = o. 

S. (a) Show that if y (x) and y (x) are solutions of the homogeneous linear ODE 
1 2 

a(x)y" + b(x)y' + c(x)y = 0, then the superposition C1Yl(X) + C2Y2(x) is also a solution. 

(b) If a(x), b(x) and c(x) are continuous with a(x) never zero, then the ODE in part (a) has a 
unique solution y(x) with given values for y(xo) and y' (xo) (cf. [Simmons, Section 57]). 

Assuming this, show that no solution of this ODE can have a graph which is tangent to the x-axis 
at some point, unless the solution is identically zero. 
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9. (a) If ar2 + br + c = 0 has only one root (of multiplicity 2) r = -b/2a , show that f(x)lx is 
a solution of ay" + by' + cy = 0 , if and only if f"(x) = 0 . 

r2x r1x 
(b) For distinct numbers r1 and r2 observe that lim e r = ~ = xlIx. 

r2 -+r1 2 1 

How is this observation related to the result in part (a) ? 

10. (a) Show that any complex number Z = x + iy can be written in "polar form" reiO , where 

r = I Z I = [x2 + l]! and 0 are the polar coordinates of the point (x,y) in the Cartesian plane. 

(b) For real x, y and w, note that xcos( wt) + ysin( wt) is the real part of the product 

(x + iy)(cos(wt) - isin(wt)) = reiOe-iwt. In view of this show that 

xcos(wt) + ysin(wt) = rcos(wt - 0) = rsin(wt - 0 + 7r/2). 

()() n 
11. (a) By setting x = 0 in the formula eZ = L h , Z = x + iy, and by using the series 

n=O n. 

expansions for cos(y) and sin(y), verify that eiy = cos(y) + isin(y) . 

(b) If r1 = a + i(J and r2 = a - i(J , verify that HlIX + er2x] = ell'Xcos((Jx) and 

-ti[er1x - er2x] = ell'Xsin((Jx). 

(c) Use the definition ~ [f(x) + ig(x)] = f/(x) + ig/(x) and the formula 

e(a+i(J)x = ell'Xei(Jx = ell'X[cos((Jx) + isin((Jx)] 

to show that ~ lX = rlx ,where r = a + i(J . 

(d) Use part (c) to verify that the function y(x) defined by (23) (see also (21) and (22)) satisfies 
the differential equation (18). 

12. Find the constants c1 and c2 in (35) and (36) such that x(O) = Xo and x' (0) = 0 . 

13. Suppose that in Example 7 (with LRC f. 0), the voltage source is alternating, say V(t) 
= sin(wt). For what value of w is the amplitude of i(t) the greatest, for large t ? 

Hint. In the case of variable V(t), the right side of (39) is replaced by V/(t). Show that any 
solution of the related homogeneous equation approaches 0 as t -+ ()() (such a solution is called 
transient). To find a nontransient particular solution, apply Example 8, with f(t) = V/(t) 
= w·cos(wt), noting that A is w. 
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Remark. If V( t) = Voeiwt and I( t) = Ioeiwt for complex constants V 0 and 10 , then the 

complex number Io/V 0 is called the admittance and it is usually denoted by Y( w) since it 

depends on w, while Z(w) = [Y(w)]-l is called the impedance. The problem is to determine the 
"low impedance resonance" Wo which makes I Z( w) I smallest. 

14. For the system (46), we showed that x( t) must satisfy x" - (a + d)x I + (ad - bc)x = O. 
Show that y(t) must also satisfy y" - (a + d)y' + (ad - bc)y = O. 

15. Solve the following system subject to the given initial data 

x' (t) = x(t) + y(t) 

y' (t) = -x(t) + y(t) 

x(O) = 1 

y(O) = 0 . 

Draw a rough sketch in the xy-plane of the solution curve (x( t) ,y( t)) as t varies. 

16. Consider the system (46). If (a-d)2 + 4bc * 0, then show that any complex solution 
(x(t),y(t)) of the system must be of the form 

where c1, c2, d1, d2 are complex constants and r1 and r2 are the (possibly nonreal) roots of 

r2 - (a + d)r + (ad - bc) = O. What happens if (a-d)2 + 4bc = 0 ? 

Hint. See Problem 14. 

17. Solve each of the following systems subject to the given initial data: 

(a) 

(b) 

( c) 

x/(t) = 3x(t) - 4y(t), 
y/(t) = x(t) - y(t), 

x/(t) = x(t) -4y(t), 
y/(t) = x(t) + y(t), 

x/(t) = x(t) + 2y(t), 
y/(t) = 3x(t) + 4y(t), 

x(O) = 1 
y(O) = 1 

x(O) = 1 
y(O) = 1 

x(O) = 0 
y(O) = 1 . 

18. For any complex number z, we define the hyperbolic sine and cosine by 
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(a) Verify that cosh2(z) - sinh2(z) = 1 . 

(b) For a real variable x, show that t sinh(x) = cosh(x) and t cosh(x) = sinh(x) . 

(c) For a real variable y , check that sinh(iy) = iSin(y) and cosh(iy) = cos(y) . 

(d) Define sin(z) and cos(z) for any complex number z, by allowing y to be complex in (c). Check 

that sin2(z) + cos2(z) = 1 . 

19. In relation to Example 10 , assume that A 2 > 4BC in each of the following parts. 

(a) If the animal does not starve to death first, show that its weight eventually grows at an 
exponential rate, unless the animal maintains the constant weight AK/BC. 

(b) Explain intuitively why it is possible to choose positive initial values for w(O) and s(O) such 
that the animal starves to death. 

(c) Give a concrete example to prove your claim in (b). 

20. By completing the following steps, show that the general solution of a second-order 
homogeneous linear equation ay" + by' + cy = 0 [where a,b and c are constants (a # 0) ; see, 
however, the final remark after step (f)l is of the form ClYl(x) + C2Y2(x) ,where Yl(x) and Y2(x) 

are any two linearly independent solutions (i.e., neither is a constant multiple of the other). We 
assume that all functions under consideration here have continuous second derivatives everywhere. 

(a) Show that two functions f(x) and g(x) (with g(x)/f(x) or f(x)/g(x) differentiable) are 
linearly dependent on some open interval I, if and only if their Wronskian function W[f,g](x), 
defined as f(x)g' (x) - f' (x)g(x) , is zero for all x in 1. [Jozef M. Hoene-Wronski (1778-1853) 
was a Polish-born, egocentric mathematician and metaphysician. Wronski became later a French 

citizen. He is best known for the determinants such as I i, ~I I = fg' - f' g , which he used in his 

"highest law" of mathematics. The term "Wronskian" was coined by Thomas Muir around 1882.] 

(b) Show that if y(x) and z(x) are any solutions of ay" + by' + cy = 0 , then W[y,z](x) is a 
solution of aW' (x) + bW(x) = o. Thus W[y,z](x) = Cexp(-bx/a) , for some constant C which 
depends on the choice of solutions y and z. (This is Abel's formula.) 

(c) Conclude from (b) that if W[y,z](x) = 0 , for some x, then W[y,z](x) = 0 for all x . 

(d) In (b) and (c), let z(x) = dlYl(X) + d2Y2(x) for constants dl and d2 (a solution, by 

Problem 8(a)). Show that Wry, dlYl + d2Y2](x) = dlW[y'Yl](x) + d2W[y,y2](x). Explain why 

there must be some constants dl and d2 (not both zero), such that dlW[y'Yl](X) + d2W[y'Y2](x) = 
o for some particular x. 

(e) Conclude from (c) and (d) that there are constants dl and d2 (not both zero) such that 

Wry, dlYl + d2Y2](X) = 0 for all x. 
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(f) Conclude from (a) and (e) that y(x) = c'[d1Yl(X) + d2Y2(x)] = C1Yl(X) + C2Y2(x) for some 

constants c', c1 and c2 on any interval where y(x) is never O. (We omit the proof of the fact 

that if y(x) = C1Yl(x) + C2Y2(x) on one interval, then the same is true everywhere.) 

Remark. The same proof works in the case where a,b and c are replaced by continuous functions 

a(x), b(x) and c(x) , if one assumes that a(x) is never zero. Then, W[y,z] = Cexp [-J ~f~l dX]. 
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1.2 Generalities About PDEs 

Let u = u(x,y,z, ... ) be a function of several unrestricted real variables x, y, z, .... (In the 
remark below, we consider the case where (x,y,z, ... ) is restricted to some region.) Recall that the 

partial derivative ~ of u, with respect to the variable x, is just the ordinary derivative of u 

with respect to x, treating the other variables as constants. We use the following convenient 
notation 

u - cPu u - fi2u u _ fi2u 
xx - (}x2' yx - OXEJY ' xy - 7JjOX , 

The order of a partial derivative is then the same as the number of subscripts. The function u is 
said to be continuous at a point p = (xo,yo,zo,"') , if the values of the function can be made 

arbitrarily close to u(p) by allowing the variables x, y, z,... to vary (simultaneously) only 
within sufficiently small open intervals about xo, Yo, zo, ... , respectively. The function u is 

continuous if it is continuous at all points p. 

For a nonnegative integer k, a function u is said to be a Ck function, if every 
k-th order partial derivative of u exists and is continuous. 

A function is a CO function, if and only if it is continuous. The notation II u E Ck II is used to 

indicate that u is a member of the set of the Ck functions. It is a standard fact that u E Ck 

implies u E Ck- 1 for k > O. For a C2 function u, recall that uxy = uyx ' More generally, the 

order in which one takes k or fewer partial derivatives of a Ck function is immaterial. 

Remark. We have assumed above that the function u is defined for all values of the independent 
variables. The function might only be defined for (x,y,z, ... ) in a certain region D. The regions 
which we will encounter are rather simple (e.g., rectangles, strips, discs). If such a region includes 
some point p of its boundary, then technically the notion of partial derivative of u at p is not 
defined, unless one wishes to deal with one-sided derivatives. Let us simply say that a function u 

is Ck on a region D with boundary points, if there is a Ck function v, defined on a larger region 
without boundary points (i.e., an open region) such that u = v at all points of D. 

Definition 1. A partial differential equation (PDE) of order k > 0 is an equation involving 
an unknown function u, such that k is the greatest of the orders of the partial derivatives of 
u appearing in the equation. 
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Definition 2. A solution of a k-th order PDE, on a prespecified region D, is a Ck function 
defined on the region D such that the PDE is satisfied at all interior points of D. If no 

region is specified in advance, then a solution of a k-th order PDE is a Ck function defined 
on at least some nonempty open region where it satisfies the PDE. 

There are many functions of several variables which arise in practice. At a point (x,y,z) at 
time t, u(x,y,z,t) might be anyone of the following quantities: temperature, electrostatic 
potential energy, gravitational potential energy, pressure, mass density, energy density, 
concentration of a certain chemical, etc.. The laws of science are frequently stated in terms of 
PDEs involving such functions as unknowns. One often has the problem of determining the 
function u(x,y,z,t) for arbitrary t, for given information about u at time t = ° (i.e., initial 
conditions, abbreviated I.C.). Such problems are referred to as initial-value problems. In 
steady-state problems, the function u is independent of t. In this case, one is often interested in 
solving a PDE for u(x,y,z) in a certain region D in space, where information is given about the 
behavior of u on the boundary of D (i.e., boundary conditions, B.C., are given). Such problems 
are known as boundary-value problems. More generally, one often seeks a solution u(x,y,z,t) of 
some PDE for points (x,y,z) in a region D at arbitrary time t > ° , subject to initial conditions 
at time t = ° , as welI as boundary conditions specified at each time t > 0. Such a problem is 
aptly called an initial/boundary-value problem. It is important that the initial conditions and 
boundary conditions be chosen in such a way that the PDE has a unique solution satisfying them. 
Otherwise, one cannot meet the chief goal of predicting the relevant physical quantity represented 
by u. Mathematicians tend to be more interested in proving the existence, uniqueness and 
qualitative behavior of the exact solutions of initial/boundary-value problems, while those who 
apply the theory are concerned with actually finding functions which satisfy the PDE and 
initial/boundary conditions, at least within experimental error. In this book, we try to adopt an 
intermediate stance, believing that each camp can benefit from the considerations of the other. 
Before continuing our general discussion, we-will now present some specific examples. Example 1 
is lengthy, but it is well worth understanding. 

Example 1 (Spherically symmetric gravitational potentials). In the Newtonian (pre-Einstein) 
theory of gravity, at a fixed time, the gravitational acceleration vector field (force per unit mass) 
is -Vu, where Vu == uxi + uyj + uzk is the gradient of a function u(x,y,z), called the 
gravitational potential. The function u obeys the second-order PDE 

Uxx + Uyy + uzz = 41rGp (1) 

where p = p(x,y,z) is the density (mass per unit volume) of matter at (x,y,z), and G is the 

gravitational constant, G ~ 6.668 x 10-11 m3s -2kg -1. One can also interpret u in other ways, 
for example, (i) as a steady-state temperature distribution in a solid with internal heat source 
density proportional to p, or (ii) as an electrostatic potential whose negative gradient is the 
electric field produced by a charge density proportional to p. In any case, equation (1) is known 
as Poisson's equation. In the special case when p = 0, (1) is better known as Laplace's equation. 
Suppose that we seek a solution u(x,y,z) of Laplace's equation which is spherically symmetric in 

the sense that u(x,y,z) only depends on the distance I' = [x2 + y2 + z2]t to the origin (0,0,0). 
In other words, u(x,y,z) = f(r) for some function f of a single variable r > 0. Using the chain 
rule. we have 
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Then 

u = ~ ~ = fl(r) r where r = ~[x2 + y2 + z2]t = Ar-12x = xr-1 . x ur ux x ' x ux ~ 

= fll(r)(x2jr2) + f ' (r)[r-1 + x(-r-2rx)] 

= fll(r)(x2jr2) + fl(r)[r-1 - (x2jr3)]. 

We get similar expressions for Uyy and uzz. Adding these results, we obtain 

uxx + Uyy + uzz = fll(r)(x2 + y2 + z2)jr2 + £' (r)[3r-1 - (x2 + y2 + z2)jr3] 

= fll(r) + 2r-1fl (r) = ° . 
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(2) 

Writing g(r) = fl(r), equation (2) becomes the separable (or linear) ODE g'(r) + 2r-1g(r) = 0, 

whose solution is g(r) = Cr-2. Thus, f(r) = -Cr-1 + K, where C and K are arbitrary 
constants. Hence the general spherically symmetric solution of Laplace's equation is 

1 1 
u(x,y,z) = -C[x2 + y2 + z2]2 + K = -Cr- + K . (3) 

If C f ° , then this solution is not defined at (0,0,0). Thus, the only spherically symmetric 
solutions that are defined everywhere are the constant solutions u = K , which give rise to a zero 
gravitational (or electric) field (-VK = 0). Of course, one does not expect to find any gravity (or 
static electrical field) when the density p is ° everywhere. When C f ° , we obtain a solution 
defined in any region D which excludes (0,0,0). In the gravitational context, take D to be the 

exterior, r > ro, of some isolated planet. Suppose that the magnitude IVul = fl(r) = Cr-2 of 

the gravitational acceleration is known to be g at the planet's surface (e.g., for the earth 

g ~ 9.8 mjsec2 ~ 32 ftjsec2). Then we have the boundary condition Cr~2 = g or C = gr~. Thus, 

2 -1 2 u = -gror + K and -Vu = -g(rojr) er for r ~ ro , (4) 

where e is the unit vector field pointing away from (0,0,0). When r < r , these formulas do not 
r 0 

apply, since p > 0 inside the planet. (In this case we would have to solve Poisson's equation (1) 

for r < r ). Since IVul in (4) is proportional to r-2, we have deduced the inverse-square law for 
o 

gravity from Laplace's equation. 0 

Remark 1 (Escape velocity). The potential difference u(oo) - u(ro) = gro is the energy (per unit 

mass) required to move an object from the planet's surface to arbitrarily far reaches of space. 
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Thus, ignoring atmospheric resistance, the kinetic energy per unit mass, namely ~v2 (v = 

velocity), which is needed for a projectile to completely escape from the planet is gr. In other 
o 

words, the escape velocity is ~. For the earth, this is about 11.2 km/sec ~ 7 miles/sec. 0 
o 

Remark 2 (Spherically symmetric solutions in dimension n). In n-dimensional space, the 
spherically symmetric solutions u(xI, ... ,xn) of Laplace's equation (u + ... + u = 0) can 

XIXI xnxn 
be found in the same way as in Example 1 (cf. Problem 6), and are of the form 

_Cr2- n + K , if n > 2 
and 

C·log(r) + K, if n = 2, 

(5a) 

(5b) 

where r = [(x l )2 + ... + (xn)2l~. Regardless of the dimension, solutions of Laplace's equation are 

called harmonic functions. The formulas (5a) and (5b) show that in dimension n, the magnitude 
of the force -Vu (per unit mass), associated with a spherically symmetric harmonic potential, is 

proportional to rl-n. In Problem 19, we prove that when n ~ 4, a planet subject to such a 
force cannot have a closed orbit unless the orbit is a perfect circle, a very unstable possibility. (Of 
course, a wide variety of closed elliptical orbits are possible when n = 3). Thus, perhaps it is not 
so surprising that the space that we live in has no more than 3 dimensions. 0 

Remark 3 (Other solutions of Laplace's equation). It should be mentioned that there are actually 
infinitely many independent solutions (not just depending on r) of Laplace's equation in any 

dimension n> 1. For example, consider u = x, y, x2_y2, 2xy, x3_3xy2, eXsin(y), .... 
Chapter 6 is devoted mainly to Laplace's equation in dimension 2: Uxx + Uyy = O. There, we 

will consider the boundary-value problem (among others) of determining solutions u of Laplace's 
equation on a plane region D, given the values of u on the boundary of D. This problem has 
applications to steady fluid flow, electrostatics and steady-state heat theory in which there is no 
dependence on the spatial variable z. One reason for the appearance of Laplace's equation in so 
many contexts is that it is the only homogeneous, linear (cf. Definition 3 below) PDE which 
involves only partial derivatives of orders strictly between 0 and 4 and retains its form under 
translations and rotations of coordinates. 0 

Example 2 (Heat problems). Suppose that u(x,y,z,t) is the temperature at time t at the point 
(x,y,z) in a homogeneous heat conducting solid without heat sources. Under natural assumptions, 
one can show that u satisfies the following second-order PDE called the heat equation: 

(6) 

where k > 0 is a constant which measures the heat conductivity of the material in the solid. 
Note that in the case of a steady-state temperature distribution, where u does not depend on t, 
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the left side ut of (6) vanishes, and thus the steady-state temperature u(x,y,z) satisfies Laplace's 

equation. In Chapter 3, we will derive and study the heat equation in the simpler 
onHimensional setting, where u depends only on x and t . One example of the 
initial/boundary-value problems which we will consider is 

B.C. u(O,t) = ° u(l,t) = ° 
I.C. u(x,O) = f(x) 

(7) 

Here u(x,t) is the (uniform) temperature of the cross section at distance x along a solid rod 
which extends from x = ° to x = 1. We assume that the rod is covered with heat insulation 
except at the end cross sections. The B.C. u(O,t) = ° and u(l,t) = ° state that the ends of the 
rod are to be maintained at temperature ° (e.g., the rod is placed in ice water). The I.C., 
u(x,O) = f(x), tells us that, at t = 0, the rod has the given temperature distribution f(x). For 
example, suppose that f(x) = sin( me). One can easily verify that 

(8) 

solves the PDE (7) and the initial condition u(x,O) = sin( me), as well as the boundary conditions. 
We expect that the rod's temperature will approach the temperature (zero) of its icy environment. 

Indeed, the factor exp[-7r2ktJ in (8) tells us that, as t -+ 00 , the temperature of the rod 
approaches 0, and it does so more rapidly for larger values of the heat conductivity k. More 
generally, choosing f(x) = sin(nme) for an arbitrary positive integer n, we get the solution 

u(x,t) = exp[-n27r2ktjsin(nme) . Note that the rate at which this solution approaches ° as t -+ 00 

is faster for larger values of n. Physically, this is so, because the rate of heat transfer from hot to 
cold regions is greater when these regions are separated by smaller distances, which is the case 
when n gets larger. Associated with the heat equation, there are many other types of boundary 
and initial conditions which will be explored and solved in Chapter 3. 0 

Example 3 (Wave problems). If u(x,y,z,t) is the deviation of air pressure (from its normal value) 
at (x,y,z) at time t, then (to a good approximation) u satisfies the wave equation 

(9) 

where a is the speed of sound. We assume that the elevation is near sea level, so that a can be 
taken to be the constant 1087 ft/sec. For another interpretation of (9), the scalar potential (as 
well as the components of the vector potential) of a possibly timHependent electromagnetic field 
in vacuum also satisfies the wave equation, where a is the speed of light in a vacuum ( ~ 186,000 

mi/sec ~ 2.998 x 108 m/sec). Note that when u is time-independent (e.g., when u is an 
electrostatic potential), (9) reduces to Laplace's equation, since ut = 0. Returning to the case 

where u measures air pressure deviations, suppose that we wish to find possible sounds 
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(variations of pressure) inside a closed box. As one nears a wall of the box from inside, one finds 
that the derivative of the pressure in the direction normal (perpendicular) to the wall approaches 
0. This is because wind blows in the direction of the negative pressure gradient, 
-Vu = u i + u j + u k. Since there can be no wind velocity component normal to the wall, the x y z 
pressure gradient has no normal component. So, for the box ° ~ x ~ A , ° ~ y ~ B , ° ~ z ~ C, we 
have the following B.C. : 

ux(O,y,z) = 0, uy(x,O,z) = 0, uz(x,y,O) = ° 
ux(A,y,z) = 0, uy(x,B,z) = 0, uz(x,y,C) = ° . (10) 

There is a large family of solutions of (9) which satisfies the B.C. in (10). For any triplet (m,n,p) 

of integers, let v(m,n,p) = ~a[(m/ A)2 + (n/B)2 + (p/C)2]t. Then, 

u(x,y ,z,t) = sin[21rv(m,n,p )t]· cos(m1rX1 A)· cos(nny IB)· cos(P7rz/C) (11) 

satisfies the PDE (9) and the boundary conditions (10) (cf. Problem 9). Moreover, if in (11) we 
replace the leading factor by cos[27rv(m,n,p )t], then we get another solution. Notice that, at 
points in the box, the pressure (11) oscillates through v(in,n,p) cycles per unit time. Hence, 
v(m,n,p) is called the frequency of the solution (11). If A ~ B ~ C, the lowest possible nonzero 
frequency (called the fundamental pitch) is v(O,O,l) = talC. Taking the box to be an enclosed 
shower stall with a 7 ft height (and smaller dimension for the base), we have talC = 1087/14 
~ 78 cycles per second (or 78 Hertz), which is the pitch of a rather low voice. 0 

Remark. In Chapter 5, we concentrate on the one--{}imensional wave equation 

(12) 

for a function u = u(x,t). At a fixed time t, u(x,t) can be interpreted as the transverse 
displacement at position x of a vibrating string which is stretched along the x-axis when at rest. 

Here a2 is T / p, where T is the tension at rest and p is the mass per unit length of string. In 
Chapter 5, we provide a derivation of (12) using Newton's second law, and we solve numerous 
initial/boundary-value problems for the vibrating string. In contrast to the heat equation, in 
order to determine a unique solution of (12), one needs to know not only the string's initial 
displacement u(x,O), but also the initial rate of change ut(x,O). A simple example of an 

initial/boundary-value problem for the string is 

2 D.E. Utt = a uxx ° ~ x ~ 1 , t ~ ° 
B.C. u(O,t) = 0, u(l,t) = ° 
I.C. u(x,O) = f(x) , ut(x,O) = g(x) . 

(13) 
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The B.C. of (13) state that the ends of the string are held fixed on the x-axis at 0 and 1. 
Intuitively, the motion of the string is determined only if both the initial transverse displacement 
f(x) and the initial transverse velocity g(x) are given. For example, if f(x) = sin(7IX) and 
g(x) = sin(371X), the theory of Chapter 5 yields the solution 

u(x,t) = cos( 1I'at)sin( 7IX) + (1/31I'a)sin(311'at)sin(371X). 0 (14) 

Linear PDEs, Classification, and the Superposition Principle 

All of the PDEs in the above examples are linear. The notion of linearity for PDEs is 
strictly analogous to linearity for ODEs. Recall that the general n-th order linear ODE is an 
ODE which is expressible in the form 

( 15) 

where ao(x), a1(x), ... , an(x) and f(x) are given (possibly constant) functions of the independent 

variable x. In particular, terms involving y2 or higher powers of y (or more complicated 
functions of y or its derivatives), which cannot be eliminated, will make an equation nonlinear. 

For example, the equations y' + y2 = 0 , (y'1)-1 - x·log(y) = x and yy' = 1 are nonlinear. 
We say that the left side of (15) is a linear combination of y, y', y" , ... with coefficients ao(x), 

a1(x), a2(x), ... , which are given functions of the independent variable x. 

Definition 3. A linear n-th order PDE is a PDE which can be put in the following form. 
The left side of the equation is a linear combination of the unknown function u and its 
partial derivatives (up to order n) with coefficients which are given functions of the 
independent variables. The right side must be some given function f of the independent 
variables. If the function f is identically zero, then the linear PDE is called a 
homogeneous PDE. 

Example 4. The general second-order linear PDE for an unknown function u = u(x,t) is 

q(x,t)uxx + r(x,t)uxt + s(x,t)utt+ a(x,t)ux + b(x,t)ut + c(x,t)u = f(x,t) , (16) 

where q, r, s, a, b, c and f are given functions (possibly constant) of x and t, with q, r, and s 
not all zero. If f:: 0, then (16) is the general second-order homogeneous linear PDE. 0 

Example 5. The one--dimensional heat equation ut = ku can be put in the form (16) with xx 
q = -k and b = 1, and with zero values for all other coefficients and f. Thus, the heat equation 
is a homogeneous linear PDE. When heat sources or sinks are present, they can often be 
represented by the terms cu and h(x,t) in the inhomogeneous heat equation 
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-kuxx + ut + cu = h( x, t), k > 0 , (17) 

which is again a special case of (16). We call (17) the generalized heat equation. 0 

Example 6. As another instance of (16), in the case of a vibrating string with a transverse applied 
force density proportional to --<:u(x,t) + F(x,t) , we obtain the one-dimensional inhomogeneous 
Klein-Gordon equation 

2 -a uxx + Utt + cu = F(x,t) , a> 0 . (18) 

If F == 0 and c = 0 , (18) reduces to the (homogeneous) wave equation -a2uxx + Utt = 0 or 

(12). We refer to (18) as the generalized wave equation. 0 

Example 7. Usually one does not use t as an independent variable in Poisson's equation (cf. (1)), 
since t usually connotes time, whereas Poisson's equation is used in a steady-state context. 
However, using t unconventionally, we obtain Poisson's equation Uxx + Utt = g(x,t) in 

dimension 2. More generally (but still as a special case of (16)), we have the equation 

2 a Uxx + Utt + cu = g(x,t) , a> 0 . (19) 

If t is replaced by y (so that there will be no way of confusing t with time), then equation (19) is 
known as the inhomogeneous Helmholtz equation in dimension 2. Among other things, it is used in 
the analysis of vibrational modes of the skin or a drum. Roughly speaking, the constant a differs 
from 1 if the drum has a tension that is higher in one direction than in the other. We refer to (19) 
as the generalized Poisson/Laplace equation. 0 

It might appear that if we were to concentrate only on the "physical" equations (17),(18) 
and (19), then we would not make much progress in the study of the more general equation (16). 
However, in the case where the coefficients in (16) are constants, we have the following result, 
whose proof is given in Appendix A.I. 
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The Classification Theorem. Consider the second-order linear PDE 

aUee + bUer + cUrr + dUe + eU r + kU = F(e,r) , 

(a2+b2+c2 1= 0), where the unknown function U = U(e,r) is C2 and a, b, c, d, e and k 
are given real constants and F( e, r) is a given continuous function. Then there is a 
change of variables of the form 

x = ae + (3r t = -(3e + ar 

u(x,t) = p-lexp(1e + 8r)U(e,r), 

where a, (3, 1, 8 and p (p t= 0) are real constants with 0'2 + p2 = 1, such that (20) is 
transformed into exactly one of the following forms : 

1. the form of the generalized wave equation (18), if b2 - 4ac > 0, in which case (20) is 
called hyperbolic ; 

2. the form of the generalized POisson/Laplace equation (19), if b2 - 4ac < 0, in which 
case (20) is called elliptic; 

3. the form of the generalized heat equation (17), if b2 - 4ac = 0, and 2cd t= be or 
2ae t= bd in which case (20) is called parabolic; 
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(20) 

(21) 

4. the equation Uxx + cu = g(x,t), if b2 - 4ac = 0, 2cd = be and 2ae = bd, in which 

case (20) is called degenerate. 

In other words, aside from the degenerate case, equation (20) with constant coefficients is 
only a disguised version of the generalized wave equation, Poisson/Laplace equation or heat 
equation, depending on whether (16) is hyperbolic, elliptic or parabolic respectively. While it is 
good to know the Classification Theorem, it is perhaps not essential to become a virtuoso in 
performing the required change of variables, because when PDEs are derived from physical 
considerations in natural coordinates, almost always they are already found to be in a simple 
standard form. If it is ever needed, the method for the transformation of variables can be gleaned 
from the proof of the Classification Theorem in the Appendix A.1. Perhaps, the most significant 
facts to emerge are the following: 

(i) Every equation of the form (20) has a physical interpretation, when rewritten in terms of 
appropriate variables. 

(ii) In the general study of (20), there is really no loss of generality in confining one's attention to 
(17),(18),(19) and the degenerate case which is addressed in Section 1.3 . 
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The Superposition Principle 

A very important fact concerning linear equations is the superposition principle which we 
will now describe. By definition, a linear PDE can be written in the form L[uj = f, where L[u] 
denotes a linear combination of u and some of its partial derivatives, with coefficients which are 
given functions of the independent variables. Since Uu] has this form, if we were to replace u 
by ul + u2 the result, namely L[ul + u2], will be the same as L[u] + L[u]. The underlying 

I 2 
reason for this is the fact that a partial derivative of the sum of two functions is the sum of their 
partial derivatives taken separately. More generally, for any constants cI and c2 , 

(22) 

As a direct consequence of (22), we have 

The Superposition Principle (or Property). Let ul be a solution of the linear PDE 

L[u] = fl and let u2 be a solution of the linear PDE L[u] = f2 . Then, for any constants 

cI and c2 ' CIUl + C2U2 is a solution of L[u] = clfl + c2f2 . In other words, 

(23) 

In particular, when f, = 0 and f2 = 0 , (23) implies that if u, and u2 are solutions of the 

homogeneous linear PDE L[u] = 0 ,then c,u, + C2u2 will also be a solution of L[u] = o. 

Example 8. Observe that u,(x,y) = x3 is a solution of the linear PDE uxx - uy = 6x, and 

u2(x,y) = y2 is a solution of uxx - uy = -2y. Find a solution of uxx - uy = 18x + 8y. 

Solution. Here L[u] = uxx - Uy' f,(x,y) = 6x and f2(x,y) = -2y. Note that 18x + 8y 

= 3f,(x,y) - 4f2(x,y) , and thus c, = 3 and c2 = -4. The superposition principle then tells us 

that 3u,(x,y) - 4u2(x,y) (or 3x3 - 4y2) will be a solution of u - u = 18x + 8y, as can be xx y 
easily checked directly. 0 

Example 9. Observe that ul(x,t) = sin(t)cos(x) and u2(x,t) = cos(3t)sin(3x) are solutions of 

the wave equation Utt = uxx' By applying the superposition principle, find infinitely many other 

solutions, none of which is a constant multiple of any other. 
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Solution. Note that Utt = Uxx can be written in the form of an homogeneous linear PDE 

Utt - Uxx = o. According to the superposition principle, for any constants c1 and c2 , 

c1sin(t)cos(x) + c2cos(3t)sin(3x) 

is a solution. For each choice for c1 and c2 ' we obtain a different solution (cf. Problem 14). By 

choosing c1 = 1 and letting c2 vary, we obtain an infinite family of solutions, none of which is a 

constant multiple of any other. 0 

A great difficulty in the study of nonlinear equations is the typical failure of the superposition 
principle for such equations. This failure makes it difficult to form families of new solutions from 
an original pair of solutions, as the next example illustrates. 

Example 10. Consider the nonlinear first-order PDE uxuy - u(ux + uy) + u2 = 0 or 

equivalently (ux - u)(uy - u) = 0 . Note that we have two solutions, namely eX and eY. 

However, show that c1ex + c2eY will not be a solution, unless c1 = 0 or c2 = O. 

Solution. Defining N[u) = (ux - u)(uy - u) , observe that for any C1 functions v and w 

N[v + w) = (vx + wx-v-w)(vy + wy-v-w) 

= N[v) + N[w) + (vy - v)(wx - w) + (vx - v)(Wy - w) . 

This computation shows that N[v + w) f. N[v) + N[w) in general, due to the nonlinearity of the 

PDE. Taking v = c1ex and w = c2eY we obtain N[c1ex + c2eY) = N[c1ex) + N[~eY) 

+ (--c1ex)(--c2eY) = c1c2ex+y. Thus, N[c1ex + c2eY) = 0 only if c1 = 0 or c2 = o. 0 

Although all of the physically relevant PDEs which we have discussed so far are linear, 
there are many examples of nonlinear PDEs which are of great importance in physics. For 
example, Einstein's theory of relativity describes the force of gravity in terms of the curvature in 
the geometry of space-time. The Einstein field equations form a system of nonlinear PDEs. 
Because of the nonlinearity, solutions of these field equations are difficult to obtain, except in 
situations where several degrees of symmetry are assumed. Nonlinearity is also found in the PDEs 
of fluid mechanics, optics and elasticity theory. Nonlinear equations are often approximated by 
linear equations which hopefully yield solutions that are close to the corresponding solutions of the 
nonlinear equations. However, many interesting features of the original equations can be lost in 
the process, and gross errors can arise. In the next example, we illustrate these issues with the 
nonlinear minimal surface equation whose solutions yield soap film surfaces. 
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Example 11. Imagine a soap film surface which remains after a (possibly nonplanar) loop of wire 
is dipped in a soap solution. Due to the surface tension of the film, it will form a surface of least 
area spanning the loop (Le. a minimal surface). If the surface is the graph z = u(x,y) of some 

function u, defined on a bounded region D, then its area is II (1 + u2 + u2)t dxdy. In 1760, D x y 
Joseph Louis Lagrange showed that if u(x,y) minimizes this integral among all functions with the 
same values on the boundary of D, then u must satisfy the (nonlinear) minimal surface equation 

(24) 

If one were to assume that the surface z = u(x,y) is nearly level, then Ux and uy would be small 

(say compared with 1), and u~, u~ and uxuy would be very small. In this case, it would 

appear that equation (24) is reasonably approximated by Laplace's equation 

uxx + Uyy = 0 . (25) 

Indeed, if the wire loop is nearly planar, and is held nearly level, then the minimal surface 
formed will be close (in a sense which is rather difficult to make precise) to the graph of the 

corresponding solution of Laplace's equation. Troubles arise when the supposition u~ + u~ < < 1 

turns out to be incorrect. As an illustration, we compare the solutions of (24) and (25) in the case 
. 2 2.l 

where u IS assumed to have the form u = f( r) , r = [x + y ]>. By the computation done in 
Example 1, it is found that (24) and (25) become 

rfll(r) + f/(r)(1 + [f/(r)]2) = 0 

rf"(r) + f' (r) = 0 , 

(26) 

(27) 

respectively. If we set g = f' , then both (26) and (27) are separable first-order ODEs. The 
corresponding general solutions of (26) and (27) are, respectively, 

f(r) = Clog(Mr + (r2 - C2)~) + K 

f(r) = Clog(r) + K 

These solutions agree well for large r, where f/(r) ~ f/(r) ~ 0 (Le., where u~ + u~ « 1). 

However, f(r) and fer) behave differently as r 1 C ,and f(r) is undefined for 0 ~ r ~ C , 
whereas f(r) is defined for all r > O. In Figure 1 below, we have chosen C > 0 and 

K = -Clog(C/2) so that f(C) = O. The graph of u(x,y) = f([x2 + ilt) is a minimal surface 

obtained by revolving the graph of the curve z = f(r) about the z-axis. By joining the curve 

z = f(r) with z = -f(r) , and revolving, we obtain a complete minimal surface running from 
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z = -00 to z = +00 . The portion of the surface between the two circles at z = a and z = b is 
the soap film obtained by dipping those circles (say, wires) in soap solution, provided that Ib - al 

is not too large (d. Problem 20). The curve z = ±i(r) is the same as the curve r = C· cosh(z/C), 
and the complete minimal surface revolution is called a catenoid. The catenoids obtained in this 
way vary in size but not in shape. The minimum distance of the film to the z-axis is C. If we 
were to believe the validity of the Laplacian approximation, we might erroneously conclude that 
the film will continue to approach the z-axis, as z = f(r) does. The reason for the failure of the 

approximation is that i' (r) = [u; + u;lt does not remain small as r! C , but approaches 

infinity. 0 

z 

c 

r 

- c 

Figure 1 

Remark (Black holes). A very similar phenomenon happens when the nonlinear Einstein field 
equations are used to compute the spherically symmetric geometry for a gravitational field about 
a ball of mass M and radius ro ' In Example 1, the spherically symmetric Newtonian gravitational 

potential was found to be C/r + K , and it was derived from (the linear) Laplace equation. This 
formula for the potential is valid as long as r > ro, no matter how small or dense the ball is. 

However, it is found that Einstein's nonlinear description of the space-time geometry, in terms of 
the variable r and "time" t , can break down before r reaches roo Indeed, if the radius of the ball 

of mass M is less than the s<H:alled Schwarzchild radius rM = 2GM/c2 (where c is the speed of 

light and G = 6.668 x 10-11 m3s-2kg-1 is the gravitational constant), then the representation 
of the solution of the field equations becomes undefined as r! rM . In place of the ball, we then 

actually have what is known as a black hole. As with the soap film, the solution of the Einstein 
field equations can be mathematically continued, if one changes coordinates from rand t to new 
variables which can be related to rand t via hyperbolic functions. This continuation of 
space-time goes inside the throat of the black hole and into "another universe" which is, however, 
inaccessible by any ordinary means. Indeed, any object that enters the black hole and travels at a 
speed not greater than c will meet a singular boundary of space-time, never reaching the other 
universe or returning to our own. These interesting features of Einstein's theory are lost in the 
linear Newtonian theory which approximates Einstein's theory in less extreme circumstances. 0 
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Operators and Green's Functions 

A useful approach to solving linear initial/boundary-value problems for PDEs or ODEs is 
based on the construction of so-called Green's functions. This concept originated in the memoir, 
"Essay on the Application of Mathematical Analysis to the Theory of Electricity and Magnetism", 
published in 1828 by the English mathematician George Green (1793-1841). Green introduced 
the term "potential" and used what is known now as Green's theorem, to study the properties of 
electric and ma?,netic potentials. Here we briefly explain the concepts of linear differential 
operators, Green s functions and integral operators. 

An operator is a preSCriftion which assigns to each suitable function some new function. 
For example, suppose that L[u = f is a k-th order linear PDE. The operator which assigns, to 

each Ck function u, the new function L[u], is an example of a differential operator. The concept 
of such an operator is independent of any particular choice of u, in the same sense that the concept 
of a certain function, say log(x), is independent of any particular choice of x. Just as one might 
preter to speak of the log function, without any reference to x, it is fashionable to speak of partial 
differential operators L without any reference to u. For example, the Laplace operator, say in 
dimension 3, is denoted by 

(28) 

The operator ~ assigns to each C2 function u, the new continuous function ~[ul or simply 
~u, which is Uxx + Uyy + uzz ' Thus, Poisson's equation is ~u = f ,where f = ((x,y,z) is a 

given function. To solve an equation such as log(x) = C for x > 0 , recall that we simply 
operate on both sides by the inverse function exp, obtaining x = exp[log(x)] = exp(C). To solve 

Poisson's equation, one might attempt to find the inverse operator, say ~ -1, of the Laplace 

operator. Then we would simply apply ~ -1 to both sides of ~u = f , obtaining the solution 

u = ~-1[~. It turns out that the inverse of the Laplace operator (on a certain class of functions) 

is the operator which operates on the function f to produce the new function ~ -1[~ defined by 

where 

~ -1[~(x,y,z) = HI G(x,y,z;x,y,z)f(x,y,z) dXdydz, 

G(x,y,z;x,y,z) = - h [(x-x)2 + (y_y)2 + (z-z)2ri. 

(29) 

(30) 

Observe that when the integration with respect to X, y and z is performed, we are left with a 

function of x, y, and z, which is by definition ~-1[~. If the function f is C1 and is zero 

outside some ball, then armed with the appropriate tools, one could prove that ~ -1[~ is a 

solution of ~[u] = f . The operator ~ -1 is an example of an integral operator, i.e. an operator 
B of the form 

B[~(p) = Ig(P;q)f(q) dq . (31) 
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Here p and q range over possibly multidimensional domains. When the solution of an 
initial/boundary-value problem for a PDE (or ODE) is expressed in the form of an integral 
operator (e.g., as in (29) the function g(p,q) is called a Green's function for the boundary-value 
problem. In the case of Poisson's equation (roughly speaking, with the boundary condition that 

solutions tend to zero at infinity), the Green's function is G(x,y,z;x,y,z) in (30). Once the correct 
Green's function is found,· the problem is reduced to computing the integral (31) for arbitrary p. 
Such a computation can be quite difficult, and numerical methods might be needed. Of course, 
when possible, one might prefer an algebraic formula, of the solution of a particular 
initial/boundary-value problem. For the most part, this is what we strive for in this book. 
Nevertheless, in general circumstances, Green's functions and their associated integral operators 
provide a tidy way of presenting solutions which we will exploit occasionally. It should be noted 
that integral operators (31) are linear, in the sense that B[cjfj + c2f2l = cjB[fjl + c2B[f2l , and 

consequently they can only serve as inverses of linear operators. In particular, Green's functions 
and their integral operators cannot be used to express solutions of nonlinear PDEs ! 
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Summary 1.2 

1. Ck functions: For a nonnegative integer k, a function u is said to be a Ck function, if every 
k-th order partial derivative of u exists and is continuous. 

2. Linear PDEs: A linear n-th order PDE is a PDE of the form L[u] = f , where L[u] is a 
linear combination of the unknown function u and its partial derivatives (up to order nJ, where 
the coefficients and f are given functions of the independent variables. If f == 0, the PDE is 
called homogeneous. 

3. The Classification Theorem: The Classification Theorem asserts that every second-order 
linear PDE (d. (20)) with constant coefficients, where the unknown function has two independent 
variables, can be transformed (by a change of variables) into exactly one of the following forms 
(where u = u(x,t)) : 

(i) the form of the generalized wave equation 

-a2uxx + Utt + cu = F(x,t) , a > 0 , (hyperbolic case) ; 

(ii) the form of the generalized Poisson/Laplace equation 

a2uxx + Utt + cu = g(x,t) , a > 0, (elliptic case) ; 

(iii) the form of the generalized heat equation 

-kuxx + ut + cu = h(x,t) , k > 0 , (parabolic case) ; 

(iv) the form 

uxx + cu = g(x,t) (degenerate case). 

4. The superposition principle: The superposition principle (or property) asserts that if u1 and 

u2 are solutions of the linear PDEs L[u] = fl and L[u] = f2 , respectively, then for any constants 

c1 and c2' ClUl + C2U2 is a solution of L[u] = clfl + c2f2 . In other words, L[clu j + C2U2] 

= clL[ul] + C2L[u2]· 

5. Green's functions: Green's functions and their associated integral operators are used to 
represent solutions of initial/boundary-value problems for linear PDEs (or ODEs). 
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Exercises 1.2 

1. Show that the given functions satisfy the accompanying PDE. 

(a) u(x,y) = x + y ; uxx + Uyy = 0 

(b) u(x,y) = f(x) + g(y) ; uxy = 0, where the functions f and g are assumed to be C2 . 

(c) u(x,y) = f(x+y) + g(x-y) ; u - u = 0 . xx yy 

(d) u(x t) = x2 + 2t . u = u , 'xx t 
(e) u(x,y) = sin(x)cosh(y) ; u + u = 0 xx yy 

(f) u(x,t) = sin(x-<:t) ; Utt - c2uxx = 0 ,where c is a real constant. 

2. Verify that the following functions are solutions of Laplace's equation uxx + Uyy = 0 . 

(a) u(x,y) = eYcos(x) (b) u(x,y) = 3x2y _ y3 

(c) u(x,y) = log(x2 + y2), x2 + i f. 0 

(d) u(x,y) = eY cos(x) + 3x2y - y3 + log(x2 + y2), x2 + y2 f. O. 

3. Show that the following solve the heat equation ut - ku = O. xx 

(a) u(x,t) = e-ktsin(x) 

(c) u(x,t) = ektcosh(x) 

2kt 
(b) u(x,t) = e-a cos(ax), for any real constant a. 

(d) u(x,t) = (1/y'Kt)exp[-x2/(4kt)] . 

4. Show that the following are solutions of the wave equation Utt - c2uxx = 0 , for some c. 

(a) u(x,t) = x2 + t 2 (b) u(x,t) = cos(ax)sin(bt), for any real constants a, b. 

(c) u(x,t) = log(x + t) + (x - t)2 (d) u(x,t) = f(x+2t) + g(x-2t), for any C2 functions f and g. 

5. Give the orders of the following PDEs, and classify them as linear or nonlinear. If the PDE is 
linear, specify whether it is homogeneous or inhomogeneous. 

2 2 2 
(a) x uxxy + y Uyy -log(l + Y )u = 0 

(d) uUxx + Uyy - u = 0 

(b) Ux + u3 = 1 (c) Uxxyy + eXux = y 

( e) uxx + ut = 3u . 

6. Derive formulas (5a) and (5b) for the most general spherically symmetric solution of Laplace's 
equation in dimension n . 
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7. (a) Find a solution of Laplace's equation Uxx + u = 0 of the form u(x,y) yy 

= Ax2 + Bxy + Cy2 (A2+B2+C2 :f 0) which satisfies the boundary condition u(cos(O),sin(O)) 

= cos(20) + sin(20) for all points (cos(O),sin(O)) on the unit circle, x2 + y2 = 1. 

(b) Show that the graph of any solution u(x,y) of Laplace's equation of the form in (a), 
intersects the xy-plane in a pair of perpendicular lines through (0,0). 

8. (a) Show that u(x,t) = exp[-n27!'2kt]sin(n11X) solves the initial/boundary-value problem 
given in equations (7) with I.C. f(x) = sin(n11X), if and only if n is an integer. 

(b) In how many points does the graph of sin(n11X) intersect the x-axis between 0 and 1 ? 

(c) Give a physical reason for why the temperature approaches 0 faster if n is larger. 

9. Let u(x,y,z,t) be the solution (11) in Example 3 on wave problems. 
22' 

(a) Show that Utt = -[27!'v(m,n,p)] u, uxx = -(m7!'/ A) u, etc.. Use these facts to deduce that 

u(x,y,z,t) satisfies the wave equation (9). 

(b) Verify that u(x,y,z,t) meets the B.C. (10). 

(c) The set of points (x,y,z) inside the box, where u(x,y,z,t) is always zero, is the union of a 
number of intersecting rectangular surfaces which divide the interior of the box into a number of 
compartments. How many compartments are there? 

(d) At what points in the box does the pressure experience the greatest changes? 

10. Refer to Example 3, and assume that the box is cubical with A = B = C = 1 and a = 2. 

(a) By givine; an example, show that it is possible for two independent solutions of the form of 
u(x,y,z,t) in (11) to have the same frequency. 

(b) List the ten lowest positive distinct frequencies for the box. 

11. (a) Show that if f(x) = sin(11X) and g(x) = sin(311X) ,then u(x,t) in (14) solves the 
initial/boundary-value problem (13). 

(b) Find two solutions u(x,t) of the D.E. and B.C. in (13) such that these two solutions have the 
same initial profile u(x,O) , but have different initial velocity distribution ut(x,O) . 

12. For what values of the positive constants m and n will the second-order PDE u + u xx yy 
+ muxy + Ux + nuy = 0 be (a) hyperbolic, (b) elliptic, (c) parabolic or (d) degenerate? 
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13. Observe that u1(x,y) = x3 solves u + u = 2 and u2(x,y) = cx3 + dy3 solves xx yy 
uxx + Uyy = 6cx + 6dy for real constants c and d. 

(a) Find a solution of Uxx + Uyy = Ax + By + C for given real constants A, Band C. 

(b) How can many more solutions of the problem in (a) be produced? 

14. In relation to Example 9, show that if c1sin( t )cos(x) + c2cos(3t )sin(3x) 

= dtsin(t)cos(x) + d2cos(3t)sin(3x) for all (x,t) ,then c1 = d1 and c2 = d2 . 

15. By direct computation, verify that by revolving the curve y = cosh(x) about the x-axis, we 

obtain a solution u(x,y) = [cosh2(x) - y21~ of the minimal surface equation (24) on the domain 

Iyl < cosh(x). In view of the solution t(r) found in Example 11, give a purely geometrical 
reason for why u(x,y) must be a solution. 

16. Suppose that u(x,y) is any solution of the minimal surface equation (24), for (x,y) in some 
open region D in the plane. 

(a) Show that it is not always true that cu(x,y) will be a solution for all real c. 

(b) Show that if c f 0, then cu(x/c,y/c) will be a solution on the new region consisting of all 
(x,y) with (x/c,y/c) in D . 

(c) Explain the results of (a) and (b) geometrically in terms of similarity between the shapes of 
the surfaces. 

17. Let u(x) be an arbitrary c1 function defined for x ~ 0 , such that u(O) = o. Consider the 

ordinary di fferent ial operator d/dx which assigns to each such function u the new 

continuous function u' (x). Show that the inverse operator, say B, assigns to each continuous 
function f(x), defined for x ~ 0 , the function 

r [10<Z<X 
B[~(x) :: Jng(x,z)f(z) dz , where g(x,z) = --

o 0 z > x 

Consequently, the solution of the problem u'(x) = f(x) (x ~ 0) with boundary condition 
u(O) = 0, is given in terms of the integral operator B with Green's function g(x,z). 

18. Let p(x) and q(x) be given continuous functions. Show that the solution of the linear ODE 
u'(x) + p(x)u(x) = q(x) (x ~ 0), with B.C. u(O) = 0, is given by 
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A[q](x) = fa G(x,z)q(z) dz ,(x ~ 0), 

where the Green's function is G(x,z) = exp[P(z) - P(x)]g(x,z) ,and P(x) is an antiderivative of 
the function p(x) and g(x,z) is defined in Problem 17. What is the inverse operator of A ? 
IDnt. Use Leibniz s rule in Appendix A.3. 

19. Here we demonstrate the instability of planetary orbits in dimension greater than 3, assuming 
a spherically symmetric harmonic potential. In Example 1 (or Problem 6), we showed that such a 

potential in dimension n> 2 is of the form -Cr2- n (where C > 0, as we assume that the force 
is attractive). The angular momentum for the path (r(t),O(t)) in polar coordinates of a planet of 

mass m is mr20 (where 0 :: ~ ) which is some constant, say A, for a central force. Thus, 

o = A/(mr2). The kinetic energy of the planet is then ~m(i2 + r2 0' 2) = ~mr2 + A 2 /(2mr2), 

. dr 
where r:: at. The total energy (kinetic + potential) is a constant 

E = !mr2 + [A2/(2mr2) - Cmr2- n] . (*) 

Let f(r) be the function in brackets in (*). Assume that the planet's orbit has at least two 
consecutive local extrema for r, say r1 and r2 (with r1 < r2). Of course, this assumption is 

possible when n = 3, since then there are elliptical orbits. For n > 3, we now show that this 

assumption leads to a contradiction. At such extreme points on the orbit, we have r = 0 , and 

thus f(r1) = f(r2) = E by (*). Since !mr2 > 0 while the planet moves between the two 

consecutive extrema, we must have f(r) < E for r1 < r < r2 by (*). Hence f(r) must have a 

local minimum which is strictly less than E at some point ro between r1 and r2 . 

(a) When n = 4, show that there is no ro such that f' (ro) = 0, unless f(r):: E = 0, but then 

f(ro) is not strictly less than E. 

(b) When n> 4 , show that there is only one positive value ro where f'(ro) = 0 , and this value 

is a local maximum instead of a local minimum, as can be deduced from the fact that 
lim f(r) = -00 and lim f(r) = 0 . 
r-+ 0 r-+oo 

(c) Show that there is no such contradiction when n 

lim f(r) = 0, when n = 3. 
r-+oo 

3 ,since lim f(r) = +00 and 
r-+ 0 

(d) A circular orbit is possible for n ~ 4, but such an orbit is unstable, since the slightest nudge 
will throw the planet out of a circular orbit. Assume that the orbit is not a perfect circle. 

(i) If n = 4, show that either r(t) -+ 00 as t -+ 00, or r(t) -+ 0 as t approaches some finite value. 
(ii) If n ~ 5, show that in addition to the tW0 possibilities in (i), it can also rarely happen that 

the orbit will spiral toward a circular orbit. Show that this can only occur if the maximum value 
of f(r) is E. Why is this a rare occurance ? 
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20. In the the following, we deduce that a minimal soap film cannot be formed between two 
coaxial rings of radius R which are separated by a distance of more than 1.3255· R. 

(a) For C > 0, consider the curve r = C·cosh(z/C) in the zr-plane. Show that the tangent line 
through the point (zo,ro) on this curve passes through the origin only when 

cosh(zo/C)/sinh(zo/C) = zoiC (Le., coth(zo/C) = zoiC). 

(b) Show that there is a unique positive solution of coth(x) = x, say a ~ 1.200. 
Hint. Let g(x) = coth(x) - x. For small x > 0, show that g(x) > 0, while g(x) < 0 for large 
x> O. Show that g(x) is strictly decreasing for x> 0, by computing g'(x). 

(c) Show that the tangent lines in part (a) must be of the form l' = ±sinh(a)·z, where a is 
defined in (b). Hence, regardless of the value of C, these lines are tangent to each of the curves 
r = C· cosh(z/C). 

(d) From Part (c) and the convexity of the curves r = C·cosh(z/C) (C > 0), deduce that all of 
these curves are contained in the wedge r ~ sinh( a)· 1 z I. 

(e) Conclude that there is no minimal surface joining two coaxial rings of radius R, if the rings 
are separated by a distance of more than 2R/sinh( a) < 1.3255· R. 

Remark. If the separation distance is less than 2R/sinh( a), then there are actually two surfaces 
of the form r = C· cosh(z/C) that join the rings. The surface with the larger value of C is the 
one which actually has the minimum area (Le., the one which arises physically). 
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1.3 General Solutions and Elementary Techniques 

Ideally, one would like to have a general technique that could be used to find all of the 
solutions of an arbitrary PDE, or at least a relevant solution that satisfies certain initial/boundary 
conditions. Such a general technique does not exist even for the class of first-order ODEs. Recall 
that for such equations, there is a variety of techniques which work when the first order ODE is of 
a particular form (e.g., separable, homogeneous, exact, linear, etc.). Moreover, it is easy to find 
first-order ODEs that do not have any of these forms. The situation for PDEs is similar. It is 
easy to find PDEs for which there is no known method which will yield a single solution. 
Fortunately, the PDEs which arise in practice are not completely arbitrary. Indeed, there are few 
different kinds of PDEs, or systems of PDEs, which regularly appear in applications. Although 
there are some procedures that apply to more than one relevant equation, it is better not to 
develop excessively such procedures apart from the specific PDEs to which they will be applied. 
Instead, we prefer to handle each relevant equation separately. When a pattern of techniques 
emerges, we will note it and appreciate it, but we see no advantage in trying to force the solution 
process into a preconceived mold which could be motivated only with a great deal of hindsight. 
Also, unlike the theory of ODEs, the methods for solving PDEs often depend more on the form of 
the imposed boundary conditions than on the PDE itself. This makes it even more difficult to 
develop a unified theoretical edifice, if that were our goal. Nevertheless, in this section, we discuss 
some elementary techniques. One technique, known as "separation of variables", is a preliminary 
step used in solving a wide variety of PDE problems. However, first we shall illustrate some of 
the differences between PDEs and ODEs. We also explore some of the difficulties in determining 
the form of the general solution of a PDE, and in finding particular solutions which meet given 
side conditions. 

General Solutions and Particular Solutions of PDEs 

Recall that the general solution of an n-th order linear ODE involves n arbitrary 
constants. These constants are determined when the solution is required to satisfy n initial 
conditions. For example, the general solution, y(t), of the second-order ODE 

y" + y = 0 
is 

(1) 

(2) 

where c1 and c2 are arbitrary constants. If we also specify the initial conditions y(O) = 0 and 

y'(O) = 1, then the only solution of (1) which meets these conditions is y(t) = sin(t). Recall 

(cf. Definition 2 of Section 1.2) that a solution of PDE of order n is required to be a en function 
on the open set (possibly prespecified) where it is defined. 

The general solution of a PDE is the collection of all solutions of the PDE. 

As with ODEs, it is usually not possible to list all of the solutions, but rather one specifies the 
form of the general solution as in (2). However, the form of the general solution of an n-th order 
PDE typically involves n arbitrary functions, rather than arbitrary constants. The following 
Example illustrates this. 
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Example 1. Find the general solution of the first-order linear PDE for u = u(x,y) 

ux(x,y) = 2xy, for all (x,y). 

Solution. If we hold y fixed and integrate with respect to x, we obtain 

u(x,y) = x2y + f(y) . 
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(3) 

(4) 

Note that the constant of integration may depend on y, and indeed any function of the form (4) 
satisfies (3). As a technical point, recall that in Definition 2 of Section 1.2, we require that the 

function f(y) in (4) be C1 (i.e., f has a continuous first derivative). If in place of (3) we had the 
2 PDE ux(x,y,z) = 2xy, then the form of the general solution would be u(x,y,z) = x y + g(y,z) 

for an arbitrary C1 function g(y,z). 0 

Whenever integrating with respect to one variable, remember to add an arbitrary 
function of the other variables. 

Example 2. Find the general solution of the third-order PDE 

u = 2sin(x), u = u(x,y,z), for all (x,y,z). xyy (5) 

Solution. Integrating (5) once with respect to y, we get uxy(x,y,z) 2ysin(x) + f(x,z) 

Integrating again with respect to y, we obtain u (x,y,z,) = isin(x) + yf(x,z) + g(x,z). Finally, x 
integrating with respect to x, we obtain the general solution 

u(x,y,z) = _y2cos(x) + yF(x,z) + G(x,z) + h(y,z) , (6) 

where F(x,z) and G(x,z) are antiderivatives (with respect to x) of f(x,z) and g(x,z), 

respectively. Since we want the solution to be C3, we require that F, G and h be C3 functions, 
and except for this requirement, these functions are arbitrary. 0 

Of course, as with the ODEs, it is not always possible to find the general solution of a PDE 
simply by integrating a few times. Nevertheless, the above examples suggest that typically the 
general solution of an n-th order PDE, for an unknown function u of m independent variables, 
involves n arbitrary functions of m-I variables. However, it is easy to find examples which 
violate this rule. For instance, consider the following example. 

Example 3. Find the general solution of 

(Uxx)2 + (uyy)2 = 0, u = u(x,y), for all (x,y). (7) 
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Solution. A e 2 function u(x,y) solves this equation, if and only if Uxx = 0 and Uyy = o. Since 

u = 0, u must have the form u(x,y) = f(y)x + g(y). However, since u = 0, u must also 
xx " have the form u(x,y) = h(x)y + k(x). The only functions which have both of these forms are of 

the form 

u(x,y) = axy + bx + cy + d , (8) 

where a, b, c and d are arbitrary constants. Thus, the general solution of (7) involves four 
arbitrary constants instead of two arbitrary functions of a single variable. Note also that the 
superposition of two solutions of the form (8) is also a solution. Hence, (7) also provides us with 
an example of a nonlinear PDE whose solutions obey a superposition principle. 0 

In Example 3 of Section 2.2, we show that the homogeneous first-order linear equation 
xUx - YUy + yu = 0 has a general solution which depends on two arbitrary functions, instead of 

one. Thus, there are really no precise rules concerning the form of the general solution of (even). 
linear PDEs. However, it will be convenient to introduce the following notion of a "generic I 
solution of a PDE. Such a solution has the expected form of a general solution, a form which might 
not be realized for certain PDEs as we have just seen. 

Definition 1. A generic solution of an n-th order PDE for an unknown function of m 

independent variables is a solution which involves n arbitrary en functions of m-1 
variables. Moreover, we require that none of these arbitrary functions can be eliminated 
or combined without losing solutions in the process. 

Remark. The last requirement ensures that one cannot simply increase the number of arbitrary 
functions by replacing some arbitrary function by a sum of two new arbitrary functions, or by 

some similar artifice. For instance, the solution (6) is generic, but -y2cos(x) + y[k(x,z) - j(x,z)] 
+ g(x,z) is not generic (even though there are three arbitrary functions), since k(x,z) - j(x,z) 
can be replaced by f(x,z). 0 

While the general solutions (4) and (6) for the PDEs in Examples 1 and 2 above are generic, 
according to Definition 1, the general solution (8) of the PDE (7) is not generic. It is also possible 
to have a generic solution which is not a general solution as the following example shows. 

Example 4. Find a generic solution of the nonlinear first-order PDE 

(9) 

Solution. By fixing y, we may regard (9) as a first-order separable ODE, namely u -2du = dx, 

assuming that u:f. o. Integrating, we get the solution -u -1 = x + g(y) , or 

u(x,y) = -[x + g(y)]-l , (10) 
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where g is an arbitrary C1 function and u(x,y) is defined everywhere except for points (x,y) on 
the curve x = -g(y). The solution (10) is generic. However, (10) is not the most general 
solution, because there are solutions of (9) which are not of the form (10). Indeed, u(x,y):: 0 is 
such a solution. One can produce other solutions, by "pasting" two solutions together (see 
Problem 11). Now suppose that an open region D is given beforehand, and suppose that only 
solutions which are defined throughout D are allowed, then the function g(y) must satisfy the 
requirement that the curve x = -g(y) does not intersect D. Since no such region was specified 
here, we regard all functions of the form (10) as solutions. If we had required that the solution be 
defined everywhere, then the only solution would be u(x,y):: O. 0 

Example 5. Consider the first-order linear PDE 

Show that 
u(x,y) = xf(2x + y) 

is a generic solution of (11), where f is an arbitrary C1 function. 

(11) 

(12) 

Solution. First note that despite the involvement of both x and y in f(2x + y), the function f 
is still really a function of one variable, since f has only one "slot", unlike say g( x,y). Thus, by 
definition, u(x,y) in (12) will define a generic solution if it satisfies (11). The product and chain 
rules yield Ux = f(2x + y) + xf/(2x + y)·2 and uy = xf/(2x + y). Hence, xUx - 2xuy 

= xf(2x + y) + 2x2f/(2x + y) - 2x2f/(2x + y) = xf(2x + y) = u. Thus, (12) defines a generiC 
solution. Using the theory of Chapter 2, one can prove that the general solution of (11) has the 
form (12). 0 

Usually one wants to find a particular solution of a PDE which meets a side condition. The 
next two examples show how such a solution may be extracted from a generic solution. 

Example 6. Find a solution of (11) which satisfies the condition u(l,y) = y2 for all y. 

Solution. The condition u(l,y) = y2 specifies the values of the solution u(x,y) for points (x,y) 
on the line x = 1, parallel to the y-axis. Since (12) is a generic solution, it suffices to find a 

function f such that u(I,y) = 1·f(2 + y) = y'L. or f(2 + y) = y2. To find'such a function, let 

r = 2 + y. Since y = r - 2 , we have f(r) = (r - 2)2. Thus, f is the function which takes a 

number, subtracts 2, and squares the result. In particular, f(2x + y) = (2x + y - 2)2. Hence, 

u(x,y) = x(2x + y - 2)2. One should check directly that this u satisfies the PDE (11) and 
2 u(l,y) = y. 0 
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Example 7. Show that the wave equation Utt = c2uxx has a generic solution of the form 

u(x,t) = f(x + ct) + g(x - ct) , (13) 

where f and g are arbitrary C2 functions. Find a particular solution meeting the initial 
conditions 

I.C. u(x,O) = h(x) and ut(x,O) = ° , (14) 

where h(x) is a given C2 function. 

Solution. One can directly verify that (13) is a solution of Utt = c2uxx' as in Problem 4(d) of 

Section 1.2. Since the wave equation is second-{)rder and there are two arbitrary functions in 
(13), neither of which can be eliminated without losing solutions (cf. Problem 12), we conclude 
that (13) is a generic solution. By setting t = ° in (13) and using u(x,O) = h(x) , we get that 
f(x) + g(x) = h(x). By differentiating (13) with respect to t, we obtain ut(x,t) = f'(x + ct)c 

+ f'(x - ct)(-c), whence ut(x,O) = ° yields f'(x) - g'(x) = 0. Thus, (14) gives us two 

conditions on the two unknown functions f and g, namely 

f(x) + g(x) = h(x) and f(x) - g(x) = K. (15) 

Adding corresponding sides of the equations (15), we obtain f(x) = Mh(x) + KJ. Similarly g(x) 

= Mh(x) - KJ. These identities determine the functions f and g in terms of the given function h. 

Thus, we obtain the following solution of Utt = c2uxx' which meets the initial conditions (14) : 

u(x,t) = Mh(x + ct) + K + h(x - ct) - KJ = Mh(x + ct) + h(x - ct)J . (16) 

In Problem 12, the reader is asked to check directly the validity of (16). 0 

Elementary Techniques 

We have already seen in Example 1 and 2 that PDEs, which simply set a partial derivative 
of the unknown function equal to a given function, can be solved by direct integration. The PDE 

u = u2 in Example 4 cannot be solved by integrating both sides with respect to x, because the 
x 

right side involves the unknown function u(x,y). However, we were able to solve this equation by 
ODE techniques. 

If a PDE involves only partial derivatives with respect to one of the independent 
variables, then such an equation may be regarded as an ODE for an unknown function of a 
single variable, where the other variables are held fixed. In the solution, the arbitrary 
constants are replaced by arbitrary functions of these remaining variables. 
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By way of illustration, we solve here the homogeneous version of the degenerate equation 
uxx + cu = g(x,t) which arose in the Classification Theorem of Section 1.2 . 

Example 8. Find the general solution of the PDE 

uxx + cu = 0, u = u(x,t) (17) 

in the three cases c > 0, c = 0 and c < o. 
Solution. For fixed t , (17) is a second-order linear ODE with constant coefficients (discussed in 
Section 1.1) for u, regarded as a function of x. If c > 0, then for each fixed t, the solution is of 

the form c1sin(JC·x) + c2cos(JC·x). However, as t varies, the choices for c1 and c2 may change 

(i.e., they may be functions of t). Consequently, the general solution of (17) is 

u(x,t) = f1(t)sin(JC·x) + f2(t)cos(JC·x) , 

where f1 and f2 are arbitrary C2 functions. The general solution in the cases c = 0 and c < 0 

are, respectively, 

Example 9. Find the general solution u = u(x,y) of 

uyy + uy = x 

o. 

(18) 

Solution. By fixing x, we can regard (18) as a linear, inhomogeneous, second-order ODE with y 
as the independent variable. A particular solution is u(x,y) = xy. The auxiliary equation for the 

related homogeneous equation is r2 + r = 0, which has roots 0 and -1. Remembering that the 
arbitrary constants may depend on x, we add the general solution of the homogeneous equation to 
the particular solution, and thus obtain the following general solution of (18) : 

u(x,y) = xy + f(x) + g(x)e-y , (19) 

where f(x) and g(x) are arbitrary C2 functions. One can also solve (18) by first integrating with 
respect to y, obtaining the first-order linear ODE (where x fixed) 

uy + u = xy + h(x) . (20) 

We multiply each side of (20) by the integrating factor eY, obtaining 

~ [eYu] = xyeY + eYh(x) or eYu = x(yeY - eY) + eYh(x) + k(x) . 
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Thus, another form of the general solution of (18), is given by 

u(x,y) = xy - x + h(x) + k(x)e-y , 2 h, k E C . (21) 

Note that (19) and (21) appear to be different, but they are actually equivalent. Indeed, adding 
the function -x to the arbitrary function h(x) simply gives us another arbitrary function which 
may be identified with f(x) in (19). Often, different methods yield general solutions which 
appear to be different, but which are actually equivalent in the sense that they generate the same 
family of solutions as the arbitrary functions vary. 0 

Separation of Variables 

The method of separation of variables is used to find those solutions (if any) of a PDE 
which are products of functions, each of which depends on just one of the independent 
variables. Such solutions are called product solutions. 

The following examples illustrate the method of separation of variables. 

Example 10. Using separation of variables, find the product solutions of the heat equation with 
temperature-dependent sink, namely 

ut -uxx = -u, u = u(x,t) (22) 

Solution. Substituting a product solution of the form u(x,t) = f(x)g(t) into (22), we get 

f(x)g'(t) -fll(x)g(t) = -f(x)g(t). (23) 

Then we separate the variables, so that functions in the variable x only appear on one side, and 
functions in the variable t only appear on the other side. If this is possible, it can usually be 
accomplished by first dividing by f(x)g(t) and then rearranging: 

[g'(t)jg(t)] + 1 = f"(x)jf(x) . (24) 

The only way that a function of x can equal a function of t is for both functions to be the same 
constant, say ,,\. Thus, (24) splits into two ODEs, namely 

and 
[g'(t)jg(t)] + 1 =,,\ or g'(t) + (1- "\)g(t) = 0 

f"(x)jf(x) =,,\ or fll(x) - "\f(x) = 0 

(25) 

(26) 

The general solution of (25) is g(t) = Cexp[(,,\ - l)t]. The form of the general solution of (26) 

depends on whether ,,\ > 0, ,,\ < 0 or ,,\ = O. If ,\ < 0 ,then f(x) = c1sin(.J!XT·x) 

+ c2cos(.J!XT·x), and in this case the product solution f(x)g(t) is 
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u(x,t) = [c1sin(JrXT·x) + c2cos(JrXT·x)]exp[(A -1)t]. (27) 

Note that the arbitrary constant C in g( t) has been absorbed into c1 and c2' without loss of 

generality. (For the cases where A > 0 and A = 0 , see Problem 5). 0 

Remark 1. Note that (27) is not a generic solution, since there are no arbitrary functions 
involved. Thus, solutions obtained by separation of variables are usually far from being general 
solutions. However, if the PDE is linear and homogeneous, then the linear combinations of 
product solutions (for various values of A) will also be solutions according to the superposition 
principle in Section 1.2 . Often, solutions obtained in this way are sufficiently general for 
applications, as will be seen repeatedly in Chapter 3 onwards. 0 

Remark 2. A seasoned separatist, say Dr. XX, will realize in advance that undesirable square 
roots and absolute value signs will appear in the solution of (27). To avoid this, Dr. XX (by 

second nature) will write the negative separation constant A in the form -A 2 for some A > o. 
Then Dr. XX arrives not only at the prettier solution 

u(x,t) = [cJsin(Ax) + c2cos(h)]exP[-(A2 + l)t] 

which is equivalent to (27), but also dazzles fledgling students with her brilliance. We hope that 
this remark will spare the reader such bewilderment. 0 

In the case of more than two independent variables, separation of variables involves a 
number of stages, as we illustrate next. 

Example 11. Find some nontrivial product solutions of the following wave equation for the 
amplitude u(x,y,t) of a transversely vibrating membrane at (x,y) at time t 

(28) 

Solution. Let u(x,y,t) be of the form X(x)Y(y)T(t) for functions X, Y and T. This notation 
for the function is helpful in keeping track of the variables which correspond to the functions. 
Substituting u into (28), we get XYT" = X"YT + XY"T. Separating t from x and y, we get 

T"/T = X"/X + Y"/Y . 

A function of t can only equal a function of x and y when these functions are constant. Thus, 

and 
T"/T = A or Til - AT = 0 

X"/X + Y"/Y = A or X"/X = A - Y"/Y 

Both sides of the last equation in (30) must be a constant, say jJ, (Why?). Thus we obtain 

Til - AT = 0 , X" - jJ,X = 0 , Y" + (jJ, - A)Y = 0 . 

(29) 

(30) 

(31) 

There are a number of possibilities, depending on the signs of A, jJ, and jJ, - A. Since our aim is 
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not to produce every conceivable product solution, we will make some choices that will produce a 

popular family of solutions. For constants a, band c, let A = _a2 - b2, J.l = _a2, J.l- A = b2. 
Then selecting some particular solutions of (31), we obtain a nontrivial family of product solutions 

cos([a2 + b2J~t)sin(ax)sin(by) . (32) 

Of course, in (32) one can replace the cosine by a sine and any of the sines by cosines; there are 
eight possibilities. By forming a linear combination of the eight possibilities, we obtain an even 
larger family of solutions, by the superposition principle. One can even replace all of the sines and 
cosines by hyperbolic sines and cosines, say in (32), and still get a valid family of product 

solutions. Indeed, such families would result from setting A = a2 + b2 , J.l = a2 and J.l - A 

= _b2 (see Problem 18 of Section 1.1). 0 
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Summary 1.3 

1. General solutions: The general solution of a PDE is the collection of all solutions of the PDE. 

2. Generic solutions: A generic solution of an n-th order PDE for an unknown function of m 

independent variables is a solution which involves n arbitrary en functions of m-I variables. 
Examples 3 and 4 show that a general solution need not be generic, and a generic solution need 
not be general. 

3. ODE technique: If a PDE involves only partial derivatives with respect to one of the 
independent variables, then such an equation may be regarded as an ODE for an unknown 
function of a single variable, where the other variables are held fixed. In the solution, the 
arbitrary constants are replaced by arbitrary functions of these remaining variables. 

4. Separation of variables: The method of separation of variables is used to find those solutions 
u(x,y) (if any) of the form f(x)g(y). Such solutions are called product solutions. Upon 
substituting the form of the product solution into the PDE, one tries to get expressions involving 
x on one side of the equation and those involving y on the other (Le., one tries to separate 
variables). If this is possible, then both sides can be set equal to a constant, and one obtains an 
ODE for f(x) and an ODE for g(y). For unknown functions of three or more variables, several 
stages of the separation process are carried out. Solutions obtained in this way are usually far 
from being general solutions of the PDE. 

Exercises 1.3 

1. Find the general solution of each of the following PDEs by means of direct integration. 

(a) Ux = 3x2 + y2 , u = u(x,y) 

(c) u = 0 , u = u(x,y,z) xyz 

(b) uxy = x2y , u = u(x,y) 

(d) Uxtt = exp[2x + 3t] , u = u(x,t) . 

2. Find general solutions of the following PDEs for u = u(x,y) by using ODE techniques. 
(a) Ux - 2u = 0 (b) YUy + u = x 

(c) u + 2xu = 4xy (d) yu + 2u = x (Hint. First integrate with respect to x.) x xy x 

(e) u - x2u = 0 . yy 
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3. For the PDEs (a) through (e) of Problem 2, find a particular solution satisfying the following 
respective side conditions. 

(a) u(O,y) = y (b) u(x,l) = sin(x) 

(c) u(x,x) = ° (i.e., u = ° on the line y = x) (d) u(x,l) = ° and u(O,y) = ° 
(e) u(x,O) = 1 and u/x,O) = ° . 
4. Find a nontrivial family of solutions of the following PDEs by the method of separation of 
variables. You need not find the most general solution obtainable in this way. 

(a) ut = 2uxx ' u = u(x,t) (b) Ux = 4uy , u = u(x,y) 

(c) Utt = 16uxx ' u = u(x,t) (d) ut = Uxx + Uyy , u = u(x,y,t) 

(e) Uxx + Uyy + uzz = ° , u = u(x,y,z) . 

5. Find the product solutions of the PDE in Example 10, in the cases where the separation 
constant (i.e., A) is positive or zero. When the separation constant is positive, find an equivalent 
product solution (as in Remark 2) which does not involve square roots. 

6. In Section 1.2 we have used trial solutions of the form erx to find particular solutions of 
certain ODEs. The higher dimensional analogue of this substitution (as, for example, u(x,y) 
= exp(rx + sy), where rand s are constants) is called the exponential substitution. Use the 
exponential substitution to find a nontrivial famiiy of solutions of each of the following PDEs. 

(a) 2ux + 3uy - 2u = ° , u = u(x,y) 

(c) uxyz - u = ° , u = u(x,y,z) 

(e) uxx + Uyy = u , u = u(x,y) . 

(b) 4uxx - 4uxy + Uyy = ° , u = u(x,y) 

(d) Uxx + Uyy = 14exp(2x + y) , u = u(x,y) 

7. Consider the problem Uxx + uxy + u y = 0, u = u(x,y), and attempt to use the method of 

separation of variables to arrive at fll(x)g(y) + f' (x)g' (y) + f(X)g"(y) = ° . 
(a) If f(x)g(y) I: 0, verify that -f"(x)/f(x) = [g'(y)/g(y)][f'(x)/f(x)] + g"(y)/g(y). 

(b) Deduce from (a) that if f'(x)/f(x) is not constant, then g'(y)/g(y) is a constant, say s. 

(c) Deduce from (b) that g(y) = cesy, and g"(y)/g(y) = s2. 

(d) Show that fll(x) + sf' (x) + s2f(x) = 0. Solving this ODE for f(x), obtain the solution 

u(x,y) = [c1cos(WJ·sx) + c2sin(WJ·sx)]exp[s(y -ix)]. 
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8. For each of the following PDEs, find some constants a and b (not both zero), such that u(x,y) 

= f(ax + by) is a generic solution, where f is an arbitrary c1 function. 

(a) Ux + 2uy = 0 (b) 5ux + 6uy = 0 (c) cUx + duy = 0, for any constants c and d. 

9. Use the technique of Problem 8 to solve the following PDEs, subject to the given side 
conditions. Explain why one cannot obtain the solutions by using separation of variables. 

(a) Ux + 2uy = 0 , u(x,O) = x (b) Ux + 3uy = 0 , u(x,2x + 1) = x 2 

(c) 3u -4u = 0 , u(x,x) = x2 -x (d) u + 2u = 2x + 4y , u(O,y) = y2 + 1. x Y x Y 
Hint. For (d), first find a particular solution up(x,y) of the form ax2 + by2. 

10. For given real constants A, Band C, consider the second-<>rder PDE 

Au + Bu + Cu = O. Show that if B2 - 4AC > 0 (i.e., the PDE is hyperbolic), then this xx xy yy 
PDE has a generic solution of the form u(x,y) = f( ax + by) + g( cx + dy) , where a, b, c and d 

are real constants, and where f and g are C2 functions. 

Hint. Assume u(x,y) = h(rx + sy), obtain Ar2 + Brs + Cs2 = 0 ,fix r and solve for s. 

11. In relation to Example 4, where the PDE Ux = u2 was considered, define 

[
-[x + g(y)]-1 for y > 0, x f. -g(y) 

u(x,y) = 
o for y ~ 0 

(a) Show that if g(y) = y-2, then u(x,y), u (x,y) and u (x,y) are continuous at points of the x y 

x-axis. Deduce that u is c1 (and a solution of u = u2), except at points on the curve 
x 

-2 x = -y ,y > O. 

(b) Let g(y) = y-l. Show that u (x,y) is not continuous at points on the x-axis, because in this y 
case u (x,y) jumps as y passes through O. Why does this imply that u(x,y) is not a solution y 

of the PDE Ux = u2 in the region consisting of the whole plane except for points on the curve 

_ -1 ? x - -y ,y > 0 . 

12. The following parts concern the solution u(x,t) = f(x + ct) + g(x - ct) of the wave equation 

Utt = c2uxx' where f and g are C2 functions. 

(a) Let u(x,t) = f(x + ct). Suppose that for each fixed time t we graph u as a function of x. 
Show that as t advances, the graph moves to the left with velocity c. What about 
u(x,t) = g(x - ct) ? 
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(b) Show that if f(x + ct) = g(x - ct) for all x and t, then f and g must be constant. 

(c) Deduce from (b) that neither f(x + ct) nor g(x - ct) can be eliminated from the solution 
u(x,t) = f(x + ct) + g(x - ct) without losing solutions in the process. 

(d) Check directly that (16) solves the PDE Utt = c2uxx with the I.C. given by (14). 



CHAPTER 2 

FIRST - ORDER PDEs 

In most PDE textbooks, first-order PDEs usually receive only a brief treatment. One reason 
for this is that the PDEs which have the most obvious applications are the standard second-order 
PDEs, namely the heat, wave and Laplace equations. Moreover, the theory of first-order PDEs 
locally reduces to the study of systems of first-order ODEs, which is presumably a subject of 
another course. Here we will find that first-order PDEs have a variety of applications. Also, 
there are certain global topological considerations which arise in the study of first-order PDEs 
which make the theory more than just a study of systems of ODEs. 

In Section 2.1, we solve first-order, linear PDEs with constant coefficients by introducing a 
linear change of variables, which converts the PDE into a family of ODEs depending on a 
parameter. We apply this theory to population and inventory analysis. In Section 2.2, we handle 
the case of first-order, linear PDEs with nonconstant coefficients. This is done by making a 
nonlinear change of variables, so that when all but one of the new variables is held fixed, one 
obtains a characteristic curve along which the PDE becomes an ODE in the remaining new 
variable. By piecing together the solutions of the ODEs on these curves, we indicate how certain 
global considerations may arise. Applications to gas flow and differential geometry are provided. 
In Section 2.3, we show how this method of characteristics extends to first-order linear PDEs in 
three dimensions, which we use to solve related first-order quasi-linear PDEs in two dimensions. 
Among many possible applications, we show how quasi-linear PDEs arise in the study of traffic 
flow and nonlinear continuum mechanics, particularly with regard to the phenomenon of shock 
waves. In the optional Section 2.4, the more involved theory of arbitr:ary nonlinear first-order 
PDEs is introduced, and there is an application to the study of the motion of wave fronts in an 
inhomogeneous medium with a variable wave propagation speed. Moreover, in this application, 
we see the wave/particle duality in the Hamilton-Jacobi theory which foreshadows the analogous 
duality which lies at the foundations of quantum mechanics. 

57 
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2.1 First-Order Linear PDEs (Constant Coefficients) 

Perhaps the simplest nontrivial type of PDE is the first-order linear PDE 

aux + buy + cu = f(x,y) , 2 2 u = u(x,y) , a + b > 0 , (1) 

where a, band c are given constants and f(x,y) is a given continuous function. Our first main 
goal will be to find the general solution of (1). In the easy case, when b = 0, (1) is 

aux(x,y) + cu(x,y) = f(x,y) , (2) 

which (for each fixed y) is a first-order, linear ODE for u(x,y) regarded as a function of x. 
Following the procedure in the Summary of Section 1.1, we can solve (2), by first dividing by a 

(a f. 0) and mUltiplying by the integrating factor ecx/ a. Thus, 

ecx/ a ~(x,y) + ecx/ a ~ u(x,y) = ~ f(x,y)ecx/ a 

or 

ic[ecx/au(x,y)] = ~ f(x,y)ecx/ a . 

Integrating both sides with respect to x and multiplying by e -(;x/ a, we obtain the general 
solution of (2), namely 

u(x,y) = e-{;x/a[ ~ f f(x,y)ecx/ a dx + C(Y)] , (3) 

where C(y) is an arbitrary C1 function of y. The success of this method depends heavily on the 
fact that uy is not present in (2). This is what enabled us to treat (2) as an ODE. 

To handle the more general case when b f. 0 , we begin with the observation that aux + buy 

is the dot product of the vector ai + bj with the gradient Vu = uxi + uyj , and hence 

au + bu is essentially the derivative of u in the direction of the vector ai + bj. If we x y 
introduce a new coordinate system for the xy-plane, so that one of the new axes is pointing in the 

direction ai + bj ,then aux + buy will be proportional to the partial derivative of u with 

respect to the new variable labeling that axis, and we will have reduced (1) to the form of (2) in 

terms of new coordinates. To find an appropriate change of variables, first note that the family of 
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lines of the form bx - ay = d (where d is an arbitrary constant) all have slope bfa, and hence 
these lines are parallel to the direction ai + bj. We want to choose new coordinates, say (w,z), 
such that this famil,Y of lines becomes the family of new coordinate lines, say w = d. A simple 
change of variables tor coordinates) which has this effect isgi ven by 

w = bx - ay, z = y . (4) 

The family of new coordinate lines w = d then coincides with the family of lines bx - ay = d. 
The lines z = const. are the same as the lines y = const. which are parallel to the x-axis. We 
assume here that b f. 0, so that the transformation (4) is invertible: 

We define a new function v by 

w+az 
x=----o-, y=z. 

v(w,z) = u(x,y) = u(~ ,z) . 

Note that v(w,z) is just u(x,y) expressed in terms of the new variables (w,z). By the above 
remarks, we expect that aux + buy will be proportional to v z, since aux + buy is the 

derivative of u along the lines w = const .. Indeed, 

Thus, equation '(1) can be rewritten in terms of the variables (w,z) as 

bvz +cv = f(~ ,z) . (5). 

This equation is of the simple form (2), namely an ODE depending on the parameter w. We 
know how to solve (5) for v(w,z), and the solution of problem (1) will then be given by 
u(x,y) = v(bx-ay,y), using u(x,y) = v(w,z) and (4). We have converted problem (1) to the 
simpler form (5) by making a change of variables so that, when one of the new variables is held 
constant, we get a member of the family of lines bx - ay = d. 
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The lines bx - ay = d, which are parallel to ai + bj (i.e., have slope b/a), are called 
the characteristic lines of the PDE (1), aux + buy + cu = f(x,y) . 

Thus, a first~rder linear PDE with constant coefficients becomes much simpler when expressed 
in terms of a new coordinate system with the set of characteristic lines as a set of coordinate lines. 

Example 1. Find the general solution of the PDE 

3ux - 2uy + u = x, u = u(x,y) . (6) 

Solution. The characteristic lines have slope -2/3. They constitute the family of lines 
2x + 3y = d. Hence, we make the change of variables 

( 
w = 2x + 3y 

z=y 
( :: ~~ - 3z)/2 

Figure 1 

(7) 

Setting v(w,z) = u(x,y) ,we have 3ux - 2uy = 3(vwwx + vzzx) - 2(vwwy + vzzy) = 3(vw·2)-

2(vz + vw·3) = -2vz . Thus, the PDE (6) becomes 

-2vz + v = (l/2)(w-3z) . 

Dividing by -2 and multiplying by the integrating factor e -z/2, we obtain 

%z[e-z/2v] = -!e-z/2(w-3z) . 

Integrating with respect to z, regarding w as fixed, we obtain 

(8) 
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e-Z/2v(w,z) = -i w f e-z/2 dz + ~ f ze-z/2 dz + C(w) 

= 1we-z/2 + i[ze-z/2.(-2) - f e-z/2(_2) dZ] + C(w) 

= e-z/2[w/2-3z/2-3] + C(w), 
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where C(w) is an arbitrary function of w, which we will assume is C1 (Le., C'(w) is continuous). 

Thus, we have v( w,z) = Hw - 3z - 6] + ez/ 2C( w) , and using (7) we get the general solution 

u(x,y) = 1[2X + 3y - 3y - 6] + ey/ 2C(2x+3y) 

= x - 3 + ey/ 2C(2x+3y) , (9) 

where C(2x+3y) is an arbitrary cl function of (2x+3y), such as (2x+3y)2, exp(2x+3y), 

Isin(2x+3y) 13/ 2, etc .. The C1 assumption on C is needed so that u(x,y) will be C1 . 0 

Remark. In (9), if we choose C to be the zero function, then we obtain the particular solution 

up(x,y) = x-3. For any choice of the C1 function C , we have a solution 

of the related homogeneous PDE 3ux - 2uy + u = O. Indeed, 

3 £c [ey/ 2C(2x+3y)]- 2 ~ [ey/ 2C(2x+3y)] + ey/ 2C(2x+3y) 

= 3eY /2C ' (2x+3y)· 2 - 2eY /2'1 C(2x+3y) - 2eY /2C ' (2x+3y)· 3 + eY /2C(2x+3y) = o. 

The general solution (9) is the sum of the particular solution up and the general solution uh of 

the related homogeneous equation. We can obtain other particular solutions by choosing specific 
functions for C. For example, setting C(2x+3y) = 2x+3y, we obtain the particular solution 

x - 3 + ey/ 2(2x+3y). The general solution of (6) can then be written as 

u(x,y) = x - 3 + ey/ 2(2x+3y) + ey/ 2D(2x+3y) , (10) 

where D(2x+3y) is an arbitrary cl function of (2x+3y). The solutions (9) and (10) are both 

correct, and they are actually equivalent, in the sense that, as C and D range over all C1 
functions, both (9) and (10) generate the collection of all solutions. Thus, it can happen that two 
expressions for general solutions may look different and yet both are correct. Keep this in mind 
when comparing your answers with the given answers for the exercises. Note also that although we 
are essentially forced to take one of the new variables to be a function of 2x+3y , the expression 
for the other new variable could be any linear combination of x and y which is not a multiple of 
2x+3y. For example, in place of the transformation (7), we could have used 
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[ 
w = 2x + 3y 

z=x [ :: ~w _ 2z)j3 . (11) 

With this change of variables we obtain [in place of (8)J the equation 3v z + v = z , whose solution 

is v(w,z) = z - 3 + e-z j3G(w), where G is an arbitrary C1 function. Thus, 

u(x,y) = x - 3 + e-xj3 G(2x+3y) = x - 3 + eY j2e-(2x+3y)j6 G(2x+3y) , 

which is equivalent to (9). 0 

In many cases, especially in applications, one is interested in finding a particular solution that 
satisfies a certain side condition. For equation (1), an appropriate side condition might be the 
requirement that u(x,y) have specified values at points (x,y) that lie on a certain line. Such a 
condition has the form 

u(x,mx + d) = g(x) , (12) 

where g(x) is some given C1 function, m is the slope of the line, and d is the y-intercept. In 
the case where the line is vertical (with infinite slope), condition (12) must be replaced by the 
condition u(d,y) = g(y), where d is the x-intercept of the vertical line. In the following 
examples, we will see that such conditions usually suffice to completely determine the arbitrary 
function which is always present in the general solution. There is one important exception, 
however. If the line, on which the side condition is given, happens to be a characteristic line for 
the PDE, then the side condition does not uniquely determine a solution. Indeed, in this case, we 
will find that the function g(x) in (12) must have a particular form, in order for a solution to 
exist. If g(x) has this particular form, then we will find that there are infinitely many solutions 
of the PDE (1) with side condition (12). 

Example 2. Solve the following PDE with the given side condition: 

2 u(x,O) = x . (13) 

Solution. Here the side condition specifies the values of u at points on the x-axis. First, we find 
the general solution of the PDE, and then we try to meet the side condition. The characteristic 
lines have slope -1 and are of the form x + y = d . Thus, we make the change of variables 

[ 
w=x+y 

z=y 
[ 

x=w-z 

y = z. 

and define v(w,z) = u(x,y). The PDE in (13) becomes -vz + 2v = 1 , and we obtain v(w,z) 

= ~ + e2zC(w), where C is an arbitrary c1 function. Thus we obtain the following general 

solution of the PDE in (13) 
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u(x,y) = ~ + e2yC(x+y) . (14) 

Now, we must choose the function C, so that the side condition u(x,O) = x2 is met. From (14), 

we have u(x,O) = ~ + C(x). Thus, ~ + C(x) = x2 or C(x) = x2 -~. This completely 

determines the function C, in the sense that we know what C does to any real number [ e.g., 

C(3) = 32 - ~]. In particular, we know that for any values of x and y, C(x+y) = (x+y)2 -~. 
Thus, the unique solution of the PDE, with the side condition, is 

u(x,y) = ~ + e2Y[(x+y)2 -1/2] . 

Note that u(x,O) = x2, and one can check directly that u(x,y) satisfies the PDE. It is a good 
idea to check your solutions directly, as this is the ultimate test of their validity. 0 

Remark. Some students run into difficulties with the function C. For example, do not make the 

mistake of thinking that just because C(x) = x2 -~, we would also have C(x+y) = x2 -~. Also, 

almost always, it is not true that C(x+y) = C(x) + C(y). For example, log(x+y) * log(x) 

+ log(y), sin(x+y) * sin (x) + sin(y), (x+y)2 * x2 + i , etc.. Some students find it 

objectionable to take the result C(x) = x2 - ~ and simply replace x by x+y to get the correct 

result C(x+y) = (x+y)2 -~. The objection is that x+y is not the same as x, unless y 

happens to be zero (i.e., what gives us the right to replace x by something which is unequal to 

x ?). The objection may be circumvented, as follows. The formula C(x) = x2 - ~ tells us that 

C is the function that assigns to each number its square minus ~. The formula C(r) = r2 - ~ 
describes the same function. In other words, the variable that is used to describe a function can 

be changed without changing the function. Thus, in place of C(x) = x2 -~, use C(r) = r2 -~, 
and then set r = x+y. Hence, the objection that x+y * x is overcome. 0 

Example 3. Solve the PDE Ux + 2uy - 4u = eX+ Y subject to the condition u(x,4x + 2) = ° . 
Solution. Here the side condition requires that u vanish on the line y = 4x+2 . The 
characteristic lines are of the form 2x-y = const., and we make the change of variables 

[ 
w=2x-y 

z=x+y 
[

X = (w + z)/3 

y = (2z - w)/3 . 

Recall that the choice of z is essentially arbitrary. Our choice is motivated by the fact that 

eX+ y in the PDE will become simply eZ if we set z = x+y. For v(w,z) = u(x,y) , we have 
ux+2uy = (vwwx+vzzx) + 2(vwwy+vzZy) = (2-2)vw + (1+2)vz = 3vz ' Thus, the PDE 
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becomes 3v Z --4 v = eZ , from which we obtain 

v(w,Z) = -€z + e4z / 3C(w) or u(x,y) = -€x+y + e4(x+y)/3C(2x_y) . (15) 

Note that the exponent is 4(x+y)/3 = --4(2x-y)/3 + 4x. Thus, we could rewrite (15) as 

u(x,y) = -€x+y + e4x[e--4(2x-y)/3C(2x_y)] or u(x,y) = -€x+y + e4xD(2x-y) , (16) 

for an arbitrary C1 function D. In order to meet the side condition, we need 

0= u(x,4x+2) = -€5x+2 + e4xD(-2x-2) . 

In other words, the function D must be chosen so that 

To find the function D, we employ the following device. Set r = -2x-2, and note that 
x = -(r+2)/2. Then 

D(r) = D(-2x-2) = ex+ 2 = e-(r+2)/2 +2 = e(-r+2)/2 . 

Thus, D is the function given by the formula D(r) = e(-r+2)/2, and the solution of the PDE 
with side conditions is 

u(x,y) = -€x+y + e4xe-(2x-y)/2 +1 = -€x+y + e3x+ y/ 2 +1 . (17) 

If we had used the form (15) for the general solution, then the side condition u(x,4x+2) = 0 
would enable us to find the arbitrary function C. Although C would be different from D, the 
reader can check that the final result (17) would be the same. Thus, it is certainly not necessary 
to make any clever transformation of the exponent, although (16) looks tidier than (15). 0 

In Example 3, the side condition was given on the line y = 4x+2 , which is not one of the 
characteristic lines of slope 2. Using the same PDE as in Example 3, we next illustrate (cf. 
Examples 4 and 5 below) what happens when the side condition is given on a characteristic line. 

Example 4. Attempt to solve the PDE ux +2uy --4u = eX +y with side condition u(x,2x-l) = 0 . 

Solution. The general solution u(x,y) = -€x+y +e4xD(2x-y) of the PDE was found in Example 3 
(cf. (16)). The side condition is given on the characteristic line y = 2x-l, and it implies that 

( ) 3x-l 4x ( 0= u x,2x-l = -€ + e D 1) or D(I) = e-x- 1 . (18) 

Regardless of the choice of D, we have that D(I) is a constant, whereas e-x- 1 is a nonconstant 
function of x. Hence, the side condition u(x,2x-l) = 0 can never be met, and the problem has 
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no solution. We can see that the trouble here is that the side condition is given on a characteristic 
line, and D(2x-y) is always constant on such a line. This makes it impossible to determine the 
function D, and typically (but not always; cf. Example 5) we arrive at a contradiction such as in 
(18), and the problem has no solution. When the side condition is on a line which is not a 
characteristic line, the argument (e.g., 2x-y) of the arbitrary function is not constant, and the 
function can be found as in Exampie 3. 0 

Example 5. Solve the PDE Ux +2uy -4u = eX+ y, subject to the condition u(x,2x) = -e3x+ e4x. 

Solution. As in Example 3, the general solution of the PDE is u(x,y) = -ex+ y + e4xD(2x-y). 
The side condition (given on the characteristic line y = 2x ) then tells us that 

-e3x+ e4x = u(x,2x) = -e3x+ e4xD(0) . 

In this case, the condition can be met, as long as the C1 function D is chosen so that D(O) = 1 . 

There are infinitely many C1 functions D such that D(O) = 1 , e.g., 

D(r) = r+l , D(r) = cos(r) , D(r) = er 

Corresponding to the choices (19), we have the respective solutions 

(19) 

u(x,y) = -ex+ y + e4x(2x_y+l), u(x,y) = -ex+ y + e4xcos(2x-y), u(x,y) = -ex+ y + e4xe2x-y. 

All of these functions satisfy both the PDE and the side condition. The fact that we did not get a 

contradiction as in Example 5 is due to the special choice of the function e -3x + e 4x in the side 
condition. Indeed, we would have to choose the function to be of the particular form 

-e3x + ke4x for some constant k, in order that there be no contradiction. The C1 function D 
would then be arbitrary, except for the requirement D(O) = k . Thus, we see that it is possible for 
a PDE, with a side condition given on a characteristic line, to have solutions, if the side condition 
has a particular form. In this case, there will be infinitely many solutions. However, if the 
function in the side condition does not have the correct particular form, then the problem has no 
solution, as in Example 4. 0 

There is a simple geometrical reason for the peculiarities that arise, when the side condition is 
given on a characteristic line. For if a coordinate system is chosen so that the coordinate lines 
(say w = d) are the characteristic lines, then the PDE becomes an ODE in the remaining variable 
z which acts as a position variable on each characteristic line. Since v (regarded as a function 
of z) satisfies a certain ODE on each characteristic line w = d , we know that v (or u) must 
have a particular form on such lines. Since solutions of first-order ODEs are typically determined 
by prescribing the value of the solution at a single point, the solution cannot be arbitrarily 
prescribed on the entire line, but only at a single point. The following example makes this clear in 
a special case when the change of variable is not necessary. 

Example 6. Determine the form of the functions g(x) for which the PDE Ux - u = 0, with side 

condition u(x,l) = g(x), has a solution. 
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Solution. Here the characteristic lines are the horizontal lines y = d. The variable x serves as 
a position variable on each of these lines. Also, on the line y = d , the PDE becomes the ODE 

8 ox[u(x,d)] - u(x,d) = 0 , (20) 

which has the solution u(x,d) = C( d)ex ,where C( d) is an arbitrary constant that can vary with 

d. Thus, on each characteristic line, u must be a constant times eX. In particular, when d = 1, 

u(x,l) = C(l)ex , and so g(x) must be of this form for a solution to exist. Along any 
characteristic line, u must have a particular form, because u is a solution of a particular ODE 

(20) on each of these lines. By piecing together the solutions u(x,d) = C(d)ex on each of the 

lines, we arrive at the general solution u(x,y) = C(y)ex ,where C(y) is an arbitrary C1 function 
of y. Note that if u is prescribed on a noncharacteristic line which intersects each line y = d 
exactly once, then the constant C( d) will be determined by the prescribed value of u at the 
intersection point. For this reason, a suitable side condition given on a noncharacteristic line will 
determine a unique solution, by piecing together the unique solutions on the characteristic lines. 0 

A side condition need not be given on a straight line. 

Definition. If u is required to have specified values on some curve (e.g., a circle, 
a parabola, a line,etc.), then we call such a curve a side condition curve. 

In order to ensure the existence of a unique solution of the PDE aux +buy +cu = f(x,y), which 

meets the side condition, various assumptions about the side condition curve are needed, and we 
will define a few terms. A regular curve is a curve with a unit tangent vector which turns 
continuously (if at all) with respect to arclength. A regular curve intersects a line transversely, if 
at each intersection point, the angle of intersection is nonzero. The following fact can be proved 
(cf. Problem 15). 

Theorem 1 (Existence and Uniqueness). For the PDE aux + buy + cu = f(x,y), suppose that 

we are given a regular side condition curve which intersects each characteristic line of the 

PDE exactly once, and transversely. Assume also that the values of u are specified in a C1 

fashion along the side condition curve (Le., the values define a C1 function of arclength along 
the curve). Then there is a unique solution of the PDE which meets the given side condition. 

Remark. Uniqueness follows easily from the fact that the values of a solution on a characteristic 
line is determined by its given value at the point of intersection with the side condition curve. 
The regularity of the side condition curve and the transversality of the intersections enter into the 

proof that the solutions on the individual characteristic lines can be ~ieced together to yield a C1 
solution of the PDE. From the previous examples, the interested reader should have little 
difficulty in proving Theorem 1 in tlie case where the side condition curve is a straight line. Note 
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that the transversality condition guarantees that the side condition curve is not a characteristic 
line (Why?). Examples 4 and 5 show that the transversality condition is necessary (cf. also 

Problem 9). In the next example, the side condition curve is y = x3, instead of a line. 

Example 7. Solve the PDE ux - uy + u = 0, subject to the condition u(x,x3) = e -x(x + x3). 

Solution. Here u is specified on the curve y = x3. This curve intersects each characteristic line 

x+y = d exactly once, and transversely (since the slope of the curve x3 is 3x2 which is never 
the same as the slope (-1) of the characteristic curves). With v(w,z) == u(x,y), where 

{ 
w=x+y 

z=y 
{

x=w-z 

y = z. 

the PDE becomes -vz + v = O. The general solution is v(w,z) = C(w)ez, whence u(x,y) 

= C(x+y)eY = D(x+y)e-x . In order to meet the side condition, we need to choose D, so that 

e-x(x+x3) = u(x,x3) = D(x+x3)e-x. The choice that works is the function D(r) = r , and the 

solution of the problem is then u(x,y) = (x+y)e-x . 0 

An Application to Population or Inventory Analysis 

Under certain natural assumptions, here we derive and solve a first--order PDE which governs 
the way in which the composition, with respect to age, of a population of individuals, changes 
with time. The individuals need not be biological organisms, but they could be manufactured 
items (e.g., light bulbs, transistors, food products) or more generally any collection of similar 
objects which become defective with age according to a statistical pattern. Thus, perhaps this 
first--order PDE has a greater variety of applications than the heat, wave and Laplace equations. 

Suppose that at time t a certain population has approximately P(y, t) . ~y individuals 
between the ages of y and y + ~y. In other words, at a fixed time t, P(y,t) is the population 
density with respect to the age variable y. At time t, the number of individuals between the ages 

b 
of a and b is then fa P(y,t) dy. We suppose that the number of individuals of age between y 

and y + ~y, which die in the time interval from t to t + ~t is approximately 
D(y,t)· P(y,t)· ~Y' ~t, for some function D(y,t) which has been statistically determined, say by 
observation. One usually expects that the "death rate density" D(y,t) increases as y increases 
(i.e., older individuals may be more likely to expire), and D(y,t) could very well depend on t 
because of seasonal variations (e.g., air conditioners are more likely to die in the summer). If 
individuals never expire (i.e., D(y,t) = 0), then P(y,t+~t) = P(y-~t,t) for any y and time 
interval ~t with 0 ~ ~t ~ y, since the population density at time t+~t is just a translate, by 
the age difference ~t, of what it was at time t. However, if D f. 0, then we must take into 
account that a number of individuals will die, as time advances from t to t+~t. Indeed, 
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J~t . 
P(y,t+~t) = P(y-~t,t) - ° D(y-~t+s,t+s)P(y-~t+s,t+s) ds. 

Differentiating both sides of (21) with respect to ~t, and then setting ~t = 0, we obtain 

Pt(y,t) = -P y(y,t) - D(y,t)P(y,t) or P y + Pt + D(y,t)P = 0. 

(21) 

(22) 

The coefficients for P y and Pt are constant (both are 1), but the coefficient D(y,t) of P is 

not necessarily constant. Nevertheless, all of the theory of this section still applies to PDEs of the 
form au + bu + c(x,y)u = f(x,y) (Le., only the constancy of the coefficients of u and u is x y x y 
needed to reduce this PDE to an ODE, by a linear change of variables). For equation (22), the 
family of characteristic lines is y - t = d. Hence, we make the change of variables 

{ 
w=y-t 

z=y 
{ 

t=z-w 

Y = z. 
(23) 

With Q(w,z):: P(y,t), we have P y + P t = QWWy + Qzzy + Qwwt + QZZt = Qz' and (22) 
becomes Q + D(z,z-w)Q = 0. The integrating factor is exp[J D(z,z-w) dz], and we obtain 

z 

Q(w,z) = C(w) exp [ -f D((,(-w) d( ] , 
w 

(24) 

where C(w) is an arbitrary CI function, and the lower limit w in the integral is introduced for 

future convenience, but it can be replaced by any CI function of w (Why?). Hence, 

P(y,t) = C(y-t) exp [ - J:-t D((,(-y+t) d( ] . 

If we set t = 0, then we obtain P(y,O) = C(y). Thus, C(y) is just the initial population density 
This is why we chose w for the lower limit in (24). We have (with T:: (-y+t) 

P(y,t) = P(y-t,O) exp [ -J:-t D((,(-y+t) d(] = P(y-t,O) exp [ -J: D(y-t+T,T) dr ] . (25) 

Note that since P{y,O) has not yet been defined for y < ° (Le. for negative ages), the solution 
(25) is undefined for t > y. For y < 0, it is convenient to define P(y,O), so that P(y,O)·~y is 
approximately the number of individuals to be produced between I y I and I y I + ~y time units 
into the future. In other words, for y < 0, P(y,O) is the production rate at -y time units into 
the future. Naturally, we take D(y,t) = ° for y < 0. Then (25) defines P(y,t) for all (y,t). 
In the case of a constant rate of production (say C) and when D(y,t) = D{y) is 
time-independent (for y > 0), we can determine (using the middle expression in (25)) the 
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steady-state population density P (y) which is obtained as t.., 00 : 
00 

Poo(y) == lim P(y,t)=cexp[-IY D(()d(]. 
t.., 00 0 

(26) 

Example 8. The number of avocados that a merchant acquires per day is a constant C. At any 
time, the probability that an avocado acquired y days ago is removed from the shelf (say due to 
spoilage or sale), during a small time interval of ~t days, is (y/25)~t. 

(a b) What must C equal, so that there will be about 300 avocados on the shelf, in the long run? 
( ) Assume that when the merchant took over the business at t = 0, the initial population 

density of avocados was P(y,O) = 300e-Y. Find P(y,t), assuming that C is as in part (a)? 

Solution. Here D(y,t) == y/25, for 0 ~ y (and D(y) = 0, for y < 0). For part (a), formula (26) 
implies that, in the long run, the population density is 

P oo(Y) = C exp [- I~ y/25 dy ] = C exp (-i y2/25). 

The number of avocados on hand is then roo P (y) dy = C roo exp( _~y2 /25) dy JO 00 JO 
roo 2 roo _iX2 

= C'5JO exp(-~x ) dx = C·5·.fi!2 ~ 6.27·C , using the fact that Jo e 2 dx = .fi!2. Thus, 

C ~ 300/6.27 ~ 48. For part (b), we use (25) with P(y,O) = C for y < 0, and P(y,O) = 300e-y, 
for y 2 o. Hence, for y > t, (25) yields 

P(y,t) = 300e-(y-t)exp [ - I:-t (/25 d( ] = 300 exp [ -(y-t) - t(2y-t)/50] ] , y> t. 

Recall that D(y) = 0 when y < O. Thus, when y < t, the interval of integration from y-t to 
y in (25) can be replaced by the interval from 0 to y. Hence, (25) yields 

P(y,t) = C exp [ - I~ y/25 dT] = C exp (_{y2/25) = Poo(y), for 0 < y < t. 

Thus, the steady-state density applies, as long as 0 < y < t. 0 
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Summary 2.1 

1. Characteristic lines: The lines bx - ay = const. which are parallel to at + bl (Le., have 
slope b/a) are called the characteristic lines of the first-{)rder PDE 

aux + buy + cu = f(x,y) , (Sl) 

with constant coefficients a, b and c, with a2+b2 f o. The equation (Sl) may be solved as a 
first-{)rder linear ODE, if a = 0 or b = 0 (Le., if the characteristic lines are x = d or y = d). 
The geometrical significance of the characteristic lines is that aux + buy is essentially the 

directional derivative of u along these lines. Thus, on each characteristic line, (Sl) is really an 
ODE for a function of a position variable along the line. 

2. Change of variables: The PDE (Sl) is converted to an ODE (with parameter w), when it is 
expressed in terms of new variables (z,w) for which the characteristic lines are the new 
coordinate lines w = d. Specifically, if b f 0, consider the transformation 

{ 
w = bx-ay 

z=y 
{

X = (w + az) /b 
y = z. 

(S2) 

(Le., the characteristic lines are now given by w = d), and let v(w,z):: u(x,y) = u((w+az)/b,z) 
be the unknown function in terms of wand z. Then, by the chain rule (e.g., 
Ux = vwwx + vzzx = bvw and uy = VwWy + VzZy = -avw + vz) , (Sl) becomes 

bvz + cv = f((w+az)/b,z) , (S3) 

in which there is no vw. Then (S3) may be solved as a first-{)rder ODE for v with w held 

constant, and the general solution of (Sl) is then u(x,y):: v(bx-ay,y). Depending on the form of 
the function f(x,y) in (Sl), it may be more convenient to choose z = x or some other linear 
combination of x and y (anything except a multiple of bx-ay). The resulting equation for v 
will still have no Vw term, although the coefficient of Vz may no longer be b as in (S3). 

3. Side conditions on lines: The general solution of (Sl) involves an arbitrary C1 function. In 
order to single out a particular solution, an appropriate side-condition must be given. If we 
require that the solution have given values at points (x,y) on a line, say y = mx + d, then the 
side condition is 

u(x,mx+d) = g(x) (S4) 

where g(x) is a given cl function. As long as m f b/a (Le., the line on which the side 
condition is given is not a characteristic line), the PDE (Sl) will have a unique solution which 
meets the side condition (S4). In other words, if m f bfa, the side condition (S4) can be used to 

uniquely determine the arbitrary C1 function in the general solution of (Sl). However, if the side 
condition is given on a characteristic line (Le., m = b/a), then there will be no solution of (Sl) 
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with (84), unless g(x) has a particular form. If g(x) has this particular form, then there will be 
infinitely many solutions of (SI) satifying the side condition (S4). 

4. Side conditions on curves: It is not necessary that a side condition be prescribed on a line. 

Indeed, a unique solution of (SI) is determined, if the values of u are given in a Cl fashion on a 
regular curve which transversely intersects each characteristic curve exactly once. The essential 
idea is that the solution of (SI) is determined on a characteristic line by its value at a single point 
of the line, since (SI) is an ODE on the line. The regularity of the side condition curve and the 
transversality condition are needed to ensure that the solutions, on the individual characteristic 

lines, piece together to form a Cl solution of (SI). 

5. Application 
subsection. 

An application to population and inventory analysis is given in the last 

Exercises 2.1 

1. Find the general solution of each of the following PDEs, where u = u(x,y) in (a) - (d). 

(a) 2ux - 3uy = x, (b) ux + uy -u = 0 

(c) u + 2u - 4u = eX+ y 
x y (d) 3ux - 4uy = x + eX 

(e) Vz + 3vw = 9w2 , v = v(w,z) (f) gt -cgx = 0, g = g(x,t) (c constant). 

2. Find the particular solution of u + 2u - 4u = eX+ y satisfying the following side conditions. x y 

(a) u(x,O) = sin(x2) (b) u(O,y) = y2 (c) u(x,-x) = x . 

3. Show that the PDE ux + uy - u = 0 with side condition u(x,x) = tan(x) has no solution. 

4. What form must g(x) have in order that the following problem have a solution? 

u(x,3x) = g(x) . 

If g(x) has the required form, will there be more than one solution? 

5. Write down two different solutions of the PDE in Problem 4, when g(x) = -1 + 2ex. 

x) 2x x 2 6. Solve the problem: ux - 2uy = 0, u(x,e = e +4xe +4x . 
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7. Let a, band c be constants with ab f. O. Consider the homogeneous linear PDE 

aux + buy + cu = O. Bob says that the general solution is given by u(x,y) = e --ex/ af(bx-ay) 

for an arbitrary cl function f, while Jane says that it is u(x,y) = e--ey/bf(bx-ay). Who is 
correct? 

8. (a) Show that the PDE u = 0 has no solution which is C1 everywhere and satisfies the side x 

condition u(x,x2) = x. 

(b) Find a solution of the problem in (a) which is valid in the first quadrant x> 0, y > O. 

(c) Explain the results of (a) and (b) in terms of the intersections of the side condition curve and 
the characteristic lines. 

9. (a) Show that the PDE Ux = 0 has no solution which is C1 everywhere and satisfies the side 

condition u(x,x3) = x , even though the side condition curve y = x3 intersects each 
characteristic line (y = d) only once. 

(b) Part (a) demonstrates the necessity of the transversality condition on the intersections of the 
side condition curve with the characteristic lines. Explain why. 

Hint. At what angle does the curve y = x3 meet the x-axis? 

10. (a) Show that a solution of the homogeneous PDE aux + buy + cu = 0 cannot be zero at 

one, and only one, point in the plane. 

(b) If c = 0 in the PDE in (a), then show that the graph z = u(x,y) of a solution u (defined 
everywhere) is a surface composed of horizontal parallel lines. 

11. In Example 8 (b), how many of the original avocados (already present at t = 0) will remain 
after time t? Your answer should be a function of t. 

12. In Example 8, now assume that an avocado has a 10% chance of being removed from the 
shelf on any given day (i.e., more precisely D(y) = .1, for y> 0), regardless of its age. 

(a) Show that in the long run, there will be about Ce -y / 10 y-day-old avocados on the shelf. 

(b) According to part (a), what should the value of C be, if there are still to be about 300 
avocados on the shelf in the long run. Does your answer agree with common sense? 

13. Air conditioners are produced at a constant rate of 100 per month beginning on New Years 
Day. The probability that an air conditioner will break down during a small time interval ~t 
months, assuming that t months have elapsed since New Years, is (.2 - .1·cos(1lt/6))~t, 
regardless of the its age. Approximately how many y-month-old air conditioners will be 
operational at the end of the year, where y ~ 12? How could the total number of operational air 
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conditioners, at the end of the year, be determined? If you have the resources for numerical 
integration, compute this number. 
Hint. When using formula (25), remember that D(y,t) = ° for y < 0. 

14. A certain population has initial population density C(y), for y ~ 0. The birth rate of the 

population at time t is proportional to its total size at time t, say a· fa P(y,t) dy for some 

constant a > 0. (We assume that fa C(y) dy < 00.) The death rate density is constant, say 

D(y,t) = k for y ~ ° and some k> 0. Find the population density P(y,t) for all y, t > 0. 

Hint. First note that formula (25) applies, but P(y-t,O) is not yet known for t > y. Let f(t) 
= P(O,t) (i.e., f(t) is the birth rate at time t). Once f(t) is determined, then P(y-t,O) = 
f(t-y) for t > y (Why?), and the solution will then be explicitly given by (25). To find {(t), 

note that 

f(t) = a·fa P(u,t) du = a-f: P(u,t) du + a.~ P(u,t) du 

= a-f: P(u-t,O).e-ku du + a.~ C(u-t) e-ktdu 

= a-f: f(t-u).e-ku du + a.e-kt fa C(u) du. 

The last integral is the total initial population, say Po. Change to the variable v = t-u in the 

t 
first integral, to obtain ektf(t) = a·Io f(v).ekv du + a·po. Now differentiate. 

15. By completing the following steps, prove Theorem 1. Let (h(s),k(s» be a parametrization of 
the side condition curve in Theorem 1 by an arclength parameter s. 

(a) For each point (x,y) in the plane, show that there are unique numbers o'(x,y) and r(x,y), 
such that x = h(O'(x,y)) + a· r(x,y) and y = k(O'(x,y)) + b· r(x,y). (Draw a picture.) 

(b) Using the functions O'(x,y) and r(x,y) of part (a), show that with the change of variables 

[ 
s = O'(x,y) [ X = h(s) + at 

t = r(x,y) y = k(s) + bt , 

and with v(s,t) == u(x,y), the PDE aux + buy + cu = f(x,y) becomes vt + cv = F(s,t), where 

F(s,t) == f(h(s) + at,k(s) + bt). Hint. Note that vt = uxxt + uyYt . 

(c) Show that v(s,t) = e -ct [ I~ ecr F(s,r) dr + U(s) ], where U(s) = v(s,O) = u(h(s),k(s)) is 

the C1 function which specifies the values of u on the side-condition curve. Thus, the unique 

solution of the problem in Theorem 1 is the C1 function u(x,y) = v(O'(x,y),r(x,y». (Note that 

the Jacobian XsYt - Ysxt = h'(s)b - k'(s)a 1= ° (Why?), so that 0' and rare C1 by the Inverse 

Function Theorem which is covered in most advanced calculus books, e.g., [Taylor and Mann].) 
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2.2 Variable Coefficients 

In many applications, we find first--order linear PDEs with variable coefficients 

a(x,y)ux + b(x,y)uy + c(x,y)u = f(x,y), u = u(x,y) , (1) 

where a, b, c and f are given C1 functions of x and y. Note that a(x,y)ux + b(x,y)uy is the 

directional derivative of u at the point (x,y) in the direction of the vector 

g(x,y) :: a(x,y)i + b(x,y)j . 

In Section 2.1, a and b were constants, and this vector had a fixed direction and magnitude, but 
now the vector can change as its base point (x,y) varies. Thus, g(x,y) is a vector field on the 
plane. It is helpful to think of g(x,y) as the velocity (at the point (x,y)) of a fluid flow in the 
xy-plane. When a and b are constants, the streamlines of the fluid are the straight lines with 
slope b/a (Le., with tangent vectors parallel to ai + bj), and hence they are the characteristic 
lines. When a and b are not constant, the streamlines will be curved in general, and we refer to 
the streamlines as characteristic curves. More precisely, we make the following definition. 

Definition 1. A curve in the xy-plane is called a characteristic curve for the PDE (1), if at 

each point (xo,yo) on the curve, the vector g(xo,yo) = a(xo,Yo)i + b(xo,yo)j is tangent to 
the curve. 

At each point on a characteristic curve, we have that g·Vu (or a(x,y)ux + b(x,y)uy ) is the 

directional derivative of u in the direction of the curve's tangent vector, and hence g. Vu is 
proportional to the derivative of u, with respect to a position variable alon~ the curve. Thus, as 
with the constant coefficient case, on each characteristic curve, the PDE (1) is actually an ODE 
for a function of a position variable along the curve. If the characteristic curves are graphs of 
functions y(x) (Le., assuming that a(x,y) =I 0), then Definition 1 implies that 

Qr~ ax = arx.YJ. (2) 

(Le., the tangent line to the graph of y(x) at (x,y) is parallel to g(x,y) = a(x,y)i + b(x,y)j ). 

The ODE (2) is known as the characteristic equation for the PDE (1). The solution curves 
of the the characteristic equation are the characteristic curves for (1). 
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In the case of constant coefficients a and b, the general solution of (2) is simply 

y = ~ x + const. or bx - ay = d, where d is an arbitrary constant. In the general case of 

variable coefficients, (2) may be considerably more difficult to solve, but let us assume that (2) 
has been solved, and that the solution has been put in the implicit form h(x,y) = d, where d is 
an arbitrary constant. We can simplify the PDE (1), by making the change of variables 

w = h(x,y) and z = y , (3) 

as we did when a and b were constant (e.g., h(x,y) = bx-ay, in that special case.). The 
rationale for this procedure is that w is constant on each characteristic curve and the PDE 
should become an ODE in the position variable z along these curves. As before, the choice 

z = y is not necessary. Indeed, we can set z equal to any C1 function of x and y, as long as 
the transformation can be invert.ed to give x and y in terms of z and w. Setting v(w,z) 
= u(x,y) , we can verify that (1) is transformed into an ODE in z, for w fixed. First compute, 

aux + buy = a(vwwx + vzzx) + b(vwwy + vzzy) 

= (awx + bwy)vw + (azx + bzy)vz . 

Thus, it suffices to show that aw x + bw y = 0, in order that v w drop out of the transformed 

PDE for v. To this end, let (xo,Yo) be a given point and let y(x) be a solution of (2) such that 

y(xo) = Yo' We know that h(x,y(x)) = const. , and hence using (2), 

o = ~ h(x,y(x)) = hx + hy ~ = Wx + Wy ~f~:Y~ . 
Thus, awx + bwy = 0 at any point (x,y(x)). In particular, awx + bwy = 0 at the arbitrary 

given point (xo,yo). Alternatively, recall that Vh is normal to any level curve h(x,y) = d and 

by construction g = ai + bj is tangent to this level curve. Thus, awx + bwy = g·Vh = O. 

Although we have shown that the method works, in many instances it turns out that (3) may be 
invertible only in a certain domain in the xy-plane. This signals the need for some care, as we 
will find in some of the examples below. 

Example 1. Find the general solution of 

-yux+xuy=O. (4) 

Solution. The characteristic equation is dy/dx = -x/y . This is a separable equation which is 
readily solved by separating the variables and integrating: 
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Thus, the characteristic curves form the family x2+y2 = d of circles [d > 0] and the point (0,0) 
[d = 0]. We make the change of variables 

2.1. 

[
X =:1:: [w -z P 
y = z. 

(5) 

In spite of the fact that the inverse transformation is double-valued and only defined for w ~ z2 , 
we will arrive at the correct solution anyway. Setting v(w,z) = u(x,y) , the PDE (4) becomes 

0= -yux + xUy = -y(vwwx +vzzx) + x(vwWy +vzZy) = -(y.2x - x.2y)vw + xVz = xVz ' 

(Le., xVz = 0). Thus, if v is a C1 function of w, say v = f(w), we suspect that 

(6) 

will be a solution of the original PDE, in spite of the defects of the transformation (5). Indeed, we 
can check the solution (6) directly: 

This shows that (6) is a solution. We will often resort to tentative procedures in deriving 
"hypothetical solutions", but until they are actually checked, we have no proof that they are 
actual solutions. We have still not conclusively demonstrated that (6) is the most general 
solution. A solution is of the form (6), if and only if it is a constant on each of the circles 

x2+y2 = a2. We should check that any solution of (4) must be constant on these characteristic 
circles. To show this, we parameterize the circles via 

x(t) = a cos(t), y(t) = a sin(t), a> 0 . (7) 

As t varies, (x(t),y(t)) traces out the circle x2+l = a2 . The value of u at (x(t),y(t)) is a 
function of t that we denote by U(t) :: u(x(t),y(t)). We want to show that U(t) is a constant, 

so that u will be constant on the arbitrary circle x2+y2 = a2 . For this, we compute: 

#f = ~ u(x(t),y(t)) = uxx'(t) + uyy'(t) = -uxa.sin(t) + uya'cos(t) 

= -ux(x(t),y(t))'y(t) + uy(x(t),y(t)).x(t) = 0, 

by the PDE (4). Thus, the PDE tells us that the function u is constant on characteristic circles, 
and (6) is in fact the most general form for the solution. 0 

Remark. In Example 1, it is not necessary for the function f(z) to be C1 at z = O. For example, 

if f(z) = 3z2/3, then u(x,y) = 3(x2+y2)2/3 = 3r4/ 3 (r:: (x2 + y2y!) , which is still el, even 

though f'(z) = 2z-1/ 3 is undefined at z = O. Technical difficulties such as this can occur at 
"critical points" (xo,yo), where a(xo,yo) = 0 and b(xo,yo) = O. In Example 1, we can still say 
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that all solutions are of the form (6), but the requirement that f(z) be e1 can be relaxed a bit 
at z = O. The degree of concern over such matters will be left to the instructor. However, one 

should note that if h(x,y) is e1 and Vh(x,y):f 0 for all (x,y) in an open set S, then f(h(x,y)) 

will be c1 on S, if and only if f is e1 on h(8). Thus, in order that the solutions of (1) be e1, 

the arbitrary function of integration must certainly be c1 near h(xo,yo), if Vh(xo,yo) :f O. 0 

The preferred parametrization of a characteristic curve 

In Example 1, we parametrized a characteristic curve via the functions x(t) and y(t), and we 
defined a function U(t) = u(x(t),y(t)) which is simply the value of u along the curve at "time" 
t. We found that U(t) obeys the ODE U'(t) = 0, by virtue of the PDE (4). For the general 
first-order, linear PDE (1), the main goal of this subsection is to explicitly show that the function 
U(t) :: u(x(t),y(t)) must satisfy a certain ODE, if (x(t),y(t)) traces out a characteristic curve, 
as t varies. 

There are many ways in which a particle can move along a characteristic curve (e.g., quickly, 
slowly, etc.). Perhaps the most natural way is to have the particle move in such a way that its 
velocity is g(x,y) = a(x,y)i + b(x,y)j , when it is at the point (x,y) (i.e., as if it were carried 
along by the fluid flow with velocity g(x,y)). For the particle to move in this way, the functions 
x(t) and y(t) which give the position (x(t),y(t)) of the particle at time t, must obey the system 

* = a(x(t),y(t)) , ~ = b(x(t),y(t)) . (8) 

Since the velocity vector x'(t)i + y'(t)j of the particle is tangent to its path, we know that (8) 
ensures that the point (x(t),y(t)) traces out a characteristic curve for the PDE (1). 

Definition 2. The system of equations (8) is called the characteristic system of the PDE (1). 
If x(t) and y(t) solve this system, then (x(t),y(t)) is said to be a preferred parametrization 
for the characteristic curve that is traced out as t varies. 

In Section 1.1, we solved systems such as (8) in the simple case, where a(x,y) and b(x,y) 
were linear combinations of x and y. In general, we will only consider problems where the 
characteristic systems are easily solved. For the PDE considered in Example 1, the system (8) is 
x'(t) = -y(t) ,y'(t) = x(t). Differentiating the first equation and using the second, we have 
x"(t) = -y'(t) = -x(t), or x"(t) + x(t) = O. Thus, 

x(t) = c1cos(t) + c2sin(t) and yet) = -x'(t) = c1sin(t) - c2cos(t) . (9) 

For any choices of the constants c1 and c2, a characteristic curve (a circle or a point, in this case) 

is traced out. In (7) of Example 1, we chose c1 = a and c2 = 0 for convenience. 
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Suppose that (x(t),y(t)) is a preferred parametrization for a characteristic curve of 

a(x,y)ux + b(x,y)uy + c(x,y)u = f(x,y) . 

Let U(t) = u(x(t),y(t)), C(t) = c(x(t),y(t)) and F(t) = f(x(t),y(t)) . 

In order to find the ODE which U(t) must obey, we compute 

U'(t) = ux(x(t),y(t)) x'(t) + uy(x(t),y(t)) y'(t) (by the chain rule) 

= ux(x(t),y(t)) a(x(t),y(t)) + u/x(t),y(t)) b(x(t),y(t)) (by (8)) 

(10) 

(11 ) 

= -c(x(t),y(t))u(x(t),y(t)) + f(x(t),y(t)) (by the PDE (10)) 

= -C(t) U(t) + F(t). (by (11) ). 

Thus, we have shown that U(t) = u(x(t),y(t)) must obey the ODE 

U'(t) + C(t)U(t) = F(t) . (12) 

t 
Letting m(t) = exp [fo C(t) dt] be the integrating factor for (12), we obtain the solution 

U(t) = ~(t) [f~ m(t)F(t) dt + U(O) ] . (13) 

In this formula, m(t) and F(t) depend only on the values of c(x,y) and f(x,y) along the 
characteristic curve x = x(t), y = y(t). Thus, (13) shows that the values U(t) of the solution u 
along the entire characteristic curve are completely determined, once the value 
U(O) = u(x(O),y(O)) is prescribed. If c(x,y) and f(x,y) are zero, as in Example 1, then (13) 
says that u will be constant on each characteristic curve. However, the constant can change, as 
one moves from one characteristic curve to another. For example, the particular solution 

u(x,y) = (x2+y2)3 of Example 1 is 64 on the circle of radius 2, and 1 on the circle of radius l. 
If c(x,y) and f(x,y) are not zero, then U(t) need not be constant, although (13) shows that U(t) 
must have a certain form which depends only on the choice of U(O). Thus, in general we cannot 
specify the value of u at two distinct points of a characteristic curve, as the following example 
shows. 

Example 2. Show that the problem -yux + xUy = 0, u(x,O) = 3x has no solution. 

Solution. The side condition is given on the x-axis which intersects each of the characteristic 

circles x2+y2 = a2 twice, at (a,O) and (-a,O) [a f. 0]. We saw in Example 1 that u(x,y) must be 
constant on such circles, and yet the side condition requires that u( a,O) = 3a and u( -a,O) = -3a. 
Thus, this side condition can never hold for a solution of the PDE. The difficulty arises, because 
we cannot expect to prescribe u at more than one point on any characteristic curve. Given a 
value for u at one point, the values of u at the other points along the curve will be uniquely 
determined by the fact that u is a solution (13) of a certain ODE (12) along the curve. 0 
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Remark. Sometimes, if the side condition is chosen carefully, a problem may still have a solution, 
even if the characteristic curves intersect the side condition curve more than once. For example, 

the problem, -yux + xUy = 0 with u(x,O) = 3x2, has the solution u(x,y) = 3(x2+i). The 

saving grace of this side condition is that u(a,O) = 3a2 = u(-a,O). 0 

The parametric form of solutions 

We have seen that it is convenient to think of characteristic curves of the PDE 

a(x,y)ux + b(x,y)uy + c(x,y)u = f(x,y) (14) 

as paths of particles moving with the flow of a fluid with velocity g(x,y)= a(x,y)i + b(x,y)j. The 
position (x(t),y(t)) of a particle is completely determined by its starting position (x(O),y(O)) at 
time t = O. If a side condition is given on some regular side condition curve which transversely 
intersects each characteristic curve exactly once, then it is convenient to take the starting position 
of the particle on a characteristic curve to be the point of intersection of the characteristic curve 
with the side condition curve. If we let s denote a position variable along the side condition 
curve, then we obtain a different characteristic curve for each value of s. For each fixed s, let 
(X(s,t),Y(s,t)) be the position, at time t, of the particle which begins at the point corresponding 
to s on the side condition curve, and flows with the fluid. 

characteristic 
curves 

side condition curve (t = 0) 

Figure 1 

Note that the side condition curve itself is traced out by (X(s,O),Y(s,O)), as s varies and t is 
held fixed at O. In other words, we have the following: . 
The functions X(s,t) and Y(s,t) are the solutions of the characteristic system (for each fixed s) 

~ X(s,t) = a(X(s,t),Y(s,t)) , ~ Y(s,t),= b(X(s,t),Y(s,t)) , (15) 

with given initial values X(s,O) and Y(s,O). 

Suppose that the values of u at points on the side condition curve are given by 
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u(X(s,O),Y(s,O)) = G(s) , 

where G(s) is a given C1 function. We obtain u(X(s,t),Y(s,t)) as follows. 

Let 

and 

U(s,t) == u(X(s,t),Y(s,t)), C(s,t) == c(X(s,t),Y(s,t)), F(s,t) == f(X(s,t),Y(s,t)) 

m(s,t) == exp [ f: C(s,t) dt] . 

(16) 

(17) 

Then we may apply the result (13) of the previous subsection, for each fixed s, to deduce that 

U(s,t) = m[s,t) [f: m(s,t) F(s,t) dt + G(s) ]. (18) 

From (17), we know that U(s,t) is the value of u at the point (X(s,t),Y(s,t)). Thus, as sand t 
vary, the point (x,y,u), in xyu-space, given by 

x = X(s,t), y = Y(s,t), u = U(s,t) , (19) 

traces out the surface of the graph of the solution u of the PDE (14) which meets the side 
condition (16). 

The equations (19) constitute the parametric form of the solution of (14) with the condition (16). 

Although (19) does not directly give us a formula for u(x,y), it may be possible to solve the 
equations x = X(s,t) and y = Y(S,t) for sand t in terms of x and y, say s = S(x,y), 
t = T(x,y). Then u(x,y) == U(S(x,y),T(x,y)) will be the usual explicit form for the solution. It 
is often convenient to leave the solution in the form (18) for the purpose of generating 
three-dimensional computer plots of thE; graph of the solution in xyu-space (cf. Figure 2 below). 

Example 3. Find the parametric form of the solution of the problem 

(20) 

Solution. By (15), the family of characteristic curves (X(s,t), Y(s,t)) are found by solving 
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d d CIt X(s,t) = -Y(s,t), CIt Y(s,t) = X(s,t) 

with initial conditions (21) 
2 X(s,O) = s, Y(s,O) = s . 

The general solution of this system is (cf. (9)) 

X(s,t) = c1(s)cos(t) + c2(s)sin(t) and Y(s,t) = c1(s)sin(t) - c2(s)cos(t) . 

By the initial conditions, c1(s) = s while c2(s) = -s2. For the PDE in (20), we have c(x,y) = 0 

and f(x,y) = 0 (cf. (14)). Thus, m(s,t):: 1 and F(s,t):: 0 in (17). According to (20) and (16), 

we have G(s) = s3, and so U(s,t) = s3 by (18). Hence, we have the parametric solution 

X(s,t) = s cos(t) - s2 sin(t), Y(s,t) = s sin(t) + s2 cos(t), U(s,t) = s3 . (22) 

When t = 0, and s (s > 0) varies, we get the point (si,s3) in xyu-space, which traces out 
the so-called twisted cubic. As t varies, the points on the curve move in circles about the 
u-axis. Thus, the graph of the solution is the surface obtained by revolving the twisted cubic 
about the u-axis, as we illustrate in Figure 2. 

u 

y 

x 

Figure 2 

We can also obtain the solution in explicit form. We know from Example 1 that the general 

solution is of the form u(x,y) = C(x2+y2). Thus, the side condition tells us that C(s2+s4) = s3. 

Setting r2 = s2 + s4 , we have s2 = (-1 + /1+4r2 )/2. Thus, C(r2) = s3 yields 

[ j 2 2] 3/2 u(x,y) = -1 + 1+4(x +y ) /.;8 . 
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If the side condition curve were replaced by (s,s \ then the explicit form of the solution would be 

difficult (if not impossible) to obtain, due to the difficultly in solving for s2 in terms of r2. 

However, in the parametric form for the solution, we can simply replace s2 by s 7 in (22). 0 

Example 4. Solve (y+x)ux + (y-x)Uy = u , subject to u(cos(s),sin(s)) = 1 for ° ~ s ~ 271". 

Solution. The side condition states that u is to be 1 on the unit circle X2+y2 = 1. The 

characteristic equation ~ = y+~ (cf. (2)) is neither separable nor linear, although it becomes 

separable under the change of dependent variable y(x) = X· z(x). Instead, we opt for the 
parametric approach. The characteristic system (cf. (15)) is (for fixed s) 

d d at X(s,t) = X(s,t) + Y(s,t) and at Y(s,t) = -X(s,t) + Y(s,t) , 

with initial conditions 
X(s,O) = cos(s) , Y(s,O) = sin(s) . 

(23) 

We solve the system using the method of Section 1.1. We differentiate the first equation in (23) 
with respect to t, and use the second equation to obtain X" = X' + Y' = X' + (-X + Y) = X' 

+ (-X + X' - X), or X" - 2X ' + 2X = 0. The roots of the auxiliary equation r2 - 2r + 2 = ° 
are 1 ± i. Thus, 

using Y = X' - X. For fixed s these curves (X(s,t),Y(s,t)) spiral away from the origin as t 
advances. The initial conditions yield c1(s) = cos(s) and c2(s) = sin(s). Thus, 

X(s,t) = cos(s)etcos(t) + sin(s)etsin(t) = etcos(s-t) and Y(s,t) = etsin(s-t) . 

Since U(s,t) = u(X(s,t),Y(s,t)) satisfies ~ U(s,t) = U(s,t) (cf. (12)) with U(s,O) == 1, we have 

U(s,t) = et (cf. (18), also). Thus, we have the parametric solution 

x = etcos(s-t), y = etsints-t), u = et . 

S· 2 2 2t 2 . hi· . h 1·· r () ~ lllce x + y = e = u , we can WrIte t e so utIOn III t e exp lClt lorm u X,Y = vx-+y- . 

Note that the graph of the solution is a cone and it is not C1 at the origin. If the initial 
condition had not been so simple, then we might not have been able to get a simple formula for 
the solution in explicit form; but obtaining the parametric solution would be easy (e.g., consider 

u(cos(s),sin(s)) = cos(3s), in which case we would have U(s,t) = etcos(3S)). 0 
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Global Considerations 

When the values of u are prescribed in a C1 fashion along a regular side-condition curve 
which transversely intersects each characteristic curve once, then we have some way of piecing 
together solutions for u on the various characteristic curves. However, as we show in the next 
example, it can happen that there is no single side condition curve which transversely crosses each 
characteristic curve once. In such cases, constructing solutions which are defined throughout the 
xy-plane (Le., globally) can lead to some interesting complications. 

Example 5. Find the general solution of the PDE 

xux - yuy + yu = 0 . (24) 

Solution. The characteristic curves are found from 

or 

Integrating, we obtain log( I x I )+log( I y I) = log( I d I). Thus, the family of characteristic curves is 
the collection of curves xy = d (hyperbolas, when d I 0). From the viewpoint of preferred 
parametrizations, the two branches of the hyperbola xy = d should be regarded as distinct 
characteristic curves. Indeed, the system of equations for the preferred parametrization 

(x(t),y(t)) is x'(t) = x(t) ,y'(t) = -y(t), with solutions x(t) = c1et , y(t) = c2e-t . For fixed 

nonzero c1 and c2' the point (c1e\c2e-t ) traces out only one branch of the hyperbola xy = C1C2• 

We proceed with the general solution process, as in Example 1, by making the change of variables 

[
w = xy 

z=y 
[

X = w/z 

y = z. 
(25) 

The inverse transformation is not defined everywhere (only for z I 0). This will lead to some 
unexpected difficulties. Setting v(w,z) = u(x,y) we have xUx - YUy = x(vwwx + vzzx) 

- y( v w w y + v zZy) = (xy-yx)v w - yv z = -yv z· Thus, the PDE becomes -zv z + zv = 0 , which 

has the solution v(w,z) = C(w)ez . Hence, we are led to the hypothetical solution 

u(x,y) = C(xy)eY , (26) 

where C is an arbitrary C1 function. Although one can directly check that (26) is a solution, 
this time we demonstrate that (26) is not the most general solution. Observe that the solution 

(26) is the function C(d)eY on each of the branches of the hyperbola xy = d, and yet the 
branches are disconnected, so that there is no reason why the solution would have to be the same 

multiple of eY on each branch. Note that if we restrict the domain of u to the upper half plane 
y > 0 , then each hyperbola xy = d has only one branch in this half plane, so that (11) will in 
fact be the most general solution in the half plane y > o. Similar remarks apply, if we restrict 
ourselves to y < o. Suppose that we try to glue together the two general solutions in each half 
plane by defining 



84 

[ 
C(xy)eY 

u(x,y) = 
D(xy)eY 
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y~O 

(27) 
y~O 

where C and Dare C1 functions. Certainly (27) is a c1 solution of the PDE for y > 0 and for 

y < 0 , but we must make sure that u is well defined and C1 at points on the x-axis (y = 0). 
For u to be well-defined, we need C(O) = D(O) [Le., the formulas must agree when y = 0 J. 
Also, for y ~ 0 , we have ux(x,y) = C'(xy)yeY, and for y ~ 0, we have ux(x,y) = D'(xy)yeY . 

Hence, ux(x,O) = 0 in both cases, and Ux is well-defined and continuous. Therefore, 

uy(x,y) = C'(xy)xeY + C(xy)eY, for y ~ 0 and u/x,y) = D'(xy)xeY + D(xy)eY, for y ~ O. 

In order that the formulas match at y = 0 , we need C' ~O) = D' (0). Thus, (27) is a solution, 
provided we assume that C(O) = D(O) and C'(O) = D (0). Indeed, (27) is the most general 

solution of the PDE, where C and D are arbitrary C1 functions, subject only to the conditions 
C(O) = D(O) and C'(O) = D'(O). For example, taking C(r) = rand D(r) = sin(r), we have 
the particular solution 

xyeY y ~ 0 

u(x,y) = [ 
sin ( xy)eY y ~ 0 

It is interesting to note that the functions C and D in (27) must each be defined for all real 
numbers in order that u(x,y)' be defined for all x and y. Thus, we have an example of a 
first-order PDE that requires two arbitrary functions to express its general solution. This leads 
to an interesting question. Is there one side condition for the PDE (24) which uniquely 
determines a solution? It is plausible that the answer is "no", because the side condition would 
determine two arbitrary functions, C and D. Indeed, the curve on which this side condition is 
given would have to cross each branch of every hyperbola xy = d once and only once. Consider 
the four branches shown below in Figure 3. As is easily seen, there is no continuous curve that 

Ixyl = 1 

x 
-2 -1 0 1 2 

Figure 3 
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crosses each of these branches just once. This shows that there is no single side condition that will 
uniquely determine a solution of the PDE. One could get a unique solution by imposing two side 
conditions, say 

u(x,l) = h(x) and u(x,-l) = k(x), where h(x) and k(x) are C1 functions. 

Then we could determine the functions C and D in the general solution (27) via the relations 

C(x)e = u(x,l) = h(x) 

D(x)e-1 = u(x,-l) = k(x) . 

Thus, C(x) = h(x)/e and D(x) = k(x)e. Since we must have C(O) = D(O) and C'(O) = D'(O), 
we deduce that in order for a solution to exist the functions h(x) and k(x) must satisfy the rather 

weird conditions h(O) = e2k(0) and h'(O) = e2k'(0)! 0 

Example 5 shows that, in constructing general solutions, complications can arise, when the 
family of characteristic curves has a "topologically nontrivial" configuration, in the sense that 
there is no regular side condition curve which transversely intersects each characteristic curve 
once. For this reason, it is difficult if not impossible (or at least very awkward) to formulate a 
specific procedure, whereby one can capture the completely general solution of a first-order linear 
PDE with variable coefficients. Essentially, one can form any solution by solving the ODE (12) 
on characteristic curves (x(t),y(t)) and piecing the solutions on the curves together. But in 
practice this is not as easy as it sounds. It is possible to give examples of first-order linear PDEs 
for which the general solution involves infinitely many arbitrary functions (cf. Problem 8). 

An application to gas flow 

Imagine a gas (or compressible medium) which flows parallel to a given line (say the x-axis). 
We denote the density (mass per unit volume) of the gas at the point (x,y,z) at time t by 
p(x,t) ; we assume for simplicity that the density is independent of y and z. Let the velocity at 
the point (x,y,z) at time t be v(x,t)i, where i is the unit vector in the positive x direction. 
We show that because of conservation of mass, the functions p(x,t) and v(x,t) must obey the 
so-called continuity equation: 

(28) 

For the derivation, consider the space between Xo and Xo + ~x (see Figure 4). 

x. X.+/:;.X 

Figure 4 
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The amount of mass passing through a unit area of the plane x = Xo into this space in the time 

interval ~t is p(xo,t)v(xo,t)~t, and the amount that leaves through the face x = Xo + ~x (per 

unit area) in the time interval ~t is ~ p(xo+~x,t)·v(xo+~x,t)~t. Thus, the net change in the 

mass, per unit cross-sectional area, between the planes during ~t is given approximately by 

Jxo+~x [p(x,t + ~t) - p(x,t)] dx ~ -[p(xo + ~x,t)v(xo + ~x,t) - p(xo,t)v(xo,t)]· ~t . 
Xo 

Dividing by ~x·~t, and taking the limits as ~x and ~t tend to zero, we obtain Pt(xo,t) 

= -(pv)x(xo,t) , which gives us (28). By specifying v(x,t) in advance, we can use (28) to figure 

out the "unknown" density p(x,t), provided we know p(x,a) [Le., the density at the time 
t = a]. In other words, finding p(x,t) amounts to solving the problem 

Pt + v(x,t)px + vx(x,t)p = a, p(x,a) = Po(x) , (29) 

where Po(x) is some given C1 function (the initial density). We consider some special cases. 

1. Suppose that v(x,t) = Vo , a constant. Then the PDE in (29) becomes Pt + voPx = a. The 

characteristic lines form the family of lines with slope dx/dt = Vo (Le., x - vot = d). Without 

going through the familiar change of variables, it is evident that the general solution of the PDE 

is p(x,t) = C(x - vot) , for an arbitrary C1 function C. From the initial condition in (29), we get 

Po(x) = C(x - vo·a) = C(x). Thus, the solution of the problem (29), in this case is 

p(x,t) = Po(x - vot) . 

In other words, the density distribution is carried downwind with speed 1 Vo I. 

2. Suppose that v(x,t) = ax , where a is some positive constant. In this case, the velocity is in 

the direction -r for negative x and in the direction + r for positive x (Le., the wind is 
blowing away from the point x = a). Of course, we expect the density at x = a to decrease 
with time in this case. The PDE in (29) becomes Pt + axpx + ap = a. The solutions of the 

characteristic equation x I (t) = ax, form the family of characteristic curves x = de at or 

xe-at = d in the xt-plane. We make the change of variables 

{
-at 

w = xe ; 

z = t 

and let r(w,z) = p(x,t). The PDE then becomes 

{
X = weQ'Z 

t = z, 
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or rz + llT = 0. The general solution is r(w,z) = C(w)e-m , for an arbitrary C1 function C, 

and this yields p(x,t) = C(xe-at)e-at . Using the initial condition, we have Po(x) = p(x,O) 

= C(x), whence C(x) = Po(x). The unique solution of problem (14) in this case is then 

-at -at p(x,t) = po(xe )e . (30) 

The density at x = ° decreases, as we expected. It is interesting to note that in the case where 

Po(x) = Po = const. , we have that p(x,t) = poe -at is independent of x, even though the wind 

velocity v = ax depends on x. Also, note that (30) shows that the graph of p(x,t) is the graph 

of Po(x), after it has been stretched horizontally by a factor of eat and compressed vertically by 

a factor of e -at. These operations (taken together) conserve the area under the graph, which 
means that the total mass (Le., integral of the density with respect to x) is conserved. 

A geometrical application 

Here we will find all functions u = u(x,y) such that the tangent plane to the graph z = u(x,y) 

at any arbitrary point (xo,y o,u(xo,Yo)) passes through the origin. Assume that u is C1, and 

recall that the equation of the tangent plane to the graph at (xo,yo,u(xo,yo)) is 

ux(xo,yo)(x-xo) + uy(xo,yo)(y-Yo) - (z - u(xo,yo)) = ° . 
In order that (0,0,0) be on this tangent plane, we need -ux(xo,yo)xo - uy(xo,yo)yo + u(xo,yo) = 0. 

For this to hold for all (xo,yo) in the domain of u, the function u must satisfy the PDE 

(31) 

The characteristic curves obey dy/dx = y/x , whose solution is log(y)-log(x) = log(d) or 
y/x = d , the family of rays from the origin in the xy-plane. To solve (31), we switch to a 
coordinate system such that one of the coordinates is constant on each such ray. Polar 
coordinates (r,O) are perfectly suited, as 0 = constant defines a ray. The transformation (for 
(x,y) f (0,0)) is 

2 2 1 
r = (x +y F x = r cosO 

with inverse 

arccos[x/ (x2 + y 2)t] y ~ ° 
2 2 1 

arccos[-x/(x +y)2] + 7r 

y = r sinO, 
y<o 
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The inverse transformation is simpler than the transformation itself (which is not defined at the 
origin). We know that (31) should become an ODE in r. Rather than computing xUx + YUy 
using the transformation, we use the inverse transformation to compute vr ' where v(r,O) = u(x,y): 

or rv = xu + yu . r x y 

Thus, (31) becomes rVr - v = ° , whose solution is v(r,O) = C(O)r, where C(O) is an arbitrary 

cl function of O. The graph z = v(r,O) consists of a family of rays in space issuing from the 
origin and forming a conical object, with possibly a vertex at the origin, as in Figure 5. 

u 

x 

Figure 5 

Note that the surface 0 = 00 is a half-plane issuing from the z-axis and the graph intersects this 

half-plane in the line z = C( 0o)r. When there is a vertex at the origin, the graph will not have a 

well-defined tangent plane at (0,0,0), which implies that the function u(x,y), corresponding to 

v(r,O) = C(O)r, will not be C1 at (0,0) even though C is C1. This oddity arises, because the 
transformation (x,y) -i (r,O) is ill-defined at (0,0). When the cone degenerates to a plane 

through (0,0,0), we obtain a solution u(x,y) = ax + by of the PDE (31) which is C1 even at 

(0,0) . We can easily demonstrate that any solution of (16) which is C1 at all points (x,y) (even 
at (0,0» must be of the form u(x,y) = ax + by (Le., with a planar graph). Indeed, if a solution 

is C1 at (0,0), then it has a tangent plane, say P, at the origin. However, since all of the rays 
which form the surface are tangent to the surface at the origin, they must be tangent to P. A ray 
which is tangent to a plane must lie in the plane. Thus, these rays are contained in P, which is 
then the graph of u(x,y). 
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Summary 2.2 

1. Characteristic curves: A curve in the xy-plane is called a characteristic curve for the PDE 

a(x,y)ux + b(x,y)uy + c(x,y)u = f(x,y), u = u(x,y) , (81) 

if at each point (xo,yo) on the curve, the vector g(xo,yo) = a(xo,yo)i + b(xo,yo)j is tangent to the 

curve. The family of characteristic curves can be found by solving the characteristic equation 

Qy-~ ax - arx,yy. (82) 

The significance of the characteristic curves is that on each characteristic curve the PDE (81) 
becomes an ODE for a function of a positional variable along the curve (cf. parts 2 and 3 below). 

2. Change of variables: Let the family of solutions of (82) (i.e. the family of characteristic 
curves) be written implicitly as h(x,y) = d, where d is an arbitrary constant. Then under the 
change of variables 

w = h(x,y), z = y, and with v(w,z) == u(x,y) , (83) 

the PDE (81) becomes a PDE for v which involves v but not v . In place of liZ = y" in z w 
(83), one can use z = k(x,y), for any convenient cl function k(x,y). But in general, the PDE 
for v will be equivalent to (51) only for domains in the xy-plane where the transformation 
w = h(x,y), z = k(x,y) is uniquely invertible. In order to achieve the general solution, it is 

necessary to paste together solutions on such domains in such a way that the solution is Cl across 
the borders of the domains (cf. Example 5). 

3. The characteristic system: A characteristic curve may be thought of as a path that is traced 
out by a particle which flows with a fluid which has velocity g(x,y) = a(x,y)i + b(x,y)j. The 
functions x(t) and y(t) which give the position (x(t),y(t)) of such a particle at time t, satisfy 
the characteristic system 

g.r = a(x(t),y(t)) and ~ = b(x(t),y(t)) (84) 

By definition, a solution (x( t ),y( t)) of (54) constitutes a preferred parametrization of the 
characterist;c curve which it traces out. Let u(x,y) be a solution of (51), and let U(t) == 

u(x(t),y(t)), C(t) = c(x(t),y(t)), and F(t) == f(x(t),y(t)), then U(t) satisfies the ODE 

U ' (t) + C(t)U(t) = F(t), with solution U(t) = m(t) [J: m(t)F(t) dt + U(O) ] , (55) 

t 
where m(t) == exp(Jo C(t) dt). Thus, the value U(t) of any solution u of the PDE (81) at 

(x(t),y(t)) along a characteristic curve, is determined by its value U(O) = u(x(O),y(O)). 
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4. Parametric form of solutions: Let s be a position variable along a regular side-condition 
curve which transversely intersects each characteristic curve that it encounters exactly once. For 
each fixed s, let (X(s,t),Y(s,t)) be the position, at time t, of the particle which begins at the 
point correspondin& to s on the side condition curve, and flows with the fluid. In other words, 
the functions X(s,t) and Y(s,t) are the solutions of the characteristic system (for each fixed s) 

~ X(s,t) = a(X(s,t),Y(s,t» and ~ Y(s,t) = b(X(s,t),Y(s,t» , (86) 

with given initial values X(s,O) and Y(s,O), where (X(s,O),Y(s,O) traces out the side condition 
curve as s varies. Given the PDE (81) with side condition u(X(s,O),Y(s,O)) = G(s), then by 
applying the formula (85) for each fixed s, we have 

u(X(s,t),Y(s,t) = U(s,t) = m(s,t) [I: m(s,t) F(s,t) dt + G(s) ] (87) 

Consequently, we have the following solution of the PDE (81) in parametric form 

x = X(s,t) , Y = Y(s,t), u = U(s,t) . (89) 

In the event that we can uniquely solve the first two equations in (89) for s and t in terms of x 
and y , say s = 8(x,y) and t = T(x,y), we obtain an explicit solution u(x,y) = U(8(x,y),T(x,y). 
As sand t vary, the point (X(s,t),Y(s,t),U(s,t) typically traces out a surface which contains 
the graph of an explicit solution u(x,y), if such exists. 

Exercises 2.2 

1. Obtain the general solution of each of the following PDEs in the indicated domain. 

(a) xUx + 2yuy = 0, for x> 0, Y > 0 (b) xUx - 2yuy + u = eX, for x> 0 

(c) XUx-Xyuy-u=O, for all (x,y) (d) YUx -4xuy =2xy, for all (x,y). 

2. Find the particular solution of the PDEs in Problem 1 satisfying the following respective side 
conditions. 

(a) u(x,l/x) = x (x> 0) 

(c) u(x,x) = x2ex 

(b) u(l,y) = y2 

(d) u(x,O) = x4 . 

3. Find the parametric form of the solutions of the PDEs in Problem 1, which satisfy the 
following respective side conditions. In each case, note the futility of finding an explicit solution 
u(x,y). 

(a) u(s,e-s) = sin(s) , s > 0 

2 3 (c) u(s ,s) = s 

(b) u(s,sinh(s» = 0 , s > 0 

(d) u(si) = 1 . 
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4. Show that the PDE in Problem l(d) has no solution satisfying the side condition u(x,O) = x3 . 
Explain this result in terms of characteristic curves. 

5. Show that the only solutions of the PDE in Problem 1(a) that are C1 and defined for all (x,y) 
are the constant functions (e.g., u( x,y) :: 5 ). 
Hint. Note that the characteristic curves all issue from the origin. 

6. Note that the general solution u(x,y) of the PDE in Problem 1(c), namely u(x,y) = xC(yex) , 
has the property that u(O,y) = O. Thus, u(O,y) cannot be arbitrarily prescribed, even though 

the y-axis crosses each "characteristic curve" y = de -x only once. Explain this apparent 
discrepancy by giving the characteristic curves their preferred parametrizations (x(t),y(t)) with 

x'(t) = x(t) and y'(t) = -x(t)y(t). Note that each curve y = de-x is composed of three such 
characteristic curves, one of which is a point on the y-axis. 

7. Construct a solution of the PDE xu - 2yu = 0 , which is C1 throughout the xy-plane, but x y 
which is not of the form u(x,y) = C(yx2) for a cl function C. 

8. Consider the PDE sin(x)ux - ycos(x)uy = O. 

(a) Sketch the characteristic curves of this PDE 

(b) Show that any regular side condition curve, which transversly (Le., at a nonzero angle) 
intersects, exactly once, any characteristic curve of this PDE that it encounters, must be 
contained in a vertical strip of width 211'. 

(c) Deduce that infinitely many side condition curves are needed in order to uniquely determine a 
solution of this PDE, which is defined throughout the xy-plane. 

(d) Show that, given an infinite family of C1 functions, say fn(y), such that fn(O) = 0 and 

f~(O) = 0 (n = 0, ±1, ±2, ... ), there is a solution u(x,y) (C1 for all (x,y)) of the PDE which 

satisfies each ofthe infinitely many side conditions u([n+~111',y) = fn(y), for n = 0, ±l, ±2, .... 

9. In the continuity equation Pt + v(x,t)px + vx(x,t)p = 0, suppose that v(x,t) = Q'Xn for an 

integer n > 1 and a constant a > O. Solve this equation, subject to the initial condition p(x,O) 
= Po(x). Show that contrary to expectations, the density p(O,t) at the origin is independent of t. 

Moreover, show that the solution exists provided a(n-1)txn- 1 > -1, which is true for t ~ 0 
and all x, if n is odd. What if n is even? When n is even, discuss the nature and possible 
physical significance of the solution for negative t. 
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2.3 Higher Dimensions, Quasi-linearity, Applications 

The method of characteristics also applies to the case of linear first-order PDEs in higher 
dimensions. For example, in dimension 3, the most general linear first-order PDE is 

a(x,y,z)ux + b(x,y,z)uy + c(x,y,z)uz + d(x,y,z,)u = f(x,y,z), u = u(x,y,z) , (1) 

for given c1 functions a, b, c, d, and f. The characteristic curves (x(t),y(t),z(t)) [parametrized 
by the preferred parameterj cf. (8) of Section 2.2J are the solutions of the system 

~ = a(x(t),y(t),z(t)), ~ = b(x(t),y(t),z(t)), ~ = c(x(t),y(t),z(t)) (2) 

In practice, it is usually more convenient to treat x as the parameter instead of t, in which case 
the above system is reduced to the two equations (assuming that a(x,y,z) f 0) 

and (3) 

for the uhknowns y(x) and z(x). The solutions of (3) typically depend on two arbitrary 
constants, say tl' and (3. Writing the solutions as y(Xjtl',(3) and z(Xjtl',f3) , the curve traced out by 
the point (x,y(Xjtl',f3),z(Xjtl',(3)), as x varies, is a characteristic curve for each fixed pair of values 
for tl' and (3. Now, suppose that we can uniquely solve the two equations 

y = y(Xjtl',(3) and z = z(Xjtl',(3) (4) 

simultaneously for tl' and (3 in terms of x, y and z. Say we find tl' = A(x,y,z) and (3 = B(x,y,z) 
for some functions A and B. The characteristic curve corresponding to the Rair of values (tl',f3) 
is the intersection of two surfaces A(x,y,z) = tl' and B(x,y,z) = (3 {Why?). On this 
characteristic curve, the functions A and B are constant (namely tl' and (3, respectively). The 
PDE reduces to an ODE, if we change coordinates so that characteristic curves are obtained when 

two of the new coordinates (say x and y) are fixed and the remaining coordinate z varies. Let 

x = A(x,y,z), y = B(x,y,z) and z = z . (5) 

Note that when x and yare fixed, we obtain a characteristic curve. Ideally, we hope that the 
transformation (5) is invertible, or else some difficulties can arise, as we have seen in dimension 2. 

Letting u(x,y,Z) = u(x,y,z) , we have 
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= a·(u-x + u-y + u-z ) + b·(u-x + u-y + u-z ) + c·(u-x + u-y + u-z) xx yx zx xy yy zy xz yz zz 

(6) 

where the two terms in parentheses drop out for the following reason. Let (xo,yo,zo) be any point 

and let (x,y(x),z(x)) be a characteristic curve passing through this point (i.e., y(xo) = Yo, 

z(xo) = zo). Since A is constant on any characteristic curve, we have (for a * 0) 

0= h A(x,y(x),z(x)) = Ax + Ay W + Az ~ = Ax + Ay ~ + Az ~ = f (aAx + bAy + cAz) . 

Thus, aAx + bAy + cAz = 0 at the arbitrary point (xo,yo,zo)' Similarly, aBx + bBy + cBz = O. 

By (6), we see that the PDE (1) becomes an ODE in z (for fixed x and y), 

c(x,y,z)uz + a(x,y,z)u = f(x,y,z) , (7) 

where C, a and fare c, d and f, written in terms of x, y and Z, using the inverse transformation 

(if such exists) of (5). Then (7) can be solved for u(x,y,z), and 

u(x,y,z) = u(A(x,y,z),B(x,y,z),z), 

is a solution of the original PDE (1). 
There are a number of technical obstacles to carrying out all of this. One must solve the 

system (3) which is not an easy matter in general, although sometimes the solution presents itself 
in the desired form A(x,y,z) = a and B(x,y,z) = fJ , making it unnecessary to solve (4) 
simultaneously for a and (3. Also, the inverse transformation of (5) may be ill-defined or hard to 
obtain. We have seen difficulties that can arise in dimension 2 because of ill-defined inverse 
transformations. In dimension 3, the "global" situation can be further complicated because of the 
possibility that the chltracteristic curves can be knotted and linked. In the examples and 
exercises, we will keep things fairly simple. 

Example 1. Find the general solution of the PDE 

2ux + 3uy + 5uz - u = 0, u = u(x,y,z) . (8) 

Solution. The characteristic curves are found by solving the system 

We obtain y = ~ x + ~, z = ~ x + ~. Alternatively, the characteristic curves, are the lines 

given by the intersection of the level surfaces (planes, here) 2y-3x = a and 2z-5x = (3. Hence, 
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we make the change of variables 

!x = 2y-3x 

~ = 2z -5x 

z=z 
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! x = -y/5 + 21,/5 

: : ~~x - 3y + 6Z)/10 

Here, the inverse transformation exists and was computed, although we will have no need for it. 

Setting u(x,y,Z) = u(x,y,z) , we obtain 

2ux + 3uy + 5uz 

= 2(u- x + u- y + u- 1, ) + 3(u- x + u- y + u- 1, ) + 5(u- x + u- y + u- 1, ) xx yx zx xy yy zy xz yz zz 

= (-6 + 6 + O)ux + (-10 + 0 + lO)uy+ 5u1, . 

Thus (8) becomes 5u1, - u = 0 , whose solution is u(x,y,Z) = C(x,y)i/5, where C(x,y) is an 

arbitrary cI function of (x,y). In terms of x, y and z, the general solution of (8) is 

u(x,y,z) = C(2y-3x,2z-5x)ez/ 5 . 0 (9) 

Remark. The function C can be determined by imposing a side condition on a surface that cuts 
each characteristic line in a single point. Consider the following side condition In the xy-plane: 

u(x,y,O) = x2sin(y) . (10) 

Equations (9) and (10) tell us that 

C(2y-3x,-5x) = u(x,y,O) = x2sin(y) . 

Now, set l' = 2y - 3x , s = -5x . Then x = -s/5 and y = (1' - 3s/5)/2 , and (11) gives 

C(r,s) = (-S/5)2sin(r/2 - 3s/1O) . 

The desired solution of the PDE (8), with side condition (10), is then 

u(x,y,z) = ((5x-2z)/5)2sin((2y-3x)/2 -3(2z-5x)/10).ez/ 5 

= (x-2z/5)2sin(y-3z/5).ez/5. 0 

Example 2. Find the general solution of 

Ux + zUy + 6xuz = 0, u = u(x,y,z) . 

Solution. The characteristic curves are found by solving the system 

(11) 

(12) 
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~=z, dz ax = 6x, 

for y = y(x) and z= z(x). Note that the first equation cannot be integrated to give y = zx, 
because z is an unknown function of x. The second equation can be integrated, yielding 

z = 3x2 + a. Then, the first equation gives y = x3 + ax + /3. Thus, the characteristic curves 

are traced out by the point (x,x3 + ax + /3,3x2 + a), as x varies. We solve for a and /3 in 

terms of (x,y,z) to obtain a = z - 3x2 , /3 = y - x3 - (z - 3x2)x = y + 2x3 - xz. The 

characteristic curves are the intersections of the surfaces a = z - 3x2, /3 = y + 2x2 - xz. We 
change variables : 

- 2 x = z - 3x 
1 

X = ±[! (z - xW (z ~ x) 

- 3 y=y+2x -xz 
3 1 

Y = Y - ±2[! (z - x))1 ± [! (2 - x)F 2 

- -z=z z = z. 

Note that the inverse transformation is not well defined, unless we either restrict to the domain 
x ~ 0 (in which case we use "+" in the equation for x) or restrict to x ~ o. Thus, we must be 
careful when claiming that any solution found via the transformation is the most general solution. 

Setting u(x,y,z) = u(x,y,z) , the PDE (12) becomes 6xu- = 0 , and we arrive at the solution z 

u(x,y,z) = C(x,y) or 

u(x,y,z) = C(z - 3x2,y + 2x3 - xz) , (13) 

where C is an arbitrary C1 function. However, we can only assert with confidence that this is 
the general solution in the domain x ~ 0 (or in the domain x ~ 0 ), where the transformation is 
uniquely invertible. Actually, any solution must be of the form 

[ 
C(z-3x2,y+2x3-xz) 

u(x,y,z) = 2 3 
D(z - 3x , y + 2x - xz) 

x~o 

(C, D E cl) 
x ~ o. 

However, in order for the solution to be well-defined at x = 0 , we need C(z,y) = D(z,y). Hence, 
the functions C and D must be the same, and (13) is in fact the most general solution which is 
defined for all (x,y,z). Since u(O,y,z) = C(z,y), the function C would be immediately 
determined by a side condition specifying u on the plane x = o. 0 

Quasi-linear First-Order PDEs and the Method of Lagrange 

The general first--()rder PDE for u = u(x,y) is of the form F(x,y,u,ux'uy) = 0 , where F is a 

function of five variables (e.g., F(x,y,u,u ,u ) = u2u3 - 3xu u + y2). While there is an x y x x y 
extension of the method of characteristics which can be used to solve such equations (cf. Section 
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2.4), the explanation of the solution procedure is rather lengthy. However, there is one class of 
first-order PDEs which we can attack now. 

A first-order quasi-linear PDE is an equation of the form 

a(x,y,u)ux + b(x,y,u)uy - c(x,y,u) = 0 (u = u(x,y)), 

where a, band c are given C1 functions of three variables. 

(14) 

In the special case when a and b do not depend on u and c(x,y,u) = -C(x,y)u + f(x,y), (14) 
becomes the first-order linear PDE a(x,y)ux + b(x,y)uy + C(x,y)u = f(x,y), which we have 

already considered. However, when a and b depend on u, (14) is nonlinear. In 1779, Joseph 
Lagrange showed that solutions of (14) can be expressed implicitly as IP(x,y,u) = 0, where 
IP(x,y,z) is a solution of the linear PDE (in dimension 3), 

a(x,y,z)IPx + b(x,y,z)IPy + c(x,y,z)IPz = 0 , (15) 

which is a special case of (1). First, suppose that u(x,y) is a solution of (14). If we define 
IP(x,y,z) = u(x,y) - z, then at any point (x,y,z) = (x,y,u(x,y)), on the graph of u, 

a(x,y,z)IPx +b(x,y,z)IPy +c(x,y,z)IPz = a(x,y,u(x,y))ux +b(x,y,u(x,y))uy +c(x,y,u(x,y))· (-1) = 0 , 

by virtue of equation (14). Conversely, suppose that IP is a solution of (15), such that the 
normal vector VIP = IPxi + IPyj + IPzk to the surface IP(x,y,z) = 0 at some point p = (xo,yo,zo) 

is not horizontal (Le., IP (p) =F 0). Then near p, the surface will be the graph of some function z 
u(x,y) [Le., IP(x,y,u(x,y)) = 0 I. We can show that u(x,y) must be a solution of (14), as follows. 
Differentiating the equation IP{x,y,u(x,y)) = 0 with respect to x and y, we have 

IPx(x,y,u(x,y)) + IPz(x,y,u(x,y))ux(x,y) = 0 and IP/x,y,u(x,y)) + IPz(x,y,u(x,y))u/x,y) = 0 . 

Thus, ux = -IPx/ IPz and uy = -IPy/ IPz · Substituting these expressions for Ux and uy into the 

left side of (14), we obtain 

-[a(x,y ,u(x,y)) IPx + b(x,y ,u(x,y) )IPy + c(x,y ,u(x,y) )IPzllIPz ' 

which is 0, by the assumption that IP satisfies (15). Thus, u(x,y) solves (14). In summary, the 
method of Lagrange yields the following fact. 

Solutions u = u(x,y) of the quasi-linear PDE (14) can be implicitly defined by IP(x,y,u) = 0, 
where IP(x,y,z) solves the linear PDE (15), with IPz(p) =F 0 at some point p where IP(p) = o. 
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Remark. There is a simple geometrical idea behind the the method of Lagrange. Let v(x,y,z) = 
a(x,y,z)i + b(x,y,z)j + c(x,y,z)k be a given vector field in space. The PDE 
a(x,y,u)u + b(x,y,z)u - c(x,y,u) = ° (Le., V· (u i + u j - k) = 0) says that v is tangent to . x y x y 
the graph of u at all points (x,y,u(x,y)). Suppose that we think of the graph of u as a surface 
defined implicitly by rp(x,y,z) = 0. Since Vrp is normal to this surface, the condition that v is 
tangent to the surface is implied by Vrp·v = 0, which is precisely the linear PDE (15). 0 

Example 3. Find a solution of the following quasi-linear PDE with the given side condition 

ux + u,uy = 6x, u(O,y) = 3y . (16) 

Solution. The associated linear PDE in dimension 3, is 

(17) 

This is the same PDE which was solved in Example 2. By (13), the general solution is 

rp(x,y,z) = C(z - 3x2,y + 2x3 - xz), where C is an arbitrary C1 function. Hence the solutions of 
the PDE in (16) are given implicitly by 

C(u - 3x2,y + 2x3 - xu) = 0, (18) 

for various choices of the function C. For example, if C(r,s) = 1', then we obtain the solution 

u - 3x2 = 0, or explicitly u(x,y) = 3x2 , while if C(r,s) = r - s, then we get u - 3x2 - Y - 2x3 

+ xu = 0, or explicitly u(x,y) = (y + 3x2 + 2x3)/(l+x). The side condition in (16) can be used 
to determine the function C. Indeed, since this condition says that u = 3y when x = 0, we 
substitute 3y for u, and ° for x, in (18), arriving at the condition C(3,Y,y) = 0. There are 
many functions C which satisfy this condition, and a simple choice is C(r,s) = r - 3s. This 
yields the solution 

or (19) 

Remark. If we replace the side condition in (16) by the more general condition u(O,y) = G(y) 

(for a given c1 function G), then the function C must be chosen so that C(G(y),y) = 0. 
Again, the choice for C is not unique, but a simple possibility is C(r,s) = r - G(s). Thus, a 
solution of the PDE in (16) might be obtained implicitly via the equation 

u - 3x2 - G(y+2x3-xu) = ° . (20) 

In general, only rarely is it possible to solve (20) for u explicitly in terms of x and y. 

Nevertheless, at the point (O,y,G(y)) on the surface rp(x,y,z) = z-3x2 - G(y+2x3-xz) = 0, the k 
component of the normal vector Vrp(O,y,G(y)) is 1 (nonzero). Thus, the surface is not vertical 
at these points, and hence the surface is then the graph of some solution u(x,y) (defined in a 
neighborhood of the y-axis) of the PDE in (16), even though the explicit formula for u(x,y) may 
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be elusive. Recall that in Section 2.2, we were able to determine parametric solutions X(s,t), 
Y(s,t), U(s,t), even when finding explicit solutions u(x,y) was futile. One can readily obtain 
parametric solutions of the quasi-linear equation (14) from the characteristic curves of the of the 
associated linear PDE (15) in xyz-space. We illustrate the method in the following example. 0 

Example 4. Find a parametric solution of the following quasi-linear PDE with side condition 

Ux + u,uy = 6x, u(O,y) = G(y) , (21) 

where G(y) is an arbitrary C1 function. 

Solution. The characteristic system (cf. (2)) for the characteristic curves (x( t) ,y( t ),z( t)) 
associated with the linear PDE ip + Zip + 6xip = ° is x Y z 

dz at = 6x. (22) 

The general solution is 

x(t) = t + /l', y(t) = t3 + 3/l't2 + (Jt + 'Y, z(t) = 3t2 + 6at + (J, (23) 

where we solved first for x, then for z, and finally for y. The PDE r.px + zr.py + 6xr.pz = ° 
implies that r.p is constant on any characteristic curve, since 

by the chain rule and (22). In other words, each characteristic curve lies on a surface of the form 
r.p(x,y,z) = constant. The graph of the solution u(x,y) is one of these surfaces, namely r.p(x,y,z) 

= 0, where r.p(x,y,z) = z-3x2 - G(y+2x3-xz). This suggests that the graph of u(x,y) consists of 
a family of characteristic curves. Of course, we want each curve of this family to pass through a 
point of the form (O,s,G(s)), in order that that the side condition be met. Let x = X(s,t), 
y = Y(s,t), z = Z(s,t) be the curve which passes through (O,s,G(s)) at "time" t = 0. By setting 
x(O) = 0, y(O) = s, and z(O) = G(s) in (23), we find /l' = 0, (J = G(s) and 'Y = s. Then 

X(s,t) = t, Y(s,t) = t3 + G(s)t + s, Z(s,t) = 3t2 + G(s) . 

As sand t vary, we get a surface which passes though the curve (O,s,G(s)), as required by the 
side condition. Since this surface is comprised of characteristic curves on which r.p is constant 
(i.e. independent of t, we know that r.p(X(s,t),Y(s,t),Z(s,t)) = Y'(X(s,O),Y(s,O),Z(s,O)) = 
r.p(O,s,G(s)) = 0. Thus, as sand t vary, the point (X(s,t),Y(s,t),Z(S,t)) traces out a set of 
points (x,y,u) such that r.p(x,y,u) = ° (i.e., the graph of u). In other words, we have the 
parametric solution 

x = X(s,t) = t, Y = Y(s,t) = t3 + G(s)t + s, u = U(s,t) :: Z(s,t) = 3t2 + G(s). 0 
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An Application to Traffic Flow 

Let p(x,t) be the density of cars at the point x at time t on a one-way road (Le., 
b t p(x,t) dx is the number of cars between x = a and x = b). We make the simplifying 

assumption that p(x,t) is cl. Let M be the the legal speed limit plus the additional 5 mph 
which one can usually add with impunity. Let d be the density of bumper-to-bumper traffic. 
Then one mi~ht assume that the traffic velocity v(x,t) at x at time t, is given by v(x,t) = 
M· (1 - p(x,tJ/d). Note that v = ° when p = d, and v = M when p = 0. However, when 
p = td (Le., there is about a car-length between cars), we have v = tM, which is rather unsafe 
if M = 60, but let us proceed. The equation of continuity Pt + (vp)x = ° (cf. (28) of Section 

2.2) holds for traffic flow as well as for gas flow. Since (vp)x = [M(l - p/d)p]x = M(l - 2'a)px ' 
we have the quasi-linear PDE for the traffic density 

(24) 

The associated linear PDE for 'P(x,t,z) is 'Pt + M(l - 2'a-)'Px + 0· 'Pz = 0. We directly obtain 

the parametric form of the solution, as follows. We use the parameter r instead of t which is 

already used in the equation. The characteristic equations are t'(r) = 1, x'(r) = M(1-2'a-)' 

and z' (r) = 0. Thus, for arbitrary constants a, j3 and 7, the characteristic curves are given by 

t(r) = r + a, x(r) = M(1-~'7)r + j3, z(r) = 7. (25) 

Suppose that we are given the initial density p(x,O) = f(x) ,or p(s,O) = f(s). For a fixed s, we 
want to choose a characteristic curve of the form (25) which runs through (O,s,f(s)) when r = 0. 
Thus, choose a = 0, j3 = sand 7 = f(s). The parametric solution is then 

t = T(s,r) = r, x = X(s,r) = M(l - ~ f(s))r + s, p = Z(s,r) = f(s) . (26) 

Let s have some fixed value, say xo' Then (26) implies that the density p(x,t) is a constant 

(namely f(xo)) on the line 

(27) 

in the xt-plane. If we change the value of Xo to a new value xl and f(xo) f f(xl), then the new 
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line will intersect the old line at some point (x2,t2), since the slopes of the two lines will differ. 

Moreover, since f(xo) * f(xl), the constant value of p on the new line will not equal the constant 

value of p on the old line. Thus, at the intersection point, we arrive at a contradiction, P(x2,t2) 

= f(xo) and P(x2,t2) = f(xl). Hence, the only solutions p(x,t) of equation (24) which are defined 

for all (x,t) are the solutions where the initial density p(x,O) = f(x) is constant, say f(x):: c, in 

which case p(x,t):: c (Le., the traffic moves with a uniform velocity M(l - a), if 0 $ c $ d). It 

may happen that a nonconstant solution will exist for all t ~ 0 (but not all t < 0). Indeed, if the 
initial density f(x) of cars is chosen to be decreasing in the positive x direction (Le., fl (x) $ 0), 
then f(xo) > f(xl) if Xl > xo , and the intersection point (x2,t2) will lie below the x-axis (Le., 

t2 < 0), since the slope of the line through (xl,O) is less than the slope of the line through (xo,O). 

However, if fl (x) is positive at some point, say xo , then for some xl > xo, we have f(xl) > 

f(xo) and the corresponding lines will intersect above the x-axis (Le., the solution p(x,t) will fail 

to exist at (x2,t2) where t2 ~ 0). When fl (x) > 0 somewhere, we will now find the smallest 

time t > 0, for which the solution will fail to exist. At any fixed time to, the "graph" of the 

parametric solution (26) is the curve in the xp-plane given parametrically (as s varies) by 

x(s) = M(l - ~ f(s))to + s, p(s) = p(s,to) = f(s) (28) 

The tangent vector of this curve at (x(s),p(s)) is 

x/(s)i + pl(S)j = [l-¥!f/(S)to] i + f/(s)j, (29) 

Thus, the tangent vector at (x(s),p(s)) will be vertical when f/(s) * 0 and 1 - ¥! f/(s)to = 0 

(or to = d[2M.f /(s)]-1). Let G be the largest value (or more precisely, the smallest upper 

bound) for fl (x) (Le., G is the maximal initial density gradient for the traffic). Assume that 
G < 00. Then, as long as to < d/(2MG), there will be no vertical tangent to the density profile 

p(x,to) and the solution will exist for all (x,t) with t < d/(2MG). However, unless fl (x) :: G, 

the solution p(x,t) fails to be C1 for t "slightiy" greater than d/(2MG), since there will be 

vertical tangents at such times. Indeed, the density profile will typically double back on itself and 
cease to be the graph of a function, such as a wave that is breaking t cf. Figure 1 below). Note 
that p(x,t) itself never exceeds d, if f(x):: p(x,O) < d. However, the theory predicts that if 
£1 (x) > 0 somewhere, the density will develop a sharp jump (Le., a vertical tangent) or what is 
known as a shock. When a shock occurs, the density gradient is infinite, and this necessitates a 
rapid change in the velocity of cars approaching the shock point. Since car breaks can only act so 
fast, the theory suggests that accidents are likely to happen at the shock points. Moreover, as the 
next example illustrates, the theory can be used to predict where and when shocks are likely to 
occur. 
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Example 5. With the above notation, let the initial density of cars be p(x,O) = a(l + x2)-1 , for 
some positive constant a < d. Initially, the point of maximum density is at x = o. Where is the 
point of maximum density at time t? When and where does the first shock arise? 

Solution. For each xo , the solution has the constant value f(xo) = a(l + x~)-l on the line 

x = M(l - ~.f(xo))t + Xo (cf. (28)). Setting Xo = 0, we immediately see that the maximum 

density is at x = M(l - 2·a)t , at time t. Thus, the point of maximum density will move to the 

right if a < d/2, and to the left if a > d/2, and it stays at x = 0, if a = d/2. The maximum of 

f/(x) = -2ax(1 + x2)-2 occurs at a value of x where 0 = f"(x) = 2a(3x2 - 1).(1 + x2)-3 , 

namely Xl = -1//J. The maximum value of f/(x) is G = f/(-l//J) = 2a(4/3)-2//J = 

(9a/8)//J = (3a/8)/J. Thus, the first shock occurs at time tl = d/(2MG) = d/(2M·(3a/8)/J) 

= if~M /J, and at the position x = M(l - ~.f(xl))tl + xl = M(l - ~.3a/4)if~M /J -1//J = 

(1 -~) ~ /J - i.fJ = (~- 1)/J. As one might expect, this is less than the point of maximum 

a 4 4d 8 density at time tl,namely thepoint M(1-2·U)·g/Jd/(aM)= (ga-g)/J. 0 

x 

Figure 1 

An application to continuum mechanics 

Imagine a tube of gas or some possibly compressible medium (cf. the application to gas 
flow in Section 2.2) which has velocity v(x,t)i. If x(t) is the position of a small "gas element" at 
time t, then x/(t) = v(x(t),t), and 

x"(t) = ~ v(x(t),t) = ~ * +.gr * = vx(x(t),t) ·v(x(t),t) + vt(x(t),t) . 

Thus, the acceleration of of fluid particles at (x,t) is not simply vt(x,t), but rather v·vx + vt . 
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A naive application of Newton's second law then yields the equation of motion 

p(x,t).(vt + v.vx) = f(x,t), (30) 

where p(x,t) is the mass density and f(x,t) is the force density (mass and force per unit length). 
While equation (30) is correct, it is not as obvious as we have led the reader to believe. Indeed, 
the more universal version of Newton's second law is that the total force on an object is the rate of 

change of the momentum (Le., f(t) = ~[m(t)v(t)l = m(t)v'(t) + m'(t)v(t» which is not simply 

mass times acceleration in the event that the mass changes with time. Since the density p(x,t) 
does depend on time, equation (30) now appears somewhat doubtful. A careful guide through the 
correct derivation of (30) is supplied in Problem 13. In the absence of viscosity (which we assume 
is negligible), the force density f(x,t) is the sum of the negative pressure gradient (Le., -px(x,t), 

where p(x,t) is the pressure) and the external force density, say due to gravity. For simplicity, 
we assume that there are no external forces. Then Euler's equations are 

p = f(p) . 

(31) 

(32) 

(33) 

Note that (31) is the equation of continuity (cf. (28) in Section 2.2), while (32) is (30). Equation 
(33) is known as the equation of state which gives us the pressure as a function of the density. 
The function f depends on the nature of the fluid or gas. For an ideal gas undergoing an 

adiabatic process (Le., not giving up heat to the environment), we have p = Ap 1 (Le., f(p) 

= Ap 1), where A and 1 are positive constants which depend on the gas. For air, 1 ~ 1.4, and 
usually 1> 1. By noting that Px = f'(p)px ' the equations (31) and (32) form the following 

system of PDEs : 

Pt + v·px = -vxP 

vt + v·vx = -f'(p)px/p · 

(34) 

(35) 

Finding the general solution of this system is a nontrivial undertaking. Through a process of 
linearization, the system can be approximately decoupled into two separate wave equations for v 
and p (cf. Problem 14). However, we can obtain some exact solutions and still remain within the 
context of first-order quasi-linear equations in a single unknown. Indeed, suppose that we 
attempt to find solutions for which v(x,t) = V(p(x,t» for some function V (Le., we search for 
solutions in which p and v are functionally related). Since Vx = V'(p)px and vt = V' (p)Pt ' 

Pt + V(p)· Px = -pV' (p)px ' 

Pt + V(p)·px = -f' (p)px/(pV' (p» . 

(34' ) 

(35') 
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Since the left-hand sides of these equations are the same, we see that the function V(p) must be 
chosen so that the right sides are equal, namely 

pV/(p)=f/(p)/(pV/(p)) or V/(p)=±[f/(p)]t/p or V(p)=±r[f/(p)]t/PdP ' (36) 
Po 

where Po is the density when the velocity is O. Thus, if we assume that v and p are 

functionally related, then the function which relates them is nearly determined by the equations 
(31), (32) and (33). However, there is no firm physical reason to assume a functional relation 

between v and p, as was done in the case of traffic flow. When f(p) = Ap 'Y, we obtain 

V(p)=± r['YApr--l]t/PdP = ±2'0f.[pHr--1)-P3b- 1)]. (37) 
Po 

1 
Returning to the general case, since V I (p) = ±[f' (p W / p is usually nonzero, we may reasonably 

assume that the function V has an inverse say R, so that p = R(v). Since R/(v) = V/(p)-I, 

where 

Thus, 

or 

R/(v)/R(v) = 1/(pV /(p)) = ±[f/(p)]-t = ±[f/(R(v)]-t = ±c(v)-I, 

1 
c(v):: [f/(R(v)P. 

vt + v'vx = -f/(p)px/p = -f/(R(v))R/(v)vx/R(v) = - ±c(v)vx 

vt + (v ± c(v))vx = 0 . 

This is a first-order quasi-linear PDE for v. The associated linear PDE in xtz-space is 

(38) 

(39) 

The characteristic equations are x/(t) = z ± c(z) and Z/(t) = O. The solutions are z = a and 

x - (z ± c(z))t = f3. It follows that cp(x,t,z) = C(z,x - (z ± c(z))t), where C is an arbitrary C1 
function. The corresponding solution of (39) is then given implicitly by 

cp(v,x - (v ± c(v)) ·t) = 0 . 

Suppose that the initial velocity is v(x,O) = g(x) for some given function g(x). Then we must 
choose cp such that cp(g(x),x) = O. A simple choice for cp is then cp(r,s) = r - g(s). As it may 
be difficult to solve v - g(x - (v ± c(v))·t) = 0 for v in terms of x and t, the following 
parametric form (with T as parameter, since t is already used in the equation) of the solution 
often proves more useful : 
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t = T, X = [g(s) ± c(g(S))]T + s, v = g(s) . ( 40) 

As T and s vary, the point (t,x,v) traces out the graph of the solution v(x,y) in txv-space. 
Observe that the value of v(x,t) on the line x = [g(xo) ± c(g(xo))]t + Xo is a constant, namely 

g(xo). In summary, we have shown the following: 

The solution (where it exists) of the problem 

Pt + (pv)x = ° , 
vt + v'vx = -px!p, 

p = f(p) 
with 

v(x,O) = g(x) and p(x,O) = R(g(x)), 

where R is the inverse function of V in (37), is given implicitly by 

- g(x - (v ± c(v)) ·t) = ° , p(x,t) = R(v(x,t)) , 

or parametrically, by 

t = T, X = [g(s) ± c(g(S))]T + s, v = g(s) . 

( 41) 

(42) 

( 43) 

(44) 

(45) 

( 46) 

From the similarity of (46) with (26) for traffic flow, we expect to have the flhenomenon of 
shocks. Note that (46) is the parametric solution for the velocity, while (26) is for the density. 
Since velocity and density are functionally related in our considerations for gas flow and traffic 
flow, it is easy to get the density and velocity solutions from one another in either situation. 

Example 6. Assuming the equation of state p = Ap'Y b> 1), find v(x,t) and p(x,t) for the 
above problem (41) - (44) when v(x,O) = ox (a> 0, constant), assuming v = ° when p = Po' 

Solution. We take g(x) = ox, and we need to determine R(v) and c(v). Since f(p) = Ap''1, 
(37) yields 

and 
1 

c(v):: [f'(R(v)]t = [A7R(V)"(-1], = .[l0ptb- 1) ± H7-1)v. 
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Let Co = c(O) = [f'(Po)jt = /l0 ptCr--l). Then, we have the implicit solution 

v - a(x - (v ± (co ± th--I )v)· t) = v - a(x -- (± Co + H,+ 1 )v)· t) = 0 . 

Thus, v·(1 + H ,+I)at) = a(x -- ± co·t), and explicitly 

and 

v(x,t) = a(x-± co·t)·(1 + H,+I)at)-I 

[ ]
2/h--I) 

p(x,t) = R(v(x,t)) = _1_ [Co ± H,-I)v(x,t) 
.[fA 
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( 47) 

(48) 

For definiteness, suppose that we have chosen the plus sign (cf. Problem 16, for the minus sign). 
Then for fixed t, the graph of v(x,t) is a line which intersects the the x--axis at co' t and has 

slope 0'(1 + H,+I)at)-I. In Problem 14, we will see that Co is the velocity of sound in the gas 

when there is little wind (Le., v is small). Thus we have shown that for our initial conditions, 
the intercept point w(t) where v(w(t),t) = 0 moves with the velocity of sound, regardless of the 

value of a. The slope 0'(1 + H ,+I)at)--I tends to zero, as t -+ 00. Intuitively, this is because 
the wind is always blowing away from the from the zero velocity point, leaving slower moving 
wind behind. Note that the solution cannot be continued indefinitely backward in time, since the 

slope becomes infinite at to == -[ H ,+ 1) aj--I. This is a dramatic shock. As time is run backward 

the wind blows toward the zero velocity point and there is eventually a "big crunch" when all of 
the gas arrives at once. If we run time forward from time t = to' we get an explosion which issues 

from the point x = coto' Indeed, if x(t) is the position of a gas element at time t, then by 

solving the ODE x'(t) = v(x(t),t), we find (cf. Problem 15) that x(to) = coto , regardless of the 

choice of x(O). In the case at hand, parametrically, the solution for v is given by (cf. (46)) 

t = T, X = (co + H,+ 1) as) T + s, v = as . ( 49) 

In other words, v has the constant value O'Xl on the line x = (co + H,+ 1) O'Xl)t + Xl' Observe 

that when t = to == -[H,+I)aj--I, we have x = coto -- Xl + Xl = coto' Thus, all of these lines 

pass through the shock point (coto,to), where v is then "grossly" undefined, as expected. We 

should also note that the solution is not really physically valid everywhere outside the shock 
point, because v must be at least -2co/( "(-I) in order that the pressure be nonnegative, by (48). 

Substituting -2co/( "(-1) for as in (49), we see that the solution is only valid above the line 

which runs through the shock point (coto,to) with slope (co + H,+I)·(-2co/("(-I))) 

= co(1- ~1) = -2co/( "(-I). This then is the (constant!) velocity left-hand boundary of the 

expanding gas, where the pressure is zero. 0 
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Summary 2.3 

1. The method of characteristics in higher dimensions: The method of characteristic curves 
extends to the case of the first--order linear PDE 

a(x,y,z)ux + b(x,y,z)uy + c(x,y,z)uz + d(x,y,z)u = f(x,y,z), with u = u(x,y,z) , (SI) 

for given C1 functions a, b, c, d and f. With x as a positional variable along the characteristic 
curves (streamlines of the fluid flow with velocity vector field ai + bj + ck) are traced out by 
(x,y(x),z(x)) as x varies, where y(x) and z(x) are solutions of the system of two equations 
(assuming that a( x,y ,z) '" 0) 

and (S2) 

The solutions of (S2) typically depend on two arbitrary constants G' and /3, say y = y(x;G',/3) and 
z = z(x;G',/3). If it is possible to uniquely solve for G' and /3 in terms of x, 'I and z, then the 
characteristic curves can be expressed as the intersection of the surfaces A(x,y,z) = G' and 

B(x,y,z) = /3. Then under the change of variables i = A(x,y,z), Y = B(x,y,z), z = z, the PDE 

(SI) is transformed (via the chain rule) to a PDE (cf. (7)), for u(i,y,Z):: u(x,y,z), which does not 

involve Ux and uy (Le., (7) can be solved as an ODE for a function of z). For first--order linear 

PDEs in any dimension, the basic idea is to introduce a change of variables in such a way that, 
when all but one of the new variables is held fixed, a characteristic curve results. Then the 
transformed PDE becomes an ODE for a function of the remaining new variable. 

2. The method of Lagrange: Solutions u = u(x,y) of the quasi-linear PDE 

a(x,y,u)ux + b(x,y,u)uy - c(x,y,u) = 0, u = u(x,y), (S3) 

where a, b and c are given C1 functions of three variables, can be implicitly defined by 
rp(x,y,u) = 0, where rp(x,y,z) solves the linear PDE 

a(x,y,z)'Px + b(x,y,z)'Py + c(x,y,z)'Pz = 0, (S4) 

with 'Pz(p) '" 0 at some point p = (xo,yo,zo) where rp(p) = o. The solution for (S4) is typically 

of the form rp(x,y,z) = C(A(x,y,z),B(x,y,z)) for specific functions A and B, and an arbitrary 

c1 function C. If one is given a side condition, say u(x,O) = f(x), then even if it is possible to 
find a function C such that C(A(x,O,f(x»,B(x,O,f(x» = 0, it may not be feasible to solve 
rp(x,y,u) = 0 for u(x,y). Instead, one can aim for a parametric solution x = X(s,t), Y = Y(s,t), 
u = Z(s,t). The functions X(s,t), Y(s,t), Z(s,t) are the solutions of the following characteristic 
system, with the initial conditions X(s,O) = s, Y(s,O) = 0, Z(s,O) = f(s) 

dX dY dZ or = a(X,Y,Z), or = b(X,Y,Z), <IT = c(X,Y,Z) . 
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The graph of u(x,y) is traced by the points (X(s,t),Y(s,t),Z(s,t)), as sand t vary. 
In applications to traffic flow theory and continuum mechanics, we found that the parametric 
solutions often do not define explicit solutions u(x,y) for all (x,y), but rather the solutions tend 
to develop shocks where one or both partial derivatives become infinite. The parametric solutions 
can be used to locate the shock points. 

Exercises 2.3 

1. Solve the PDE Ux + uy + Uz = ufoI' U = u(x,y,z), subject to the side condition 

2 2 u(x,y,O) = x + y . 

2. Consider the PDE Ux - uy + u = z for u(x,y,z). 

(a) Solve this PDE subject to the side condition u(O,y,z) = iez. 
(b) Show that this PDE has no solution such that u(x,y,x+y) = 0. 

(c) Find two (out of the infinitely many) solutions u such that u(x,y,x+y) = x+y + eY. 

(d) Explain the results of (b) and (c) in terms of the characteristic lines of the PDE in space and 
the plane z = x + y on which the side condition is given. 

3. (a) Find the general solution of the PDE ut = Ux + 2uy - Uz for u = u(x,y,z,t). 

(b) What is the particular solution such that u(x,y,z,O) = x2 + y2 + z2 ? 

(c) For u as in (b), at a fixed time t, find the point (x,y,z) such that u(x,y,z,t) = ° ? 

4. (a) Find the general solution of -yux + xUy + Uz = ° for u = u(x,y,z). 

Hint. Use z as the parameter for the characteristic curves and note that dx/dz = -y and 

dy /dz = x imply that d2x/dz2 = -x. Hence, x = a cos(z) + (J sin(z) , etc .. 

(b) Show that all but one of the characteristic curves are helixes which wind around the z-axis, 
and show that any solution of the PDE is constant on each one of these helixes. 

5. Consider the PDE xUx + YUy + zUz = ° . 
(a) Solve the PDE subject to u(x,y,l) = x2 + y + 1. Where is the solution defined? 

(b) By considering the characteristic curves, show that any solution of the PDE which is defined 
lor all (x,y,z) must be constant. 

(c) Find any nonconstant solution of the PDE which is C1 for all (x,y,z) except (0,0,0). 
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6. (a) Solve the quasi-linear PDE 2( u' Ux + u' uy) = 1 by expressing solutions implicitly in the 

form C(A(x,y,u),B(x,y,u)) = 0, for c1 functions C. 

(b) Find the solution of the PDE in part (a) that meets the side condition u(x,2x) = 1. 

(c) Show that there is no solution of the PDE in part (a) such that u(x,x) = 1. Hint. Note that 
d ox u(x,x) = ux(x,x) + uy(x,x). 

7. (a) Express solutions of the PDE xu,ux - yu,uy = x2 in the form described in Problem 6(a). 

(b) Find a solution u(x,y) of the PDE in part (a) such that u(l,y) = y2 + 1 . 

(c) Show that there are infinitely many solutions of the PDE in Part (a), such that u(x,l/x) = x, 
for x> O. Hint. Take C(r,s) = s-f(r), with f(l) = 0 . 

8. Find the parametric solution x = X(s,t), y = Y(s,t), u = U(s,t) for the PDE in Problem 6(a) 

subject to the side condition u(s,2s) = g(s), for a given C1 function g(s). Check that your 
answer is consistent with the answer to Problem 6(b), when g(s):: 1. 

9. Find the parametric solution x = X(s,t), Y = Y(s,t), u = U(s,t) for the PDE in Problem 7(a) 
subject to the side condition u(l,s) = g(s), for a given function g(s). For simplicit.Y., assume 
g(s) ~ 1. Check that your answer is consistent with the answer to Problem 7(b), when 

g(s) :: s2 + 1. 

10. Solve the PDE yuux + xuuy = xy , subject to the side condition u(cos(s),sin(s)) = sin(2s). 

Where is the solution valid? 

11. Using the notation and assumptions in the subsection on traffic flow, suppose that the initial 
density of cars is given by p(x,O) = f(x). Suppose that Xo is the only point where f' (x) has an 

absolute maximum, say f' (xo) = G. We have already seen that the first shock occurs at time to 

= d· [2MG]-1. If initially there is a distance of about n car-lengths between cars around Xo 

(Le. f(xo) = p(xo,O) = d/(l+n»), then show that the first shock point is located at 

x = Xo + 2gf~+B ' which is independent of the speed limit M. 

12. In the subsection on traffic flow, we assumed that v = M(l - ~). More generally assume that 

v = V(p) for some given function V. 

(a) Show that the PDE for p becomes Pt + (V(p) + pV/(p))pX = O. 

(b) Find the parametric solution of this equation, which meets the initial condition p(x,O) = f(x). 
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(c) For what functions Vip) (with V(d) = 0) does the PDE in (al become linear? For such 
V, find an explicit form p(x,t) for the solution in (b). Do shocks develop in this case? 

13. In the following steps, we derive Euler's equation, p(x,t)(vt + vvx) = f(x,t) (ef. (30)). 

(a) Consider the portion of fluid between x = a and x = b at time t = O. At time t, this 
portion of fluid will be between xj(t) and x2(t). Let f(x,t)i be the force per unit length acting 

on the fluid. Newton's equation states that the rate of change of the momentum of the fluid 
portion is equal to the total force on the fluid portion. Thus, 

Use Leibniz's rule (ef. Appendix A.3) and evaluate both sides at t = 0 to obtain, 

Ib a Ib a 7J£(pv) dx + p(b,0)v(b,0)x2(0) - p(a,O)v(a,O)x; (0) = a f(x,O) dx . 

(b) Use x;(O) = v(a,O), x2(0) = v(b,O) and the fundamental theorem of calculus to deduce that 

b b I (pV)t + (pv2) I dx = I f(x,O) dx . 
a x t=O a 

(c) Since a and b are arbitrary and the choice t = 0 is not necessary, we deduce that 

(pv)t + (pv\ = f(x,t). (*) 

Use the equation of continuity Pt + (vp)x = 0 to convert the left-hand side of (*) to the desired 

form p(vt + v,vxl. 

14. In the notation of the subsection on continuum mechanics, show by completing the following 
steps that for small velocities v(x,tj and densities p(x,t) which deviate little from a constant 
density Po, both p(x,t) and v(x,t obey a wave equation. 

(a) Let v = fV(X,t) and p = Po + fp(X,t), where ( is a small parameter. From the equation of 

state p(x,t) = f(p(x,t)) = f(po + fp(X,t)) ~ f(po) + d'(Po)p(x,t) (Why?). By substituting these 

expressions into the equations Pt + (pv)x = 0 and p(vt + vvxl = -px and ignoring terms with 

factors of f2 (which are assumed small), obtain Ptf + POVxf = 0 and POVt ( = -f'(Po)px(x,t)(, 
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or Pt = -Pov x and POvt = -C~Px' where c~ = f' (Po) . (**) 

(b) By differentiating the first equation in (**) with respect to t and the second equation with 

respect to x, obtain Ptt = c~Pxx ' and similarly obtain Vtt = c~v xx' For arbitrary C2 functions 

f and g, f(x + cot) + g(x - cot) is a generic solution of each of these equations. Thus, Co is 

interpreted as the speed at whIch disturbances are propagated in the medium under the above 
approximations (cf. Problem 12 of Section 1.3). 

Remark. The above process of determining the equations which are satisfied by small deviations 
(with factors of t:) of known solutions (e.g., P == Po and v == 0) by ignoring terms with higher 

powers of { is known as linearization, because the equations obtained in this way are linear. 
While this linearity makes the equations much easier to solve (e.g., because of the superposition 
principle), one should be aware that the linearized equations are only approximately correct, and 
certain important qualitative features of exact solutions may be lost in the process (e.g., the 
solutions of the linearized traffic flow equation do not have shocks). We observed this before in 
connection with the minimal surface equation (cf. Example 11 of Section 1.2). 0 

15. In Example 6, the position x(t) of a gas element at time t obeys the linear ODE 

x/(t) = v(x(t),t) = a(x(t) -cot)·(1 + H,+I)at)-1 (Why?). 

(a) Find the general solution of this ODE. 

(b) Show that every solution x( t) of this ODE approaches -co/[H,+ l)a] as t -; -[H,+ 1 )a]-I. 

(c) Show that in spite of the fact that v(x,t) -; 00 as x -; 00, the velocity of each gas element 
eventually approaches -2co/( ,-1), as t -; 00. 

-1 16. Let v±(x,t) = a(x - ± co·t)·(1 + H,+I)at) . In Example 6, we elected to consider 

v+(x,t). Show that v_(x,t) = -v+(-x,t). Why does this mean that v_(x,t) is the solution 

obtained by taking the mirror image of the physical setting for v + (x,t) ? 

17. As we have done in the derivation of (34/) and (35 / ), assume that v and p are functionally 
related (i.e., v = V(p)). 

(a) Assuming an equation of state of the form p = f(p) > 0, where f/(p) > 0, show that the 
equation v t + (v ± c( v))v x = 0 is linear (not merely quasi-linear) if and only if 

f(p) = C(1 - Dip), for some positive constants C and D. (Note that D represents a certain 
critical density, below which the pressure is presumably O. As p -; 00, the pressure approaches a 
maximum value of C.) 

(b) Let f(p) = C(1 - Dip). Assume that v = 0 when p = D, and that v ~ O. How does v 
depend on p (Le., what is the function V(p) ?). 

(c) Under the assumptions in (a) and (b), show that disturbances propagate with a constant 

speed of [C/D]t in the medium. In other words, v(x,t) = g(x - [C/D]tt), where v(x,O) = g(x) 
1 

and 0 < g(x) < [C/D]'. Why is it necessary to restrict the initial velocity g(x)? 
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2.4 Supplement on General Nonlinear First-Order PDEs (Optional) 

The general first order PDE for u = u(x,y) is of the form 

(1) 

where F is some function [of five variables] which we assume is at least C1. Since we do not 
usually think of Ux and uy as variables, it is customary to denote Ux by p, and uy by q, 

when referring to F = F(x,y,u,p,q) as a function. For linear equations, F is of the form 

F(x,y,u,p,q) = a(x,y)p + b(x,y)q + c(x,y)u - f(x,y) , (2) 

while for quasi-linear equations, 

F(x,y,u,p,q) = a(x,y,u)p + b(x,y,u)q - c(x,y,u) . (3) 

We solved first-order linear PDEs by noting that they become an ODEs along the 
characteristic curves which may be regarded as the solutions of the system 

X/(t) = a(X(t),Y(t)) and y/(t) = b(X(t),Y(t)), (4) 

where the PDE was F(x,y,u,ux'uy) = 0 with F as in (2). Note that F p = a(x,y) and F q 

= b(x,y), in which case the system (4) may be written as X' = Fp and Y' = Fq . To solve the 

general first-order PDE (1), with F an arbitrary given C1 function, we might attempt to define 
characteristic curves as solutions of the system 

X/(t) = Fp(X(t),Y(t),U(t),P(t),Q(t)) 

Y/(t) = Fq(X(t),Y(t),U(t),P(t),Q(t)), 
(5) 

where U(t) = U(X(t),Y(t)) , P(t) = ux(X(t),Y(t)) , Q(t) = uy(X(t),Y(t)). However, unlike the 

linear case, the right sides of (5) depend not only on X(t) and Y(t), but also on U(t), P(t) and 
Q(t) , which involve the unknown solution u(x,y). But, we can think of (5) as being part of a 
larger system of 5 ODEs for the five unknown tunctions X(t), Y(t), U(t), P(t), Q(t). We need to 
figure out what the remaining three equations should be. First, note that U I (t) 
= d/dt[u(X(t),Y(t))] = UXX/(t) + uyY'(t) = P(t)X'(t) + Q(t)Y'(t) = P(t)Fp("') 

+ Q(t)Fq( ... ), where " ... " denotes "X(t),Y(t),U(t),P(t),Q(t)". Thus, the equation for U/(t) 
should be 
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V'(t) = P(t)F p( ... ) + Q(t)F q( ... ) . 

The equation for P'(t) is found by noting that P'(t) = d/dt[ux(X(t),Y(t)] 

= uxxX'(t) + uxyY'(t) = uxxFp( ... ) + uxyFq( ... ). It seems as if we have reached an impasse, 
because the appearance of Uxx seems to require the introduction of yet another function R(t) 

= uxx(x(t),y(t)) , and this would lead to an even larger system. However, we have not yet used 

the fact that u(x,y) should solve the PDE F(x,y,u,ux'uy) = o. This fact tells us that 

d 0= ax F(x,y,u(x,y),ux(x,y),uy(x,y)) 

= F x + F u Ux + F p uxx + F qUyx 

Hence, P'(t) = uxxFp( ... ) + uxyFqC .. ) = -[Fx( ... ) + P(t)Fu( ... )] , and similarly 

Q' (t) = -[F y( ... ) + Q(t)F u( ... )]. Thus, we have finally arrived at 

X'(t) = Fp(. .. ) 

Y'(t) = F q( ... ) 

V' (t) = P(t)F p( ... ) + Q(t)F q( ... ) 

P'(t) = -[Fx(···) + P(t)Fu( ... )] 

Q'(t) = -[Fl··) + Q(t)Fu(···)] 

(6) 

Equations (6) constitute the characteristic system of the PDE F(x,y,u,p,q) = o. A solution 
(X(t),Y(t),V(t),P(t),Q(t)) of (6) is called a precharacteristic strip; it defines a curve in 
xyupq-space, sometimes foosely referred to as "phase space". The system can be regarded as the 
equations of motion for particles moving with a fluid flow in phase space. If 

F(X(t),Y(t),V(t),P(t),Q(t)) = 0 (7) 

for all t, then the precharacteristic strip is known as a characteristic strip. If we omit P(t) and 
Q(t) in a characteristic strip, and just consider (X(t),Y(t),V(t)) , then we obtain a curve [in 
xyu-space] which we call a characteristic 3--curve. (For linear equations the curve (X(t),Y(t)) 
was called a characteristic curve, but some books reserve this term for our notion of characteristic 
3--curve.) 

Of course, our ultimate goal here is to solve the PDE F(x,y,u,u ,u ) = 0 subject to an x y 
appropriate side condition (e.g., that u have prescribed values on some curve). The discussion 
about characteristic strips is irrelevant, unless it serves this goal. The basic idea is that we can 
obtain the graph of a solution u(x,y) as the surface that is swept out in the xyu-space by a 
family of characteristic 3--curves which is constructed in such a way that the side condition will be 
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met. We will describe the procedure and give some examples, but we omit the proof of the 
validity of the method (cf. Courant and Hilbert, Vol. II, p.75 ff.). The validity of a hypothetical 
solution obtained by this procedure could and should be directly checked anywar. 

As s varies, let (f(s),g(s)) trace out a regular curve (in the xy-plane), which we regard 
as being a side condition curve. We seek a solution u(x,y) of the problem. 

u(f(s),g(s)) = G(s) , 
(8) 

where G(s) is a given c1 function. Such a problem may have no solution (e.g., consider the 

PDE u~ + u; + 1 = 0). However, if a solution exists in some neighborhood of the side condition 

curve, then such a solution can often be found by completing the following steps. 

1. If possible, find functions h(s) and k(s) such that 

F(f(s),g(s),G(s),h(s),k(s)) = ° , 
G'(s) = h(s)f'(s) + k(s)g'(s) and 

F p(f(s),g(s), ... )g'(s) - F q(f(s),g(s), ... )f'(s) f ° . 
If h(s) and k(s) do not exist, then (8) has no solution. If there are several choices 
for (h(s),k(s)), then typically a solution of (8) exists for each such choice. 

2. For each fixed value of s, solve the following characteristic system (d. (6)) for 
XCs,t), Y(s,t), U(s,t), P(s,t), Q(s,t), with the given initial conditions P(s,O) = h(s), 
Q(s,O) = k(s), where h(s) and k(s) are the functions found in step 1. 

d at X(s,t) = F p(X(s,t),Y(s,t), ... ) 

d at Y(s,t) = F q{X(s,t),Y(s,t), ... ) 

d at U(s,t) = P(s,t)F p( ... ) + Q(s,t)F q( ... ) 

~ PCs,t) = -[F xC···) + P(s,t)F u(···)] 

d at Q(s,t) = -[F y( ... ) + Q(s,t)F u(···)] . 

(9) 
(10) 
(11) 

(12) 

If it helps, assume that F(X,Y,U,P,Q) = 0, for all (s,t), since by (9) this quantity is ° at 
t = 0, and it is possible to prove that F(X,Y,U,P,Q) is t-independent, if X, Y, U, P and Q 
solve the system (12) (i.e., solutions are always characteristic strips). Also, in view of the next 
step, it is unnecessary to solve for P and Q, if X, Y and U can be found without P and Q. 
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3. From the parametric viewpoint, as sand t vary, the point (x,y,u), defined by 

x = X(s,t), y = Y(s,t), u = U(s,t) , (13) 

traces out the graph of a hypothetical solution u of ~8) in the xyu-space, at least in a 
neighborhood of the curve traced out by (f(s),g(s),G s)). In some cases, one can use the first 
two equations in (13) to solve for sand t in terms 0 x and y (say s = S(x,y) and 
t = T(x,y) ) to obtain a solution u(x,y) = U(S(x,y),T(x,y)), for (x,y) in a neighborhood of 
the curve (((s),g(s)). 

Remark. Some comment about the condition (11) is needed. The graph of the hypothetical 
solution is the surface of points in the xyu-space that we get from (13) by letting sand t vary. 
However, there is a potential problem here, because it can happen that a surface defined in this 
way will not project in a 1-1 fashion onto the xy-plane, in which case it will not be the graph of a 
function. In order to get a solution u(x,y) at least in a neighborhood of the curve (f(sJ,g(s)), we 
need to know that the normal vector of the surface (13) at the point (f(s),g(s),G(s)) has nonzero k 
component for each value of s. This normal vector is the cross-product of two tangent vectors 

[ ax. ay. au k ] [ ax . OY. au k ] (0) Os 1 + Os J + Os x or 1 + or J + or at s, . 

The k---eomponent is then Xt Y s - Xs Y t· Thus, (13) cannot be the graph of a solution in a 

neighborhood of the curve (f(s),g(s)), unless Xt(s,O)k'(s)-Yt(s,O)h'(s) f 0. Since Xt(s,O) 

= Fp(f(s),g(s),G(s),h(s),k(s)) and Yt(s,O) = Fl .. ), this condition may be written as (11). In 

the case of linear PDEs, condition (11) is equivalent to the requirement that the side condition 
curve meet the characteristic curves transversely (Why 1). 0 

In Section 2.3, we solved the quasi-linear PDE ux + u.uy = 6x, using the method of 

Lagrange in Example 3, and parametrically in Example 4. However, this PDE can be solved using 
the above steps for solving the general first-order PDE, and it is good to see how the method 
works for this familiar equation. 

Example 1. Solve the PDE Ux + u,uy = 6x, subject to the side condition u(O,s) = G(s). 

Solution. Since the side condition curve is the y-axis traced out by (O,s), we have f(s) = ° and 
g(s) = s. Here F(x,y,u,p,q) = p + uq - 6x. We need to find functions h(s) and k(s) such that 

h(s) + G(s)k(s) = ° , G/(s) = k(s) and 1 f 0, 

which are (9), (10) and (11), respectively. Thus, we take k(s) = G/(s) and h(s) = -G(s)G/(s), 
and the condition (11) is automatic here. The characteristic system (12) is 

dX dY dU dP dQ 2 <IT = 1, <IT = u, <IT = P + QU, or = -(-6 + PQ), aT =-Q 
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with initial conditions 

X(s,O) = 0, Y(s,O) = s, U(s,O) = G(s), P(s,O) = h(s) = -G(s)G'(s), Q(s,O) = k(s) = G'(s) . 

Clearly, X(s,t) = t, and since we may assume that F(X,Y,U,P,Q) = P + UQ - 6X = 0, the 

equation for ~ reduces to ~ = 6X = 6t, and so U(s,t) = 3t2 + G(s). Then, ~ = U yields 

Y(s,t) = t3 + G(s)t + s. Hence, we have obtained a parametric form of the solution 

x = t, Y = t3 + G(s)t + s, u = 3t2 + G(s) . (14) 

Recall that in the Remark following Example 3 in Section 2.3, we found that solutions of the 
problem may be expressed implicitly by 

u-3x2 - G(y+2x3-xu) = 0. (15) 

If the expressions for x, y and u, in (14), are substituted into this implicit relation, we obtain the 
identity G(s) - G(s) = 0, meaning that the surface traced out, as sand t vary in (14), lies in 
the surface given by (15). For simple functions G(s) (say, polynomials of degree 1 or 2), the first 
two equations in (14) can be easily solved for sand t in terms of x and y, in which case the third 
equation in (14) yields an explicit solution u(x,y). In any case, the parametric solution (14) is 
usually superior to (15), when making a computer plot of the surface. 0 

Remark. For quasi-linear equations, where F(x,y,u,p,q) == a(x,y,u)p + b(x,y,u)q - c(x,y,u), 
observe that pF p + qF q = a(x,y,u)p + b(x,y,u)q = c(x,y,u), when (x,y,u,p,q) satisfies 

F(x,y,u,p,q) = ° (cf. (7)). It follows that the right sides of the first three equations in (12) can be 
expressed in terms which do not involve P(t) and Q(t), and thus these three equations suffice to 
determine X,Y and U (i.e., the last two equations in (12) may always be dropped if the PDE is 
quasi-linear). In the next example, all five equations in (12) are needed. 0 

Example 2. Solve the problem 

uxuy-u = 0 

u(s,-s) = G(s) , 

in the cases G(s) = 1 , G(s) = -1 , G(s) = s . 

Solution. For each of the side conditions, we will need to solve the same system of characteristic 
equations (12), only the initial conditions are different in the three cases. Thus, first we find the 
general solution of the characteristic system (12), and then we determine the dependence on s 
from the side conditions in each case. We have F(x,y,u,p,q,) = pq-u , and the characteristic 
system (12) is 

dX dY dU 
CIT = F P = Q(t) , CIT = F q = P(t) , CIT = QF P + PF q = 2P(t)Q(t) , 

¥t- = -[F x + P(t)F ul = P(t) , #?- = -[F y + Q(t)F ul = Q(t) . 

We easily find P(t) = aet and Q(t) = bet for ar~itrary constants a and b. Since we want a 
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characteristic strip (Le., F(x,y,u,p,q) = 0), we set U(t) = P(t)Q(t) = abe2t (and this does in fact 

solve the equation for U(t». Finally, X(t) = bet+a and Y(t) = aet+f3 for constants a and f3 . 
The general characteristic strip is then given by 

X(t) = bet + a, yet) = aet + f3, U(t) = abe2t , P(t) = aet , Q(t) = bet. 

Case G(s) = 1: Since the side condition is given on the line y = -x traced out by (s,-s), in 
(9), (10) and (ll), we have f(s) = sand g(s) = -so We must find h(s) and k(s) such that 

1 = G(s) = h(s)k(s) 0 = G'(s) = h(s) - k(s) , 

OfF p(. .. )(-l) - F q( ... )(l) = -k(s) - h(s) . 

There are two choices, namely, h(s) = 1 and k(s) = 1 ,or h(s) = -1 and k(s) = -1 . For the 
first choice we get 

t t 2t t t X(s,t) = e -l+s, Y(s,t) = e -1-s, U(s,t) = e ,P(s,t) = e , Q(s,t) = e . 

We can solve for et in terms of x and y by adding the first two equations, obtaining 

et = (x+y+2)/2. Then the solution is u(x,y) = e2t = (x+y+2)2/4 . If we choose h(s) = -1 

and k(s) = -1, the reader may check that we get the solution u(x,y) = (x+y-2)2/4 . 

Case G(s) = -1: In this case, there are no functions h(s) and k(s) that satisfy 

-1 = h(s)k(s) , 0 = G'(s) = h(s) - k(s), 0 f -k(s) - h(s). 

Hence, in this case, there is no solution. 

Case G(s) = s: Here, h(s) and k(s) must satisfy 

s = h(s)k(s), 1 = G'(s) = h(s) - k(s), 0 f -k(s) - h(s) . 

From the first two equations, we obtain choices for the pair (h(s),k(s» 

.I. .I. 
h(s) = [1 ± (1+4s)21/2, k(s) = [-1 ± (1+4s)2]/2 , 

but these are only defined, and have a nonzero sum, for s > -1/4. Thus, there will be no 
solution, unless we only require the side condition u(s,-s) = s to hold for s > -1/4. Assuming 
this, 

X(s,t) = (1/2)[-1±(1+4s)ij[et-1] + s, Y(s,t) = (1/2)[1±(1+4s)i][et-1]- s, U(s,t) = se2t . 

Now, while it is possible to solve the first two equations for sand et in terms of x and y (at least 
in a neighborhood of the side condition curve), this parametric form of the solution probably 
describes the graph of the explicit solution milre conveniently than the explicit solution itself. 0 
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Example 3. Suppose that each point (x,y) on a regular curve in the xy-plane, moves in a 

direction normal to the curve at a speed equal to c(x,y), where c(x,y) is a given positive C1 
function on the xy-plane. In geometric optics, a curve moving in this way represents a wave front 
curve moving in a two-dimensional medium, where the speed of light, c(x,y), possibly depends 
on the position (x,y) (Le., the index of refraction is variable). Each point on the moving curve 
traces out a (possibly curved) light ray in this medium. Show that, given a solution u(x,y) of 

2 2 ( )-2 Ux + uy = c x,y , (16) 

(known as the eikonal equation or the Hamilton-Jacobi equation, depending on the context) the 
curve u(x,y) = r defines a wave front curve at time r. For the PDE (16), show that the 
characteristic system (12) contains the equations of motion for a family of particles which have 

acceleration A(x,y) = -V[-tc(x,y)-2] (Le., the particles are subject to force with potential 

--tc(x,y)-2, if the particles have mass 1). Find the dual relation between the motion of the family 
of particles and the motion of the wave front curve, which foreshadows quantum mechanics. 

Solution. Let (x(r),y(r)) be the position of a point on the curve u(x,y) = r at time r (Le., 
u(x( r),y( r)) = r, and suppose that its velocity v( r) :: x' (r)i + y' (r)j is orthogonal to the curve 
u(x,y) = r (Le., v and Vu are parallel; v' Vu = IIvll·IIVull). Assuming that u satisfies (16), 

1 = ~ = ~ u(x( r),y( r)) = ux(x( r),y( r))x' (r) + uy(x( r),y( r))y' (r) (by the chain rule) 

= v(r)·Vu(x(r),y(r)) = Ilv(r)II'IIVu(x(r),y(r))1I = IIv(r)lI/c(x(r),y(r)) (by the PDE (16)) . 

Thus, IIv( r)1I = c(x( r),y( r)), and the curve u(x,y) = r does describe a wave front moving in the 
medium, as time r varies. 

If we take F(x,y,u,p,q) = tp2 + !q2 - !c(x,y)-2, the characteristic system for (16) is 

ft- = P(t), ¥t = Q(t), ~ = p(t)2 + Q(t)2 = c(X(t),Y(t))-2, 

¥t- = Al (X(t),Y(t)), ~ = A2(X(t),Y(t)) , 

where Al (x,y)i + A2(x,y)j = A(x,y) :: -V[-tc(x,y)-2] (Le., Al = -ex/c3 and A2 = -ey/c3). 

Thus, we obtain 

d2X dP d2y dQ dU -2 -:-:-2 = at = Al (X(t),Y(t)), ::2 = at = A2(X(t),Y(t)), or = c(X(t),Y(t)) . 
dt dt 

(17) 

Hence, the characteristic 3-eurves are of the form (X(t),Y(t),U(t)), where (X(t),Y(t)) is the 
position at time t of a particle of mass 1, which moves under the influence of the force A(x,y) 

with potential --tc(x,y)-2. Suppose that we are given an initial curve (f(s),g(s)) of such 

particles, and a distribution of initial velocities h(s)i + k(s)j, such that h(s)2 + k(s)2 
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-C(f(S),g(Sf:)-2 = ° with h(s)f'(s) + k(s)g'(s) = ° (Le., the velocities are normal to the curve). 
Letting X s,t) , Y(s,t) , U(s,t) be the the solutions of (17) with initial conditions X(s,O) = f(s), 
Y(s,O) = g s) and U(s,O) == 0, we then have the parametric solution, 

x = X(s,t), y = Y(s,t), u = U(s,t) , (18) 

of the PDE (16), which is ° on the curve (f(s),g(s)). If the first two equations in (18) can be 
inverted, to give s = S(x,y) and t = T(x,y), then we have the explicit solution u(x,y) 
= U(S(x,y),Ttx,y)). The initial wave front u(x,y) = ° is traced out by the curve (f(s),g(s)) 
rLe., (X(s,O),Y(s,O))J, but in general, the wave front u(x,y) = t, at time t f. 0, is not traced out 
by (X(s,t),Y(s,t)) as s varies. Indeed, if u(X(s,t),Y(s,t)) == t, then 

dt d dU -2 1 = at = at u(X(s,t),Y(s,t)) = or (s,t) = c(X(s,t),Y(s,t)) 

which is not true in general, unless c(x,y) == 1. Note that while points (x( r),y( r)) on the wave 

fronts move with speed c(x(r),y(r)), the particles move with speed [p(t)2 + Q(t)2]! 

= c(X(t),Y(t))-I. Since ~ = pet) = ux(X(t),Y(t)) and gf = Q(t) = uy(X(t),Y(t)), the 

particles, as well the points on the wave fronts, move in the direction Vu. Hence, the particles 

and light rays trace out the same paths, but at the (usually different) speeds c -1 and c, 
respectively. For fixed s, the particle which is at (X(s,t),Y(s,t)) at time t is on the wave front 
curve that exists at time r = U(s,t). 0 

Remark 1. The particles in the family of unit mass particles constructed above are labeled by the 

parameter s. At time t, the particle with label s has kinetic energy HP(s,t)2 + Q(s,t)2] at 

time t and potential energy -!c(X(s,t),Y(s,t))-2. The sum of these energies is zero (in 
particular, constant), because F(X(s,t),Y(s,t),P(s,t),Q(s,t),U(s,t)) = ° (Le., (X,Y,P,Q,U) is a 
characteristic strip), due to the fact that we chose P(s,O), Q(s,O) (Le., h(s) and k(s)) so that 
F = ° when t = ° (Le., (9) holds). (The characteristic equations imply that F is constant on 
each precharacteristic strip.) In particle mechanics, the instantaneous action of a particle at any 
time is its kinetic energy minus its potenial energy. For the particles in our family, this difference 

is c(X(s,t),Y(s,t))-2 (Le., !C-2 - (-tc-2) = c-2). By (17) and the initial condition U(s,O) = 0, 
t 

we have U(s,t) = fo c(X(s,r),Y(s,r))-2 dr. Thus, in the particle context, U(s,t) is the (total) 

action of the particle s over the time interval [O,t]. In the wave context, u(x,y) = U(s,t) is 
known as a phage function for the wave (Le., the wave fronts can be thought of as curves of 
constant phase for the wave). Thus, the curves of constant phase for the wave (Le., the wave 
fronts) are the curves of constant action for the associated family of particles. Fermat's Principle 
states that a light ray between two points takes that path between the points, such that the tip of 
the ray, moving from one point to the other with the speed, c(x,y), of light along the path, will 
reach the other endpoint in the least amount of time. Since "time" (or phase) in the wave context 
corresponds to "action" in the particle context, we roughly see that Fermat's principle in the wave 
context corresponds to the Principle of Least Action, namely that if a particle is to move from one 
point to another in a given time interval, it takes the path of least (total) action. 0 
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Remark 2. The intriguing wave/particle duality, which is built into the solution process for PDEs 
such as (16), was developed by the Irish mathematician Sir William Rowan Hamilton [1805-1865) 
and the German mathematician Karl Gustav Jacob Jacobi [1804-1851). Perhaps the greatest 
significance of the Hamilton-Jacobi Theory was not realized until the advent of quantum 
mechanics in the early twentieth century, when it was discovered (in both theory and experiment) 
that the wave/particle duality is more than just a mathematical curiosity. Indeed, it forms a 
major foundation of modern physics in the atomic and subatomic domains. In Section 9.5, we 
discuss quantum mechanics and use Schrodinger's equation to determine the wave functions and 
energy levels of the electron in the hydrogen atom. 0 

We give a final specific example which illustrates the above generalities. 

Example 4. Consider a medium in which the speed of light c(x,y) is proportional to the distance 
from the x-axis, say c(x,y) = y, y > O. Show that the wave front consisting of the positive 
y-axis moves in such a way that at later times it still forms a ray through the origin, and that the 
light rays (or associated particle trajectories) trace out semicircles which meet the x-axis 
orthogonally. 

Solution. In this case the PDE (16) becomes Ux 2 + uy 2 = Y -2. We take u to be 0 on the 

specified initial wave front; i.e., f(s) = 0, g(s) = s, G(s) = 0 (cf. (8)), where s > O. To meet (9) 

and (10), namely h(s)2 + k(s)2 - g(s)-2 = 0 and 0 = G'(s) = h(s)f'(s) + k(s)g'(s) = k(s), we 
set k(s) = 0 and h(s) = s -1. Taking F(x,y,u,p,q) = !(p2 + q2 - y -2), the characteristic 

system (12) becomes, 

dX dY 
Of=P, Of=Q, dU _ p2 + Q2 Of- , 

with initial conditions 

X(s,O) = 0, Y(s,O) = s, U(s,O) = 0, P(s,O) = h(s) = s-l, Q(s,O) = k(s) = 0 . 

Thus, P(s,t) = s-l and X(s,t) = s-l t . From ~ = Q and ~ = _y-3 , we get 

-3 -2 2 -2 dY (-2 -2)k -Y dY = Q dQ, and so Y = Q + s . Then Of = Q = ± Y - s ~ or 

±Y (1 - s-2y 2r ! dY = dt. Integrating this, and using Y(s,O) = s, we obtain 

Since Y(s,t) = [s2 - t2s-2]! = [s2 - X(s,t)2]!, the trajectories of the light rays are semicircles 

dU 2 2 -2 -1[ 2 -4)-1 which meet the x-axis orthogonally. From Of = P + Q = Y = s 1 - t s , we 

obtain U(s,t) = POg[ 1 + ts=~ ] = tanh-1(ts-2). Since ts-2 = X(s,t)/[X(s,t)2+Y(s,t)2)! 
1 - ts 
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= cos( 0), in terms of the polar coordinate 0 = cos -1 [xl (x2 +y2)~ , we have 

u(x,y) = POg[: ~ ::=~ ] = POg[i ~ ~~~ 0 ] = log(cot(~O)) = tanh- 1(cos(0)). 

In particular, the wave front at time T (i.e., u(x,y) = T) is the ray 0 = cos-1(tanh(T)) = 

2coC1(e T ). As a byproduct, note that for each fixed s, the parametric curve X(s,t) = s-lt , 

Y(s,t) = [s2 - t2s-2l~ is the position at time t of a particle of mass 1 subject to the force (or 

acceleration) -V( - ~y -2) = -y -3 j, with potential - ~y -2. Here the particle's initial position 

is (O,s) and its initial velocity is s-l i. Thus initially, the total energy (kinetic plus potential) of 

this particle is ~(s-1)2_~s-2 = o. At an arbitrary time t, the total energy is 

~(p2 + Q2 _ y-2) which is easily computed to be identically 0, independent of t. This is an 

instance of the law of conservation of energy. Note that after time t, the ensemble of particles, 

beginning on the positive y-axis, is not on a ray. Indeed, the particle beginning at (O,s) hits the 

x-axis with infinite velocity at time t = s2. The particles with s2 > t (i.e., t 2/x2 > t or 

o < x < .;t) are on the curve y = [t2x -2 - x2l~ at time t. In Figure 1 below, these curves are 
plotted for t = -3, -2.5, ... , 2.5, 3. The wave fronts (rays issuing from the origin) have also been 
plotted for T = -3, -2.5, ... , 2.5, 3. Of course, the individual particles, as well as the light rays, 
travel on semicircles. However, when passing through a given point, the speed of the light ray is 
the reciprocal of the speed at which the corresponding particle passes though the point. 0 

Figure 1 



CHAPTER 3 

THE HEAT EQUATION 

Heat may be transferred by conduction, convection, and radiation. In conduction, the heat 
(molecular motion or vibration) is transferred locally by impacts of molecules with adjacent 
molecules. With convection, heat is carried from one region to another by a current flow, and 
heat radiation occurs via infrared electromagnetic waves. Here, we limit ourselves to heat 
conduction. In a homogeneous, solid, heat~onducting material, the temperature u(x,y,z,t), at 
the point (x,y,z) at time t, very nearly obeys the heat equation ut = k(uxx + Uyy + uzz), 

where k is a positive constant which measures the heat conductivity of the material. The 
function u can also have the interpretation of being the concentration of a chemical or dye in a 
liquid without currents, and hence the heat equation is often called the diffusion equation. In this 
chapter, we consider the case of one-dimensional heat flow, ut = kuxx' where u = u(x,t). In 

the Classification Theorem (cf. Section 1.2), this PDE is an example of a parabolic PDE with 
constant coefficients, and it entails the main features of the general parabolic equation. In Section 
3.1, we derive ut = kuxx from physical laws, and solve the simplest initial/boundary-value 

problems. Uniqueness of solutions and the Maximum Principle are established in Section 3.2, 
where we also discuss variations of solutions with respect to variations in initial and boundary 
data. While a detailed proof of the Maximum Principle is provided, it may be omitted on first 
reading. Section 3.3 is devoted to the case where the boundary conditions do not change with 
time. In Section 3.4, we carefully motivate and use Duhamel's method to handle the 
inhomogeneous heat equation (ut - ku = h(x, t)) and time-dependent boundary conditions. xx 
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3.1 Derivation of the Heat Equation and Solutions of Standard 
Initial/ Boundary-Value Problems 

In what follows, we derive the heat equation from physically.reasonable principles, namely 
conservation of energy and the fact that heat flows from hot regions to cold regions. It must be 
noted that we are treating the notion of temperature in an idealized sense when we speak of it as 

being a C2 function of position and time. The temperature (Le., absolute temperature measured 
on the Kelvin scale) of a small region of a substance is proportional to the average kinetic energy 
of the molecules in the region. Thus, temperature is a statistical notion. The concept of 
"temperature at a point" is a mathematical idealization that might be achieved by taking a limit 
as the regions become smaller and as the size of the molecules decreases (even more rapidly), while 
the number of molecules increases. The law that heat flows from hot to cold regions (Le., 
essentially the second law of thermodynamics) is statistical in the sense that it can be violated, 
but only improbably ; in the above mathematically ideal limit, the probability of violation 
approaches zero. The success of the mathematical idealization apparently rests on the fact that 
molecules are very small relative to everyday objects, say the tip of a thermometer, that are used 
to measure temperatures. At any rate, with this awareness of the mathematical idealizations 
which we tacitly assume, we proceed with our derivation of the heat equation. 

Consider a wire or rod which is made of some heat---conducting substance and which is 
insulated on the outside, except possibly over the ends at x = 0 and x = L . 

x 

Figure 1 

We assume that the temperature is constant on each cross section at each time, say u(x,t) is the 
temperature at cross section x at time t. We keep the system of units arbitrary, so that u(x,t) 
could be in Fahrenheit, Centigrade or Kelvin units. We introduce the following constants: 

D = density of rod (Le., the mass per unit volume), 

C = specific heat of rod (Le., the energy required to raise a unit of mass 
a unit in temperature), 

L = length of the rod , 

A = area of cross section . 

Consider a slab of the rod of small thickness ~x about some x = Xo (cf. Figure 1). 

The mass of the slab is DA(~x). Hence the energy required to raise the temperature of the slab 

from 0 to u(xo,t) is ~ u(xo,t)CDA(~x) ; if u(xo,t) < 0, then this is negative, which means that 
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energy must be extracted to lower the temperature. Letting ~x -+ 0 and adding up the energies 
of all the slabs between x = a and x = b , we arrive at the following expression for the heat 
energy of the portion of the rod between x = a and x = b at time t : 

b 
E(t) = J CDA u(x,t) dx . 

a 
(1) 

It is found experimentally that heat energy flows from hotter regions to colder regions, and 
that the rate of heat flow is proportional to the temperature difference, divided by the distance 
between the regions (i.e., the temperature gradient). In quantitative terms, the rate at which heat 
energy passes through the cross section at x = a in the positive direction is 

(2) 

for some constant K > 0 , called the thermal conductivity of the material in the rod. Note that if 
ux(a,t) < 0 , then the temperature to the left of x = a is greater than the temperature to the 

right of x = a , whence (2) should be (and is) positive. The rate of heat flow is proportional to 
the temperature gradient ux(a,t). 

Since we assumed that the rod is insulated on the outside curved surface, the only way that 
heat energy can enter the part of the rod between x = a and x = b is through the cross sections 
at x = a and x = b. (We assume that there are no internal sources of heat such as chemical 
reactions or radioactivity.) Hence, the net rate at which heat energy enters this part of the rod is 
the rate at which it enters the end at x = a , minus the rate at which it leaves through the end at 
x = b. In other words, using (2), we get 

E'(t) = -KA ux(a,t) - (-KA ux(b,t)) 

Ib Jb a = KA u (x,t) = KA "'!:C[u (x,t)] dx , 
x a a ux x 

(3) 

b 
where the last equation comes from the fundamental theorem of calculus, J f' (x) dx 

a 
= f(b) - f(a). Here we are assuming that u is C2. On the other hand, we can also compute 
E'(t) by differentiating (1) under the integral (d. Appendix A.3) with respect to t: 

b 
E'(t) = fa CDA ut(x,t) dx. (4) 

Using (3) and (4), we obtain 

b b fa CDA ut(x,t) dx = E'(t) = fa KA uxx(x,t) dx. 

Dividing by CDA and defining k = K/CD ( k is called the diffusivity of heat for the material in 
the rod), we get 
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b f [Ut(x,t) - ku (x,t)] dx = 0 . 
a xx 

(5) 

Since [a,b] is an arbitrary subinterval of [O,L], it follows that 

ut(x,t) - kuxx(x,t) = 0 . (6) 

Indeed, if (6) were to fail at some point Xo , then (5) would fail if [a,b] were chosen to be a small 

enough interval about xo , so that the integrand is never zero on [a,b]. 

The PDE ut = kuxx is the (one-dimensional) heat equation. We have shown (subject to the 

limitations of our mathematical idealization) that the temperature u(x,t) obeys this PDE. 

Example 1 (The fundamental source solution). A very important solution of ut = kuxx is 

u(x,t) = (47rkt)-t e-x2/(4kt) , t > 0, -00 < x < 00. (7) 

At any fixed time t > 0, the graph (cf. Figure 2) of (7) in the xu-plane is a bell-shaped normal 
curve of the Gaussian distribution of probability theory. As t increases, the graph spreads out and 
decreases in height, always maintaining an area of 1 between it and the x-axis. Indeed, using 

-2 

k = .!. 
16 

-1 

u 

2 

Figure 2 
2 

the standard result from statistics (also proved in Example 6 of Section 7.1) that Joo e -ax dx 
--00 

=.fiIa (a > 0) , it follows that Joo u(x,t) dx = 1, so that the total heat energy in this infinite 
--00 

rod (--00 < X < (0) is a constant, independent of t. As t --+ O+, observe that the graph of the 
temperature distribution u(x,t), as a function of x, becomes more sharply peaked about x = o. 
Indeed, the solution (7) represents the evolution of the temperature due to an initial heat source 
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concentrated at x = ° at t = 0. In Chapter 7, we will be led to this solution by Fourier 
transform methods (cf. also Problems 2 and 13). For now, we check that (7) is in fact a solution, 
using logarithmic differentiation. Note that 

1 1 x2 
log(u) = - 210g(411'k) - 2 10g(t) - ill' 

Thus, 
Ux x x 
U = - ill or Ux = - ill u . 

2 
uxx = - ~ u - ill Ux = -[ ~ - [ill] ] u , Then, 

. u t 1 x2 [1 [ x ] 2] whIle u = - 2t + 4kt2 = -k ill- ill . Thus, ut = kuxx ' 0 

Remark (Probabilistic considerations). It is not unexpected that the temperature (7) due to an 
initial concentrated heat source has a standard normal Gaussian (bell-shaped) distribution, given 
the statistical foundations of heat flow. Indeed, a purely statistical derivation of (7), in terms of a 
random diffusion of a concentrated source at x = 0, is carried out in Problem 13. The idea is that 
if the particles at the source are allowed to move randomly to the left or to the right by a distance 
of ~x at regular time intervals of length ~t, then at time t the density of the particles will be 

a normal distribution of the form (7), as ~t -; 0, provided that !~x2 = k~t. 0 

An initial/boundary-value problem 

Physical intuition leads us to believe that if we specify the initial temperature distribution 
u(x,O) in a rod (0 $ x $ L) and if we specify the temperatures u(O,t) and u(L,t) at the ends, 
then at arbitrary (x,t) [0 $ x $ L , t ~ ° J, the temperature u(x,t) should be determined. In other 
words, for "suitably nice" given functions A(t), B(t), f(x), we expect that the following problem 
will have a unique solution: 

D.E. u = ku t xx 

B.C. u(O,t) = A(t) u(L,t) = B(t) (8) 

I.C. u(x,O) = f(x) . 

Here, D.E. means "differential equation", while B.C. means "boundary conditions" (Le., 
conditions at the ends x = ° and x = L ), and I.C. means "initial condition" (Le., temperature 
distribution at t = 0). In Section 3.2, we prove that there is at most one solution of the "initial 
boundary-value problem" (8). In geometrical terms, we seek a function u(x,t) defined on the 
semi-infinite strip (0 $ x $ L , t ~ 0) in the xt-plane that satisfies the D.E. on the strip and has 
prescribed values on the border of the strip, as shown in Figure 3. 
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A(t) B(t) 

x 

f(x) 

Figure 3 

One can imagine the graph of u(x,t) as a surface above this strip; the u-axis points out of the 
page. The temperature distribution at any time to would then be obtained by taking a vertical 

slice of the graph of u with the plane t = to in the xtu-space. 

Separation of Variables 

The solution process begins with the determination of all the product solutions u(x,t) = 
X(x)T(t) of the D.E. ut = kuxx ,where X is a function of x, and T is a function of t. For 

this, we use the method of "separation of variables" that was introduced in Section 1.3. We 
consider the B.C. and I.C. later. Now, substituting u(x,t) = X(x)T(t) into ut = kuxx and 

separating variables, we obtain 

-' I~ftt) -- X~'((x)) -- c , ut = kuxx => X(x)T'(t) = kX"(x)T(t)"T ) 

for some constant c, since a function of t can equal a function of x only when both functions 
are constant (cf. Example 10 of Section 1.3.). We then have the two ODEs 

T' (t) - kcT(t) = 0 , 

X"(x) - cX(x) = o. 
(9) 

(10) 

There are three cases ; c < 0 , c > 0 , c = O. It is convenient to set c = -A 2 when c < 0 and 

c = A 2 when c > 0, for some constant A > O. (It would also be possible to assume that A < 0, 
or simply A f. 0, but for future convenience we choose A > 0.) The product solutions u(x,t) 
= X(x)T(t) are obtained by solving the familiar ODEs (9) and (10) with constant coefficients (ct. 
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Section 1.1) in the three cases. The final results are: 

(11) 

(12) 

Case 3 (c = 0) : 

(13) 

Remark. Every product solution of ut = kuxx is one of the forms (11), (12) or (13). However, 

not every solution of ut = kuxx is a product solution. Indeed, the solution (7) in Example 1 is 

not a product solution. Also, by the superposition principle, we can obtain other solutions of the 
homogeneous linear PDE ut - kuxx = 0, by forming linear combinations of the above product 

solutions for various values of >., c1 and c2. Such linear combinations are solutions, but not 

always product solutions. For example, e -ktsin(x) + e --4ktsin(2x) is a solution, but it cannot be 
expressed as a function of x times a function of t. Moreover, not every solution of ut = kuxx is 

a linear combination of product solutions. Indeed, any such linear combination of solutions (11), 
(12) or (13) is defined at t = 0 , whereas the solution (7) is not. Thus, solution (7) cannot be a 
linear combination of product solutions. However, as we will see, for most initial/boundary-value 
problems on a finite rod, solutions (if they exist) can be expressed as linear combinations (possibly 
infinite) of product solutions. 0 

Solving the simplest initial/boundary-value problem 

The simplest initial/boundary-value problem for the heat equation is the standard problem 

(where, for technical accuracy, we require that u(x,t) have a C2 extension to an "open" domain 
that strictly contains the strip 0 ~ x ~ L , t ~ 0 ) : 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = 0 u(L,t) = 0 

I.C. u(x,O) = f(x) . 

(14) 
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Here, both ends of the rod are maintained at 0 (say by immersing the ends in ice water, if the 
units are measured on the Celsius scale). By shifting the temperature scale, we can make any 
temperature (above absolute zero) equal to zero on some new scale. The strategy now is to find 
all product solutions of the D.E. that also satisfy the B.C.. After this, we confront the I.C .. 
There are no nonzero Case 3 product solutions (u(x,t) = clx + c2 j d. (13)) that satisfy the 

B.C .. Indeed, 0 = u(O,t) = cl·O + C2 implies c2 = 0, and 0 = u(L,t) = clL + c2 = clL implies 

ci = o. (At any time, the graph of a Case 3 product solution is a straight line in the xu-plane, 

and the only line which runs through (0,0) and (L,O) is the x-axis.) There are also no nonzero 
product solutions of the form (12) (Case 2). Indeed, using (12), 

~2kt 0 0 ~2kt 
0= u(O,t) = e (cle + c2e ) = e (c i + c2) => c2 =--c i 

and 

Hence, ci = 0, since e2~L - 1 > 0 ,and c2 = -c i = o. Thus, our only hope for obtaining 

nonzero product solutions, satisfying the B.C., rests with the Case 1 solutions (11). We have 
_~ 2kt . -~ 2kt 

0= u(O,t) = e (clsm(O) + c2cos(0)) = e c2 => c2 = 0 

and 
_~2kt . o = u(L,t) = e clsm(~L) . (15) 

We are forced to take c2 = 0, but we want to avoid setting ci = 0 in (15), since then we would 

just get another 0 solution. To avoid this, note that ci can be nonzero, but only if ~ is chosen 

so that sin(~L) = O. Since sin(z) = 0, if and only if z is an integer mUltiple of 11", the choices 
for (positive) ~ are then given by ~L = n1l" (n = 12,3 ... ) or ~ = n1l"/L. Thus, the only product 
solutions of the D.E. which meet the B.C. of (14) are constant multiples of members of the 
following infinite family of product solutions 

( ) _ -(n1l"/L)2kt. ( /) _ un x,t - e sm n1l"X L , n - 1,2,3, .... (16) 

Since the D.E. is linear and homogeneous, we may apply the superposition principle to deduce 
that the linear combination of any finite number, say N, of terms 

(17) 
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is a solution of the D.E., for any choice of constants b., b2 , ••• , bN • Also observe that (17) meets 

the B.C. u(O,t) = 0 and u(L,t) = o. Indeed, since these conditions are homogeneous and linear, 
the superposition principle also applies to the B.C. (More easily, one can check the B.C. directly.) 

We now consider the I.C. of (14). If we set t = 0 in (17) , we obtain 

N 
u(x,O) = I bnsin(n1rX/L). 

n=1 
(18) 

If it happens that the f(x) in the I.C. of (14) is of the form of the right side of (18) , then u(x,t) 
given by (17) will be a solution of problem (14). In other words, we have: 

Proposition 1. Let b. , ... , bN be given constants; A solution of the problem 

is given by 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = 0, u(L,t) = 0 

N 
I.C. u(x,O) = I bnsin(n1rX/L) 

n=1 

(19) 

(20) 

Note that all of the exponents -(n1l/L)2kt tend to - 00, as t...; 00 ,and hence all of the terms 
approach zero as t...; 00. Thus, u(x,t) ...; 0 as t...; 00, and the temperature distribution of the rod 
eventually approaches zero, which is the temperature imposed at the ends. The rates at which the 
terms approach zero is different, because the magnitude of the exponents depend on n. The terms 
with higher values of n decrease more rapidly. This is physically reasonable, since the rate of 
heat flow is proportional to the temperature gradient, and the temperature ~radients between hot 
and cold regions of the distribution sin(n1rX/L) are proportional to n ti.e., the gradient of 
sin( n 1rX/L) is n· ( 11" /L )cos( n 1rX/L)). This is illustrated in Figure 4. 

Figure 4 
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Example 2. Find a solution of the problem 

D.E. ut = 2uxx 0 ~ x ~ 7r , t ~ 0 

B.C. u(O,t) = 0 u(7r,t) = 0 (21) 

I.C. u(x,O) = 5 sin(2x) - 30 sin(3x) . 

Solution. Given Proposition 1 , we can immediately write down a solution. Indeed, here L = 7r , 
k = 2 , bI= 0 , b2 = 5 , b3 = -30 and N = 3. Substituting these values into (20), we obtain 

u(x,t) = 5e-8tsin(2x) - 30e-18tsin(3x) . (22) 

Observe that the ratio of the amplitude of the second term to that of the first is 30e-18t /5e -8t = 

6e-10t. Thus, although the second term "dominates" the first at t = 0 , eventually the second 
term is minuscule compared to the first (e.g., consider t = 10). Observe that in (22) and more 
generally in (20), u(x,t) is obtained from f(x) simply by inserting the appropriate exponentially 
decaying function of t. The constant which multiplies -kt in the exponent is always the square 

of the coefficient of x in the sine factor, namely (n7r/L)2. Hence there is no need to figure out 
the value of n for each term. 0 

Remark. This example was easy to solve using Proposition 1, but suppose that you are taking a 
closed-book exam and cannot remember Proposition 1. You should still be able to solve the 
problem by carrying out the following steps, which pertain to a wide variety of problems with 
homogeneous and linear D.E. and B.C. : 

1. Determine the product solutions of the D.E. via separation of variables. 

2. Find those product solutions that meet the B.C .. 

3. Form a linear combination of the product solutions in 2 that will meet the I.C .. 

Most instructors will insist that you show that you can carry out these procedures in detail. 

Example 3 (Heat flow in an insulated circular wire). Solve the following problem for a rod of 
length 2L, from x = L to x = -L . 

D.E. ut = kuxx -L ~ x ~ L ,t ~ 0 

B.C. u(-L,t) = u(L,t) ux(-L,t) = ux(L,t) 

I.C. u(x,O) = [cos(7rX/L)]3 . 

(23) 
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Solution. Note that the B.C. require that the temperatures of the ends x = ±L match and that 
the temperature gradients match as well. This is precisely what one would have, if the rod was 
bent into a circle and the ends were joined. Hence the problem is regarded as one for heat flow in 
an insulated circular wire. To solve the problem, note that the product solutions of the D.E. are 
found, via separation of variables, to be of the forms (11), (12) or (13), as before. We must 
determine which product solutions meet the B.C .. In Case 1 (cf. (11)), the first B.C. yields 

_,X2kt _,X2kt 
e (c1sin(-'xL) + c2cos(-.-\L)) = e (c1sin(,XL) + c2cos('xL)) 

2 
::} 2e-'x ktclsin(,XL) = ° ::} c1sin('xL) = ° . 

For the second B.C., we first note that 

Thus, the second B.C. yields 

_,X2kt _,X2kt 
e (c1'xcos(-'xL) - c2'xsin(-AL)) = e (c1'xcos('xL) - c2'xsin('xL)) 

2 
::} 2e-A ktc2sin(AL) = ° ::} c2sin(,XL) = 0. 

Hence, we are forced to take c1 and c2 to be zero, unless we choose ,X such that sin(,XL) = 0, 

i.e., ,X = n7r/L, n = 1, 2, 3, .... Thus, in Case 1, we have the following family of product 
solutions (where we have replaced c1 and c2 by bn and an' since these constants depend on n): 

( ) -(n7r/L?kt[ ( /) . ( /)] un x,t = e ancos n7rX L + bnsm n7rX L ,n = 1, 2, 3, .... (24) 

In Problem 5, we ask the reader to show that the only product solution in Case 2 (cf. (12)) that 
satisfies the B.C. is the zero solution. In Case 3 (cf. 13), where u(x,t) = c1x + c2 , we have 

Thus, u(x,t) == c2 is the only "surviving" product solution in Case 3. We can include these 

constant product solutions in the family (24) by letting n = ° ; note uo(x,t) = eO[aocos(O) + 
bosin(O)] = ao ' By the superposition principle for the linear and homogeneous D.E. and B.C. , we 

have a rather general (not the most general) solution of the D.E. and B.C. , namely 

(25) 
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For the I.C., we note that when t = 0 , (25) becomes 

N 

u(x,O) = ao + l [ancos(n1lX/L) + bnsin(n1lX/L)] . 
n=1 

(26) 

In order to find the solution of (23), we must show that [cos( 1IX/L)13 may be put in the form (26). 
This can be achieved through the use of trigonometric formulas SUCh as 

cos( o')cos(.8) = Hcos( 0'+.8) + cos ( ~.8)] 

cos ( O')sin(.8) = t[sin( 0'+.8) - sin( ~.8)] 

sin(O')sin(.8) = Hcos(~.8) - cos(o'+.8)] . 

(27) 

From these, we have [cos(O')]3 = cos(O')·[cos(O')·cos(o')] = cos(O')·t[cos(2O') + cos(O)] 

= t[cos( a)· cos(2O')] + tcos( a) = t[cos(3O') + cos ( -a)] + tcos( a) = 1<:os(3O') + leos( a). Thus, 

[cos(1IX/L)]3 = icos(1IX/L) + !cos(311X/L) , 

and referring to (26), we have ao = 0 , at = i , ~ = 0 , a3 = ! , bt = b2 = b3 = 0 and N = 3 . 

From (25), we then obtain a solution of problem (23), namely 

Contained in Example 3 is the proof of the following result, which in the case of heat 
conduction in a circular wire, is the counterpart of Proposition 1. 

Proposition 2. Let ao' at , ... , aN and bt , ... , bN be given constants. A solution of the problem 

is given by 

D.E. ut = kuxx -L ~ x ~ L ,t ~ 0 

B.C. u(-L,t) = u(L,t) ux(-L,t) = ux(L,t) 

N 
I.C. u(x,O) = ao + l [ancos(n1lX/L} + bnsin(n1lX/L)] 

n=1 

(28) 

u(x,t) = ao + t e-(n7r/L)2kt[ancos(n1lX/L) + bnsin(n1lX/L)] . (29) 
n=1 
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Observe that (29) tends to the constant ao as t ~ 00. This constant is the average 

temperature in the circular wire. Indeed, integrating both sides of (29), we obtain 

1 IL 1 IL 2L u(x,t) dx = 2L ao dx = ao ' 
-L -L 

since all of the other terms have vanishing integrals, e.g., 

1 IL IL 2L sin(n1lX/L) dx = (-L/ll1r) cos(n1lX/L) = 0 . 
-L -L 

This average temperature is independent of t, which makes good physical sense, because no heat 
escapes from an insulated circular wire (Le., heat passing through x = L reenters at x = -L ). 
Also it is physically reasonable that the temperature distribution will flatten itself out to its 
constant average as t ~ 00 • 

Some important questions arise from our treatment thus far. Foremost is the question of 
what to do in the event that the initial temperature distribution u(x,O) = f(x) is not of the form 
given in Proposition 1 or 2. Certainly, not every continuous function is of this form, since a linear 

combination of sine and cosine functions is COO (Le., infinitely differentiable), while continuous 
functions may have corners where the derivatives will not exist. However, it does turn out to be 
true (d. [Rudin (1976), p. 190])that any continuous function f(x), defined on the closed interval 
[-L,L], can be approximated to any degree of accuracy by a function of the form 

N 
ao + l [ancos(n1lX/L) + bnsin(n1lX/L)] , 

n=l 
(30) 

in the sense that the graph of (30) in the interval [-L,L] can be made arbitrarily close to the graph 
of f(x), by choosing N large enough and choosing appropriate constants an' bn. Indeed, for 

"sufficiently nice" functions f(x), we will develop formulas for the an and bn , and we will 

provide estimates for the size of the number N which is needed to obtain the desired accuracy. 
This is done in Chapter 4 using Fourier series (d. Theorem 2 of Section 4.1). In practice, the 
initial temperature distribution f(x) is only known to within some experimental error. Hence, by 
approximating f(x) to within this error by a sum of the form (30) we commit no observable error 
in replacing f(x) by (30), and then Proposition 2 provides an adequate solution, as nearly as 
anyone can say. In Section 3.2, we will show that the solutions given in Propositions 1 and 2 are 
unique, as physical intuition suggests. Moreover, we show that if one approximates the initial 
temperature to within an experimental error by a sum, such as (30), then we commit no more 
than the experimental error in the solution. 
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SUIIUIlary 3.1 

1. The heat equation: The one-dimensional heat equation for the temperature u(x,t) in a heat 
conducting medium, without currents or radiation, is the PDE ut = kuxx . The positive constant 

k is the diffusivity of heat, which measures the heat conductivity of the medium. This PDE is 
derived from two physical principles, namely the conservation of energy and the fact that the rate 
of heat energy flow is proportional to the temperature gradient. 

) _.1. -x2/4kt 
2. The fundamental source solution: The fundamental source solution u(x,t) = (47rkt 2e 
(t > ° , x arbitrary) of the heat equation, ut = kuxx ' describes the diffusion of the heat energy 

from an initial concentrated heat source at x = 0. It is not a sum of product solutions (cf. 4 
below). For a fixed time t, the graph of u in the xu-plane is a normal probability curve which 

spreads as t increases, but [ u(x,t) dx = 1 is independent of t. 
--00 

3. An initial/boundary-value problem: Let A(t), B(t) and f(x) be "well-behaved" functions. 

The problem D.E. ut = kuxx 

B.C. u(O,t) = A(t) u(L,t) = B(t) (*) 

I.C. u(x,O) = f(x) , 

is an example of an initial/boundary-value problem. Physical intuition suggests that this D.E. 
has a unique solution which meets the B.C. (boundary conditions) and the I.C. (initial condition). 
The mathematical proof of uniqueness is given in Section 3.2 . 

4. Product solutions: The method of separation of variables is used to determine all the product 
solutions u(x,t) = X(t) T(t) of the D.E. in (*). Every product solution of ut = kuxx has one of 

the following forms, where c is the "separation constant" and A > 0, 

Case 1 (c = _>.2 < 0) : -A2kt u(x,t) = e (c,sin(h) + C2COS(AX)). 

Case 2 (c = >.2 < 0) : u(x,t) = eA2kt(c,eAX + c2e-AX). 

Case 3 (c = 0) : 

5. Solutions of certain initial/boundary-value problems: The following Proposition 1 (for the 
rod with ends maintained at 0) and Proposition 2 (for the circular wire) are established by 
finding those product solutions (cf. 4 above) of the D.E. which meet the respective homogeneous, 
linear B.C., and then using the superposition principle to meet the I.C. . This procedure can be 
used to solve a wide variety of initial/boundary-value problems with homogeneous, linear B.C .. 
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Proposition 1. Let bl, ... ,bN be given constants. A solution of the problem 

D.E. ut = kuxx ° ~ x ~ L , t ~ ° 
B.C. u(O,t) = ° u(L,t) = ° 

N 
I.C. u(x,O) = L bnsin(nmc/L) 

n=l 
is given by 

Proposition 2. Let ao, ai' ... , aN and bl, ... , bN be given constants. A solution of the problem 

D.E. u = ku -L ~ x ~ L , t ~ ° t xx 

B.C. u(-L,t) = u(L,t) ux(-L,t) = ux(L,t) 

N 
I.C. u(x,O) = ao + L [ancos(n1TX/L) + bnsin(n1TX/L)] 

n=l 
is given by 

Exercises 3.1 

1. Let u(x,t) be a solution of ut = kuxx ' Show that the following facts hold. 

(a) For any constants a, xo, to' the function v(x,t) = u(ax - xo,a2t - to) satisfies vt = kvxx . 

(b) For any constant k' , the function v(x,t) = u(x,(k' /k)t) satisfies vt = k'vxx . 

(c) The function v(x,t) = C texp(-x2/4kt) ·u(x/t,-l/t) satisfies vt = kvxx . 

2. Solve the problem in Example 2 without usir~ Proposition 1. That is, find the product 
solutions satisfying the D.E. and B.C. , and apply the superposition principle to meet the I.C .. 
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3. Use Proposition 1 to solve the problem 

D.E. ut = 2uxx 0~x~3 ,t~O 

B.C. u(O,t) = u(3,t) = 0 

I.C. u(x,O) = f(x) , 

in the following cases : 

(a) f(x) = 4sin(211X/3) - sin(511X/3) 

(c) f(x) = sin3(1IX/3) 

(b) f(x) = 5sin(411X) + 2sin(101lX) 

(d) f(x) = -9cos[(1r/6)(2x+3)] 

(e) f(x) = 3cos[(811X/3) - !1r]- 3cos[(811X/3) + !1r] + sin(511X) . 

4. (A derivation of the fundamental source solution) Let u(x,t) = D.b(t).f(b(t)2x2) for some 

positive constant D and some positive functions band f, with [ D· f(x2) dx = 1. 
--00 

(a) Show that [ u(x,t) dx = 1, for all t such that b(t) is defined. 
--00 

(b) Assuming that ut = kuxx and that b(t) -+ 00 as t -+ 0+, show that u(x,t) 

= (41rkt)-te-x2/4kt. Hint. Substitute the form b(t).f(b(t)2x2) for u(x,t) into ut = kuxx and 

set x = 0 to get an ODE for b(t), from which b(t) = (4kat)-t, where 0' = -f'(O)/f(O) > O. 

Show that if y = b(t)2x2, then f'(y) + af(y) = -2y(f"(y) + af'(y)). Thus, for g(y) 

== f'(y) + af(y), we have g(y) = -2yg'(y). Solve for g(y), and deduce that f(y) = Ce-ay. 

5. Show that there are no nonzero Case 2 product solutions (u(x,t) = eA2kt(cJeAX + c2e-Ax) ) 

which satisfy the B.C. (23) for the circular wire. 

6. Solve the problem 

• 
B.C. u(-1r,t) = u(1r,t) ux(-1r,t) = ux(1r,t) 

I.C. u(x,O) = f(x) 

in the following cases: 
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(a) f(x) = 5cos(x) + 3sin(8x) 

(c) f(x) = 4 + cos2(3x) 

(e) f(x) = [sin(x) + 2cos(x)]2 . 

(b) f(x) = t + cos(2x) - 6sin(2x) 

(d) f(x) = 6sin(x) - 7cos(3x) -7sin(3x) 
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7. (a) Show that for any particular solution of ut = kuxx of the form u(x,t) = erx+ st, where r 

and s are constants, we must have s = kr2 . 

(b) Let u(x,t) = ul(x,t) + u2(x,t)i be a complex solution of ut = kuxx ' Then show that the 

real and imaginary parts, ul(x,t) and u2(x,t), are also solutions. (Note that ut = (ul)t + (u2)ti 

by definition, and if a, b, c and d are real, a + bi = c + di if and only if a = c and b = d.) 

(c) Noting that r in (a) can be complex, use (b) and the formula eO'+i,8 = eO'(cos(,B) + i sin(,B)) 
to show that the following values of r yield the indicated solutions (where ..\ is real). 

2 2 
(i) r = ±i..\: e-k..\ t cos("\x), ±e-k"\ t sin(..\x) . 

2 
(ii) r = ±..\: e±Ax ek..\ t . 

(iii) r = ..\(1 ± i): eAx cos(..\x + 2k..\2t ), ±eAx sin(Ax + 2k..\2t) . 

8. (a) Consider the problem D.E. ut = kuxx x ~ 0 , t ~ 0 

B.C. u(O,t) = cos(wt) . (*) 

This is a heat conduction problem for a semi-infinite rod (x ~ 0) whose end (at x = 0) is 
subjected to a periodic temperature variation u(O,t) = cos(wt). Use Problem 7c(iii) to find a 
solution of this problem which has both of the additional properties: 

(PI) u(x,t) ... 0 as x ... 00 and (P2) u(x,t + 27r/w) = u(x,t) (Le., u(x,t) is periodic in time). 

(b) Show that the solution of (*) is not unique, if either (PI) or (P2) is omitted. 

(c) Assuming that W = 7r /2 and k = 7r /4, roughly sketch the graph of the temperature 
distribution in the xu-plane when t = 0, 1,2,3,4, paying attention to where u(x,t) = O. 

(d) Show that at any fixed time t, the distance between consecutive local maxima, say Xl and 

x2 , of u(x,t) is 27r(2k/w)t, and show that the ratio U(x2,t)/U(xl,t) is e-27r ~ .00187, regardless 

of the positive values for k and w! 

9. (a) Assume that the insulation around a rod is faulty in that the heat in each small slab leaks 
through the insulation at a rate proportional to the temperature of the slab. Show that the 
temperature u(x,t) then obeys the equation ut = kuxx - hu for some constant h > O. 
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(b) Show that if w(x,t) solves wt = kwxx ,then u(x,t) = e-htw(x,t) solves ut = kuxx - hu . 

(c) Find a solution of the problem 

D.E. ut = kuxx - hu 0 $ x $ L ,t ~ 0 

B.C. u(O,t) = u(L,t) = 0 

N 
I.C. u(x,O) = l bnsin(n11X/L) . 

n=l 

10. In the derivation of the heat equation, show that if K, D and C are well-behaved functions 

of x, then we obtain the PDE C(x)D(x)ut = ~[K(X)Ux) . 

11. (a) Assume that the temperature in a solid ball depends only on the distance r from the 
center of the solid (i.e., u = ulr,t)). By using the fact that the area of the sphere of radius r is 

2 -2( 2 ( -1 47rT , show that ut = kr r ur)r = k urr + 2r ur). 

Hint. Use E(t) = J: CD,u(r,t)47rl·2 dr and E'(t) = K[41rb2Ur(b,t) -411"a2ur(a,t)) . 

(b) By setting v(r,t) = r·u(r,t), deduce that ut = kr-2(r2ur)r is equivalent to vt = kVrr ' for 

r > O. Thus, any solution v(x,t) of v t = kv xx gives rise to a radially symmetric symmetric 

heat flow u(r,t) = v(r,t)/r in the ball, at least for r> O. (d. Section 9.4 for further information 
on heat flow for the sphere.) 

12. Let Uo and u l be constants and define (for t > 0) 

2 ftx//il 2 
u(x,t) = ul + (uo - UI) - e-y dy. 

.fff 0 
(*) 

(a) Verify that ut = kuxx (t > 0) by using the following result from the calculus: 

d [ff(Z)) df az 0 g(y) dy = g(f(z))az' 

(b) Using the result fo e-y2 dy = ~.fff, show that lim u(x,t) = Uo , for any x> 0, while 
t-+ 0 + 

u(O,t) :: u l . This suggests that (*) represents the temperature distribution of a semi-infinite rod 

(0 $ x < 00) when the temperature ul is imposed at the end x = 0 for t ~ 0, 
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given that the initial temperature is the constant uo . In other words, u(x,t) solves 

D.E. ut = kuxx 0 $ x < 00 ,t > 0 

B.C. u(O,t) = ul t > 0 

I.C. u(x,O+) = Uo x > 0 

where u(x,O+) == lim u(x,t) for x> o. Note that the solution does not extend continuously to 
t...,O 

(0,0), unless Uo = ul • (This solution can be used to estimate the temperature of the earth at a 

depth x below ground after an abrupt change Uo -; ul at ground level.) 

13. Suppose that a particle, starting at the origin, has an equal chance of moving to the left or 
right by a distance ~x in a time interval of ~t. 

(a) Let n > 0 be an integer, and let m be an integer, such that -n $ m $ nand n - m is 
even. By computing the number of ways that the particle can move a net distance of m~x in n 
time intervals ~t, show that the probability that it is at x = m~x, after a time t = n~t is 

n! (t )n 

(t(n+m))!· (t (n-m))! 

(b) Use Stirling's formula n!::i {Fi e-n nn+t , for large n, to deduce that (*) is approximately 

7r e n 2_1 f* -n n+l ( ~n 

_ 2 [ [m]2]-Hn+1) [ m]-tm [ m]tm - -- 1- - 1 + - 1--
.f[iii n n n 

(c) Note that we get a well-defined density of order ~x, if ~t is proportional to ~x2, say ~x2 
= 2k~t. Then, dividing (**) by 2~x and letting ~t..., 0, show that we obtain the fundamental 

source solution (47rkt)-texp(-x2/(4kt)). Hint. Recall that lim (1 + az)l/z = ea. Observe 
Z""oo 

that we divide by 2~x (instead of ~x), since the spacing between the possible values of 
x = m~x is 2~x, since n - m must be even. 
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3.2 Uniqueness and the Maximum Principle 

In Propositions 1 and 2 of the previous section, we found solutions of the standard 
initial/boundary-value problems for a rod with ends maintained at ° and for the circular wire. 
Here we prove that the solutions found are in fact the only solutions. Without this uniqueness 
property, the theory loses its predictive power. We examine two methods for establishing 
uniqueness. The first method (cf. the proof of Theorem 1) is more straightforward than the 
second method which is based on the Maximum Principle. However, the second method gives us 
the finer result that, if we change the initial condition slightly, then any solution will change only 
slightly. This allows one to approximate initial conditions by more manageable functions, without 
disturbing the solution by a significant amount. Since initial conditions can never be exactly 
known in practice, this "stability" property is absolutely crucial in applications. 

Theorem 1. (The Uniqueness Theorem) Let ul(x,t) and u2(x,t) be C2 solutions of the 

following problem, where a(t), b(t) and f(x) are given C2 functions : 

D.E. ut = kuxx ° 5 x 5 L ,t ~ ° 
B.C. u(O,t) = a(t) u(L,t) = b(t) 

I.C. u(x,O) = f(x) . 

Then ul(x,t) = u2(x,t) , for all ° 5 x 5 L and t ~ ° . 

(1) 

Proof. Let v(x,t) = ul(x,t) - u2(x,t). We need to show that v(x,t):: 0. Note that v(O,t) 

= ul(O,t) - u2(O,t) = a(t) - a(t) = 0, and v(L,t) = b(t) - b(t) = 0, while v(x,O) 

= ul(x,O) - uix,O) = f(x) - f(x) = 0. Since the D.E. is linear and homogeneous, we know that v 

= ul - u2 satisfies the D.E., by the superposition principle. Thus, v(x,t) is a C2 solution of the 

problem 

D.E. vt = kv xx 

B.C. v(O,t) = ° v(L,t) = ° 
I.C. v(x,O) = ° . 

(2) 

We know that v(x,t):: 0 is a solution of (2), but we must show that this is the only solution. We 
have reduced the demonstration of uniqueness of (1) to that of the simpler problem (2). Let v(x,t) 
be a solution of (2) and define 

JL 2 
F(t) = ° [v(x,t)] dx, no. (3) 
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Since F(t) is the integral of a nonnegative (square) function, we have F(t) ~ o. If F(t) = 0, then 
v(x,t) must be equal zero for all x, 0 ~ x ~ L. (The integral of a continuous, nonnegative 
function is positive unless the function is identiclly zero.) Thus, if we can show that F(t) = 0 for 
all t ~ 0 ,then v(x,t):: 0, and we would be done. Observe that 

JL 2 
F(O) = 0 [v(x,O)] dx = 0 , (4) 

from the I.C. of (2). We know that F(t) ~ o. Thus, we need to show that F(t) cannot increase 
(Le., F'(t) ~ 0), and then F(t):: 0 will follow. To show that F'(t) ~ 0 , we begin by 
differentiating under the integral sign in (3). (Leibniz's rule of Appendix A.3 permits us to do 

this, because v(x,t) is C2.) 

F'(t) = J~ ~[[v(x,t)]2] dx = 2 J~ v(x,t).vt(x,t) dx 

L 
= 2 Jo v(x,t).kvxx(x,t) dx, by the D.E .. 

(5) 

b b b 
We apply integration by parts [fa g(x)h'(x) dx = g(x)h(x)l a - fa g'(x)h(x) dx], where (for 

fixed t) g(x) = v(x,t) and h(x) = vx(x,t). Then (5) becomes 

(6) 

Since v(L,t) = 0 and v(O,t) = 0 by (2), the first term is o. Now note that -k[vx{x,t)]2 ~ 0, 

whence F'{t) ~ o. Thus, F(t) can never increase. Since F(O) = 0 by (4) and F(t) ~ 0, the 
t 

only possibility is that F(t):: o. Alternatively, F(t) = F(t) - F(O) = fo .F'(s) ds ~ 0 and 

F{t) ~ 0 imply that F(t):: O. Thus (as mentioned above), v(x,t) :: 0, and u1(x,t) = u2(x,t). 0 

Remarks. (1) The method used in the proof of Theorem 1 can also be used to prove uniqueness of 
solutions of the heat equation subject to other types of boundary conditions (and initial 
condition). We will consider these other B.C. and their physical importance in some detail in 
Section 3.3. Since we are already familiar with the B.C. for the circular wire (cf. Example 3 of 
Section 3.1), we use the method to prove uniqueness for this case, in Example 1 below. 

(2) The proof of Theorem 1 also implies that u(x,t) has a continuous mean-square dependence 
on the initial data. By this we mean the following: 

If u1(x,t) and U2(x,t) satisfy the D.E. and the B.C. of (1), then 

JL 2 JL 2 F(t):: 0 [u1 (x,t) - u2(x,t)] dx ~ 0 [u1 (x,O) - u2(x,0)] dx = F(O) . (7) 
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Indeed, as in the proof of Theorem 1 (cf. (6)), F'(t) ~ 0 for t ~ 0, and so F(t) ~ F(O). 
Inequality (7) says that if the initial temperature distributions are close, in the sense that the 
integral of the square of their difference is small (Le., in the mean-square sense), then at any later 
time, the distributions are at least as close (again, in the mean-square sense). 0 

Example 1. State and prove a uniqueness theorem for the circular heat conduction problem (cf. 
Example 3 of Section 3.1). 

Solution. The statement of the theorem is the following: 

Let u1(x,t) and u2(x,t) be C2 solutions of the problem 

-L ~ x ~ L , t ~ 0 

B.C. u(L,t) = u(-L,t) ux(-L,t) = ux(L,t)(8) 

I.C. u(x,O) = f(x) . 

Then u1(x,t) = u2(x,t) for all -L ~ x ~ L, t ~ 0 . 

Proof. Set v = uc u2 ' and observe that v satisfies the D.E. and the B.C. of (*), and v(x,O) 

L 
= f(x) - f(x) :: O. Define F(t) = J [v(x,t)]2 dx , noting that F(O) = 0 and F(t) ~ O. As in 

-L 
the proof of Theorem 1, it suffices to prove F' (t) ~ 0 (Why?). The computation in (6) yields 

F'(t) = 2[V(X,t)Vx(X,t)I~L - J~Lk[Vx(X,t)]2 dx ] 

The endpoint terms cancel by the B.C., and F'(t) ~ O. 0 

Remark. As a consequence of Theorem 1 and Example 1, we now know that the solutions of the 
initial/boundary-value problems in Proposition 1 and Proposition 2 of Section 3.1 are in fact the 
only solutions satisfying the given B.C. and I.C.. 0 

The Maximum Principle and its consequences 

Of course, uniqueness is a crucial property that is necessary in a mathematical description 
of physical processes that have definite outcomes under prescribed conditions. However, there is a 
stronger property that successful mathematical models for such processes often have, namely 
"stability" or "continuity" with respect to small variations of prescribed conditions. Suppose that 
we change the initial temperature distribution and/or the boundary values slightly (say, by an 
experimentally undetectable amount). If it happens that the solution changes by a large 
(experimentally detectable) amount, then (in spite of uniqueness) our theory loses its predictive 
value. If this cannot happen, then we say (loosely) that our model has solutions that vary 
continuously (or is stable) with respect to variations in the prescribed conditions. Inequality (7) 
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gives us stability in a certain weak sense. That is, when a deformation in the initial temperature 
distribution has a small mean-square, the deformation of the temperature distribution at any 
later time has a small mean-square. However, just because a function, say g(x), has a small 

mean-square (Le., JL g(x)2 dx is small), it does not follow that g(x) is small for all x in [O,L]. 
o 

For example, let n be any positive integer such that 10-3n < L, and let g(x) = IOn for 

o $ x $ 1O-3n and set g(x) = 0 for 1O-3n < x $ L. Then, in spite of the fact that J~ g(x)2 dx 

= 1O-3n .102n = lO-n, we have g(x) = IOn for 0 $ x $ 1O-3n. More generally, take g(x) to be 
zero, except for a spike in its graph. Regardless of how high the spike is, we can always take the 

spike to be narrow enough, so that JL g(x)2 dx is as small as we wish. Thus, even if the 
o 

mean-square of the difference of two temperature distributions is small, we cannot conclude that 
the difference is small at each point. To remedy this defect in the result (7), and to prove the 
type of stability which is uniformly valid for all points in the rod, we use the Maximum Principle 
which is stated in Theorem 2. However, we will defer the proof until the end of the section, by 
which time there will be ample motivation for it, in view of its many consequences and 
applications. 

Theorem 2 (The Maximum Principle). Let u(x,t) be a C2 solution (there is at most one) of 

D.E. ut = kuxx 0 $ x $ L ,t ~ 0 (k > 0) 

B.C. u(O,t) = a(t) u(L,t) = b(t) (9) 

I.C. u(x,O) = f(x) , 

where a, b and f are given C2 functions. Let T > 0 be any fixed future time. Define M to 
be the maximum value of the initial temperature, and let A and B be the maximum 
temperatures at the ends x = 0 and x = L during the time interval from t = 0 to t = T , 
i.e., 

A = max {a(t)} , 
O$t$T 

B = max {b(t)} and M = max {f(x)}. 
0$ t$T O$x$L 

Let M = max{A,B,M} (i.e., the largest). Then 

u(x,t) $ M for all x and t, with 0 $ x $ L , 0 $ t $ T . (10) 

Remark. In geometrical terms, the Maximum Principle states that if a solution of problem (9) is 
graphed in the xtu-space, as in Figure 1, then the surface u = u(x,t) achieves its maximum 
height above one of the three sides x = 0 , x = L , t = 0 of the rectangle 0 $ x $ L , 0 $ t $ T . 
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u(x,t)= e-xcos(x-t) 

(k-~, L=1t, T=21t) 

u 

Figure 1 
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t 

From a physical perspective, the Maximum Principle states that the temperature, at any point x 
inside the rod at any time t (0 ~ t ~ T), is less than the maximum of the initial temperature 
distribution or the maximum of the temperatures prescribed at the ends during the time interval 
[O,TJ. To those with good physical intuition, this is not too surprising, since one does not 
ordinarily expect heat to concentrate itself inside the rod, but rather it dissipates. Heat" avoids" 
itself, preferring to flow to colder regions. By the same token, cold "avoids" itself. Indeed, there 
is a Minimum Principle that follows easily from the Maximum Principle: 

Corollary (The Minimum Principle)_ Let u(x,t) be a C2 solution of (9) and let 

a = min {a(t)} , b = min {b(t)} and m = min {f(x)}. 
O~t~T O~t~T O~x~L 

Defining m = min{a,b,m} , we have 

m ~ u(x,t) for all x and t, where 0 ~ x ~ L , 0 ~ t ~ T. 

Proof. Let v(x,t) = -u(x,t). Then v(x,t) solves problem (9), if we replace a(t), b(t) and f(x) by 
-a(t), -b(t) and -f(x) respectively. Now, it is not hard to check that 

max {-a(t)} = - min {a(t)} = -a, max {-b(t)} = -b and 
O~t~T O~t~T O~t~T 

max {-f(x)} = -m . 
O~x~L 

Thus, applying the Maximum Principle to v(x,t), we have that v(x,t) ~ max{-a,-b,-m} = 
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-min{a,b,m} = -m . Then v(x,t) $ -m , and multiplying through by -1, we obtain the reverse 
inequality u(x,t) = -v(x,t) ~ m , as desired. 0 

Example 2. Use the Maximum and Minimum Principles to deduce that the solution u(x,t) of 

D.E. u = 9u 
t xx 

B.C. u(O,t) = 0 u(3,t) = 0 (11) 

I.C. u(x,O) = 6sin( rrx/3) + 2sin( rrx) 

satisfies the inequalities 0 $ u( x, t) $ 4..;2 . 

Solution. Here k = 9 , L = 3 and the initial temperature distribution is of the form of 
Proposition 1 of Section 3.1. Thus, the (unique) solution of (11) is 

(12) 

From this it follows that -8 $ u(x,t) < 8 (Why?), but we must do better than this. Ordinarily, 
one would use calculus (e.g., set ut(x,t) = 0 and ux(x,t) = 0 and solve simultaneously for x 

and t) to determine the local maxima, minima, or saddle points of this function strictly inside 
the strip 0 < x < 3, t > O. It is a nontrivial task to solve these equations, or prove that there is 
no solution. (Indeed, there is a critical point inside the strip (d. Problem 14).) However, even if 
this were done, then one would still have to check the border of the strip for maxima and minima. 
The Maximum/Minimum Principles save us the work of checking for extrema strictly inside the 
strip, since they state that the maximum and minimum of a solution of the heat equation (up to 
any given time) is automatically achieved on the border. One might try to argue that the 
maximum for u must occur when t = 0, since the terms of (12) appear to be decreasing for all 
x. Actually, the temperature at x = 3/2 is increasing at t = 0 : 

(13) 

Thus, just because the amplitudes of the terms are decreasing, we cannot conclude that the values 
of u(x,t) are decreasing. Hence, without the Maximum/Minimum Principles, we are essentially 
forced to look for local maxima and minima with t > o. Instead, utilizing the Maximum 
Principle, we know that, in the strip, u(x,t) cannot exceed the maximum on the ed~es x = 0 , x 
= 3 , t = 0 in the xt-plane. For x = 0 or x = 3 , note that u(O,t) = 0 and u(3,t) = O. To 
find the maximum and minimum of u(x,O), we differentiate f(x) = 6sin( 7rX./3) + 2sin( rrx) : 

f' (x) = 27r[cos( rrx/3) + cos( rrx)J = 47r· cos(2rrx/3)· cos ( rrx/3) , 

where we have used cos(a) + cos(;1) = 2·cos(Ha+,8))·cosCHfr-,8)). Thus, in the interval [0,3J, 
f' (x) = 0 , only when x = 3/4, 3/2, 9/4. The graph of f(x) is shown in Figure 2. Thus, the 

maximum values of fare f(3/4) = f(9/4) = 4..;2. The point x = 3/2 is a local minimum with 
f(3/2) = 4. It is not surprisin~ that the temperature at x = 3/2 will increase initially as the heat 
flows into this local minimum ld. (13)J. The maximum of u(x,t) on the borders x = 0 , x = 3, t 

= 0 is then 4..;2, while the minimum on these borders is O. Hence, the Maximum 

Principle tells us that u(x,t) $ 4..;2 for all 0 $ x $ 3 , 0 $ t , while the Minimum Principle implies 
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u(x,t) ~ 0 for all 0 ~ x ~ 3 , t ~ 0 , as desired. From (12), we see that u(x,t) -+ 0 as t -+ 00 , and 

u(x,t) is very nearly 6e-1l'\in(7rX/3), for large t. The graph of u(x,t) in the xtu-space is 
shown in Figure 3. 0 

u 
6 

x 

3 

Figure 2 

x 

Figure 3 

The following theorem states that if two initial/boundary-value problems for the heat 
equation have initial temperature distributions which are close at each point of the rod and if the 
prescribed boundary values are close up to a time T, then for each time t (0 ~ t ~ T), the 
corresponding solutions (if they exist) must be at least as close at all points in the rod. This is the 
crucial property of continuous dependence of solutions on boundary and initial conditions which 
was discussed on earlier this section. We easily prove the result by using the Maximum Principle. 



Section 3.2 Uniqueness and the Maximum Principle 147 

Theorem 3 (Continuous Dependence on the I.C. and the B.C.). Let u1(x,t) and u2(x,t) be C2 

solutions of the respective problelll8 (0 5 x 5 L , t ~ 0) 

D.E. u = ku t xx D.E. ut = kuxx 

B.C. u(O,t) = a1(t) B.C. u(O,t) = ~(t) 

u(L,t) = b1(t) u(L,t) = b2(t) 

I.C. u(x,O) = f1(x) I.C. u(x,O) = f2(x) . 

If, for some f. ~ 0, we have 

If1(x)-f2(x)1 $.i forall x, 05x5L 

and lal(t)-~(t)15i and Ib1(t)-b2(t)15i forall t, 05t5T 

then lu1(x,t)-u2(x,t)r5i, for all xandt, where 05x5L,05t5T. 

Proof. Let v(x,t) = u1(x,t) - u2(x,t). Then vt = kvxx and we have 

Iv(x,O)I = If1(x) -f2(x)I 5 i, 0$ x 5 L, 

Iv(O,t)1 = la1(t)-a2(t)15 i 

(14) 

Thus, the maximum of v on the borders t = ° (0 $ x 5 L) and x = ° , x = L (0 5 t 5 T) is 
not greater then i , while the minimum of v on these borders is not less than -i. Hence the 
Maximum/Minimum Principles yield the result 

-i 5 v(x,t) 5 i or lu1(x,t) -u2(x,t)I = Iv(x,t)1 5 i. 0 

Remark. Observe that when i = ° , the problems in (14) are identical, and we have the 
conclusion lu1(x,t) - u2(x,t)I 5 ° (i.e. u1 = u2). Thus, the uniqueness result, Theorem 1, is the 

special case of Theorem 3 obtained by setting i = 0. The proofs of Theorem 3 and the Maximum 
Principle are entirely different from the proof of Theorem 1. To some readers, it may seem 
intuitively obvious that if a certain initial/boundary-value problem has unique solutions, then the 
solutions change only slightly, if the initial and/or boundary conditions are varied slightly. To 
show that this is not always the case, we offer the following counterexample. 
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Example 3. For any given constant a> 0, consider the problem for u(x,t) 

D.E. (l-t) ,ut = u 0 S x S 2, 0 S t < 1 

B.C. u(O,t) = 0 u(2,t) = 0 (15) 

I.C. u(x,O) = a· x(2 - x) . 

Show that the no matter how small the constant a is, the solution will become large as t -; 1-. 

Solution. For any fixed x, the PDE is a separable ODE, namely du/u = (l-t)-ldt , and the 

general solution is u(x,t) = f(x)/(I-t) for a c1 function f(x). Since, f(x) = u(x,O) = a·x(2-x), 
the unique solution of problem (15) is u(x,t) = ax(2-x)/(I-t). In particular, u(l,t) = a/(I-t) , 
which becomes arbitrarily large as t -; 1- if a > 0, even if a = 10-9. Note that the maximum of 
the initial and boundary values for u is a, and thus there is no maximum principle for the 
solutions of the problem (15). 0 

Proof of the Maximum Principle 

In the statement of the Maximum Principle, suppose that we replace the D.E. by the more 
general PDE ut = kuxx - c , where c ~ 0 is a fixed constant. We call the resulting theorem the 

Generalized Maximum Principle, or simply the GMP. Although we are primarily interested in 
the case where c = 0, we will first prove the GMP in the easier case where c > 0, which 
physically corresponds to a uniform heat loss along the rod. We then handle the case c = 0, by 
carefully considering a limit as c -; 0+. Suppose that u(x,t) solves the D.E. ut = kuxx - c, for 

c > O. Let Mo be the maximum of u on the closed rectangle R (0 S x S L ,OS t S T) in 

Figure 4. 
t 

Tr------------------, 

x 
o L 

Figure 4 

The existence of Mo is guaranteed by the Maximum/Minimum Theorem in Appendix A.4. 

Certainly Mo ~ KI, since NT (by definition) is the maximum of u on the sides and the lower 

edge of R, but we need to prove that Mo = M. Let (xo,to) be a point in R, such that u(xo,to) 

= Mo. We assume that 0 < Xo < Land 0 < to S T , for otherwise Mo = NT (Why?) , and we 

would be done. However, we will show that this assumption leads to a contradiction, and hence 
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the assumption must be false, and consequently Mo = tr. Note that u(x,t), as a function of x 
o 

on the open interval (O,L), has a maximum at xo' and so ux(xo,to) = O. (We would not know 

this if Xo were an endpoint.) Also, since the graph of u(x,to) cannot be concave up at Xo (Why 

not?), we must have uxx(xo,to) $ O. Using this fact and the equation ut = kuxx - c , we have 

(16) 

Thus, ut(xo,to) < O. Hence, for t slightly less than to (recall that to > 0), we have 

u(xo,t) > u(xo,to) = Mo , which is a contradiction (Why?). Thus, the assumption that 

o < Xo < L and to > 0 must be false, and so the GMP has been proven in the case where c > O. 

The proof in the case c = 0, is as follows. Let u be a solution of ut = kuxx on R. Define a 

function v, of three variables, by setting v(x,t,c) = u(x,t) - ct. Note that vt = ut - c 

= kuxx - c = kvxx - c, which shows that for each fixed c, v(x,t,c) satisfies the equation vt 
= kvxx - c. Thus, by the GMP, which we have proven for any fixed c > 0, we know that the 

maximum of v occurs at a point, say (xc,tc)' on the sides (Le., Xc = 0 or L) or lower edge 

(i.e., tc = 0) of R. Also, since M is (by definition) the maximum for u on the sides and lower 

edge of R, we have 

(17) 

since c·tc ? o. If (x,t) is any point in R, then 

u(x,t) = lim [u(x,t) - ctJ = lim v(x,t,c). (18) 
C-lO + C-lO + 

Since v(x,t,c) $ v(xc,tc'c) (Why?) and v(xc,tc'c) ~ M by (17), we have v(x,t,c) $ M. Thus, 

by (18), u(x,t) is the limit of numbers ~ M; and hence u(x,t) ~ M , for any (x,t) in R. 0 

Remarks. There is also a GenHalized Minimum Principle for solutions of ut = kuxx - c , but 

only for c $ 0 , instead of c? O. Thus, only in the case c = 0 , is there both a Minimum 
Principle and a Maximum Principle. It should be noted that although the Maximum Principle 
says that the maximum of a solution of the heat equation on R must occur on the sides or lower 
edge, it does not preclude the possibility that the maximum can occur strictly inside R as well. 
Indeed, any constant solution has this property. There is a stronger maximum principle, which 
implies that if the maximum does occur strictly inside R, say at (xo,to)' with 0 < Xo < Land 

to > 0, then the solution must be constant for t $ to' For solutions which are finite sums of 

product solutions, this in turn implies that the solution must be constant everywhere (Why?). In 
the supplement following the exercises, we sketch an "elementary" proof of the Strong Maximum 
Principle, which is intended for mature audiences only. 
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Summary 3.2 

1. The Uniqueness Theorem (cf. Theorem 1): Let ul(x,t) and u2(x,t) be C2 solutions of the 

following problem, where a(t), b(t) and f(x) are given C2 functions : 

D.E. ut = ku xx 

B.C. u(O,t) = a(t) u(L,t) = b(t) 

I.C. u(x,O) = f(x) . 

(Sl) 

Then ul(x,t) = u2(x,t), for all x and t, where 0 ~ x ~ L and t ~ O. 

2. The Maximum Principle (cf. Theorem 2): Let u(x,t) be a C2 solution of (Sl). Let T > 0 

and let KI denote the maximum value that u achieves on the sides (x = 0 or x = L) or the 

lower edge of the rectangle R: 0 ~ x ~ L , 0 ~ t ~ T. Then u( x, t) ~ M , for all 0 ~ x ~ L , 
o ~ t ~ T. Similarly the Minimum Principle (cf. the Corollary of Theorem 2) asserts that if m 
denotes the minimum value that u achieves on the sides or the lower edge of the rectangle R, 
then m ~ u(x,t) for all 0 ~ x ~ L , 0 ~ t ~ T . 

3. Continuous Dependence on the I.C. and B.C.: A consequence of the Maximum/Minimum 
Principle is that the solution, u(x,t) of (Sl), depends continuously on the initial and boundary 
conditions (cf. Theorem 3). The method of the proof of Theorem 1 provides a weaker version of 
this result, in that it shows that at each time t > 0, the mean-square of the difference of two 
temperature distributions (cf. (7)) is no greater than it was initially, provided that the tw. 
distributions have the same values at the ends prior to time t. 

Exercises 3.2 

1. (a) Let v(x,t) be any C2 solution of vt = kvxx (0 ~ x ~ L , t ~ 0), which satisfies the B.C. 

v(O,t) = 0 and v(L,t) = 0 (without initial condition). Show that for any t l, t 2, with t2 ~ tl ~ 0, 

IL 2 IL 2 
o [v(x,t2)] dx ~ o[v(x,t l)] dx. 

Hint. Let fL 2 
F(t) = 0 [v(x,t)] dx, and show that F'(t) ~ 0 , as in the proof of Theorem 1. 
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Then note that F(t2) - F(t l) = f2 F'(t) dt $ ° (Why?). 
tl 
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(b) Explain why the conclusion (*) still holds when the B.C. are replaced by any of the following 
pairs of B.C. : 

vx(O,t) = ° 
vx(L,t) = ° 

vx(O,t) = ° 
v(L,t) = ° 

2. State and prove a uniqueness theorem for the problem 

D.E. ut = kuxx 

B.C. ux(O,t) = a(t) ux(L,t) = b(t) 

I.C. u(x,O) = f(x) . 

vx(O,t) = h·v(O,t) [where h > 0]. 

v(L,t) = ° . 

Hint. Use the method of proof of Theorem 1. Alternatively, use (*) for v:: u2 - ul in Problem 1 

with tl = ° and t2 = t. 

3. Use the Maximum/Minimum Principles to deduce that the solution u of the problem 

D.E. ut = kuxx ° $ x $ 11' , t ~ ° . 
B.C. u(O,t) = ° u(1I',t) = ° 
I.C. u(x,O) = sin(x) + ~sin(2x) 

satisfies 0$ u(x,t) $ 3/J/4 for all 0$ x $ 11', t ~ ° . 
4. Change the I.C. in Problem 3 to u(x,O) = 5sin(3x) - 3sin(5x). Find the smallest constant D 
and the largest constant C, such that C $ u(x,t) $ D, for all 0$ x $ 11', t ~ 0. 
Hint. cos( a) - cos(!1) = -2· sin( H a+,B) )sin( H fr-!1)). 

5. Suppose that Joe adds the term -rlr x3( 1I'-x)3 to the initial temperature distribution in 

Problem 3. Assuming that he can find a solution of this new problem, show that this solution 

differs from the solution of the original problem by at most 11'6/640 at any ° $ x $ 11' and t ~ ° . 
Hint. Apply Theorem 3, noting that I fl(x) - f2(x) I = l-rlr x3( 1I'-x)3 1. 
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6. Consider the problem, where ll' > 0, 

D.E. ut = 2uxx ° ~ x ~ 2 , t ~ ° 
B.C. ux(O,t) = -ll' ux(2,t) = ° 
I.C. u(x,O) = -ax(1 - tx) . 

(a) By trying a function of the form u(x,t) = Ax2 + Bx + Ct , deduce that u(x,t) = ax(tx - 1) 
+ at is the required solution (unique by Problem 2). 

(b) Take two values for ll', say ll't and ll'2' and let ut(x,t) and u2(x,t) be the corresponding 

solutions, as in part (a). Show that I ut(x,O) - u2(x,0) I ~ Ill't - ll'21, and observe that 

I (ut)x(O,t) - (u2)x(0,t) I ~ Ill't - ll'21 and I (ut)x(2,t) - (u2)x(2,t) I = ° ~ Ill't - ll'21 . 

(c) lithe analog of Theorem 3 (for the B.C. here) were true, we would have lut(x,t) - u2(x,t)I 

~ Ill'Cll'21. Instead, check that in fact I ut(x,t)-u2(x,t) I -+ 00 as t -+ 00. Thus, ll' in this problem 

cannot be varied slightly without producing large variations in the solution for large t. 

Remark. Physically, the B.C. ux(O,t) = -ll' means that heat energy is added to the rod through 

the end at x = ° at a constant rate proportional to ll', since the heat flux through x = Xo is 

-KAux(xo,t) (cf. (2) of Section 3.1). The end at x = 2 is insulated (Le., there is no heat flux). 

Thus, the heat in the. rod increases at a constant rate proportional to ll' as t -+ 00 • 

7. (Comparison Results). Let B denote the set of points which are on the lower edge (t = 0) or 
the sides (x = ° and x = L) of the rectangle R: ° ~ x ~ L, ° ~ t ~ T. 

(a) Let C be a constant. From the Maximum Principle, deduce that if u(x,t) is a C2 solution 

of ut = kuxx on R, and u(x,I) ~ C for (x,I) in B, then u(x,t) ~ C for all (x,t) in R. 

(b) Let ut(x,t) and u2(x,t) be two C2 solutions of the heat equation ut = Uxx on R. Show 

that if ut(x,I) ~ u2(x,I) for all (x,I)) in B, then ut(x,t) ~ u2(x,t) for all (x,t) in R. 

Hint. Use part (a) with u = ut - u2 and C = 0. 

8. Consider a rod of length 7r with ends maintained at zero. If the the initial temperature is 

given by u(x,O) = [sin(x)]7 , then show that u(x,t) ~ e -ktsin(x) for all ° ~ x ~ 7r, t ~ 0. 

Hint. Apply the Maximum Principle to u(x,t) - e-ktsin(x) or use Problem 7(b), noting that 

r 7 ~ r for ° ~ r ~ 1. Do not bother to actually find the exact solution ! 



Section 3.2 Uniqueness and the Maximum Principle 153 

9. Explain what modifications of the proof (just before the Summary) of Theorem 2 (The 
Maximum Principle) are necessary in order to prove the following maximum principle for 
insulated ends (where the heat flux, proportional to ux ' is 0). 

Let u be a C2 solution of the problem 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. ux(O,t) = 0 ux(L,t) = 0 

I.C. u(x,O) = f(x) . 

Then, u(x,t) ~ M == max (f(x)}. 
O~x~L 

Hint. In the proof of the generalized maximum principle for ut = l:uxx - c (c > 0) with 

insulated ends, in order to reach a contradiction, we may still assume that the maximum occurs at 
(xo,to) where to > 0, but we may not assume that 0 < Xo < L, since we must now eliminate the 

possibility that Xo = 0 or Xo = L. However, the B.C. come to our rescue! 

10. From the maximum principle in Problem 9, deduce the corresponding minimum principle. 

11. Use Problem 9 in order to produce an alternate uniqueness proof for Problem 2. 
Hint. First prove u l - u2 ~ 0, and then prove U2 - u l ~ O. 

12. Using Problems 9 and 10, prove the following result which is in the spirit of Theorem 3. Let 
ul(x,t) and u2(x,t) be solutions of the following respective problems (where 0 ~ x ~ L , t ~ 0) : 

B.C. ux(O,t) = 0 

ux(L,t) = 0 

I.C. u(x,O) = fl(x) 

D.E. ut = kuxx 

B.C. ux(O,t) = 0 

ux(L,t) = 0 

I.C. u(x,O) = f2(x) , 

13. State and prove a maximum principle for the circular wire (cf. (28) in Section 3.1). 
Hint. In the proof of the generalized maximum principle for ut = ku - c (c > 0), note that if 

xx 
the maximum for u occurs at (xo,to) with to> 0 and Xo = ±L, then ux(±L,to) = 0 (Why?). 



154 Chapter 3 The Heat Equation 

14. (a) In Example 2, find the unique time to> 0 for which u(!,t) is largest. 

(b) For the time to in part (a), show that u(x,to) is largest only when x = !. 

(c) Use the Maximum Principle to show, in spite of parts (a) and (b), that in any square region, 

Ix -!I ~ ( , It - tol ~ ( (( > 0) there are points (x,t), other than (!,to), where u(x,t) ~ u(!,to)' 

(The Maximum Principle for the heat equation on a square holds regardless of the size or location 
of the square by the translation-invariance of the heat equation; cf. Problem 1 of Section 3.1). 

(d) Here we show that (!,to) is not even a local maximum of u(x,t). For t < to' let x(t) be 

87r2t 1 
the left-most point in [0,3] where ux(x(t),t) = O. Show that cos(7rX(t)/3) = M3 - e F for 

t ~ to' We have ~ u(x(t),t) = ux(x(t),t)x'(t) + ut(x(t),t) = kuxx(x(t),t) (Why?). By an 

explicit computation show that uxx(x(t),t) < 0 for t < to' Why does this show that 

u(x(t),t) > u(!,to) for 0 < t < to? Why then is (!,to) not a local maximum of u ? 

Supplement on the Strong Maximum Principle for the heat equation 

The key family of functions which enters the proof of the Strong Maximum Principle (cf. 
the Theorem below) is 

w(x,t) = exp[-B(x2 + a2t2)]_ exp[-Br2], for constants 11', B, r > o. (*) 

Note that -1 $ w(x,t) $ 1 for all (x,t), and w > 0 only within the ellipse x2 + a2t2 = r2, 
which is inscribed in the rectangle -r $ x $ r , -r /11' $ t $ r /11'. Now, 

and wt = exp[-B(x2+a2t2)](-2Ba2t) . 

Thus, kWxx-wt = 2B[k(2Bx2_1) + a2tJexP[-B(x2+a2t2)]. 

Hence, kw xx - w t > 0 only for t > -(k/ 11'2)( 2Bx2 - 1). The curve defined by kw xx - w t = 0 

is the parabola t = -(k/a2)(2Bx2 - 1), which opens downward and has vertex at (0,k/a2), 

where the curvature is 4kB/a2 (cf. Figure 5). Note that the vertex is strictly inside the ellipse if 

r/a> k/a2. This will be the case if 11' > 2k/r, and we will assume this henceforth. We can move 
the center of the ellipse to any point (xo,to) by considering the function w(x-xo,t-to). 
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t 
a=r=2 

B = 2k = 3 

x 
r 

Figure 5 

Lemma. Let u be a solution of the heat equation ut = kuxx in a closed rectangle R that 

contains in its interior an elliptical region E of the form (x-xo)2 + ll( t-to)2 ~ r2, except 

possibly for the uppermost point (xo,to + r/a). We assume a> 2k/r. If the maximum, say M, 

of u in R is achieved at some point P on the boundary of E, then it is also achieved at some 

point Q on the vertical segment running from the point (xo,to + k/ a2) [strictly inside the 

ellipse, since r/a> k/a2] to the lowest point (xo,to - r/a). 

Proof. We assume without loss of generality that (xo,to) = (0,0). For any constant i > 0, let v 

= u + iW, where w is defined by (*). For a point P' which is in R but not in E, we have 
v(P / ) = u(P / ) + iW(P / ) < M, while v(P) = M, since w(P) = 0. Thus, the maximum of v is 
at some point Q1 in E. At Ql' we have Vxx ~ ° and vt ~ ° (Why?). So at Ql' kwxx - wt 
= (kv xx - v t) / i ~ 0. Hence Q1 must be in the intersection, say J, of E with the parabolic 

region t ~ -(k/a2)[2B.x2 - 1]. Note that V(Ql) ~ v(P) = u(P) = M. We have U(Ql) 

= V(Ql) - iW(Ql) ~ v(Ql) - i ~ M - (. Letting i .... 0, we deduce (cf. the Bolzano-Weierstrass 

Theorem of Appendix A.4) that there is a point Qo in J where u(Qo) = M. By increasing the 

constant B, we can narrow the parabola indefinitely, thereby forcing the existence of a point Q 

on the segment from (0,k/a2) to (O,-r/a), where u(Q) = M. 0 

Theorem (The Strong Maximum Principle). Let u(x,t) be a solution of the heat equation in 

the rectangle R (0 ~ x ~ L, ° S t ~ T). If u achieves its maximum at (x,T), where 

° < x < L, then u must be constant in R. 
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Proof. Let M = u(x, T). First we prove that u(x,t) = M for all t, 0 $ t $ T. Suppose, on the 

contrary, that u(x,t1) < M for some tl with 0 $ tl < T. Let t2 be the smallest number bigger 

than tl such that u(x,t2) = M (Le., t2 = inf { tit> tl , u(x,t) = M } ; cf. Appendix AA). 

Select an elliptical region E, as in the Lemma, with (x,t2) as the top point of E, and with 

(xo,t3) as the bottom point, where tl < t3 < t2. The Lemma implies that there is some point 

(xo,t4) with t3 $ t4 < t2 such that u(xo,t4) = M. This contradicts the choice of t2. Observe 

that the same argument shows that if the maximum M is achieved at some point P inside R 
and strictly between x = 0 and x = L, then u has the value M at all points in R directly 

below P. Now, select an ellipse E, as in the Lemma, which is tangent to the lines t = T, x = x 

and x = 0, where 0 < 0 < x (cf. Figure 6). Since the bottom point of the ellipse is at the level 

t = T - Hx - 0)/ a, we may confine the ellipse to an arbitrarily thin strip of the form 

T --d $ t $ T, d > 0, by choosing a large enough. By allowing 0 to run between 0 and x, we 
can use the Lemma and the above observation to guarantee that u has the value M at all points 

+ 
(x,t), where tx < x $ x and t $ T - d. Then letting d -; 0 and using the continuity of u, we 

get that u(x,t) = M for tx $ x $ x and 0 $ t $ T. Similarly, by considering ellipses to the right 

of x = x, we can prove that u(x,t) = M for x $ x $ X + HL-x) and 0 $ t $ T. In the same 

way, by using ellipses between x = 0 and x = tx , and also ellipses between x = x + HL-x) 
and x = L, we can expand the domain where u has the value M to the rectangle 

!X $ x $ X + !(L-x), 0 $ t $ T. Repeating the process indefinitely, we get that u must be 

constant throughout R. (Note that the continuity of u allows us to deduce that u also has the 
value M on the sides x = 0 and x = L of R). 0 

t 

T 
d V ---..., 

r--- ~ 

x 

0 6 x L 

Figure 6 
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3.3 Time-Independent Boundary Conditions 

We recall from equation (2) of Section 3.1 , that the amount of heat energy (per unit time) 
that passes through the cross-section x = a in the positive direction is -KAux(a,t), where K 

> 0 is the heat conductivity, and A is the cross-sectional area. Hence, by prescribing Ux at 

x = 0 or x = L , we are imposing conditions on the rate at which heat energy passes through the 
ends of the rod. In particular, the condition ux(O,t) = 0 means that no heat is flowing through 

the end x = 0, in other words, that this end is insulated. If we require that the ends be insulated 
or maintained at 0, then there are four sets of possible boundary conditions: 

(a) [U(O,t) = 0 (b) [Ux(O,t) = 0 

u(L,t) = 0 u(L,t) = 0 

(b ') [ u(O,t) = 0 [U (O,t) = 0 
(1) 

( c) 

ux(L,t) = ° U:(L,t) = 0 . 

We have considered (a) before in Section 3.1. In cases (b) and (b '), one end is insulated while 
the other is maintained at o. We will treat (b) in some detail, but leave the consideration of (b /) 
as an exercise (alternatively, convert (b / ) to (b) by turning the rod around, and thus reverse the 
ends). We have established the uniqueness of solutions of the heat equation with B.C. (a), (b) or 
(c) and some I.C. (cf. Problems 2 and 11 of Section 3.2). We begin with case (c) where the rod is 
completely insulated from its environment. 

Example 1. Derive the solution of the problem 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. ux(O,t) = ° ux(L,t) = 0 

I.C. u(x,O) = f(x) , 

for suitable initial distributions f(x). 

(2) 

Solution. We use the same procedure as was used for (14) in Section 3.1. In other words, we find 
the product solutions of the D.E. that satisfy the B.C., and then obtain other solutions of the D.E. 
and the B.C. by forming linear combinations of these product solutions, using the superposition 
principle, in order to meet the I.C.. Regardless of the B.C. or I.C., the product solutions of the 
D.E. are found by the method of separation of variables. We have carried this out (once and for 
all) in Section 3.1, in the three cases. For Case 1 (cf. (11) of Section 3.1), we have 



158 Chapter 3 The Heat Equation 

u(x,t) = e-A2kt(clsin(Ax) + CaCOS(AX)) 

ux(x,t) = e-A2kt(C1A'COS(AX) - c2A·sin(Ax)) . 

(3) 

(4) 

Inserting x = 0 into (4), we see that ux(O,t) = Ae-A2ktcl' Since A > 0 , we are forced to take 

c1 = 0 by the first B.C. of (2). Substituting x = L into (4), we have 

This must be zero, by the second B.C .. The only way to avoid setting Ca = 0 (producing only 

the trivial solution u:: 0 ) is to choose A such that sin(AL) = O. Hence, AL = n7r or 
A = n7r/L ,for n= 1,2,3, .... Thus, we arrive at the family of [Case 1] product solutions of the 
D.E. and B.C. : 

(5) 

for n = 1, 2, 3,.... In Problem 1, the reader is asked to check that there are no nonzero solutions 
of the D.E. and B.C. in Case 2 (cf. (12) of Section 3.1). There is a simple, yet important, Case 3 
(cf. (13) of Section 3.1) solution of the D.E. and B.C. , namely the constant solution u(x,t) = c2 . 

This can be included in the family (5) by simply letting n = 0 be a possible value for n ; recall 
oos(O) = 1 . By the superposition principle, we have the more general solution of the (linear, 
homogeneous) D.E. and B.C. , 

In order to meet the I.C. with such a solution, we need 

N 
f(x) = u(x,O) = l ancos(n7IX/L) . 

n=O 

(6) 

(7) 

Hence, if f(x) is of this form, then the solution of problem (2) is given by (6). In Chapter 4 we 
will prove that any "reasonably nice" function f(x) can be approximated to any degree of 
accuracy by a sum of the form (7). In practical terms, then we may simply assume that f(x) is of 
this form, because f(x) is only known within some experimental error. 0 

Remark. Note that the product solutions (5), with the exception of the case n = 0 , all tend to 
zero as t -+ 00 • The terms of (6) with larger values of n decrease more rapidly, because of the 

factor of n2 in the exponents. This is to be expected, because the temperature gradients between 
hot and cold regions are greater for larger n, as shown in Figure 1 : 
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u u 

x x 

o L 

n=2 n=3 

Figure 1 

By (6) we have 

1 JL lim u(x,t) = r f(x) dx = ao . 
t-+ 00 0 

(8) 

In other words, the temperature distribution for the insulated rod levels to a constant which is the 
average of the temperature initially (or at any later time, by Problem 2). 0 

Example 2. For suitable initial distributions f(x), derive the solution of the problem 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. ux(O,t) = 0 u(L,t) = 0 

I.C. u(x,O) = f(x) , 

where the end x = 0 is insulated and the end x = L is maintained at O. 

(9) 

Solution. Again, we find the product solutions of the D.E. that obey the B.C.. In Case 1 
(cf. (11) of Section 3.1), we have (3) and (4) of Example 1, and the first B.C. yields c1 = 0 as 

before. However, the second B.C. yields 

(10) 

To avoid setting c2 = 0 , we must choose A so that cos(AL} = O. Since cos(z} = 0, if and only 

if only when z is an odd multiple of 7r/2, we find that (10) holds only when 

LA = (2n+l}7r/2 or A = (n + ~}7r/L n = 0,1,2, .... 

(Recall that A > 0 .) One can check that there are no nonzero product solutions in Cases 2 and 3 
(cf. (12) and (13) of Section 3.1) that satisfy the B.C. here. Hence, a complete family of product 
solutions is given by 
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By the superposition principle, we have the more general solution 

N 
U(X,t) = l dnexp[-(n + ~)27r2kt/L2].cos[(n + ~)7rX/L] 

n=O 
(11) 

which is the unique solution of problem (9), when 

N 
f(x) = u(x,O) = l dncos[(n + ~)7rX/L]. 0 

n=O 
(12) 

Remark. All of the terms of (11) tend to zero as t ~ 00. The physical reason is that heat is 
allowed to pass through the uninsulated end at x = L. The first term (n = 0) of (11) decays at a 

rate proportional to exp[---t7r2kt/L 2] which is slower than the corresponding rate exp[-7r2kt/L 2] 

for the case where both ends are maintained at 0 (cf. Section 3.1). In Chapter 4, we will prove 
that any "reasonably nice" function f(x) can be approximated arbitrarily closely by a sum as in 
(12). Also, there is a maximum principle that governs solutions of (9), so that the solution is not 
unduly perturbed by approximating the initial temperature distribution (cf. Problem 11). Typical 
graphs of the terms of (11) are shown in Figure 2. 0 

u u 

o o 

n=l n=2 

Figure 2 

Inhomogeneous boundary conditions 

The B.C. in Examples 1 and 2 [or (1)] are homogeneous, whence we were able to use the 
superposition principle in forming more general solutions of the D.E. and B.C .. We now turn to 
the situation where the B.C. are not both homogeneous, but are still time-independent. 

The method of solution is to first find a particular solution of the D.E. and B.C., and then 
add (to that particular solution) the solution of a related problem with homogeneous B.C .. 

We have used this general idea before. The method is illustrated in the following example. 
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Example 3. For arbitrary real constants, a and b, and suitable g(x), solve the problem 

D.E. ut = kuxx ° 5 x 5 L , t ~ ° 
B.C. u(O,t) = a u(L,t) = b 

I.C. u(x,O) = g(x) . 
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(13) 

Solution. We first seek a particular solution up(x,t) of the D.E. and B.C .. Since any particular 

solution will do, we may as well strive for simplicity. Indeed, a Case 3 product solution (cf. (13) 
of Section 3.1) up(x,t) = cx+d will do, if c and d are chosen so that the B.C. are satisfied: 

a = up(O,t) = c·O+d = d, 

b = up(L,t) = cL+d = cL+a . 

Thus, d = a and c = (b-a)/L and 

up(x,t) = (b-a)x/L + a (14) 

solves both the D.E. and B.C. 
homogeneous D.E. and B.C.) 

Consider now the related homogeneous problem (Le., with 

If g(x) - up(x,O) 

D.E. v = kv ° 5 x 5 L , t ~ ° t xx 

B.C. v(O,t) = 0, v(L,t) = ° 
I.C. v(x,O) = g(x) - up(x,O) . 

(15) 

N 
is of the form J: bnsin(n7lX/L), then we can solve this problem, obtaining 

n=1 

v(x,t) = J:N bne-(n7r/L?ktsin(n7lX/L) (16) 
n=1 

(cf. Proposition 1, Section 3.1). Now, set u(x,t) = up(x,t) + v(x,t). We easily check that u(x,t) 

solves problem (13). Indeed, u(x,t) solves the D.E. by the superposition principle, and we have 

B.C. u(O,t) = up(O,t) + v(O,t) = a + ° = a 

u(L,t) = up(L,t) + v(L,t) = b + 0= b 

I.C. u(x,O) = up(x,O) + v(x,O) = up(x,O) + g(x) - up(x,O) = g(x) . 

(17) 

Observe that it is necessary to subtract up(x,O) from g(x), when forming the I.C. of the related 

homogeneous problem (15). Otherwise the cancellation of up(x,O) in (17) does not occur, and 

u(x,O) = g(x) will not hold. 0 
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Example 4. Solve 

Chapter 3 The Heat Equation 

D.E. ut = kuxx ° ~ x ~ L , t ~ ° 
B.C. u(O,t) = ° u(L,t) = L 

I.C. u(x,O) = x + 3sin(21lX/L) . 

(18) 

Solution. We can find a particular solution of the D.E. and B.C. of the form up(x,t) = ex + d . 

From the B.C., ° = u(O,t) = c·O + d = d and L = u(L,t) = cL . Thus, d = ° , c = 1 and 
up(x,t) = x . The related homogeneous problem is 

D.E. v t = kv xx ° ~ x ~ L , t ~ ° 
B.C. v(O,t) = ° v(L,t) = ° 
I.C. v(x,O) = x + 3sin(21lX/L) - x = 3sin{21lX/L), 

(19) 

whose solution is v(x,t) = 3e-4ilkt/L2sin(21lX/L). The solution of the problem (19) is then 

u(x,t) = up(x,t) + v(x,t) = x + 3e-4ilkt/L2sin(21lX/L). 0 

Remark. It is probably best not to commit to memory the formula (14). Instead the reader should 
consider a particular solution of the form cx + d, and find the constants, using the B.C.. The 
reason is that the formula only applies to the B.C. of (13). For other B.C., we obtain other 
particular solutions. For example, 

1 ux(O,t) = a 

if , then 
u(L,t) = b 

up(x,t) = a{x-L) + b. 0 

Example 5. Solve 

B.C. ux{O,t) = 1 u(l,t) = -1 

I.C. u(x,O) = x + cos2(31lX/4) - ~ . 

Solution. We try a particular solution of the form up(x,t) = cx + d . The first B.C. yields 

c = 1 ,while up(l,t) = 1 + d yields d = -2 by the second B.C .. Thus, up(x,t) = x - 2. The 

related homogeneous problem is 

D.E. v t = 2uxx ° ~ x ~ 1 , t ~ ° 
B.C. vx(O,t) = ° v(1,t) = ° 
I.C. v(x,O) = [x + cos2(31lX/4) - ~l- (x - 2) = ! + !cOS(31lX/2) - ~ + 2 = !cOS(31lX/2). 
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From Example 2, we know that v(x,t) = ~ -9~t/2coS(31!X/2), and then 

u(x,t) = x-2 + ~ -9~t/2cOS(31!X/2). 0 
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Observe that in Examples 3,4 and 5 the particular solution was time-independent, or in 
the usual terminology, steadY-fltate . 

Any steadY-fltate solution of the heat equation ut = kuxx is of the form cx + d (Why?). 

In Examples 3,4 and 5 , the solutions u(x,t) = up(x,t) + v(x,t) are sums of a steadY-fltate 

particular solution of the D.E. and B.C. and the solution v(x,t) (of the related homogeneous 
problem) which is transient in the sense that v(x,t) -+ 0 as t -+ 00. Thus, in these examples, 

u(x,t) = up(x,t) + v(x,t) -+ up(x,t), as t -+ 00, 

(Le., the solution u approaches the steadY-fltate solution as t -+ (0). However, for some types of 
B.C., there are no steadY-fltate particular solutions, as the next example shows. 

Example 6. For given real constants, a and b, and suitable f(x), solve the problem 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. ux(O,t) = a ux(L,t) = b (20) 

I.C. u(x,O) = f(x) . 

Solution. First note that the B.C. state that heat is being drained out of the end x = 0 at a rate 
u (O,t) = a (d. (2) of Section 3.1 with KA = 1) and heat is flowing into the end x = L at a rate x 
ux(L,t) = b . If b > a , then the heat energy is being added to the rod at a constant rate. (If 
b < a , the rod loses heat at constant rate). Thus, we cannot expect a steadY-fltate solution of the 
D.E. and B.C. , unless it happens that a = b . Indeed, putting up(x,t) = cx + d , the B.C. tell us 

that c = a and c = b , which is impossible unless a = b . The next simplest form for a 
particular solution, that reflects the fact that the heat energy is changing at a constant rate, is 

up(x,t) = ct + h(x) , (21) 

where c is a constant and h(x) is a function of x. The constant c and the function h(x) can 
be determined from the D.E. and B.C.. Indeed, 
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c = (u ) = k(u) = kh"(x) => h"(x) = ~ => h(x) = ~ x2 + dx + e , p t p xx K ~K 

for constants d and e. The B.C. then yield 

a = (up)x(O,t) = h'(O) = d 

b = (up)x(L,t) = h' (L) = * + d 
) [

d - a 

=> c = (b-ii)k . 

Thus, we arrive at the following particular solution (where we have set e = 0 , for simplicity) of 
the D.E. and B.C. of (20) : 

The related homogeneous problem is 

D.E. vt = kvxx 0 ~ x ~ L , t ~ ° 
B.C. vx(O,t) = 0 vx(L,t) = ° 
I.C. v(x,O) = f(x) - up(x,O) = f(x) - [~.x2 + ax] . 

N 
In the event that f(x) - up(x,O) is of the form l ancos(n1lX/L) , we have the solution 

n=O 

u(x,t) = up(x,t) + v(x,t) 

= u (x,t) + IN ane-(ll1r/L)2ktcos(n1lX/L) , 
p n=O 

where up(x,t) is given by (22). 0 

Boundary conditions of the third kind 

(22) 

(23) 

There are many other types of boundary conditions that can be imposed. For example, 

u(O,t) - ux(L,t) = 1, ux(0,t)-[u(0,t)]2 = ° or, more generally, F(u(O,t),u(L,t),ux(O,t),ux(L,t)) 

= 0, where the function F of four variables can be chosen at will. Even by restricting ourselves 
to those B.C. that have some physical relevance, there are more B.C. than we have time, space or 
endurance to handle. However, we will consider one additional type of B.C. that has great 
physical relevance, namely 

B.C. ux(O,t) - c·u(O,t) = ° 
ux(L,t) + c' ·u(L,t) = ° , (24) 

where c and c' are constants [usually positive in applications]. Note that as c -+ ° , the first 
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B.C. becomes ux(O,t) = ° , while as c ..... 00 , we obtain u(O,t) = ° (and similarly for the second 

B.C.). The B.C. (24) are known as boundary conditions of the third kind. The B.C. such as 
u(O,t) = ° and ux(O,t) = ° are known as B.C. of the first and second kinds respectively; thus, 

these are limiting cases of the B.C. of the third kind. Essentially, the B.C. (24) arise because 
perfect insulation and perfect thermal contact (e.g., maintaining an end exactly at ° by means of 
an external medium) are difficult to achieve in practice. To understand this more exactly, 
consider the picture (cr. Figure 3) near the end x = ° : 

grease 

- E 
+---- flu1d __ +---- rod-

Figure 3 

The region x < -( is occupied by some fluid which is well circulated and maintained at 
temperature ° , while the small region -( ~ x ~ ° is occupied by some intermediate substance 
(say grease, oxide or imperfect insulation) . Assume that this substance is in perfect thermal 
contact with the rod and the fluid so that u(x,t) is continuous at the junctions x = -( and 
x = 0. In order that the flux of heat energy across x = ° be the same when measured on either 
side of x = ° , the temperature gradient must suffer a jump so that 

(25) 

where kl is the diffusivity constant for the intermediate substance (and k is that for the rod). 

Since the heat lost through x = -( is assumed to be carried away immediately by circulating 
currents in the fluid, we have u(-(,t) = 0. If u(O,t) is constant, then eventually a steady-state 
temperature distribution would result in [-(,OJ. Indeed, the transient term decreases as 

exp[-1!'2k1t /(2 j . This decrease is especially rapid if ( is small, so that kl1!'2/(2)> 1. If u(O,t) 

is not constant, but varies rather slowly, then we still expect that the solution in the interval 
[-(,OJ will be rather close to a linear (steady-state) distribution, i.e., 

u(x,t) ~ x'7( u(O,t) -( < x ~ 0, 

when kl1!'2/(2)> 1 . Then ux(O-,t) ~ ~.u(O,t) , and (25) yields (to good approximation) 

(26) 

which is the first B.C. of (24), where c = ~(kdk). If ~(kdk) is small (say by virtue of k being 

large compared to k1), then the end x = ° of the rod behaves as if it were insulated. If ~(kl/k) 
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is large, then a close thermal contact exists between the rod and the fluid (Le., u(O,t) :;:: 0 , where 
o is the temperature of the fluid). At the other end x = L, a similar analysis applies. Thus, 

- 1 
ux(L ,t) + ((kdk). u(L,t) = 0, (27) 

since the derivatives change sign. Of course, it could happen that k) and ( may be different at 

the end x = L. Thus, c' need not equal c in (24), but it is true that c and c' are positive in 
this physical context. For the B.C. (24), it is not always easy to find the values A for which 
there is a Case 1 product solution (d. (11) of Section 3.1). In the exercises, the reader is asked to 
verify that A (where A > 0) must satisfy 

(cc ' - A2)sin(AL) + (c + C/)AcOS(AL) = 0 . (28) 

Assume that c and c' are nonnegative. First note that A = ..;ccr > 0 is a solution of (28), if 

and only if cos(R·L) = 0 (Le.,..;ccr = (n+~)ll-;L, for some n = 1,2,3, ... ). If a solution A is 

not of this form, then (cc ' - A2)cOS(AL) '1= 0 and dividing both sides of (28) by this, we obtain 

tan(AL) = (c2 + C/)A . 
A - cc ' 

(29) 

The (positive) solutions A of this equation can be roughly determined from the points of 
intersections of the graphs of the functions of A appearing on both sides of (29). If tan(AL) = 00 

.1 
(Le., cos(AL) = 0 ) and A = (cc / )' , then this exceptional solution must be included as well. 
Actually, thIS is simply the case where the graphs of the functions on either side of ~29) approach 
a common vertical asymptote (Le., they "intersect at 00" ). For example, if c = c = 1r/2 and 

L = 1 , then we have the graphs of tan( A) and 1r AI (A 2 - t1r2) , shown in Figure 4. 

Figure 4 
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Here, At = 7r/2 corresponds to an intersection at infinity. The intersection at A = 0 does not 

count, since we have assumed A > O. Numerical computation (d. Problems 12 and 13 of Section 
8.2) yields A2 ~ 3.906 , A3 ~ 6.741 , A4 ~ 9.744. 

Remark. One can imagine physical situations where c and/or c' are negative. For instance, 
consider a rod immersed in a medium in which a heat-producing chemical (or nuclear) reaction 
generates heat at a rate which is proportional to the local temperature. It is then possible that 
the portion of the medium which is close to a hot end of the rod may actually produce a heat 
influx into that end, at rate which is positively proportional to the temperature at the end. In 
such a situation, there are likely to be Case 2 product solutions which grow exponentially with 
time, possibly leading to a melt-down or explosion (d. Problem 9, parts (c) and (d)). 0 
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Summary 3.3 

1. Insulated ends: The condition ux(O,t) = ° means that no heat is flowing through the end of 

the rod at x = 0. That is, this end is insulated. If each end of the rod is either insulated or 
maintained at 0, then there are four possible sets of (homogeneous) boundary conditions (d. 
Example 1 and Example 2). 

2. Inhomogeneous B.C.: For B.C. of the form u(O,t) = a (or ux(O,t) = a) and u(L,t) = b (or 

u (L,t) = b) for constants a and b, the following method may be used. First, find a particular x 
solution, up(x,t) , of the D.E. and the B.C .. Then the required solution is 

u(x,t) = up(x,t) + v(x,t) , 

where v(x,t) is the solution of the related problem with homogeneous B.C. and the modified I.C. 
given by v(x,O) = u(x,O) - up(x,O). For illustrations, see Examples 3, 4, 5 and 6. 

For B.C. of the above form, except in the case ux(O,t) = a and ux(L,t) = b, there will be 

a particular solution of the D.E. ut = kuxx and the B.C., which is of the form up(x,t) = 
cx + d, where c and d are constants. The solution u(x,t) will then approach this 
steady-state (Le., time-independent) solution as t --i 00, since v(x,t) --i 0. When ux(O,t) = a and 

u (L,t) = b, with a 1= b, there are no steady-state particular solutions of the D.E. and B.C., but x 

rather up(x,t) = ¥ fkt + ix2] + ax, which changes with time t at a constant rate. This is 

due to a nonzero net inhux or out flux of heat through the ends (d. Example 6). 

3. B.C. of the third kind: Among the many different types of B.C., boundary conditions of the 
third kind, that is, 

ux(O,t) - cu(O,t) = ° , ux(L,t) + c'u(L,t) = ° , 
where c and c' are positive constants, are important in physical applications. The determination 
of the values of A for which there is a nontrivial product solution of the D.E. and B.C., is not 
always easy. Approximate values of A may be obtained graphically or by numerical methods. 
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Exercises 3.3 

1. Show that for the D.E. and B.C. of (2), there are no nonzero product solutions of the form 

ek..\2t(c1eAx + c2e-"\x) (i.e., the Case 2 product solution (12) in Section 3.1). 

2. (a) Show that the solution (6) of Example 1 has the property that 

1 fL r 0 u(x,t) dx = ao for all t ~ 0 , 

by simply integrating (6). What does this say about the heat energy in the rod? 

L 
(b) Without using the solution (6), differentiate t f 0 u(x,t) dx with respect to t under the 

integral, use the heat equation, the fundamental theorem of calculus, and the B.C., to prove that 
the integral in (*) of part (a) is a constant which is independent of t. 

3. (a) Find all product solutions of the D.E. and B.C. for the problem 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = 0 u (L,t) = 0 x 
I.C. u(x,O) = f(x) . 

N 
(b) Solve the problem, if f(x) = L cnsin[(n+~)7rX/L] , for some integer N ~ O. 

n=O 

4. Use Problem 3 to solve 

5. Solve 

6. Solve 

D.E. ut = 2uxx 0 ~ x ~ 1 , t ~ 0 

B.C. u(O,t) = -1 ux(l,t) = 1 

I.C. u(x,O) = x + sin(37rX/2) - 1 

D.E. ut = 5uxx 0 ~ x ~ 10 , t ~ 0 

B.C. ux(O,t) = 2 ux(10,t) = 3 

I.C. u(x,O) = io x2 + 2x + CoS(1lX) . 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = a ux(L,t) = b 

I.C. u(x,O) = bx + a. 
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7. Solve D.E. ut = uxx 0 $ x $ 7r , t ~ 0 

B.C. ux(O,t) = 2 u( 7r,t) = 4 

I.C. u(x,O) = 4 - 27r + 2x + 7cos(3x/2) . 

8. What condition on the constants a and b is necessary in order that the solution (if it exists) 
u(x,t), of the initial/boundary-value problem (20) (with B.C. ux(O,t) = a and ux(L,t) = b), 

L 
will have the property that J 0 u(x,t) dx is independent of t? Why? 

d JL Hint. Show that at 0 u(x,t) dx = k(b - a) (d. Problem 2(b)). 

9. Consider the problem 

D.E. ut = kuxx 0 $ x $ L , t ~ 0 

B.C. ux(O,t) - cu(O,t) = 0 

ux(L,t) + c'u(L,t) = 0 , 

where we assume that c, c' ~ 0 , which is the physically relevant case. 

(a) Show that a Case 1 (d.(ll) of Section 3.1) product solution of the D.E. and B.C. must be of 
the form 

where An is the n-th positive root of the equation 

(cc' - A2)sin(AL) + (c+c')A·cos(AL) = 0 (d. (28)). 

(b) Show that there are no Case 2 (d.(12) , Section 3.1) solutions of the D.E. and B.C., and there 
is a Case 3 (d.(13), Section 3.1) product solution only when c = c' = O. 

Hint. Show that A must satisfy A(c+c')cosh(AL) + (A2 + c'c)sinh(AL) = 0 in this case. 

(c) Suppose now that c < 0 and c' < O. Show that there is at least one nonzero Case 2 product 
solution of the D.E. and B.C. in this case. You need not actually find this solution explicitly. 

(d) Suppose that c < 0 and c' ~ O. Show that there is exactly one nonzero Case 2 product 
so1ution if c + c' < O. If c + c' > 0, then show that there is a Case 2 product solution if and 
only if L > -(c+c')/(c'c). Find all Case 2 product solutions when c' =-c. 
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10. For a fixed constant c> 0, the B.C. Ux(O+,t) - cu(O,t) = ° can be approximately achieved 

by adding to the end (x = 0) a layer of substance of heat conductivity k and thickness (, which 
t 

are chosen in such a way that ~(ktlk) = c (cf. (26)). Explain why this approximation should 

become more and more accurate as (---+ ° (and kt = kc( ---+ 0). 

Hint. Consider how rapidly the temperature distribution in [-(,OJ approaches a steady-state 

distribution for u(-(,t) == ° and a nearly constant u(O,t). Note that -kt 7r2/(2 = ~k7r2/i. 

11. Prove the following maximum principle for the case where one end of the rod is insulated and 
the other has specified temperature. 

Let u be a C2 solution of the problem 

D.E. ut = kuxx 
B.C. ux(O,t) = ° 
I.C. u(x,O) = f(x) 

O$x$L,t~O 

u(L,t) = b(t) 

Then for M == max {f(x)} and B == max {b(t)} , we have 
O$x$L O$t$T 

u(x,t) $ max{M,B} for 0$ x $ L , 0$ t $ T . 

Hint. Modify the proof of the GMP at the end of Section 3.2. Use the fact that if v(x,t) has a 
maximum at (O,to), then v xx(O,to) $ ° follows from the B.C. v x(O,to) = ° (Why?). 

Remark. This result leads to a minimum principle and a theorem on "continuity of solutions" 
with respect to variations of f(x) and b(t), as in Theorem 3 of Section 3.2. 

12. (a) Mimic the proof of Theorem 1 of Section 3.1, in order to prove uniqueness of solutions of 
the initial/boundary-value problem in Problem 9 (with B.C. of the third kind). Explain why the 
proof breaks down, if we do not have c > ° and c' > 0. (Uniqueness can be established by other 
methods, however.) 

(b) Show that solutions u(x,t) of the initial/boundary-value problem in part (a), with c > ° 
and c' > 0, achieve their maxima when t = 0, assuming that u(x,O) ~ ° for some x in rO,Lj. 
Give a plausible argument or an explicit example to show that the conclusion can be false it this 
assumption is dropped. 

(c) When c = 1 and c' = -1, show (by an explicit example) that the maximum temperature 
need not occur when t = 0, even if u(x,O) > ° for all x in [O,Lj (Le., the maximum principle 
in part (b) fails in this case.). Hint. Find a Case 2 product solution. 
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3.4 Time-Dependent Boundary Conditions and Duhamel's Principle 
for Inhomogeneous Heat Equations 

We have proved (d. Theorem 1 of Section 3.2) that there is at most one C2 solution of 

D.E. ut = kuxx ° ~ x ~ L , t ~ ° 
B.C. u(O,t) = a(t) u(L,t) = b(t) 

I.C. u(x,O) = f(x) . 

(1) 

In Section 3.3 we found the solution of this problem in the case where a(t) and b(t) are constant 
functions (independent of t) and f(x) has an appropriate form, i.e. 

f(x) = u (x,O) + l..N bnsin(n7rX/L), u (x,O) = [(t-ra)]x + a . 
p n=l p 

As in the case where a( t) and b( t) are constant, we can find a function of the form c( t)x + d( t) 
that satisfies the B.C. of (1). Indeed, from the B.C. we obtain a(t) = c(t)O -I- d(t) = d(t) and 
b(t) = c(t)L + d(t) ,whence d(t) = a(t) and c(t) = [b(t)-a(t)]/L. The function w(x,t), 
defined by 

w(x,t) = [b(t) L a(t)]x + a(t) , (2) 

then satisfies the B.C. of (1). However, w(x,t) will not satisfy the D.E unless a(t) and b(t) are 
constant. Indeed, 

w -kw = [b'(t) - a'(t)]x + a'(t) 
t xx L . (3) 

For this reason, we write w(x,t) instead of up(x,t); the latter denotes a particular solution of the 

D.E. as well as the B.C .. We may still attempt to find a solution for problem (1) of the form 
u(x,t) = w(x,t) + v(x,t). The function v(x,t) must solve the following related problem with 
homogeneous B.C., but inhomogeneous D.E. : 

D.E. vt - kvxx= -[b'(t)-a'(t)]x/L - a'(t) ° ~ x ~ L , t ~ ° 
B.C. v(O,t) = ° v(L,t) = ° 
I.C. v(x,O) = u(x,O)-w(x,O) = f(x) - [a(O)-b(O)]x/L - a(O) . 

(4) 
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Indeed, v = u-w , and so vt - kvxx= ut - kuxx - (wt - kwxx) = -(wt - kwxx) 

= -[b' (t )-a' (t )]x/L - a' (t) by (3). Also, v(O,t) = u(O,t) - w(O,t) = a(t) - a( t) = ° and V(L,tj 
= b{t) - b(t) = 0. When a(t) and b(t) are constants, the D.E. is homogeneous and problem 4 
is then familiar to us. However, in general, it appears that we have merely converted problem b 
into another problem (4), perhaps equally difficult. Observe that (4) is a special case of the 
general problem 

B.C. v(O,t) = ° v(L,t) = ° 
I.C. v(x,O) = g(x) . 

(5) 

If we knew how to solve problem (5), then we could solve (4) and obtain the solution u(x,t) 
= w(x,t) + v(x,t) of (1). Fortunately there is a method for solving (5) for suitable h(x,t) and 
f(x). This method was discovered by the French mathematician and physicist 
Jean-Marie-Constant Duhamel (1797-1872), who published his solution in 1833. There is one 
further simplification of (5) which we can easily make. Suppose ul and u2 are solutions of the 

following respective problems: 

(a) D.E. (ul)t - k(ul)xx= ° 
B.C. ul(O,t) = ° 

ul(L,t) = ° 
I.C. ul(x,O) = g(x) 

(b) D.E. 

B.C. 

I.C. 

(u2)Ck(U2)xx= h(x,t) 

u2(O,t) = ° 
u2(L,t) = ° (6) 

u2(x,O) = ° . 
Then the reader may easily check that v(x,t) = u,(x,t) + u2(x,t) solves (5). The problem for ul 
is familiar, and hence the only unfamiliar problem that remains is the problem for u2, with 

homogeneous B.C. and I.C., but inhomogeneous D.E.. In summary of what has been 
accomplished so far, we state 

Proposition 1. A solution of problem (1) is given by 

u(x,t) = w(x,t) + u,(x,t) + u2(x,t) , 

where w(x,t) is the particular solution (2) of the B.C. and ul(x,t) solves (6a) with g(x) 

= f(x) - w(x,O) and u2(x,t) solves (6b) with h(x,t) = -(wt - kwxx) = -[b' (t) - a' (t)]x/L 

-a'(t). 

The reduction procedure embodied in Proposition 1 works for the other standard problems 
where the heat energy flux is prescribed at one or both ends, as the following example illustrates. 
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Example 1. Reduce the problem 

to a problem of the form 

D.E. ut = kuxx ° ~ x ~ L , t ~ ° 
B.C. u(O,t) = a(t) ux(L,t) = b(t) 

I.C. u(x,O) = f(x) 

D.E. (u2)t - k(u2)xx= h(x,t) 

B.C. u2(O,t) = ° (u2)x(L,t) = ° 
I.C. u2(x,O) = ° . 

(7) 

(8) 

Solution. Note that w(x,t) = b(t)x + a(t) satisfies the B.C. of (7). Setting v(x,t) = u(x,t) 
-w(x,t), we have vt - kvxx = ut - kuxx - (wt - kwxx) = -b'(t)x - a'(t), and the related 

problem for v is then 

D.E. vt-kvxx=-b'(t)x-a'(t) O~x~L,t~O 

B.C. v(O,t) = ° vx(L,t) = ° (9) 

I.C. v(x,O) = f(x) - w(x,O) = f(x) - b(O)x - a(O) . 

Then, v = ul + u2 ,where ul solves the familiar problem 

D.E. (ul)Ck(ul)xx= ° 
B.C. ul(O,t) = ° (u1)x(L,t) = ° 
I.C. ul(x,O) = f(x) - b(O)x - a(O) , 

and u2 solves (8) with h(x,t) = -b' (t)x - a' (t). 0 

Duhamel' 8 method - the physical motivation 

We now motivate Duhamel's method for the solution of a problem of the following form 
which arose [cf.(6b)] as the principal obstacle to solving (1) : 

D.E. ut - kuxx = h(x,t) ° ~ x ~ L , t ~ ° 
B.C. u(O,t) = ° u(L,t) = ° 
I.C. u(x,O) = ° . 

(10) 
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Remark. The inhomogeneous heat equation in (10) has a simple physical interpretation. To this 
end, consider the derivation of the heat equation in Section 3.1 . Multiplyin~ the D.E. by CDA 
(cf. Section 3.1 for definitions) and integrating over any subinterval [a,b] of [O,L], we obtain 

b b fa CDA(ut - kuxx) dx = fa CDA·h(x,t) dx. (11) 

In the derivation of the heat equation, the left side of (11) was found to be the rate of heat energy 
gain in the portion [a,b] of the rod, minus the net rate of heat influx through the cross sections 
x = a and x = b . In the absence of any internal source of heat (e.g., chemical reactions, 
electrical currents, etc.), the left side of (11) is then o. If, however, there is an internal source of 
heat such that CDA· h(x,t)~x is the amount of heat produced in [x,x+~x] per unit time, then 
the right side of (11) is the rate of heat energ)' production in the portion [a,bI due to this internal 
source, and equation (11) results. Since [a,b] is an arbitrary subinterval of [O,L], the integrands 
of (11) must be equal and we get the D.E. ut - kuxx = h(x,t) ,where h(x,t) is proportional to 

the internal heat source density distribution at time t. 0 

Now, suppose the rod is at temperature 0, when we turn on the heat source h(x,O) for a 
very brief time interval from t = -~s to t = 0 , and then switch it off. At t = 0 the 
temperature distribution in the rod will be very nearly equal to h(s,O)~s (Le., if ~s is small, 
then only a small amount of heat will flow). The temperature at a later time t ~ 0 will then be 
Rj v(x,t)~s , where v(x,t) solves the problem 

D.E. v = kv 0 ~ x ~ L , t ~ 0 t xx 

B.C. v(O,t) = 0 v(L,t) = 0 

I.C. v(x,O) = h(x,O) . 

(Note that v(x,t)~s solves this problem with initial temperature h(x,O)~s, since ~s is a 
constant and the problem is linear.) More generally, if the source is turned on at the time 
t = s - ~s and turned off at t = s , then the effect of this on the temperature at time t ~ s is 
very nearly v(x;t;s)~s, where s is a fixed parameter and v(x,t;s) solves 

D.E. v t = kv xx 0 ~ x ~ L , t ~ 0 

B.C. v(O,t;s) = 0 v(L,t;s) = 0 (12) 

I.C. v(x,s;s) = h(x,s) . 

The total effect of all these heat source contributions on the temperature at time t is then the 
integral (continuous superposition) of all the source contributions prior to t, namely 

t 
fo v(x,t;s) ds . 
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In other words, by this somewhat imprecise, physical reasoning, we are led to the conjecture that 

t 
u(x,t) = fo v(x,t;s) ds (13) 

will be the solution of (10) provided v(x,t;s) is a solution of the problem (12) which has 
homogeneous D.E. and B.C.. In the sequel we will prove that (13) is in fact a solution of (10) 
under certain assumptions. But first we note that problem (12) is not entirely familiar because 
the initial condition is given at time t = s instead of t = O. This difficulty is easily handled by 
solving the following associated problem with I.C. at t = 0 . 

D.E. v = kv t xx 

B.C. v(O,t;s) = 0 v(L,t;s) = 0 (14) 

I.C. v(x,O;s) = h(x,s) . 

Then check that 

v(x,t;s) = v(x,t-s;s) 

solves (12). In other words, we just perform a translation in time to obtain an I.C. at t = 0, 

instead of t = s. Indeed, one can forget about (12), and write (13) in terms of v, namely 

u(x,t) = f~ v(x,t-s;s) ds . (15) 

Thus, the hypothetical solution u(x,t) of problem (10) may be obtained by solving the familiar 
problem (14) and performing the integration (15). Observe that the troublesome source term 
h(x,t) in (10) has been transferred to a "harmless" initial condition in problem (12). This is the 
essence of Duhamel's method, and the general idea that sources can be converted to initial 
conditions of related problems is known as Duhamel's principle. Before formulating a precise 
mathematical statement and proof, we consider an example. 

Example 2. Solve the following problem with heat source distribution h(x,t) = t· sin(x) . 

D.E. ut - kuxx = t· sin(x) 0 ~ x ~ 11" , t ~ 0 

B.C. u(O,t) = 0 u(11",t) = 0 

I.C. u(x,O) = 0 . 

Solution. We solve the related problem (14) 

B.C. v(O,t;s) = 0 v( 11",t;s) = 0 

I.C. v(x,O;s) = h(x,s) = s·sin(x) . 

(16) 
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Here, s is treated like a constant, and so we easily obtain v(x,t;s) = s.e-ktsin(x). According to 
(15) the solution of (16) should be 

u(x,t) = f~ v(x,t-s;s) ds = f~ s.e-k(t-s)sin(x) ds 

= e-ktsin(x) f~ s·eks ds = [k-1t + k-2(e-kt -1)]sin(x)]. 

This is the correct solution, as can be checked directly. 0 

Example 3. Solve the following problem, where the heat source distribution is e -etsin(x) for an 
arbitrary constant c. Does anything interesting happen when c ~ 1 ? 

D.E. ut - uxx= e-etsin(x) 0 ~ x ~ 7r, t ~ 0 

B.C. u(O,t) = 0 u(7r,t) = 0 

I.C. u(x,O) = 0 . 

Solution. We solve the related problem (14) with h(x,s) = e -e8sin(x) ,obtaining v(x,t;s) = 
e -ese -tsin(x). Then, by (15) the solution should be 

ft - ft -t (1-e)s . 1-<: e --e sm x c f 1 [ 
1 (-ct -t). ( ) 

u(x,t) = v(x,t-s;s) ds = e e sm(x) ds = -t 
o 0 t·e sin(x) c=l 

As t -+ 00 , we have the approximate behavior 

1 
[1-crle-ctsin(x) c < 1 

u(x,t) ~ t.e-tsin(x) c = 1 

[c-lr1e-t sin(x) c> 1 

There are qualitative changes in the behavior of u(x,t) as c passes through 1. 0 

Proving Duhamel's principle 

In the proof of our rigorous statement of Duhamel's principle (see Theorem 1 below), we 
will need the next result concerning the differentiation of integrals with respect to a variable 
occurring as a limit of integration as well as inside the integral (cf. the Appendix A.3). 

Lemma 1. Suppose g(t,s) and gt(t,s) are continuous functions. Then 

~[f~ g(t,s) ds ] = g(t,t) + f~ gt(t,s) ds (17) 
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Proof. Let H(t,y) be defined by 

H(t,y) = f: g(t,s) ds . 

We compute ~ H(t,t) , since this is the left-hand side of (17). Let y(t) = t , and note that 

d d dt Qy <It H(t,t) = <It H(t,y(t)) = Ht(t,t) <It + H/t,y(t)) at 

= Ht(t,t) + Hy(t,t) . (18) 

We have Ht(t,y) = f: gt(t,s) ds by Leibniz's rule (cf. Appendix A.3). Also, Hy(t,y) = g(t,y), 

since differentiating with respect to an upper limit yields the integrand evaluated at the upper 

limit, [i.e., ~ f: f(s) ds = f(x)J. Thus, H/t,t) = g(t,t), Ht(t,t) = f~ gt(t,s) ds, and 

(17) then follows from (18). 0 

Theorem 1 (Duhamel's principle). Suppose that h(x,t) is a given C2 function for 0 ~ x ~ L , 
t ~ O. Assume that for each s ~ 0 the problem 

D.E. v = kv 0 ~ x ~ L , t ~ s t xx 

B.C. v(O,t;s) = 0 v(L,t;s) = 0 (19) 

I.C. v(x,s;s) = h(x,s) 

has a C2 solution v(x,t;s), where v(x,t;s), vt(x,t;s) and vxx(x,t;s) are continuous Uointly 

with (x,t)] in s, as well. Then the unique solution of the problem 

D.E. ut - kuxx = h(x,t) 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = 0 u(L,t) = 0 (20) 

I.C. u(x,O) = 0 

is given by 

u(x,t) = f~ v(x,t;s) ds , (21) 

or equivalently, by (15), where v [v(x,t;s) = v(x,t-s;s) ] solves (14). 
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Proof. The function u(x,t) defined by (21) satisfies the I.C. u(x,O) = O. It also satisfies the 
B.C. of (20), since v(x,t;s) satisfies the B.C. of (19). Now use Lemma 1, with g(t,s) = v(x,t;s), 
where x fixed. Then by (17) 

t 
ut(x,t) = v(x,t;t) + fo vt(x,t;s) ds 

= h(x,t) + ft kv (x,t;s) ds , o xx 

(22) 

where we have used the I.C. of (19) with s = t and the D.E. of (19). If we apply Leibniz's rule to 
the final integral of (22), then we obtain ut(x,t) = h(x,t) + kuxx(x,t) by (21). By our 

hypotheses on v(x,t;s) , we know that u(x,t) in (21) is C2 (by Leibniz's rule again). Concerning 
uniqueness, see Problem 10. 0 

Remarks. At present, we only know how to solve problem (20) [or (14)] in the case where the 
function h( x, t) is of the form 

N 
h(x,t) = l bn(t) sin(n7rX/L) . 

n=O 
(23) 

On the other hand, the function h(x,t) in Proposition 1 , given by 

h(x,t) = -[b'(t)-a'(t)]x/L - a'(t) , (24) 

is not of the form (23). Indeed, (23) vanishes at x = 0 or x = L only when a'(t) = b'(t) = 0 
(Le., only when a(t) and b(t) are constant functions). Thus, it seems that we have fallen short of 
solving problem (1), except in the case where a(t) and b(t) are constants, which was already 
considered in Section 3.3. Even if one attempts to represent h(x,t) in (24) by its "Fourier sine 
series" (covered in Chapter 4), the difficulty with the endpoints remains. However, the series 
representation can be shown to yield the physically correct solution for 0 < x < L , t > 0 , and it 
has the correct limiting values as x -> 0+ , X -> L- and t -> 0+ , for suitably nice functions a(t), 
b( t) and f(x). The following examples are contrived in order to avoid any difficulties with infinite 
series solutions. Indeed, we have added sources that cancel with (24) after transforming to the 
related problems with homogeneous B.C.. In Chapter 4, we will consider the formal Fourier 
series solutions of problems which are not contrived. 0 

Example 4. Solve the problem 

D.E. ut - kuxx= t[sin(27rX) + 2x] 0 ~ x S 1 , t ~ 0 

B.C. u(O,t) = 1 u(l,t) = t2 

I.C. u(x,O) = 1 + sin(37rX) - x . 

(25) 

Solution. A simple function that satisfies the B.C. is w(x,t) = (t2-1)x + 1. Then u(x,t) 
= w(x,t) + v(x,t), where v(x,t) solves the related problem 
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B.C. v(O,t) = u(O,t) - w(O,t) = ° 
v(l,t) = u(l,t) - w(l,t) = ° 

Chapter 3 The Heat Equation 

I.C. v(x,O) = u(x,O) - w(x,O) = sin(37rX) 

Now, v = u1 + u2 , where u1 and u2 solve respectively 

D.E. (u1)t - k(u1)xx = ° 
B.C. u1(0,t) = ° 

u1{1,t) = ° 
I.C. u1(x,0) = sin(37rX) 

D.E. (u2\ - k(u2)xx= t·sin(27rX) 

B.C. u2(0,t) = ° 
u2(I,t) = ° 

I.C. u2(x,0) = ° . 
We know that u (x,t) = e-9rktsin(37rX) (cf. Section 3.1). The function u2 is found via 

1 
t 

Duhamel's principle. Indeed, u2(x,t) = Io v(x,t-s;s) ds, where v solves the problem 

D.E. vt - kvxx = ° 
B.C. v(O,t;s) = ° v(l,t;s) = ° 
I.C. v(x,O;s) = s·sin(27rX) . 

We know that v(x,t;s) = s.e-4rktsin(27rX) , and so 

u2(x,t) = I~s.e-4rk(t-S)sin(27rX) ds = e-411'2ktsin(27rX)I~s.e4rkS ds 

= (41I'2k)-2[411'2kt + e-4rkt -1],sin(27rX). 

The solution of (25) is then given by u(x,t) = w(x,t) + u1(x,t) + u2(x,t). 0 

Duhamel's principle for other boundary conditions 

Duhamel's principle also applies to problems with D.E. ut - kuxx = h(x,t) and 

homogeneous B.C. of the three forms 

[ 
ux(O,t) = ° ; 
u(L,t) = ° [ 

u(O,t) = ° ; 
ux(L,t) = ° [ 

u (O,t) = ° 
UX(L,t) = ° . x 

The only difference is that the function v (or v) satisfies the same corresponding B.C .. Then 
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the proof of Duhamel's principle proceeds just as in the standard case. We illustrate Duhamel's 
principle for these other B.C. in the next examples. 

Example 5. Solve the problem 

D.E. ut - 8uxx= cos(t) + etsin(x/2) 0 ~ x ~ 7r, t ~ 0 

B.C. u(O,t) = sin(t) ux(7r,t) = 0 

I.C. u(x,O) = 0 . 

(26) 

Solution. Note that w(x,t) = sin(t) satisfies the B.C .. Letting v(x,t) = u(x,t) - w(x,t) , we 
obtain the related problem 

D.E. vt - 8v = ut - 8u - (wt - 8w ) = etsin(x/2) xx xx xx 

B.C. v(O,t) = 0 vx(7r,t) = 0 (27) 

I.C. v(x,O) = 0 . 

We can solve this via Duhamel's principle. Of course, one should not confuse the v here with the 
t 

v that was used in the statement of Theorem 1. The solution of (27) is fo v(x,t-s;s) ds, where 

v solves the problem 

D.E. vt - 8vxx= 0 

B.C. v(O,t;s) = 0 V (7rt·s) = 0 
x " 

I.C. v(x,O;s) = eSsin(x/2) . 

From Problem 3 of Exercises 3.3 , we know that v(x,t;s) = eSe-2tsin(x/2). Then 

t ft 
u(x,t) = w(x,t) + fo v(x,t-s;s) ds = sin(t) + e-2t sin(x/2) 0 e3s ds 

= sin(t) + j[et -e-2tlsin(x/2). 0 

Example 6. Solve the following inhomogeneous problem with insulated ends. 

D.E. ut - uxx= (2t+1)cos(3x) 0 ~ x ~ 7r, t ~ 0 

B.C. ux(O,t) = 0 ux(7r,t) = 0 

I.C. u(x,O) = 0 . 

(28) 
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Solution. We apply Duhamel's principle when the ends are insulated, to obtain 
t 

u(x,t) = So v(x,t-s;s) ds, where v(x,t;s) solves the problem 

D.E. 

B.C. 

I.C. 

v -v =0 O~X~7r,t~O t xx 

vx(O,t;s) = 0 vx(7r,t;s) = 0 

v(x,O;s) = (2s+1)cos(3x) . 

We can easily check that v(x,t;s) = (2s+1)e-9tcos(3x), whence 

t t 
u(x,t) = Jo(2S+1)e-9(t-S)COS(3X) ds = e-9tcOS(3X)Jo(2S+1)e9SdS 

= J:r [18t + 7 -7e-9t]cos(3x). 0 
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Summary 3.4 

1. Reduction of time-dependent B.C. (Proposition 1): A solution of the problem 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = a(t) u(L,t) = b(t) 

I.C. u(x,O) = f(x) . 
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is given by u(x,t) = w(x,t) + u1(x,t) + u2(x,t), where w(x,t) = [b(t) - a(t)]x/L + a(t) , 

and where u1(x,t) and u2(x,t) are solutions of the following respective problems : 

(a) D.E. (u1)t - k(u1)xx = 0 (b) D.E. (u2\ - k(u2)xx = h(x,t) 

B.C. u1(O,t) = 0 B.C. u2(O,t) = ° 
u1(L,t) = ° u2(L,t) = 0 

I.C. u1(x,O) = g(x) I.C. u2(x,O) = 0 , 

where g(x) = f(x) - w(x,O) and h(x,t) = -[b'(t) - a'(t)]x/L - a'(t) . 

2. Theorem 1 (Duhamel's Principle): Suppose that h(x,t) is a given C2 function for 0 ~ x ~ L , 
t ~ o. Assume that for each s ~ 0 the problem 

D.E. v = kv 0 ~ x ~ L , t ~ s t xx 

B.C. v(O,t;s) = 0 v(L,t;s) = 0 

I.C. v(x,s;s) = h(x,s) 

has a C2 solution v(x,t;s), where v(x,t;s), vt(x,t;s) and vxx(x,t;s) are continuous [jointly 

with (x,t)] in s, as well. Then the unique solution of the problem 

D.E. ut-kuxx= h(x,t) 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = 0 u(L,t) = 0 

I.C. u(x,O) = 0 
t 

is given by u(x,t) = Io v(x,t;s) ds. (Other types of homogeneous B.C. are possible.) 
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Exercises 3.4 

1. (a) Find a particular solution of the form up(x,t) = w(x) [Le., up is steady-state] of the 

D.E. and the B.C. of the following problem 

D.E. ut - kuxx= h(x) 0$ x $ L , t ~ ° 
B.C. u(O,t) = a u(L,t) = b 

I.C. u(x,O) = f(x) . 

(b) Use the result of (a) to solve the following problem without using Duhamel's principle. 

D.E. ut - 2uxx= sin(3x) 0$ x $ 7r, t ~ ° 
B.C. u(O,t) = ° u(7r,t) = ° 
I.C. u(x,O) = ° . 

c) Obtain the solution of part (b), but now use Duhamel's principle. 

2. Verify that if v(x,t;s) solves (14) ,then v(x,t;s) = v(x,t-s;s) solves (12). 

3. Solve 

4. Solve 

D.E. ut - uxx = e -4tcos( t )sin(2x) ° $ x $ 7r , t ~ ° 
B.C. u(O,t) = ° u(7r,t) = ° 
I.C. u(x,O) = sin(3x) . 

D.E. ut - uxx= t·cos(x) 0$ x $ 7r, t ~ ° 
B.C. ux(O,t) = ° ux(7r,t) = ° 
I.C. u(x,O) = ° . 

5. (a) Find a particular solution w(x,t) of the D.E. and B.C. of the problem (where h(t) is C1) 

D.E. ut - kuxx = h(t) 0$ x $ L , t ~ ° 
B.C. ux(O,t) = a ux(L,t) = b (*) 

I.C. u(x,O) = f(x) . 

2 Hint. Try the form w(x,t) = ctx + c2x + g(t) . 
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(b) Show that the solution of (*) is given by u = w + v , where w is given in (a) and v is the 
solution (if it exists) of 

D.E. vt - kvxx = 0 

B.C. vx(O,t) = 0 v (L,t) = 0 
x 

I.C. v(x,O) = f(x) - w(x,O) . 

Thus, (*) can be solved without Duhamel's principle. 

6. Solve D.E. ut - kuxx = cos(3t) 0 ~ x ~ 1 , t ~ 0 

I.C. u(x,O) = cos(nx) + ~x2 - x . 

Hint. Use Problem 5. 

7. Solve 

8. Solve 

9. Solve 

D.E. ut - uxx = xet/7r + t[2 - 2x/7r + sin(x)] 0 ~ x ~ 7r, t ~ 0 

B.C. u(O,t) = t2 u(7r,t) = et 

I.C. u(x,O) = x/7r + sin(2x) . 

D.E. ut - 4uxx = etsin(x/2) - sin(t) 0 ~ x ~ 7r, t ~ 0 

B.C. u(O,t) = cos(t) ux(7r,t) = 0 

I.C. u(x,O) = 1 . 

2 -47r2t D.E. ut - Uxx = x - x + 2t + e cos(2nx) 0 ~ x ~ 1 , t ~ 0 

B.C. ux(O,t) = t ux(l,t) = -t 

I.C. u(x,O) = 0 . 

10. Show that the uniqueness theorem (cf. Theorem 1 of Section 3.2) remains true if the D.E. is 
replaced by ut - kuxx = h(x,t). Is it true for other types of B.C. (e.g., ux(O,t) = a(t) ) ? 
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11. Suppose that h(x,t) in the D.E. of (10) is changed to q(x,t). By applying the 
Maximum/Minimum Principle to (14) (and using (15)), show that the change in the solution at 
time t will be at most t·maxlh(x,s) - q(x,s) I , where the maximum is taken over the 
rectangle: 0 ~ x ~ L , 0 ~ s ~ t . 

12. Consider D.E. ut = kuxx O~x~L, t~O 

B.C. u(O,t) = a(t) u(L,t) = b(t) 

I.C. u(x,O) = f(x) , 

where a(t) and b(t) are polynomials, say a(t) = 'it A.ti and b(t) = t:. B.ti . Here we 
i=O 1 i =0 1 

show that there is a unique particular solution of the D.E. and B.C. which is of the form 

u (x,t) = ~ F1·(x)ti, where each F.(x) is a polynomial of degree at most 2(n-i) + 1. This 
P li=O 1 

shows that problem (*) can be converted into a problem for v(x,t) = u(x,t) - up(x,t) with 

homogeneous D.E. and B.C., so that Duhamel's principle need not be used in this case. 

n . 
(a) By substituting up(x,t) = l. Fi(x)t l into ut = kuxx and equating coefficients, deduce 

1=0 
that F~(x) = 0, kF~_1 (x) = nF n(x), ... , kF~_i(x) = (ll-i+l)F n-i+l (x), ... , kF1)(x) = F 1 (x) . 

(b) Show that the B.C. imply that F n(x) = (bn - an)x/L + an' More generally, show that 

Fi(x) is uniquely determined by Fi+ 1 (x) and the B.C. Thus, by induction, 
n . 

up(x,t) = l. Fi(x)tl is uniquely determined. (We thank Kenneth Rogers for this problem.) 
1=0 



CHAPTER 4 

FOURIER SERIES AND STURM-LIOUVILLE THEORY 

In Chapter 3 we discovered that it was easy to obtain solutions of initial/boundary-value 
problems for the heat equation, provided that the initial temperature can be expressed (within 
experimental error) by a sum of sine or cosine functions which meet the boundary conditions. The 
problems in Chapter 3 were specially designed, so that f(x) could be put in this form by means of 
trigonometric identities. In this chapter, we learn how to find an approximation, of the 
appropriate form, for any "reasonably nice" function on a finite interval. In Chapters 5 and 6, we 
find that the theory of Fourier series also applies to problems for the wave equation and Laplace's 
equation. 

In Section 4.1, we define the Fourier series of a function, and we bring out the analogy between 
this series and the decomposition of an ordinary vector into its components relative to an 
orthogonal basis. Section 4.2 contains statements and proofs of various convergence results for 
Fourier series. In view of practical applications, we pay attention to the error introduced by 
truncating a Fourier series at a finite number of terms. In Section 4.3, different types of Fourier 
series (e.g., cosine series and sine series) are considered. These series are used to solve problems 
for the heat equation with various boundary conditions, when the initial conditions are not in the 
special forms found in Chapter 3. In Section 4.4, we introduce a generalization of the theory of 
Fourier series, namely the Sturm-Liouville theory. This theory can be used when the heat 
conducting material in a rod has a possibly variable thermal conductivity, density, specific heat, 
or source term which is proportional to the temperature. It applies also to wave problems, and 
more generally, it is used to analyze the solutions of the ODEs with homogeneous boundary 
conditions, which result when separation of variables is used. 

187 
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4.1 Orthogonality and the Definition of Fourier Series 

We found in Chapter 3 that it is important to represent initial temperature distributions 
f(x) , 0 ~ x ~ L , accurately (say within experimental error) by functions of the following forms 
(depending on the type of B.C.) : 

N 
Ln=l bnsin( n 1fX/L) (1) 

N 
t=o ancos (n7rx /L) (2) 

f(x) ~ 

N 
Ln=ocnsin[(nH ) 1fX/LJ (3) 

N 
Ln=odncos[(n+~)1fX/L] . (4) 

Form (1) is appropriate when both ends are maintained at 0 ; (2) when both ends are insulated; 
(3) and (4) when one end is insulated, while the other end is maintained at O. We will concentrate 
on (1) and (2), which are most conveniently treated simultaneously by working with functions on 
the larger interval [-L,LJ. Indeed, it is this larger interval which was used in the case of heat 
conduction problems for the circular wire (cf. Proposition 2 in Section 3.1). In that case, we 
needed to approximate initial temperatures by linear combinations of both functions sin(n1fXI.L) 
and cos(n1fX/L). Our first objective is to show that the functions sin(n1fX/L) and cos(n1fX~L), 
n = 1, 2, 3, ... , can be regarded as orthol};onal vectors in an infinitHimensional II space , of 
functions defined on r-L,1]. The sums in (1) and (2) are linear combinations of these "vectors". 
Of course, in threHimensional space, any vector is a linear combination of three orthogonal 
vectors. Analogous results in function space require much more work and preparation. Thus, we 
will study the problem of how to represent functions f(x) as such linear combinations. 

At first we will be concerned with trigonometric polynomials, which are finite sums of the form 

N 

~ao + Ln=lancos(n1fX/L) + bnsin(l11fX/L) , x real, 

where ao, a1, •.. , aN and b1, ... , bN are real constants. Subsequently, we will study infinite series 

of the form 
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00 

iao + In=,anCOS(n1rX/L) + bnsin(n1rX/L) , 

where 

1 JL an = r f(x)cos(n1rX/L) dx , n = 0,1,2, ... , 
-L 

and 

1 JL bn = r f(x)sin(n1rX/L) dx , n = 1,2,3, .... 
-L 

The series (*), called the Fourier series of f(x), is named after the outstanding French 
mathematical physicist Joseph Fourier (1768-1830). In the early part of the nineteenth century, 
Fourier worked on the theory of heat conduction and in 1822 he published his magnum opus, La 
Tf"eorie Analytique de la Chaleur, in which he made extensive use of the series that now bears his 
name. Actually, Fourier worked only with trigonometric polynomials, and the consensus among 
historians seems to be that Fourier contributed nothing whatever to the mathematical theory of 
Fourier series. Indeed, these series were well-known much earlier to Leonhard Euler (1707-1783), 
Daniel Bernoulli (1700-1782), Joseph Lagrange (1736-1813) and others. 

Orthogonality in function space 

Let f(x) and g(x) be two real-valued continuous functions defined for -L ~ x ~ L. We define 
the inner product of f and g to be the real number <f,g> given by 

L 
<f,g> = J f(x)g(x) dx 

-L 

This is similar to the "dot product" of vectors in 3-dimensional space: 

3 
a· b = alb, + a2b2 + a3b3 = \' anbn . 

Ln=' 

Since the integral of the sum of two functions is the sum of the integrals, it follows that 

<f,g+h> = <f,g> + <f,h> . 

(5) 

(6) 

Also, we have <cf,g> = c<f,g>, for any real constant c, and the obvious symmetry 
<f,g> = <g,f>. The norm (or length) of the function f is 

(7) 
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! 
This is analogous to the length I all = r a· a] 2 of a vector a in the xyz-space. Two functions f 
and g are said to be orthogonal on [-L,tj if <E,g> = 0 . 

A family of continuous functions, f1' f2' f3' ... , is called an orthogonal family of norm-square L 

on [-L,L], if for any members fm and flp we have 

if m * n 
(8) 

if m = n. 

In Proposition 1 below, we prove that the family sin(n7TX/L), n = 1, 2, 3, ... , is an orthogonal 
family of norm-square L, by using the corollary of the following integral formula of Green. 
Green's formula will often be employed in subsequent computations. 

Green's Formula. Let f(x) and g(x) be C2 functions defined on [a,b]. Then 

b b b J afll(x)g(x) dx - J /(X)gll(X) dx = [f' (x)g(x) - f(X)g' (x)] I a 

Proof. From the product rule, we have 

~ [f' (x)g(x) - f(X)g' (x)] = fll(X)g(X) + f' (X)gl (x) - f' (X)gl (x) - f(X)g"(X) , 

and integrating both sides from a to b , we obtain (9). 0 

Corollary. Let f(x) and 9(x) be C2 functions defined on [-L,LJ, and suppose that 
f(-L) = f(L), f/(-L) = f (L) ,g(-L) = g(L) ,and g/(-L) = g/(L). Then, 

<f",g> - <f,g"> = 0 or <f",g> = <f,g"> . 

(9) 

(10) 

Proof. Recall the definition (5), and apply Green's formula (9), noting that the right side of (9) 
vanishes by the assumptions on f and g at x = ±L. 0 

Proposition 1. The family offunctions sn(x) == sin(n7TX/L) (n = 1,2,3 ... ) is orthogonal of 

norm-square L on the interval [-L,L] (cf. (8)). 
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Proof. We apply (10) with f(x) = sn(x) and g(x) = sm(x) , noting that s~ = -(n1l'/L)2sn and 

sm" = -(m1l'/L)2sm : 

o = <s~,sm> - <sn's~> = <-(n1l'/L)2sn,sm> - <sn,-(m1l'/L)2sm> = (1I'/L)2(m2-n2)<sn,sm>. (11) 

Thus, if m f. n , we may divide by m2_n2 to obtain <sn,sm> = O. For m = n , we compute 

fL 2 fL <sn,sn> = sin (n1TX/L) dx = HI - cos(2n7rX/L)] dx 
-L -L 

L 
= [~x-(L/4n1l')'Sin(2n1TX/L)] I_L = L. 0 

Note that the same proof may be used to show that the family of functions cn(x) 

= cos(n7rX/L) (n = 1, 2, 3, ... ) is orthogonal of norm-square L on the interval [-L,L1. 
Moreover, the same computation as (11), with sm replaced by cm (and sn left as it is), yields 

<sn'cm> = 0 for n f. m. Also, we have <sn'cn> = 0, because 

L L 
<cn,sn> = f cos(n1TX/L) 'sin(n1TX/L) dx = f ~sin(2n1TX/L) dx 

-L -L 
L 

= (-L/4n1l') cos(2n1TX/L) I = 0 . 
-L 

Thus, we can shuffle the families Sl' S2' ... and cl ' c2'... to obtain the larger orthogonal family 

SI' c1, S2' c2'''' on [-L,1]. The foregoing integrals of products of sines and/or cosines could also 

have been computed without Green's formula, by using the trigonometric identities (27) in Section 
3.1. However, the proof using Green's formula easily generalizes to certain multiple integrals, 
when trigonometric identities are not available. 

Example 1. Show that the constant function co(x) = cos(07rX/L) :: 1 is orthogonal to each 

member of the family Sl' c1' S2' c2, .... However, note that Co does not have norm-square L. 

Remedy this defect by mUltiplying Co by an appropriate constant. 

L 
Solution. Note that <cO,sn> = f l·sin{n1TX/L) dx = 0 , and similarly <CO,cn> = 0, n = 1,2, 

-L 
3, .... Thus, Co is orthogonal to each of the functions Sl' cl , S2' c2 ... on [-L,L]. Also, for any 
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constant b, we have <bco,bco> = b2<co,co> = b2JL 12 dx = b22L. Thus, by choosing b 
-L 

=.;1[2 so that b2 = 1/2 , we have <.;1[2 co,Jffl co> = L. Note that .;Ifl c is still 
o 

orthogonal to Sl' cl' S2' c2'... on [-L,L]' since <Jffl cO,sn> = Jffl <cO,sn> = 0, etc.. 0 

In summary of the preceding analysis, we have 

Pro~itio~ 2. The following functions form an orthogonal family of norm square L 
on l-L,L] . 

.;1[2 co(x) =.;1[2, sn(x) = sin(n1TX/L), cn(x) = cos(n1TX/L), n = 1, 2, 3, ... . (12) 

Remark. We will eventually prove that there is no C1 function on [-L,L1 (other than the zero 
function) which is orthogonal to all the members in (12). Hence, the family (12) cannot be 
enlarged. This suggests that the family (12) might serve as a basis of orthogonal vectors in an 
infinite--dimensional "space" of functions defined on [-L,L]. In the xyz-space, there is a familiar 

basis of orthogonal vectors of norm-square L , namely el = ..jL i , e2 = ..jL j , e3 = ..jL k. Any 

vector v in the xyz-space can be written as a linear combination of el, ~ and e3 , say v = vlel 
+ v2~ + v3e3 , for some scalars vl' v2 and v3' We can express these scalars in terms of dot 

products of v with the basis vectors. For example, to find the formula for v 1 , we compute 

-1 In general, vn = L v·en (n = 1,2,3) , and we see that vn is uniquely determined by this 

formula. The next result and its proof are strictly analogous. 0 

Theorem 1. Suppose that f(x) is of the form 

N 

f(x) = ~ao + In=lancos(n1TX/L) + bnsin(n1TX/L) . 

Then, the coefficients an and bn are uniquely determined by the formulas 

1 JL 1 an = L f(x)cos(n1TX/L) dx = L - <f,cn> , 
-L 

n = 0, 1, ... , 

1 JL -1 bn = L f(x)sin(n1TX/L) dx = L d,sn>, 
-L 

n = 1,2, ... , 

where sn(x) = sin(n1TX/L) and cn(x) = cos(n1TX/L) . 

(13) 

(14) 

(15) 
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Proof. In terms of sn and cn' we can write (13) in the form 

N 
f = iao + l ancn + bnsn . 

n=l 

Taking the inner product of both sides of (13') with cm (m fixed, 1 ~ m ~ N) we obtain 

N 
<f,cm> = <iao,cm> + \' an<cn,cm> + bn<sn'cm> . 

Ln=l 
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(13' ) 

By orthogonality (d. Proposition 2), all of the terms on the right side of (*) vanish, except for 

am<cm,cm>. In particular, note that <iao,cm> = 0 , since cm is orthogonal to any constant 

function on [-L,L]. Thus, (*) reduces to <f,cm> = am<cm,cm> = amL , and so am = L-1<f,cm> , 

m = 1,2,3, .... By using sm instead of cm' we arrive at bm = L-1<f,sm> ,m = 1,2,3, .... Thus, 

we have formula (15) and formula (14), except when n = O. To handle n = 0, we take the inner 
product of (13') with the constant function co(x):: 1 ,obtaining <f,co> = <tao,co> = aoL or 

-1 1 fL ao = L <f,co> = r f(x) dx. 0 

-L 

Fourier series - the definition and examples 

Not every function f(x) can be written in the form (13). The right side of (13) is smooth 

(Le., COO) , but many functions have graphs with jumps or corners. We will encounter functions 
£(x) for which the integrals (14) and (15) are not zero for infinitely many values of n. In such 
cases, f(x) cannot be represented as a finite sum as in (13). Also, even if N approaches 00, the 
sum (13) might not converge to f(x), unless some additional assumptions are made. In the case 
where N = 00 , the sum is the Fourier series of f(x) on [-L,1] , which is defined as follows. 

Definition (Fourier Series). Let f(x) be a function defined on [-L,L], such that the integrals 

1 fL an:: r f(x)·cos(n1TX/L) dx, n = 0,1,2, ... , 
-L 

(16) 

and 

1 fL . bn :: r f(x)·sm(n1TX/L) dx, n = 1, 2, 3, ... , 
-L 

(17) 

exist and are finite. Then the Fourier series of f on [-L,1] is the expression 

FS f(x) = tao + ~=lancos(n1TX/L) + bnsin(n1TX/L) . (18) 

The coefficients ao' an' bn (n = 1, 2, 3, .. ~ are known as the Fourier coefficients of f. 
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Remark 1. Note that no claim is made that the sum in (18) actually converges, when values for x 
are inserted. Indeed, there are functions f(x), such that all the integrals in (16) and (17) exist, 
but FS f(x) diver&es for every value of x. Moreover, there are functions f(x) which are 
continuous on [-L,LJ, such that FS f(x) diverges for all rational numbers x. For a survey of 
such results, see [Coppell. Of course, one can always change the value of f(x) at any finite 
number of points to produce many different new functions without changing the integrals in (16) 
and (17), and hence without changing the Fourier series. However, clearly FS f(x) can converge, 
at every point in [-L,Lj, to at most one (if any) function. Thus, we see that a function is not 
uniquely determined by its Fourier series, without some further assumptions (e.g., continuity) 
about the function. 0 

Remark 2. The notation FS f(x) for the Fourier series of f(x) is unique to this book. Some 
books fail to make clear the distinction between a function and its Fourier series. Surely, one 
hopes that, for "sufficiently nice" functions, FS f(x) = f(x), but in view of Remark 1, this is not 
the case for all functions. The most common notation used is 

where the symbol II '" II means "has the Fourier series". We do not insist that this notation be 
avoided. However, the symbol II '" II has other connotations, i.e., it most often stands for 
"approximately (or asymptotically) equals". While our notation is not standard, it is at least 
unambiguous, and it is convenient, since it frees one from rewriting the infinite sum in (18). 0 

Example 2. Find the Fourier series of the function f(x) = x for -L ~ x ~ L . 

Solution. We compute the Fourier coefficients an first for n ~ 1, 

an = ~ JL x' cos(n1rX/L) dx = .!.... sin(n1rX/L) 1 L - l JL sin(n1rX/L) dx 
.u -L ll1r -L ll1r_L 

L IL = 0 + ~ cos(n1rX/L) = 0 , n = 1, 2, 3, .... 
(n1l") -L 

1 JL -1 2 IL For n = 0, we get ao = L x dx = L x /2 = O. Thus, all of the an (n = 0, 1, 2, ... ) 
-L -L 

vanish. We could have arrived at this result by noting that the integrands x·cos(n1rX/L) are 
transformed to their negatives when x is replaced by -x j i.e., they are II odd II functions. For 
such functions the integral from -L to 0 cancels with the integral from 0 to 1. As for the bn, 

bn = ~JL x·sin(n1rX/L) dx = -nx cos(n1rX/L)I L + lJL cos(n1rX/L) dx 
.u -L 11" -L n1l"_L 

-2L () L . ( /) 1 L 2L ( n + 1 = n cos n1l" + ~ sm n1rX L = n -1) ,n = 1, 2, 3, ... , 
11" (n 11") -L 11" 

since cos(n1l") = (-I)n (check this for n = 0, 1, 2 ... ). Thus, we obtain 
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FS f(x) = ~ (_I)n+l 2L sin(n1lX/L) = 2L ~ (_I)n+l! sin(n1lX/L) 
In=l n7r 7r In=l n 

= 2; [sin(1lX/L) -~in(21lX/L) + isin(31lX/L) - ... J . (19) 

Note that FS f(O) = 0 = f(O). However, FS f(±L) = 0 "f ±L = f(±L), and so FS f(x) is not Ux) 
at x = ±L. We will see from Theorem 3 in Section 4.2, that FS f(x) = f(x) = x , tor 

-L < x < 1. Thus, for x = L/2, we have 2; [1 -! + i - ... J = L/2, or equivalently, 1 -! + i­
... = 7r/4 , a sure (but tedious) way of computing 7r. 0 

It is interesting to observe the way that the Fourier series (19) approaches the function 
f(x) = x in (-L,L), as more terms of the series are added. Let SN(x) denote the sum of the first 

N terms of FS f(x). In Figure 1 below, we have plotted Sl(x), S2(x) and S3(x) in relation to 

f(x) = x. The approximation becomes better with increasing N (see, for example, SlO(x) in 

Figure 2). However, the approximation is poor near x = ±L, since Si±L) = 0 . Also, note that 

outside the interval [-L,L], SN(x) bears little resemblance to f(x) = x , since Six) is periodic 

(Le., SN(x+2L) = SN(x) for all x) ,but f(x) = x is not periodic. The results of Section 4.2 

imply that the graph of FS f(x) [or S (x)] is given by Figure 3 below. 
00 

x 
L 

Figure 1 

Graphs of the first three partial sums of FS f(x) for f(x) = x , -L ~ x ~ L . 
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x 
2L 

Figure 2 

The graph of the partial sum SlO(x) . 

L 

x 
-2L -L o L 2L 

-L 

Figure 3 

The graph of S (x) or FS f(x) . 
00 

If f(x) is defined on [O,2L] then the Fourier series of f(x) is defined by (18), provided the 
interval of integration I-L,Lj in (16) and (17) is replaced by [O,2L]. There is nothing to prevent 
one from defining the Fourier series of a function defined on any closed interval of positive length. 
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Example 3. Compute the Fourier series of f(x) = x defined on the interval [0,2L]. 

1 f2L 
Solution. The integrals for the Fourier coefficients are now from 0 to 21. Thus, ao = r 0 x dx 

= 2L , while for n = 1,2,3, ... , we have 

1f2L 12L 1 f2L an =,... x·cos(n11X/L) dx = ~sin(n11X/L) -- sin(n11X/L) dx , 
L 0 n1l' 0 n1l' 0 

whence an = 0 for n ~ 1. For bn , we compute 

1f2L x 12L 1 f2L -2L bn =,... x·sin(n11X/L) dx = --cos(n11X/L) + - cos(n11X/L) dx = -. 
L 0 n1l' 0 n1l' 0 n1l' 

Thus, 
2L 00 1 

FS f(x) = L - - \' - sin(n11X/L). 0 
11' I.n=1 n 

(20) 

Remark. Examples 2 and 3 show that the Fourier series of a function depends not only on the 
length of the interval on which the function is defined, but also on the position of the interval. It 
can be shown that the graphs of the partial sums of (20) are obtained from the graphs of the 
partial sums of (19) [e.g., from Figures 1,2 and 3]' by shi(ting those graphs up by L units and 
over to the right by L units. 0 

Example 4. Let f(x) = {: . The graph of f(x) is shown in Figure 4. 
-11' ~ X < 0 

-11 

Figure 4 

Compute FS f(x) , noting that L = 11'. 

Solution. Since f(x) = 0 for -11' ~ X ~ 0 , we have (for n > 0) 

1 f1l' 1 f1l' an = - f(x)cos(nx) dx = - x·cos(nx) dx 
11' -11' 11' 0 
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= 1- x.sin(nx) I 'If + ~ cos(nx) I 'If = ~ [(-I)n-l] 
n 'If 0 mOm 

and 

bn = 1 J\,sin(nx) dx = -1 x·cos(nx) I 'If + ~ sin(nx) I 'If = (-I)n+l._nl . 
'If 0 n'lf 0 m" 0 

1 J'If We must compute ao separately: ao = - x dx = 'If/2. Thus, tao = 'If/4 , and 
'If 0 

FS f(x) = i + L_ [~ [(-I)n-l]cos(nx) + (_1)n+l k sin(nx)] 
n-l m 

= i + [- ~ cos (x) + sin(x) + O· cos(2x) - ~ sin(2x) - i'lf cos(~~) + l sin(3x) + ... ]. 

Results from Section 4.2 imply that FS f(x) = f(x) for -'If < X < 'If. Thus, at x = 0 , we obtain 

~ ~ ~ 2/ or 1 + 3 + 5 + ... = 'If 8. 0 

Remark. In Example 4, the sine terms of FS f(x) all vanish when we set x = :I:'If ,and we 

obtain FS f(±'If) = 'If/4 + (2/1f)[r2 + 3-2 + 5-2 + ... ] = 'If/2, but f(-'lf) = 0 and f('If) = 'If. Thus, 
as in Example 2, we find that FS f(x) is not always equal to f(x) for all x in [-L,L]. 
However, in these examples, the failure of equality occurs only at the endpoints :l:L. bbserve 
that cos(n1fX/L) and sin(n1fX/L) are unchanged when x is changed from -L to L. Thus, for 
any function f, FS f(-L) = FS f(L), and so unless f(-L) = f(L), we cannot possibly have FS 
f(x) = f(x) at both endpoints. Indeed, under fairly general circumstances, we show in Section 4.2 
that FS(±L) = t[f(L) + f(-L)]. This is the case in Examples 2 and 4. 0 

The convergence of Fourier series 

Under various assuml?tions (e.g., we have just seen that f(-L) = f(L) is a necessary 
condition) on a function f(x), one can prove that FS f(x) does converge to f(x) for all x in 
[-L,L]. For example, the following result is proved in Section 4.2 . 

Theorem 2 (same as Theorem 2 of Section 4.2). Let f(x) be a C2 function on the interval 
[-L,1] , such that f( -L) = f(L) and f' (-L) = f' (L). Let an and bn be the Fourier 

coefficients of f(x) (cf. (16) and (17)), and let M = max If"(x) I . Then for any N ~ 1 , 
-L~x~L 

[ 
N 2 

If(x) - ~a + l ancos(n1fX/L) + bnsin(n1fX/L)] I ~ 4L2 M , 
o n=l 'If N 

(21) 

for all x in [-L,L]. 
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Remarks. (1) As N gets larger, the right side of (21) approaches 0 , which implies that the sum 
in brackets on the left side of (21) converges to f(x) as N approaches 00, Le., 

00 

f(x) = FS f(x) = ~ao + In=lancos(n7rX/L) + bnsin(n7rX/L). (22) 

(2) Actually (21) tells us more than (22). Indeed, (21) tells us how many terms of FS f(x) will 
suffice, in order to approximate f(x) to within a certain error. However, by itself, (22) does not 
contain this information. Note also that the right side of (21) is independent of x, which means 
that we can guarantee that the error can be made small simultaneously for all x in [-L,L] , by 
taking N sufficiently large. 

(3) The conditions f(-L) = f(L) and f'(-L) = f'(L) remind one of the boundary conditions for 
heat conduction in a circular wire (cf. Example 3 in Section 3.1). These conditions insure that if 
the interval [-L,L] is bent into a circle by joining x = -L to x = L , then the graph of f(x) 
above this circle is continuous and has a well defined tangent line (or derivative) at the juncture 
where -L and L are identified. The reason why such conditions arise is seen roughly as follows. 
The terms of FS f(x) are all periodic of period 2L, in the sense that 

cos[n7r(x+2L)/L] = cos(n7rX/L + 2n7r) = cos(n7rX/L) and sin[n7r(x+2L)/L] = ... = sin(n7rX/L). 

Thus, FS f(x+2L) = FS f(x) , and so FS f(x) is a periodic function of x of period 2L , assuming 
that FS f(x) converges. In particular, FS f(-L) = FS f(-L + 2L) = FS f(L), as we have 
observed before. Thus, again, in order that FS f(x) = f(x) at x = ±L, it is necessary that f(-L) 
= f(L). Moreover, if FS f(x) is differentiable, then f'(-L) = f'fL) is also a necessary condition. 
Observe that even though f(x) is specified only on the interval -L,L], FS f(x) is defined for all 
x, provided it converges. Sometimes the formula which defines f(x) (e.g., f(x) = x) still makes 
sense for values of x outside of [-L,L], but there is no chance that FS f(x) = f(x) outside of 
[-L,L] , unless f(x) is a periodic function of period 21. Note that periodic functions of period 2L 
correspond to functions defined on a circle of circumference 2L. Thus, Fourier series are most 
naturally used for representing periodic functions or functions defined on circles. As we will see, 
roughly speaking, the smoother the function f(x) (-L ~ x ~ L) appears to be, when it is 
transferred to a circle (or periodically extended), the more rapidly the Fourier series converges to 
f(x). 0 

Example 5. Take L = 1 and f(x) = x3 - x , -1 ~ x ~ 1. Apply Theorem 2 to get an estimate 
on the number of terms of FS f(x) needed to approximate f(x) within an error of .01 . 

Solution. First, we check that f(x) satisfies the hypotheses of Theorem 2. Note that f(-1) = f(l) 

= 0 and f'(-1) = f'(l) = 2 , since f/(x) = 3x2-1 ; also, f"(x) = 6x is continuous (Le., f is 

C2). Now M = max If"(x)1 = 6. According to Theorem 2, the truncation of FS f(x) at the 
-1 <x<1 

N-th term will be within .01 of f(x) , provided 

Thus taking N = 244 , we will certainly achieve the desired accuracy. 0 
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Error estimates by means of integral approximations - more examples 

The estimate for N in Example 5 is grossly conservative, since we will now directly show that 

5 terms suffice. The Fourier coefficients an vanish since f(x) = x3 - x is odd, (i.e., f(-x) 

= -f(x)), while in Example 7 below, we compute bn = (-1)n12/(nlli. Thus, for -1 $ x $ 1 , 

FS f(x) = 1~ t_ (-l)n ~ sin(n1lX) = x3 - x, 
7r n-l n 

(23) 

where the last equality is due to (22). Using (23) and the fact I (-1) nsin(n1lX) I $ 1, we have 

1
12 00 n 1. 1 12 00 1 

= 31: (-1) 3sm(n1lX) $ 31: 3' 
7r n=N+1 n 7r n=N+1 n 

(24) 

Figure 5 

The final sum in (24) is the same as the sum of the areas of the shaded blocks in Figure 5, which is 

less than the area roo 13 dx under the curve. Hence, (24) yields 
I N x 

1 
3 12 \N n 1. 1 12 [ 1 6 x -x- 3 L _ (-1) 3sm(n1lX) $ 3 3 dx =32"' 

7r n-l n 7r N x 7r N 

. 3 2 2 .I. 
Settmg 6/(7r N ) $ .01 , we have N? [600/7r] 2 ~ 4.4. Thus, N = 5 suffices. Actually, 
explicit numerical tabulation suggests that N = 4 suffices, while N = 3 does not suffice. For 
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the function f(x) = x3 - x, we see that the value of N provided by Theorem 2 is much larger 
than it needs to be. Indeed, in most cases, the explicit estimates based on integral comparisons, 
as above, using the computed Fourier coefficients, are likely to yield better results than (21) in 
Theorem 2. However, (21) is still valuable, since it yields an estimate, even when the Fourier 
coefficients cannot be computed (say, because the integration is too difficult). Also, there are 

infinitely many C2 functions that satisfy the hypotheses of Theorem 2, and it would be impossible 
to treat them one at a time. Theorem 2 handles all of them at once. 0 

Example 6. Compute the Fourier series of f(x) = x3 , -L ~ x ~ L . 

-1 1 fL 3 Solution. We have an = L <cn,f> = r x cos(n1lX/L) dx = 0, because the integrand is odd 
-L 

(Le., it is changed to its negative under replacing x by -x). To compute bn = L -1 <sn,f> , we 

could integrate by parts three times, a rather unpleasant ordeal. Instead, we will use the following 
version of Green's formula (cf. (9)) 

<g",f> = [gl (x)f(x) _ g(x)f' (x)] I L + <g,f"> . 
-L 

(25) 

Now, bn= L -1<sn,f>, and in order to apply (25), we write sn in terms of s~ (Le., sn 

= -(L/ll1ris~). Thus, bn = -L -1(L/n11")2<s~,x3>. Using (25) with g(x) = sn(x) and f(x) = x3, 

Applying (25) again to <s~,6x>, we get 

<s~,6x> = [s~(x)·6x-sn(x)·6] IL + <sn'O> = (n11"/L)Cn(x)'6XIL = (-I)nI2n11". 
-L -L 

3 3 3 2 
=(_I)n[-2L +12L ]=2~(-1([6_.!...], 

n 11" n 311"3 11"3 ;f n 
and 

3 L 3 ~ [6 11"2]. FSx = 23L (_1)n -:3-- sm(n1lX/L). 0 
11" n=l n n 
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Example 7. Show that for f(x) = x3 - x, defined on [-I,IJ, we have 

12 00 1 
FS f(x) = 32: _ (_l)n"3 sin(n7rX) . 

7r n-l n 

Solution. We computed FS x in Example 2, and FS x3 in Example 6. Taking L = 1 in these 

examples, we have FS f(x) = FS (x3 - x) = FS x3 - FS x, where the last equation follows from 

<x3 - x,sn> = <x3,sn> - <x,sn>' In other words, the Fourier series of x3 - x can be 

computed by subtracting FS x from FS x3 : 

Alternatively, we can compute FS (x3 - x) directly, using method of Example 6 based on Green's 

formula (25). This is easier then computing FS x3 and FS x separately! Of course, we have 
-1 3 3 -1 3 that an= L <cn,x - x> = 0, since x - x is odd. Note also that bn= L <sn'x - x> 

= -(I/n7r)2<s~,x3 - x> (L = 1), and (25) yields 

<S~,x3 - x> = [s~(x)(x3 - x) - sn(x)(3x2 -1)] 11 + <sn,6x> = 0 - (1/n7r)2<s~,6x> 
-1 

= -(I/n7r)2[[s~(x).6X-Sn(x).6] 11 - <sn,O>] = -1 Cn(x). 6X I1 = _.!1 (-I)n. 
-1 n7r -1 n7r 

Thus, bn = -(I/n7r)2[- ~; (_l)n] = I~ (_l)n 13 , as required. 0 

7r n 
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Summary 4.1 

1. Orthogonality: The inner product of two functions f and g defined on [-L,L] is defined by 
L 

<f,g> = I f(x)g(x) dx, and the norm of f is IIfll = .;<r;r>. A family of functions f1' f2, 
-L 

f3' ... is an orthogonal family of norm-square L on [-L,L], if for any members fm and fn, 

[
0 if m :f. n 

<fn,fm> = L 
if m = n 

If cn(x) == cos(n7rX/L) and sn(x) == sin(n7rX/L), then the functions ..ff!2·co, c1' Sl' C2' S2' ... form 

an orthogonal family of norm-square L on [-L,L] (cf. Proposition 2). 

2. Green's formula: A key result which is useful in establishing orthogonality is Green's formula, 

b b b J /1(X)g(X) dx - t f(x)g"(x) dx = [f' (x)g(x) - f(x)g' (x)] I a . 

L 
In particular, <gil ,f> = [g' (x)f(x) - g(x)f' (x)] I + <g,f">, which is the most useful form for 

-L 
the computation of Fourier coefficients (cf. Examples 6 and 7). 

3. Fourier Series: Let f(x) be a function defined on [-L,1], such that the integrals 

1 JL -1 an == L f(x)·cos(n7rX/L) dx = L <f,cn>, 
-L 

n = 0,1,2, ... 

(SI) 

1 JL. -1 bn == L f(x)·sm(n7rX/L) dx = L <f,sn>' 
-L 

n = 1,2,3, ... 

exist and are finite. Then the Fourier series of f on [-L,1] is the expression 

(S2) 

The coefficients ao' an' bn (n = 1,2,3, ... ) are known as the Fourier coefficients of f . 
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4. Representing functions by Fourier series: If f(x) is expressible as a trigonometric polynomial, 
say (for some finite integer N ~ 1) 

N 

f(x) = ta + \' ancos(ll11x/L) + bnsin(n7rX/L) , 
o In=l 

(S3) 

then Theorem 1 states that the an and bn must be the Fourier coefficients (SI) of f(x). Thus, 

such functions are equal to their Fourier series (Le., FS f(x) = f(x), for trigonometric polynomials 
f). Examples 2 and 4 show that there are functions such that FS f(x) f. f(x) for some x in 
[-L,L]. Also, there are functions f(x) such that FS f(x) converges, but FS f(x) f. f(x) for all x 
III [-L,L]. However, there are results, established in Section 4.2, that guarantee that FS f(x) = 
f(x), under certain assumptions. One of these results is 

Theorem 2 (same as Theorem 2 of Section 4.2). Let f(x) be a C2 function on the interval 
[-L,L], such that f(-L) = f(L) and f/(-L) = f/(L). Let an and bn be the Fourier coefficients 

of f(x) (cf. (SI)), and let M = max If"(x)l. Then for any N ~ 1, 
-L~x~L 

(S4) 

for all x in [-L,LJ. 

If the Fourier coefficients of a function f(x) can be computed and FS f(x) = f(x), then estimates 
for the number of terms of FS f(x), which suffice to approximate f(x) to within a given error, can 
be obtained by applying an integral comparison (cf. Figure 5). Moreover, these estimates are 
typically much sharper than (S4). 
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Exercises 4.1 

1. Recall that through the use of trigonometric identities (cf. (27) in Section 3.1), we obtained the 

result cos3(x) = ! cos(x) + ! cos(3x). Deduce that 

Hint. Use Proposition 2 or Theorem 1 . 

2. Find the Fourier series of the following functions without computing any integrals. 

(a) f(x) = cos2( 7rX). sin2( 7rX), -1 ~ x ~ 1 

(b) f(x) = sin(x)[sin(x) + cos(x)]2 -7r ~ x ~ 7r • 

Hint. Use trigonometric identities and Theorem 1 which says FS f(x) = f(x) for these functions. 

• N N 
3. Suppose f(x) = In=lancos(n7IX/L) and g(x) = In=l ancos(n7IX/L) for constants an and an' 

JL N 
n = 1, 2, ... , N. Show that f(x)g(x) dx = d,g> = L \' anan . 

-L In=l 

4. Compute the Fourier series of the following functions defined on [-L,Lj . 

(a) f(x) = { ~ o ~ x ~ L 

-L ~ x < 0 
(b) f(x) = Ixl = {:x 

5. Let f(x) = x2 for -L ~ x ~ L . 

(a) Compute the Fourier series of f(x) via integration by parts. 

(b) Recompute the series using Green's formula, as was done in Example 6. 

6. Assuming that FS f(x) = f(x) = x2 (in Problem 5) for -L ~ x ~ L , obtain the results 

1 - 1/22 + 1/32 - 1/42 + ... = 7r2/12 

1 + 1/22 + 1/32 + 1/42 + ... = 7r2/6. 



206 Chapter 4 Fourier Series and Sturm-Liouville Theory 

From these results, obtain 

1 + 1/32 + 1/52 + 1/72 + ... = 1r2/8 

1/22 + 1/42 + 1/62 + 1/82 + ... = 1r2/24 . 

Hint. For (*), consider x = 0 and x = L. For (**), add and subtract the results in (*). 

7. Compute the Fourier series for 

(a) f(x) = eX -1r ~ X ~ 1r (b) f(x) = eX o ~ X ~ 21r. 

Hint. For (a), note that (1+n2)<f,cn> = <f",cn> - <f,c~> = [f/(x)cn(x) - f(x)c~(x)jl~1r 
= ... , and similarly for <f,sn>' where sn(x) = sin(nx) and cn(x) = cos(nx). For (b) use 

Green's formula as in (a), but on [0,21rj. 

8. Compute FS f(x) for the function f(x) = { 0 
sin(x) 

9. Let f(x) = (x2_1)2 for -1 ~ x ~ 1 . 

-1r~x<O 

O~X~1r 

(a) Use Green's formula (as in Example 7) to compute FS f(x) with relative ease. 

(b) Verify that f(x) satisfies the hypotheses of Theorem 2. How many terms of FS f(x) suffice to 
approximate f(x) to within an error of .001 , according to Theorem 2 ? 

(c) Use the method of the Remark after Example 5, to dramatically improve the estimate in (b). 

(d) Assuming that FS f(x) = f(x) (which follows from Theorem 2), show that 

1 + 1/24 + 1/34 + 1/44 + ... = 1r4/90. 
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4.2 Convergence Theorems for Fourier Series 

Recall that in order to solve initial/boundary-value problems for the heat equation, one must 
approximate initial temperature functions by linear combinations of sine and/or cosine functions 
of an appropriate form. If the Fourier series of a function converges to the function, then we may 
achieve the desired approximation by considering a sufficient number of terms of the Fourier 

series. We stated a convergence result (Theorem 2 of Section 4.1) that is valid for C2 functions 
f(x) (-L ~ x ~ L) such that f(-L) = f(L) and f'(-L) = f'(L). In this section, we prove this 
result, as well as other convergence theorems that apply to a more general class of functions. 

Roughly speaking, this broader class consists of functions which are CIon [-L,Lj, except for a 

finite number of points where their graphs have jumps or corners (i.e., piecewise C1). Although 
almost everyone who plans to use Fourier series should clearly understand the statements of these 
convergence theorems, their proofs (as well as proofs of preliminary results) are not necessarily of 
great utility in applications. Nevertheless, there are enough details supplied in these proofs so 
that they can be understood by the interested reader. 

Periodic functions 

Before proving the convergence theorems, we will need to establish some preliminary 
results. We begin with some facts concerning periodic functions and periodic extensions of 
functions. 

Definition. A function g(x), defined for all real x, is said to be periodic (of period 2L), if 
g(x+2L) = g(x) for all x. 

This means that if the graph of g(x) is moved to the right or left by a distance of 2L (or any 
multiple of 2L), then the graph falls exactly on the top of itself. The functions sin(n7rX/L) and 
cos(n7rX/L) are examples of periodic functions of period 2L. Indeed, sin(n1l'(x+2L)/L) 
= sin(n1lX/L + 211') = sin(n7rX/L), and similarly for cos(n7rX/L). Since finite linear combinations 
of periodic functions of period 2L are also periodic, we know that functions of the form 

N 

SN(x) = ~ao + Ln:1ancos(n7rX/L) + bnsin(n7rX/L) 

(e.g., partial sums of Fourier series) are also periodic of period 2L. A function need not be 
continuous to be periodic. For example, the function, whose graph is shown in Figure 1, 

y 

L 

x 
-5L L 5L 

Figure 1 
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is periodic of period 21. (The open circles mean that the points they "enclose" are omitted; the 
solid dots on the x-axis are included in the graph.) This is actually the graph of FS f(x), where 
f(x) = x (-L ~ x ~ L) , as we stated in Section 4.1 and will eventually prove (cf. Theorem 3). 

The partial sums SN(x) (with N = 1,2,3 and 10) of FS f(x) were graphed in Figures 1 and 2 of 

Section 4.1. Note that these partial sums are smooth (i.e., COO) , since they are finite sums of 

smooth functions. The infinite sum, FS f(x), is not even continuous, although it is still periodic. 

Definition. Let f(x) be a function defined on the closed interval [-L,LJ, such that f(-L) 

= f(L) . Then the periodic extension of f(x) is the unique periodic function t(x) of period 2L, 

such that t(x) = f(x) , for -L ~ x ~ L . 

Remark. In order for the periodic extension to exist, we must have f(-L) = f(L). Thus, note 
that the function f(x) = x , defined for -L ~ x ~ L , does not have a periodic extension. To 
remedy this situation, one can redefine f(x) at the endpoints x = ±L to be the average of the 
limits (assuming that they exist) 

f(L -) == lim f(x) 
xjL 

and f(-L +) == lim f(x) , 
xl-L 

obtained by taking the one-sided limits of f(x), as x approaches the endpoints from within 

[-L,L]. The reason for doing this is that, if a "piecewise Clu function f(x) on [-L,L] is 
adjusted in this way at x = ±L and also averaged at jumps in (-L,L), then FS f(x) converges 
to the periodic extension of this adjusted function. See Theorem 3, for a precise statement of the 
result. 0 

Proposition 1. If g(x) is a periodic function of period 2L, then the integral (if it exists) of 
g(x) over an interval of length 2L is the same as the integral of g(x) over any other Interval 
of length 21. In other words, for any real number c, 

f L+c fL 
g(x) dx = g(x) dx . 

-L+c -L 
(1) 

Proof. Since the interval [L,L+c] is obtained from [-L,-L+c] 
and g(x) is periodic of period 2L, we have 

by shifting to the right by 2L 

f
- L+ C fL+C 

g(x) dx = g(x) dx . 
-L L 

(2) 

f L+c [L fL fL+C Now, g(x) dx = g(x) dx + g(x) dx + g(x) dx , 
-L+c -L+c -L L 

but the first and third integrals on the right side cancel by (2). 0 
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Solution. The integrand is periodic of period 211". Thus, according to Proposition 1, the integral is 

The integrand is odd (Le., it is changed to its negative, by replacing x by -x). Thus, the 
integral from -11" to 0 cancels the integral from 0 to 11", yielding the value O. 0 

B8Isel's inequality and the Wemann-Leb81gue Lemma 

The square of the length of a vector in space equals the sum of the squares of its components. 
L 

For any function f(x), defined on [-L,1] with finite norm square IIf1l 2 :: J f(x)2 dx, we 
-L 

expect a similar result, but for now, we will prove only an inequality. We will also use it to show 
that the Fourier coefficients an and bn of a function, with finite norm, approach zero as n -+ 00 • 

This fact will be needed in the proofs of the convergence results for Fourier series. 

B8Isel's Inequality. Let f(x) be defined on [-L,1] , and suppose that IL [f(x)] 2 dx exists 
-L 

and is finite. Assume that the Fourier coefficients 

IlL IlL an = L _Lf(x)COS(ll1rx/L) dx and bn = L _Lf(x)sin(n1rX/L) dx (3) 

exist 80 that FS f(x) = !ao + ~=lanCOS(n1rX/L) + bnsin(n1rX/L) is defined formally (i.e., 

it might not converge). Then, we have Bessel's inequality, 

(4) 

N 
Proof. Let SN(x) == tao + In=lancos(n1rX/L) + bnsin(n1rX/L) denote the N-th partial sum of 

FS f(x). Then 

I L 2 IL 2 IL IL 2 o ~ -L [f(x) - Six)] dx = -L [f(x)] dx - 2 -L f(x)SN(x) dx + -L [Six)] dx. (5) 

By computing the last two integrals on the right in (5), we show that (5) yields (4). 
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J~Lf(X)SN(X) dx = rLf(X) [~8.0 + I:=lancos(ll7rx/L) + bnsin(n7rX/L)] dx 

= ~aO'JL f(x) dx + t_ [anJL f(x)cos(n7rX/L) dx + bnJL f(x)sin(n7rX/L) dX] 
-L n-1 -L -L 

= ~ao'Lao + I:=/an·L.an + bn·L·bn) = L· [~a~ + I:=l(a; + b;) ] . 

Next, we replace f(x) in this computation by SN(x). Then the first N Fourier coefficients of 

the trigonometric polynomial SN(x) are the same as those of f(x) (cf. Theorem 1 of Section 4.1). 

Thus, we obtain the same result as above, namely 

Inequality (5) then becomes 

Since N can be chosen arbitrarily large, we then have (4) (Why?). 0 

Remark. We can rewrite Bessel's inequality (4) in the form 

1 [1 2 ,N 2 2] 1 L2 ~<f,co> + Ln=l <f,cn> + <f,sn> ~ L <f,f> , (6) 

where cn(x) = cos(n7rX/L) , sn(x) = sin(n7rX/L) , and we have used the inner product notation of 

Section 4.1. Multiplying by L and rewriting the first term, (6) becomes 

(7) 

In other words, we have a relation between the square of the length of f and the sum of the 

squares of the components of f relative to the orthogonal family ..fffl·co, cn' Sn (n = 1,2,3, ... ) 

of Proposition 2 in Section 4.1. In fact, it is possible (but more difficult) to prove that "~" in (4) 
and (7) may be replaced by "=". Then we obtain the s~alled Parseval's equality, which is 
essentially an infinite dimensional version of the Pythagorean Theorem in "function space". 0 

Example 2. Use Bessel's inequality for f(x) = x (-L S x ~ L) to prove that 

00 1 2 , < 11" 

Ln=l ~ - 0" . (8) 
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Solution. We computed FS f(x) in Example 2 of Section 4.1, and found that 

FS f(x) = 2L ~ (_1)0+11, sin(n7rX/L) , 
11' lO=1 n 

(Le., ao= 0 , n ~ 0 and bo = (_1)0+1 2L/(n1l'), n ~ 1). Bessel's inequality then yields 

and multiplying by 1I'2/(4L2), we obtain (8). Parseval's equality (which we have not proved yet) 

implies that actually ~=11/n2 = 11'2/6 . 0 

Bessel's inequality (4) tells us that the sum !a~ + ~=1(a; + b;) converges to some finite 

value, if IIfll is finite. This implies that both ao and bo must approach zero as n -+ 00, for 

otherwise infinitely many terms of the series would be greater then some positive number and the 
sum would be infinite. Thus, the following result, which will be crucial in proving convergence 
theorems for Fourier series, is an immediate consequence of Bessel's inequality: 

The Riemann-Lebesgue Lemma. Let f(x) be defined on [-L,L]. Suppose tha.t JL [f(x)]2 dx < 00 

-L 
and the Fourier coefficients of f(x) exist. Then, these coefficients a.pproa.ch zero as n -+ 00, i.e. 

1 JL lim L f(x)cos(n7rX/L) dx = 0 
n-+oo -L 

and (9) 

JL . 
lim t f(x) sin(n7rX/L) dx = 0 . 
n-+oo -L 

Remark. Although the following considerations are no substitute for the proof of the 
Riemann-Lebesgue Lemma, based on Bessel's inequality, they may help the reader to gain a 
better understanding of why one would expect the limits (9) to hold. If we multiply f(x) b~ 
sin(n7rX/L) [or cos(n7rX/L)], then we obtain a new function whose graph oscillates between f(x) 
and -f(x), as shown in Figure 2 (where n = 6). 
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y 

Figure 2 

As n --; 00 , one expects the shaded areas above the x-axis to very nearly cancel the shaded area 
below the x-axis. In other words, we intuitively expect the limits in (9) will be zero. 0 

It is often useful to estimate the rate at which the Fourier coefficients of a well-behaved 
function tend to zero. The following proposition provides a sample result in this direction. It is 
proved directly using Green's formula. 

Proposition 2. Let f(x) beaC2 functionon [-L,L] suchthat f(-L)=f(L) and f/(-L) 
= f' (L). Let M be the maximum of I f"(x) I, for -L ~ x ~ L. Then 

I an I = I t J~L f(x)cos(n1lX/L) dx I < 
2L2M 
11'2n 2 

and (10) 

Ibnl = I t J~Lf(X)Sin(n1lX/L) dx I < 
2L2M 

for all n ~ 1 . 22' 11' n 

Proof. We use Green's formula (cf. Example 6 in Section 4.1 ) to get, for n ~ 1 , 

where the endpoint evaluations cancel by the assumptions f( -L) = f(L) and f' (-L) = fl (L) . 
Since If"(x)cos(n1lX/L) I ~ M, we obtain 
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as desired. For I bn I ,merely substitute sn for cn in the above argument. 0 

Remarks. Note that the assumptions on f(x) tell us that if the interval [-L,L] were bent into a 

circle with -L and L identified, then f(x) would define a C2 function on this circle, except 

possibly at the point ±L, where the function would still be at least C1, by the assumptions 
f(-L) = f(L) and f/(-L) = f/(L). Generally speaking, the smoother f(x) is on the circle, the 

more rapidly the Fourier coefficients tend to zero as n --; 00. For example, if f(x) is C4 and 

f(-L) = f(L) , f' (-L) = f' (L) , fll(-L) = fll(L) and f< 3) (-L) = f< 3) (L), then Green's formula 
could be applied twice to yield 

an = -(L/n27r2)<fll ,cn> = _(L3/n47r4)<f<4) ,cn> , 

and we would have I an I ~ (2L 4 /n 47r4) . max I f< 4) (x) I , with the same result for I bn I . More 
-L <x<L 

generally, if f(x) is C2k with f and its fi;st- 2k-l derivatives matching at x = ±L , then the 

Fourier coefficients of f will decrease at least as fast as (const.)· n -2k. Note also that the 
estimates (10) can be strengthened by an application of the Riemann-Lebesgue Lemma, as 

follows. We write the first estimate in (10) as n2 1an l ~ 2L2M/7r2, which says that n2 1anl is 

bounded above by a constant. In fact, n2an --; 0 as n --; 00, because 

2 L JL n an = -2 fll(x)cos(n7rX/L) dx --; 0, 
7r -L 

by (11) and (9) applied to fll(X). (Similarly, n2bn --; 0.) Indeed, Bessel's inequality applied to 

fll(X), yields the still stronger result that 1'.:=1 n4(a~ + b~) < 00. 0 

Some technical preliminaries for the convergence proof 

We will need the following formula for the proof of convergence theorems. 

Proposition 3. For any real 0 such that sin( 0/2) f. 0 , 

! + cos(O) + cos(20) + ... + cos(nO) = sin([n + !]O) . 
2sin( 0/2) 

(12) 
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Proof. Multiplying the left side of (12) by 2sin( 0/2), we obtain 

sin( 0/2) + 2sin( 0/2)cos( 0) + 2sin( 0/2)cos(20) + ... + 2sin( 0/2)cos(nO) . (13) 

We want to prove that this is sin([n + 110). Using the identity 2sin(a)cos(,B) = sin(,B+a) 
- sin(p-a), we have 2sin( 0/2)cos(kO) = sindk + !] 0) - sin([k - !] 0). Applying this to each term 
of (13), except the first, we obtain 

sin( 0/2) + [sin(30/2)--sin( 0/2)] + [sin(50/2)--sin(30/2)] + ... 

+ [sin([n + !]O)--sin([n - !]O) = sin([n + !]O) , 

by noting that all terms, except for sin([n + !] 0), cancel. 0 

Remark. Although we have proved (12), it is not clear how one might have arrived at formula 
(12) in the first place. A derivation can be based on the observation that the left side of (12) is 

the real part of the complex geometric series ! + r eikO which can be summed and simplified, 
k=! 

before extracting its real part that turns out to be the right side of (12). Perhaps it is simpler to 
note that we produce a "collapsing" or "telescoping" sum when we multiply the left side of (12) by 
sin(0/2). 0 

Definition (the n-th Dirichlet kernel). For any integer n ~ 0 , we define 

Dn(x) = ! + cos( 7rX/L) + COS(27rX/L) + ... + cos(n7rX/L). (14) 

The function Dn(x) is known as the n-th Dirichlet kernel. 

As a consequence of Proposition 3 and the fact that Dn(2kL) = n +! by (14), we have 

sin(7rX/2L) f 0 

(14' ) 

n+L sin( 7rX/2L) = 0 . 

From (14) we see that Dn(x) is periodic of period 2L, since it is a sum of periodic functions of 

period 21. Thus, if we graph Dn(x) for -L ~ x ~ L , then we know the graph for all x. For 

n = 3 and L = 3.5 , the graph of Dn(x) (-L ~ x ~ L) is shown in Figure 3A. In general, Dn(O) 

= n + ! , and as n increases, the peak at x = 0 becomes more pronounced than the smaller 
flanking wavy portions, as Figure 3B illustrates in the case n = 10. 
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4 Y 
L = 3.5 12 Y L = 3.5 

-1 -3 

Figure 3A Figure 3B 

If we multiply a reasonably nice function h(x) by Dn(x), then for large n, the graph of 

Dn(x)h(x) is relatively pronounced near x = 0, compared to the original graph of h(x). Thus, if 

we integrate Dn(x)h(x) from -L to L (as in (15) below), then we expect that the limit of the 

integral, as n -i 00, will only depend on the values of h(x) near x = O. The following result 
makes this rigorous. We will see that this result is the primary reason why the Fourier series of a 
"nice" function converges to the function. Some readers may appreciate the fact that equation 

(15) essentially says that L -lDn(x) approaches the Dirac delta function 6(x) as n -i 00 (cf. 
Section 7.5 for a discussion of 6(x)). 

Proposition 4. Let h(x) be a c1 function, for -L ~ x ~ L. Then 

1 fL lim L Dn(x)h(x) dx = h(O) , 
n-ioo -L 

(15) 

where Dn(x) is the n-th Dirichlet kernel (14). 

Proof. We need to prove that the difference 

1 fL L -L Dn(x)h(x) dx - h(O) (16) 

approaches 0, as n -i 00. We will use the Riemann-Lebesgue lemma to do this, but first we need 
to combine the terms of (16) into a single integral. Note that 

x 
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1fL IfL L -L Dn(x) dx = L -L [ i + cos(me/L) + ... + cos(nme/L) ] dx = 1 , 

since all of the cosines integrate to zero. Multiplying by the constant h(O), we have 

1 fL L -L h(O)Dn(x) dx = h(O) . (17) 

Using (17), we can rewrite the difference (16) as follows : 

(18) 

1 fL = L -L Dn(x)[h(x) - h(O)] dx . 

In order to apply the Riemann-Lebesgue lemma to this last integral, we write Dn(x) in terms of 

cos(nme/L) and sin(nme/L) : 

( ) _ sin([n+t ]me!L) _ sin(me/2L)cos(nme/L) + cos( me/2L)sin(nme/L) 
Dn x - 2sm (me/2t) - 2sin(me/2L) 

= icos(nme/L) + icot(me/2L)sin(n7IX/L) . 

Thus, the final integral in (18) can be written as a sum of integrals 

t f~L Hh(x) - h(O)]cos(n7IX/L) dx + t f~J icot(7IX/2L)[h(x) - h(O)]} sin(n7IX/L) dx. (19) 

Now, Hh(x) - h(O)] is continuous (indeed, c1) in [-L,1], and hence it satisfies the hypotheses 
of the Riemann-Lebesgue lemma. Thus, the first integral in (19) tends to zero as n -+ 00. The 
second integral in (19) is somewhat of a problem, because cot(me/2L) is infinite at x = 0 and 
consequently the function in braces must be analyzed more closely near x = O. We apply 
L'Hospital's rule to compute the limit of this function as x -+ 0 : 

lim h(xth)Ot = lim h'(x) = !:h'(O) 
x-+O 2tan me 2) x-+O sec2(me/2L)'7r/L 7r ' 

where we have used the fact that h(x) is C1. Thus, the function in braces in (19) is 
well-behaved near x = 0 , and the Riemann-Lebesgue lemma also applies to the second integral 
in (19). Hence, (16) (which is the same as (19)) tends to 0 as n -+ 00. 0 
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The first convergence theorem 

We are now ready to prove our first convergence theorem. As will be clear from the proof, the 
crux of the matter is really Proposition 4, which has just been proved. In other words, the 

convergence of Fourier series is primarily due to the fact that when a C1 function is integrated 
against the n-th Dirichlet kernel, the result approaches the value of the function at o. 

Theorem 1 (Pointwise Convergence of Fourier Series). Let f(x) be c1 on [-L,Lj, and assume 

that f(-L)=f(L) and f/(-L)=f/(L) [sothatf(x) ma,Yberegarded as aC1 function on the 
circle of length 2Lj. Then FS f(x) = f(xJ for all x in [-L,LJ. In other words, if the N-th 
partialsUID of FS f(x) is denoted by 

N 

SN(x) = !ao + In=l[ancos(nmc/L) + bnsin(nmc/L)J , (20) 

where 

an:: tf~Lf(Y)COS(n1l}'/L) dy and bn :: H~Lf(Y)Sin(n1l}'/L) dy, (21) 

then (for any fixed x in [-L,L]) 
00 

FS f(x) :: !ao + l [ancos(nmc/L) + bnsin(nmc/L)] :: lim SN(x) = f(x) . 
n=l N--;oo 

(22) 

Proof. We demonstrate that the limit (22) holds by virtue of (15) in Proposition 4. We write 
Six) in terms of an integral involving Dw Using the definition (20) of SN(x) and keeping x 

fixed, so that cos(nmc/L) and sin(nmc/L) are constants, we compute: 

SN(X) = M t J~L f(y) dy } + l:J { t rL f(y)cos(n1l}'/L) dy } cos(nmc/L) 

+ {t rL f(y)sin(n1l}'/L) dY} sin(nmc/L)] 

1JL1 N1JL{ } = t -L 2f(y) dy + In=l t -L cos(nmc/L)cos(n1l}'/L) + sin(nmc/L)sin(n1l}'/L) f(y) dy 

= t f~L ~f(y) dy + l:=l t rL cos(n~(y-x)/L)f(y) dy = H~L [~+ l:=lcos(n~(Y-X)/L)]f(Y) dy 

= t JL DN(y-x)f(y) dy . 
-L 



218 Chapter 4 Fourier Series and Sturm-Liouville Theory 

Thus, SN(x) is compactly expressed as an integral involving the N-th Dirichlet kernel DN: 

Hence, to establish (22) it remains to prove that 

1 JL lim L DN(y-x)f(y) dy = f(x) . 
N-+oo -L 

(23) 

This will be proved using Proposition 4 , but we need to rewrite the integral in (23) so that 

Proposition 4 may be applied directly. Note that DN(y-x) and i(y) (the periodic extension of 

f(y)) are both periodic functions of y of period 2L. Using the fact that f(y) = i(y) for y in 
[-L,L] and also Proposition 1 with c being the fixed value x, we obtain 

J L Diy-x)f(y) dy = JL DN(y-x)i(y) dy = JL+X DN(y-x)i(y) dy . 
~ -L -L+x 

(24) 

In the last integral, we change the variable of integration from y to z = y - x to get 

J
L+X JL 

DN(y-x)i(y) dy = DN(z)i(z+x) dz . 
-L+X ~ 

(25) 

Now, let h(z):: i(z+x). Using (24) and (25), we obtain 

1JL 1JL lim L DN(y-x)f(y) dy = lim L DN(z)h(z) dz. 
N-+ 00 -L N-+ 00 -L 

(26) 

To apply Proposition 4 to this final limit, we need to know that h(z) is a c1 function of z. Since 

f is C1 and f(-L) = f(L) and f'(-L) = f'(L) , it follows easily that i is C1. Then, h(z) 

= i(z+x) is C1, as required. Thus, Proposition 4 says that the final limit in (26) is h(O) = 
i(o+x) = i(x) = f(x), since x is in [-L,L]. Hence, (23) and (22) are proved. 0 

Uniform convergence 

There are several directions in which Theorem 1 could stand some improvement. Although it 
says that FS f(x) = f(x) for appropriate functions f, there is no indication of how many terms are 
needed in order that SN(x) be within a certain error ( of f(x). Indeed, there are functions such 

that FS f(x) = f(x), and yet there is no N which will guarantee that I SN(x) - f(x) I $ ( 

simultaneously for all x in [-L,L] (cf. Example 6, and replace f by f). In other words, N might 
be arbitrarily large, depending on the value of x. In order to clarify this, we state the following. 
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Definitions. We say that the sequence of functions Sl(x), S2(x), ... converges uniformly 
to f(x) on the interval [-L,L] , if 

1 im [ max If(x) - SN(x) I ] = 0 , 
N-;oo -L~x~L 
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i.e., the maximum vertical separation between the graphs of SN(x) and f(x) approaches 0 as 

N -; 00 • The sequence of functions Sl(X), S2(x), ... converges pointwise to f(x) if, for each 

fixed x in [-L,L] , we have 

1 im If(x) - SN(x) I = 0 or equivalently 1 im SN(x) = f(x). 
~oo ~oo 

~For readers who know the distinction, the "max" in (*) should be interpreted as "sup" or 
I least upper bound", but understandably, we do not want to belabor this point here.) 

Remark. Although we are primarily concerned with the sequence of partial sums Sl(x), S2(x), ... 

of the Fourier series of f(x), the above definitions still make sense for arbitrary sequences of 
functions defined on [-L,L]. Also, it is clear that a sequence of functions which converges 
uniformly to f(x) will also converge pointwise to f(x). However, the next example shows that 
pointwise convergence need not imply uniform convergence. Eventually (cf. Theorem 4 ), we 

prove that if f(x) is continuous and "piecewise C1" with f(-L) = f(L), then the sequence Sl(X), 

S2(x), ... will converge to f(x) uniformly. However, Theorem 1 only tells us that this sequence 

converges to f(x) pointwise. 0 

Example 3. Let fn(x) and gn(x) be the functions defined on [-2,2] with graphs as in Figure 4. 

y y 

'/\ rJx) 

x 

1 gn(x) 

1 -n 
x --2 0 1 1 2 -2 0 2 

n n 

Figure 4 

where n = 1, 2, 3,.... Show that the sequences f1(x), f2(x), f3(x),... and gl(x), g2(x), g3(x), ... 
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both converge pointwise to the zero function h(x) == o. However, show that the sequence gl(X), 

g2(x), g3(x), ... converges uniformly to h(x), whereas the sequence f1(x), f2(x), f3(x), ... does not 

converge uniformly to h(x). 

Solution. We have gn(x) = (x + 2)/(4n), and so lim gn(x) = I im [(x + 2)/(4n)] = 0 = h(x) 
n .... oo n .... oo 

for each x in [-2,2]' which shows that gl(X), g2(x), g3(x), ... converges pointwise to h(x). The 

graph of gn(x) shows that the maximum of I h(x) - gn(x) I for -2 $ x $ 2 is lin, and so 

lim [ max Ih(x)-gn(x)l] = lim k = o. 
n .... oo -2$x$2 n .... oo 

However, from the graph of fn(x), we see that, for each n, the maximum of Ih(x) - fn(x) I in 

[-2,2] is 1, and it occurs at x = lin (directly below the tip of the spike). Thus, 

lim [ max Ih(x)-fn(x)l] = lim 1 = 1 t- O. 
n .... oo -2$x$2 n .... oo 

Hence, f,(x), f2(x), f3(x), ... does not converge uniformly to h(x). Nevertheless, surprisingly, f,(x), 

f2(x), f3(x), ... , does converge to h(x) pointwise. Indeed, let Xo be any fixed value for x in 

[-2,2]. First suppose that -2 $ Xo $ 0, then fn(xo) = 0, and so 

lim fn(xO) = 0 = h(xo) . (*) 
n .... oo 

Now assume that 0 < Xo $ 2. Then we can find an integer N (e.g., select any N > 2/xo) such 

that Xo is not in the interval (0,2/n) for all n ~ N. Then fn(xO) = 0 for all n ~ N (Why?). 

In other words, (*) also holds for 0 < Xo $ 2! Since Xo is fixed, we are not allowed to take Xo 

= lin (i.e., Xo cannot depend on n). 0 

Remark. In applications it is usually uniform convergence of the partial sums SN(x) to f(x) 

that is desired. For example, in order to use the Maximum Principle to deduce that the solution 
uN(x,t) of a heat problem for an approximation SN(x) of the true initial temperature f(x), is 

within ( of the true solution, it is necessary to know that the maximum of I f(x) - SN(x) I on the 

rod is less than (( cf. Theorem 3 of Section 3.2). This is not guaranteed by pointwise 
convergence, but rather by uniform convergence if N is chosen large enough. 0 

As we will find (cf. Theorem 4), the assumptions in Theorem 1 are actually strong enough 
to yield uniform convergence. However, an easier proof is available, if we strengthen these 
assumptions somewhat, as in the following result. 
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Theorem 2. Let f(x) be defined and C2 on the interval [-L,LJ , with f(-L) = f(L) and 
f/(-L) = f/(L) . Then FS f(x) converges uniformly to f(x) [i.e., the sequence of partial sums 
Sl(x), S2(x), ... of FS f(x) converge uniformly to f(x)]. Indeed, with the notation of (20), 

4L2M 
I f(x) - SN(x) I $ ~, for all x in [-L,L]' where M:: max I fll(X) I (27) 

7r N -L $x$L 

Proof. We know from Theorem 1 that FS f(x) = f(x) . Thus we have 

00 

f(x) - SN(x) = FS f(x) - SN(x) = 1: [ancos(n7rX/L) + bnsin(n7rX/L)] 
n=N+1 

and 

If(x) - SN(X) I $ r [Ianl + Ibnl] $ $ r ~, 
n=N+1 7r n=N+1 n 

00 1 1 
where we have used (10) of Proposition 2. It remains to show that 1: 2" < N' For this, 

n=N+1 n 

we consider the graph of the function ~ (cf. Figure 5). 
x 

y 

o 

1 
X Z 

Figure 5 

x 

00 1 
The sum 1: 2" is the sum of the areas of the shaded blocks, which is less than the area 

n=N+1 n 

roo ~ dx = k under the curve y = ~, as required. 0 
JNX x 
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Remark. We have already used the estimate (27) in Example 5 and Problem 9 of Section 4.1, for 

the functions x3-x and (x2_1)2 (-1 ~ x ~ 1), respectively. In both cases, we found that much 
better estimates could be obtained by using an integral comparison with the explicitly computed 
Fourier coefficients. If the Fourier coefficients of a function can be computed, it is likely that the 
error estimate will be better if computed in this fashion, rather then using (27). The underlying 
weakness in (27) can be traced back to the weakness of (10) which was already noted in the 
Remark followin& Proposition 2. Nevertheless, Theorem 2 establishes the uniform convergence of 
FS f(x) to f(x) for all functions f(x) satisfying the hypotheses, a fact that could not be 
established separately for each of the infinitely many such functions. 0 

Convergence of Fourier series for piecewise c1 functions 

Often, one is interested in the Fourier series of a function f(x) which is not e1 or for which 
f(-L) f f(L) or f/(-L) f f/(L). For example, if f(x) = x, then ((-L) f f(L). We computed the 
Fourier series of this function in Example 2 of Section 4.1, and from the graphs of the partial sums 
(cf. Figures 1 and 2 in Section 4.1), it appears that FS f(x) does converge to f(x), except when 
x = ±L , but this does not follow from Theorem 1. Indeed, none of the functions in Problems 4 
through 8 of Exercises 4.1 satisfy the hypotheses of Theorem 1. However, by graphing partial 
sums, it would appear that the Fourier series for these functions converge to the functions except 

at "breaks" in the graphs where the series converge to the average value. [If f( -L +) f f(L) then 

we consider this to be a "break" at x = ±L.J These functions are all examples of "piecewise e111 
functions which we define precisely below. We will establish a convergence theorem that applies 
to such functions (cf. Theorem 3). 

Recall that if a function f is defined on some open interval containing a point x , then we say 
o 

that II f(x~) is the left-hand limit of f(x) as x approaches Xo from the left II if f(x) can be 

made arbitrarily close to f(x~) by requiring that x is sufficiently close to, but less than, xo. 

Similarly, one defines the right-hand limit f(xt). We write 

f(x~) = lim f(x) 
xlx o 

and f(xt) = lim f(x). 
x!xo 

These limits, if they exist, need not depend on the value of f at xo. Indeed, f(x~) and f(x t), 

may exist, even if f(xo) is undefined. In the event that f(xo) is defined and f(x~) = f(xo) = 

f(x t), then f is continuous at xo. If Xo is the left-hand endpoint of an interval on which f(x) is 

defined, then we can still define f(x t). Similarly f(x~) can be defined, if Xo is the right-hand 

endpoint of an interval on which f(x) is defined. 
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Definition. A function f(x) is piecewise continuous on [a,b], if all of the following hold: 

(A) f(x) is defined and continuous at all but a finite number of points in [a,b]. 

(B) For all x in (a,b) , the limits f(x&) and f(x~) exist. 
o 

(C) f(a +) and f(b -) exist. 
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Definition. f(x) is piecewise C1 on [a,b], if f(x) and f' (x) are. piecewise continuous on [a,b]. 

Remark. If f' (x) is piecewise continuous on [a,b], then f(x) is automatically piecewise 
continuous on [a,b], but we will not bother to prove this. 0 

The function with the graph shown in Figure 6 exhibits many of the pathologies of a 

piecewise C1 function. 

y 

x 

Figure 6 

There are plenty of examples of functions which are not piecewise continuous. Unbounded 
functions such as 1/x (-1 ~ x ~ 1, x f 0) cannot be piecewise continuous because left (and/or 
right)-hand limits cannot exist (Le., are infinite) where the function "blows up" (e.g., l/x blows 
up at x = 0). It is also possible to have bounded functions which are not piecewise continuous. 

For example, f(x) = sin(l/x) (-1 ~ x ~ 1, x f 0) is bounded (since If(x) I ~ 1), but f(O+) and 

f(O-) do not exist, since sin(l/x) oscillates infinitely often between the values ±1, as x -+ O. 0 

Example 4. Find two functions f(x) and g(x) whose graphs are congruent, such that f(x) is COO 

and g(x) is not even piecewise d. 

Solution. Let f(x) = x3 and let g(x) = Tx. The graphs are congruent, since the the graphs of 

inverse functions are reflections of each other in the line y = x. Clearly, f(x) is COO , but note 

that g/(X) = ~x-2/3, which has no limit as x approaches zero from either side. 0 



224 Chapter 4 Fourier Series and Sturm-Liouville Theory 

We introduce one last definition, which is convenient in the formulation of the convergence 

theorem for Fourier series of piecewise c1 functions. 

Definition. Let f(x) be a piecewise C1 function on the interval [-L,L]. By changing the 

values of f(x) at a finite number of points, we arrive at the adjusted function f(x) defined as 
follows: 

-L < x < L 
(28) 

x = :l:L 

In other words, f(x) coincides with f(x) at all points in (-L,L) where f(x) is continuous, but 

f(x) is the average of the left-hand and right-hand limits of f(x) at points of discontinuity in 

(-L,L). The value of f(x) at x =:l:L can also be thought of as an average of left-hand and 
right-hand limits, if we bend the interval [-L,1] into a circle. 

Example 5. Let f(x) be the function whose graph is shown on the left-hand side of Figure 7. 

f(x) ;/ . 

V x 

lex) 

~ x 

-L /L -L L 

f(x) f(x) 

Figure 7 

The adjusted function f(x) is graphed on the right-hand side of Figure 7. 

Theorem 3. Let f(x) be a piecewise C1 function on [-L,L] and let f(x) be the adjusted 

function in (28). Then FS f(x) = f(x), for all x in [-L,L]. Indeed, we have 
N 

FS f(x) = f(x) -00 < X < 00 , (29) 
N 

where f(x) is the periodic extension of the adjusted function f(x). 
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Proof. The proof proceeds in the same way as the proof of Theorem 1, until we reach (23) which 
is now replaced by the following limit that must be established for each x in [-L,L) : 

1 JL lim r DN(y-x)f(x) dx = f(x) . 
N-;oo -L 

(30) 

N 

Letting h(z) == f(z+x), the limit in (30) is equivalent to the limit 

1 JL lim r DN(z)h(z) dz = h(O) . 
N-;oo -L 

(31) 

Indeed, (30) is transformed to (31) in the same way that (23) was reduced to Proposition 4. 

However, we cannot simply apply Proposition 4, because now h is not necessarily C1. 

Nevertheless, we know that (since f is piecewise C1 and h is a translate of I) the limits h(O+), 

h(O-), h'(O+) and h'(O-) all exist, and h(O) = Mh(O-) + h(O+)). Thus, in order to prove (31), 

it only remains to prove the analog (cf. Proposition 5, below) of Proposition 4. As in the proof of 
Theorem 1, this is equivalent to the desired result (29). 0 

Proposition 5. Let h(x) be a piecewise C1 function on [-L,L). IT Dn denotes the n-th 

Dirichlet kernel (14), then 

lim t J_LLDn(X)h(X) dx = Hh(O-) + h(O+)] . 
n-;oo 

Proof. The result (32) follows from adding the two results: 

IJO - lJL + lim r Dn(x)h(x) dx = ~h(O ) and lim r Dn(x)h(x) dx = ~h(O ). 
n-; 00 -L n-; 00 0 

We prove the second of these; the proof of the first is similar. Observe that 

lJL lJL{ } 1 r ° Dn(x) dx = r ° ~ + cos(11X/L) + ... + cos(n11X/L) dx = 2"' 

and multiplying by the constant h(O+), we have t J~ Dn(x)h(O+) dx = ~h(O+). Thus, 

(32) 

(33) 
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and it suffices to prove that the integral on the right approaches 0 as n -I 00. To this end, we 

write Dn(x) = ~os(ll1rx/L) + ~ot(1IX/2L)sin(ll1rx/L), as in the proof of Proposition 4. Then we 

apply the Riemann-Lebesgue lemma to each part, after we split the integral (33) into two 
integrals as was done before [ef. (19)]. This time, we use a one-sided version of L'Hospital's rule 
to obtain 

I' h(X~-h)O+l = 1. h' (0+) 
xl~ 2tan 1IX 2L 7r • 

Thus, the Riemann-Lebesgue lemma will apply to both integrals, as before. Thus, the right-hand 
side of (33) tends to zero as n -I 00. 0 

Example 6. Using Theorem 3, graph the Fourier series FS f(x) (for -4L $ x $ 4L) of the function 

f(x) = [ ~ 0$ x $ L 

-L $ x < 0 
(34) 

Verify directly that FS f(x) converges to the adjusted function at the discontinuities of f(x), but 

show that the convergence of FS f(x) to f(x) on [-L,1] is not uniform. 

Solution. It is not necessary to compute the Fourier coefficients to draw the graph of FS f(x). 
N 

According to Theorem 3, FS f(x) is the periodic extension f(x) which is graphed in Figure 8. 

y 

- - lr-- - -. . . . . . . 
X 

4L 3L 2L L 0 L 2L 3L 4L 

Figure 8 

The Fourier series of f(x) was computed in Problem 4(a) of Exercises 4.1 to be 

1 1 00 1 
FS f(x) = 2" + 7r lO=l n [1+(-1)0+1]sin(n1lX/L). (35) 

We have FS f(O) = ~, and this is the value W(O-) + f(O+)] of the adjusted function f(x) at 

x = O. Note also that FS f(±L) = ~ = f(±L). We can show that the convergence here is not 

uniform as follows. Let SN(x) be the N-th partial sum of (35). Since SN(O) = ~ and SN(x) is 

continuous, we know that SN( f) must be close to ~,if I f I is small enough. In particular, we can 
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choose f (0 < f < L) small enough, so that SN( f) < !. However, f( f) = f( f) = 1, and so 

I SN( f) - f( f) I > i (i.e., the maximum vertical separation between the graphs of SN and f is 

always greater than i). For uniform convergence, we would need to have the maximum vertical 

separation tending to 0, as N --; 00. Geometrically, it is impossible for the graph of the continuous 

function SN(x) to be close to y = 0 just to the left of x = 0, and close to y = 1 just to the 

right of x = o. 0 

Remark 1. More generally, it is possible to prove that a sequence of continuous functions [e.g., 

SN(x)] cannot converge uniformly to a discontinuous function [e.g., f(x) in Example 6]. Thus, the 

Fourier series of a function cannot converge uniformly to f, if f is discontinuous. 

Remark 2 (The Gibbs phenomenon). In Example 6, there is also a more subtle nonuniformity in 

the convergence of SN(x) to f(x). In Figure 9 below, observe that the graph of S7(x) (where we 

have taken L = 2) overshoots the value 1, as it heads upward from the origin. 

y 

1 r... " 
II \ 

\ 
! 
2 

/ x 

-2 '" -1 "'0 1 2 

Figure 9 

The maximum value of S7(x) occurs at x = .25, and it is about 1.0921. One might expect that 

the overshoot of SN(x) will decrease to zero, as N --; 00. However, this is not the 

case. Indeed, the "overshoot maximum" for S2n-l(x) occurs at x = lin and 

I . S (I) 1 1J'lr sin x dx N 1m 2n-l 1 n = 2" + 7r -x- N 1.0895 . 
n--;oo 0 

We lead the reader to this conclusion in Problem 9. The general fact that the overshoot 

discrepancy does not tend to zero at a jump in the graph of f(x) is known as the Gibbs 

phenomenon. The Gibbs phenomenon is not in violation of Theorem 3. For a piecewise C1 

function f(x), the overshoot maximum of SN(x) does not occur at a fixed value of x which is 

independent of N. At any fixed value of x, SN(x) converges to T(x). This is quite similar to 

the case of the pointwise (but nonuniform) convergence of the functions fn(x) in Example 3. 0 
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Uniform convergence of FS f(x) for continuous piecewise Cl functions f(x) with f(L) = f(-L) 

'" 
Theorem 3 gives us the pointwise convergence of FS f(x) to f(x) under weaker hypotheses 

than Theorem 2. However, the convergence in Theorem 2 is uniform. The above Example 6 and 

the remarks, show that the Fourier series of a piecewise c1 function f(x) on [-L,L] cannot 

converge uniformly to f(x), if f(x) has discontinuities (Le., jumps) or if f(-L +) 1= f(L -). If f(x) 

is piecewise Cl and has no discontinuities in [-L,L] and f(-L) = f(L) , then there is still hope for 
uniform convergence of FS f(x) to f(x) III [-L,L]. The following Theorem 4 provides the 
uniform convergence of FS f(x) to f(x) for such functions. The main advantage of Theorem 4 

over Theorem 2 is that f(x) need not be C2 (or even c1). 

Theorem 4. Let f(x) be a continuous piecewise c1 function on [-L,L]' such that 
f(-L) = f(L). Then FS f(x) convergffi uniformly to f(x) on [-L,L]. In other words, 

max If(x) - SN(x) I ..., 0 as N..., 00, (36) 
-L ~X~L 

where SN(x) is the N-th partial sum of FS f(x). 

Remark. Note that it is not assumed that f' (x) is continuous everywhere, so that the graph of 
f(x) may have corners. However, the continuity assumption ensures that the graph of flx) will 

have no gaps. Moreover, the assumption f(-L) = f(L) ensures that the periodic extension t(x) 
has no gaps (Le., f(x) yields a continuous function on the circle of circumference 2L). 0 

Proof. From Theorem 3, we already know that FS f(x) = f(x) for x in [-L,L] , since the adjusted 

function f(x) is the same as f(x) by the continuity assumptions on f(x). Thus, 

00 

f(x) - SN(x) = FS f(x) - SN(x) = l ancos(n1lX/L) + bnsin(n1lX/L) . (37) 
n=N+l 

If we can prove that 

(38) 

then the "tail" loo [I an I + I bn I] of the series (38) would tend to 0, as N..., 00, and by (37), 
n=N+l 

lim[ max If(x)-SN(x)I]~lim[f lanl+1bnl]=0, (39) 
N""oo -L ~X~L N""oo n=N+l 

as required by (36). Thus, it suffices to prove (38). To this end, we need to examine the Fourier 
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coefficients an and bn. For bn , we have 

1 JL 1 L IL 1 JL L bn = r f(x)sin(n7rX/L) dx = -rf(x)·-cos(n7rX/L) + r f/(x)·-cos(n7rX/L) dx 
L -L L n 11" -L L -L n 11" 

(40) 

L IfL L = -n r f/(x)cos(n7rX/L) dx = - An' 
11" L -L n 11" 

where An is the Fourier cosine coefficient of fl (x), and we have used the fact that "integration 

by parts" is justified for a continuous piecewise c1 function. Similarly, we have 

L L 1 fL an = - -n Bn = - - r fl (x)sin(n7rX/L) dx . 
11" n1l" L -L 

(41) 

Since f/(x) is piecewise continuous, it satisfies the hypotheses of Bessel's inequality, and so 

(42) 

Given any sequences 1l'1,. .. ,ll'k and (Jl, ... ,(Jk of real numbers, the Cauchy-Schwarz inequality (cf. 
Problem 9) says that 

( 43) 

For k = 3, (43) is just the familiar result la·bl ~ Ilall·llbll , but the result holds for any k. In 
particular, we consider the sequences 

By (43), applied to this pair of sequences, we have for any k = 1, 2, 3, ... , 

1 1 

~ [IAlI2 + IBll2 + IA212 + IB212 + ... + IAkl2 + IBk12r· [2.[(t)2 + (i)2 + ... + (t)2lr. 

00 1 2 
Letting k --; 00, we obtain (using the result l _ "2 ~ 1; of Example 2) 

n-l n 

(44) 
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by virtue of (42). Thus, using (40), (41) and (44), 

which gives us the result (38), and thus (39) holds. 0 

Remark JFejer'S theorem). There are continuous (but not piecewise C1) functions f(x) defined 
on [-L,L, with f(-L) = f(L), whose Fourier series diverge at an infinite number of points in 
[-L,1] cf. [Coppel]). Nevertheless, it is possible to uniformly approximate such a function to 
within any given positive error by a trigonometric polynomiaL In other words, given f > 0, there 

N 
is a trigonometric polynomial, say P N(x) = Co + In:lcncos(n1TX/L) + dnsin(n1TX/L) , such that 

If(x) - P N(x) I $ f, for all -L $ x $ L. If FS f(x) does not converge uniformly to f(x), then we 

might not be able to find a partial sum SN(x) of FS f(x), such that I f(x) - SN(x) I $ f . 

However, the following remarkable result is proved in ,[Bari, vol. I, p. 135]. 

Theorem 5 (Fejer's theorem). Let f(x) be a continuous (but not necessarily piecewise Cl ) 
function defined on [-L,L], such that £(-L) = f(L). Let SN(x) denote the partial sum (hom 

n = 0 to N) of the Fourier series of f(x). Let AN(x) = Nir r So(x) + Sl(X) + ... + Six)] 

(i.e., the average of the first N + 1 partial sums of FS f( x». then the sequence of 
trigonometric polynomials Ao(x), A1(x), A2(x), ... converges uniformly to f(x) on the interval 

[-L,1], although the sequence So(x), Sl(X), S2(x), ... may not even converge pointwise to f(x). 

It can be easily shown (cf. Problem 13) that among all trigonometric polynomials P N(x) of 

"degree" N, SN(x) makes the mean-square error JL [f(x) - P N(x)]2 dx the smallest. 
-L 

However, Fejer's theorem suggests that SN(x) may not make the "uniform error" 

max I f( x) - SN( x) I the smallest among among all trigonometric polynomials of degree N, as 
-L<x<L 
a cOncrete counterexample in Problem 14 shows. 0 
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Summary 4.2 

1. Bessel's inequality: Let f(x) be defined on [-L,L] ,and suppose that JL [f(x)]2dx exists 
-L 

and is finite. Assume that the Fourier coefficients 

1JL 1JL an = L _Lf(x)cos(n11X/L) dx and bn= L _Lf(x)sin(n11X/L) dx (81) 

00 

exist, so that F8 f(x) = iao + 2n=lancos(n11X/L) + bnsin(n11X/L) may be defined formally 

(possibly not convergent). Then we have Bessel's Inequality 

2 "t 2 2 IJL 2 
iao + In=1 (an + bn) ~ L -L [f(x)] dx. (82) 

If this inequality is replaced by equality, it is called Parseval's equality. For continuous piecewise 

C1 functions f(x), Parseval's equality is proved in Problems 5-7. 

JL 2 
2. The Riemann-Lebesgue Lemma: Let f(x) be defined on [-L,L]. If -L [f(x)] dx < 00, and 

the Fourier coefficients of f(x) exist, then these coefficients tend to zero, as n ~ 00, Le., 

1 JL lim L f(x)cos(n1lX/L) dx = 0 
n~oo -L 

and lim t t f(x) sin(n11X/L) dx = 0 . 
n~oo -L 

(83) 

The smoother f(x) is, when viewed as a function on a circle of circumference 2L, the more 
rapidly the Fourier coefficients of f(x) will decay as n ~ 00 (cf. Proposition 2 and remarks after it). 

3. Pointwise convergence of FS f(x) (Theorem 1): Let f(x) be CIon [-L,1], and assume that 

f(-L) = f(L) and f/(-L) = f/(L) [so that f(x) may be regarded as a c1 function on the circle of 
circumference 2L]. Then F8 f(x) = f(x) for all x in [-L,1]. In other words, writing 

N 

8N(x) = iao + 2n=l[ancos(n11X/L) + bnsin(n11X/L)] , (84) 

where an and bn are given by (81), we have (for any fixed x in [-L,L]) 

00 

F8 f(x) :: iao + 2 [ancos(n11X/L) + bnsin(n11X/L)] :: lim 8N(x) = f(x) . (85) 
n=1 N~oo 
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4. Uniform convergence of FS f(x) (Theorem 2): Let f(x) be defined and C2 on the interval 
[-L,L1 ,with f(-L) = f(L) and (I(_L) = f/(L). Then FS f(x) converges uniformly to f(x) on 
[-L,L. Indeed, with SN(x) given by (84), 

4L2M 
I f(x) - SN(x) I ~ -2-' for aU x in [-L,L], where M == max I f"(x) I . (S6) 

7r N -L ~X~L 

5. Pointwise convergence of FS f(x) (Theorem 3): Let f(x) be a piecewise C1 function on [-L,L] 

and let f(x) be the adjusted function in (28). Then FS f(x) = f(x), for all x in [-L,L]. Indeed, 

FS f(x) = T(x) , for -00 < X < 00, (S7) 

where T(x) is the periodic extension of the adjusted function f(x). 

6. Uniform convergence of FS f(x) (Theorem 4): Let f(x) be a continuous piecewise c1 
function on [-L,L], such that f(-L) = f(L). Then FS f(x) converges uniformly to f(x) on 
[-L,L]. In other words, 

max If(x) - SN(x) I -; 0 as N -; 00 , 

-L ~ X~L 

where SN(x) is the N-th partial sum of FS f(x) given by (S4). 

Exercises 4.2 

1. Let f(x) = Ixl for -1 ~x~ 1. 

(a) Sketch the periodic extension 1'(x) for -4 ~ x ~ 4 . 

(S8) 

(b) What theorem ensures that the partial sums SN(x) of FS f(x) converge to 1'(x) uniformly? 

(c) Why can we not use Theorem 2 to establish uniform convergence of FS f(x) to f(x)? 

(d) Show directly that FS f(x) converges uniformly to f(x) by means of an integral comparison, 
as in the proof of Theorem 2. You may assume that FS {(x) = f(x) by Theorem 3. 

2. Find a nonconstant polynomial of lowest degree which satisfies the hypotheses of Theorems 1 
and 2 for the interval [-L,1]. Hint. The degree must be at least 3. Why? 

3. Let { 
2(x+1) 

f(x) = 
x 

for -1 ~ x ~ 0 

for 0 < x ~ 1 

Sketch the graph of FS f(x) in the interval [-4,4]. What theorem did you use? 
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4. (a) In Problem 6 of Section 4.1, we showed that f ~ = ~2 , asuming that FS f(x) = f(x), 
n=1 n 

for -L ~ x ~ L, where f(x) = x2. What theorem(s) imply that this assumption is correct? 

(b) Use part (a) to show that Parseval's equality is valid for the function f(x) = x 
(d. Example 2), even though we have not proved Parseval's equality in general. 

(c) Verify directly that Parseval's equality holds for the function of Example 6 : 

f(x) = --[
1 O<x<L 

o -L ~ x < 0 

Hint. Refer to Problem 6 of Section 4.1 , again. 

5. (a) Verify the following result (cf. the assumptions and the proof of Bessel's inequality). 

(b) Use the result in part (a) to conclude that a function f(x), -L < x < L, with 

J~L f(x)2 dx < 00 and whose Fourier coefficients exist, will satisfy Parseval's equality if and only if 

JL 2 
lim [f(x) - SN(x)] dx = 0 . 
N-loo -L 

6. Find a sequence of functions f,(x), f2(x), ... defined on [-L,L], such that for each x in 

[-L,L]' lim fn(x) = 0 , and yet 

lim JL fn(x) dx :f JL [I im fn(x)] dx. 
n-loo -L -L n-loo 

Hint. Modify the functions fn(x) in Example 3 so that fn(1/n) = n (Le., increase the height of 

the vertex to n). Observe that then JL fn(x) dx = 1 . 
-L 

7. (a) In view of Theorem 2 and Problem 5 , show that a C2 function f(x) on [-L,L]' such that 
f(-L) = f(L) and f'(-L) = f'(L) will satisfy Parseval's equality. 

(b) In view of Problem 6, why can we not use Theorem 3 and Problem 5 to conclude at once that 

Parseval's equality holds for any piecewise C1 function f(x) on [-L,L]? 
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(c) Use Problem 5 and Theorem 4 to prove that Parseval's equality holds for any continuous 

piecewise C1 function f(x) on [-L,L] such that f(-L) = f(L). 

8. Use Problems 5 and 4(c) to conclude that it is sufficient, but not necessary, that SN(x) -I f(x) 

uniformly, in order to conclude that Parseval's equality holds for f(x) as in Problem 5. 

Remark. In fact, Parseval's equality holds for any piecewise continuous function f(x) defined on 
[-L,1]. A proof is in [Rudin, Principles of Mathematical Analysis, 3rd ed., p. 191]. 

9. (The Cauchy-Schwarz inequality; d. (43)). Let a = (al ,a2,. .. ,ak) and b = (i31,i32, ••• ,(3k ) , 

where the ai and i3i are real numbers. Define a· b = ali31 + a2i32 + ... + a ki3k , and let lIall 

J. 2 2 2 1 
= (a·a)2 = (a l + a2 + ... + akF be the length or norm of a. For any real number r, let a + rb 

= (al ,a2,.··,ak) + r(i31,i32,···,i3k ) = (al + ri31, a2 + ri32, ••• ,ak + ri3k)· 

(a) Let h(r) = lI(a + rb)11 2 = (a + rb)·(a + rb). Show that h(r) = (b.b)r2 + 2(a·b)r + a'a 
and note that h(r) ~ 0, for all r (Why?). 

(b) If b· b:f. 0, explain why the graph of h(r) cannot intersect the r-axis more than once (if at 
all), and hence why the quadratic equation h(r) = 0 cannot have two distinct real roots. 

(c) Use parts (a) and (b) and the quadratic formula to conclude that 

2[(a· b)]2 - 4(b· b)(a·a) ~ 0 or I a· bl ~ Ilallllbll , which is the Cauchy-Schwarz inequality. 

10. Use the same idea as in Problem 9, to show that for an.Y, two piecewise continuous functions 
f(x) and g(x) defined on [-L,L], we have I <f,g> I ~ Ilfllllgll. In other words, 

The piecewise continuity of f(x) and g(x) ensures that the integrals exist, which you may assume. 

Hint. Consider h(r) = Ilf + rgll 2 ,for real r. 

11. Show that there is no piecewise C1 function f defined on [-L,L], such that IIfll:f. 0 and f is 
orthogonal to all of the functions co' cl ' Sl' c2, S2' .... (Recall cn(x) = cos(n11X/L), etc .. ) 
Hint. Consider the Fourier series of such a function and use Theorem 3. 
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12. Complete the following steps to establish the claims made in Remark 2, following Example 6 
concerning the Gibbs phenomenon (overshoot at a discontinuity). 

(a) Let S2n-l(x) be the partial sum (n = 1,2,3" ... ) 

S2n-l(x) = ~ + ~ [sin(1rX/L) + jSin(31rX/L) + .. , + 2Ll sin([2n-l]1rX/L)] 

of FS f(x) in (35). Compute S~n-l(x) and multiply by sin(1rX/L) to produce a collapsing sum, 

as in the proof of Proposition 3, thus obtaining sin( 1rX/L)· S~n-l(x) = t sin(2n1rX/L) . 

(b) Conclude that the first positive value of x for which S~n-l(x) = 0 is x = L/(2n) , and 

hence the overshoot maximum value is 

S2n-l(~) = ~ + ~ [2sin(71/2n) + ~sin(371/n) + ... + 2;_lsin([2n-l]71/2n)]. (*) 

(c) Show that the sum in brackets in (*) is the sum of areas of the shaded blocks shown below. 

Figure 10 

(d) Conclude that the limit of the overshoot maximum values, as n --I 00, is given by 

lim S2n-l(L/2n) = ~ + lf7l' sin(x) dx ~ 1.0895 . 
n-+oo 71' 0 X 

Hint. Use the trapezoidal rule to estimate the integral in (d). 

13. Let f(x) be a piecewise continuous function on [-L,L], and for N ~ 0, let 
N 

SN(x) = ~ ao + t=l ancos(n1rX/L) + bnsin(n1rX/L) be the N-th partial sum of FS f(x). Let 

N 
P N(x) = ~o + t=l cncos(n1rX/L) + dnsin(n1rX/L) be an arbitrary trigonometric polynomial of 

degree N. 
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(a) Show that tL[f(X) - P N(x)]2 dx = tL [f(x)]2 dx - 2 f~L P N(x)SN(x) dx + f~L P N(x)2 dx 

f
L 2 fL 2 fL 2 

= -L [f(x)] dx - -L SN(x) dx + -L [P N(x) - SN(x)] dx. 

(b) Why does part (a) show that the mean-square error f~/(x) - P N(x)]2 dx is least when 

P N(x) is chosen to be SN(x)? 

14. Let f(x) = x2 for -L ~ x ~ L. 

(a) Show that the constant c, such that the mean-square error f~L [f(x) - c]2 dx is smallest, is 

~ao = L 2 /3. 

(b) Show that the constant d, such that the "uniform error" max 1 f(x) - d 1 is smallest, is 
-L~x~L 

L 2 /2. Compare max 1 f(x) - L 2 /21 with max 1 f(x) - L 2 /31. 
~~~L ~~~L 

(c) Why do parts (a) and (b) imply that the best uniform approximation of a function by a 
trigonometric polynomial of given degree is not necessarily a partial sum of its Fourier series? 
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4.3 Sine and Cosine Series and Applications 

One of our goals in this chapter is to approximate functions on an interval by linear 
combinations of sine and/or cosine functions of a form (depending on the B.C.) that is appropriate 
for the solution of certain heat conduction problems. The Fourier series treated in Section 4.2 
dealt with functions defined on [-L,L], and this series is ideally suited for solving the following 
problem for the circular wire: 

D.E. ut = kuxx -L $ x $ L , t ~ 0 

B.C. u(-L,t) = u(L,t) ux(-L,t) = ux(L,t) 

I.C. u(x,O) = f(x) . 

(1) 

If the function f(x) is continuous and piecewise c1 with f( -L) = f(L), then by Theorem 4 of 
Section 4.2, we can find a partial sum of FS f(x), say 

N 

SN(x) = ~ao + InJancos(ll1rx/L) + bnsin(nmc/L)}, 

such that If(x)-SN(x) I < t , for any preassigned "experimental error" t and all x in [-L,L]. 

Replacing f(x) by SN(x) in (1), we then obtain a solution 

(2) 

via Proposition 2 of Section 3.1. By using a maximum principle we could establish that uN(x,t) 

given by (2) is within t of the exact C2 solution [if such exists] of problem (1) with the original 
function f(x). 

If we repface N in (2) by 00, then one is tempted to assert that (2) gives us the exact solution 
of the original problem (1). There are many difficulties in proving this assertion, or even in 

formulating the sense in which such a statement is correct. For example, if f(x) is not C2, then 

there can be no solution of (1) which is C2 at t = 0 (e.g., the D.E. cannot be satisfied at 

t = 0). Moreover, even if f(x) is C2 [with f(-L) = f(L) and f/(-L)::;: f/(L) ], there are 

substantial problems in verifying that, with N = 00, the sum (2) actually converges to a C2 
function that satisfies the D.E .. In particular, recall that it is quite common for an infinite sum 

of smooth (Le., COO) functions to converge to a discontinuous function (cf. Example 6 of Section 
4.2). From the viewpoint of applications, an extensive effort to resolve these difficulties is 
unwarranted, because f(x) is only known to within some experimental error, and there is nothing 
to be gained by obtaining an exact solution of (1). In mathematics, it is often interesting and 
challenging to find exact answers to precisely formulated problems, but in applications one rarely 
finds precisely formulated problems, and it makes no sense to seek exact solutions. For the sake of 
the mathematically inclined, later in this section we will briefly address the pitfalls that may 
result when N = 00 in (2). However, such difficulties are best handled by considering an alternate 
manner of expressing solutions in terms of integral formulas. This will be covered in Chapter 7. 
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A motivation for Fourier sine and cosine series 

In the heat conduction problem for a rod of length L (0 S x S L), where both ends are 
maintained at 0, recall that we wish to approximate the initial temperature by a linear 

N 
combination In=lbnsin(ll1rx/L). Roughly speaking, we will do this by extending the initial 

temperature distribution f(x) defined on [0,1], with f(O) = 0 , to a new function (the odd 
extension) fo(x) defined on [-L,L], in such a way that fo(x) = f(x) for 0 S x S L , and 

fo(x) = -f(-x) for -L S x SO. Since fo(x) is defined on [-L,1] , it makes sense to speak of its 

Fourier series FS fo(x). Since fo(x) is odd [Le., fo(-x) = -fo(x) 1 , all of the cosine terms will be 

absent in FS fo(x). Under suitable assumptions on fo(x) , the partial sums of FS fo(x) will 

approximate fo(x) on [-L,1], and hence also f(x) on [O,L], as desired. The series FS fo(x) is 

called the "Fourier sine series" of f(x). By considering the "even extension" of f(x), we 
analogously obtain the "Fourier cosine series" of f(x). This would be of use in problems where 
both ends are insulated. Through the use of more elaborate extensions, we can obtain series 
approximations involving cos([n + tl7rX/L) or sin([n + tl7rX/L) for problems where one end is 
insulated and the other is maintained at O. These new types of series are all modifications of the 
"standard" Fourier series of Section 4.2. Consequently, nearly all of the convergence properties 
established so far, carryover to these new series without much difficulty. In what follows, we 
supply the details of the constructions motivated by the above discussion. 

Properties of even and odd functions 

Definition. Let f(x) be a function defined for -L S x S L. Then f(x) is called even, 
if f(-x) = f(x), and f(x) is called odd, if f(-x) = -f(x), for all x in [-L,1]. 

Note that if (x,f(x)) is on the graph of an even function f(x), then (-x,f(x)) will also be on the 
graph (i.e., the graph is invariant under reflection in the y-axis), as in Figure 1. 

y y y 

0-- f---o 
1 

cos(3x) 1-lxl 

Figure 1 (Examples of even functions) 

x 

1 
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If f(x) is odd, then (x,f(x)) is on the graph if and only if (-x,-f(x)) is on the &raph (cf. 
Figure 2) ; i.e., the graph is invariant under reflection through the origin, (x,y) +-I (-x,-y) . 

y y y 

1 1 

x x 
1 

- sln(3x) arctan(x) 

Figure 2 (Examples of odd functions) 

Definition. Let f(x) be a function defined for 0 S x S L. The even extension of f(x) is the 
unique even function fe(x) defined for x in [-L,L) with fe(x) = f(x) for x in [0,1] , i.e., 

[ 
f(x) if 0 S x S L 

fe(x) = 
f(-x) if -L S x SO. 

If f(O) = 0 , we can also define the odd extension fo(x). It is the unique odd function defined 

for x in [-L,L], such that fo(x) = f(x) for x in [0,1], i.e., 

[ 
f(x) if 0 S x S L 

fo(x) = 
-f( -x) if -L S x SO. 

Note that "f(O) = 0" is needed for consistency. 

1 

For example, suppose that f(x) = .;x , 0 S x S L. Then we have the graphs in Figure 3 (L = 1.5). 

f(x) fe(x) 

Figure 3 

Y 

x 

x 
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We collect some obvious facts concerning even and odd functions: 

(A) The product of two even functions is even. 

(B) The product of two odd functions is even. 

(C) The product of an odd function and an even function is odd. 

(D) If f(x) is odd (-L ~ x ~ L) , then JL f(x) dx = 0, if the integral exists. 
-L 

(E) Iff(x) is even (-L ~ x ~ L) , then JL f(x) dx = 2 JL f(x) dx, if the integrals exist. 
-L 0 

Proposition 1. Let f(x) be a function, defined for -L ~ x ~ L, with Fourier coefficients 

1JL IJL an= L _Lf(x)cos(n1lX/L) dx and bn= L _Lf(x) sin(n1lX/L) dx. 

Iff(x) is even, then bn= 0 (n = 1, 2, 3, ... ) and 

2JL an= L /(x)cos(n1lX/L) dx , (n = 0, 1,2, ... ). 

Iff(x) is odd, then an= 0 (n = 0, 1,2, ... ) and 

2JL bn= L /(x)sin(n1lX/L) dx , (n = 1,2,3, ... ). 

(3) 

(4) 

Proof. If f(x) is even, then bn= 0 by facts (C) and (D), since sin(n1lX/L) is odd. Formula (3) 

follows from (A) and (E). The case when f(x) is odd is handled similarly. 0 

Fourier sine and cosine series 

Definition. Let f(x) be a function defined on [O,L], such that the integrals (3) and (4) exist. 
Then the Fourier sine series of f(x) is the expression 

00 2JL FSS f(x) = ~ bnsin(n1lX/L), where bn = r f(x)sin(n1lX/L) dx . 
In=l L 0 

(5) 

The Fourier rosine series of f(x) is the expression 

FCS f(x) = ~ao + ~=lancos(n1lX/L), where an = i-J>(x)COS(n1lX/L) dx . (6) 
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Proposition 2. Let f(x) be defined for 0 ~ x ~ L , and suppose that the integrals in (5) and (6) 
exist. Then (redefining f(O) to be 0) the Fourier sine series of f(x) is the Fourier series of the 
odd extension fo(x) defined on [-L,Ll. The Fourier cosine series of f(x) is the Fourier series 

of the even extension fe(x) defined on [-L,L], i.e., 

FSS f(x) = FS fo(x) and FCS f(x) = FS fe(x) . 

Proof. We simply check that the Fourier coefficients of fo(x) are given by an= 0 and bn as in 

(5). Indeed, an = 0 (for all n = 0,1,2, ... ) by Proposition 1, and 

1JL 2JL bn = r fo(x)sin(n1lX/L) dx = r fo(x)sin(n1lX/L) dx (by property (E)) , 
-L 0 

which is as in (5), since fo(x) = f(x) for 0 ~ x ~ L. Similarly, FCS f(x) = FS fe(x). 0 

Since FSS f(x) = FS fo(x) and FCS f(x) = FS fe(x), we can obtain convergence results for 

FSS f(x) and FCS f(x) by applying the theorems of Section 4.2 to the extensions fo(x) and fe(x). 

The following theorems suffice for most of our applications of Fourier sine and cosine series. We 

recall the notation for left-hand and right-hand limits: 

f(xt) = 1 im f(x) 
x!xo 

and f(x;J = 1 i m f(x) . 
xjx o 

Theorem 1. Let f(x) be a piecewise C1 function defined on [O,L]. Then 

{ 
Hf(x -) + f(x +)] 0 < x < L 

FSS f(x) = 
o x=O ill x=L 

IT f(x) is also continuous on [O,L] with f(O) = 0 and f(L) = 0, then the 
partial sums SN(x) of FSS f(x) converge uniformly to f(x) on [O,L] , i.e., 

max {I f(x) - SN(x) I} .... 0 as N .... 00. 

O~x~L 

(8) 

(9) 

Proof. If necessary, redefine f(O) to be 0, and let fo(x) be the odd extension of f(x). Then 
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fo(x) is a piecewise c1 function defined on [-L,1]. By Theorem 3 of Section 4.2, we know that 

FS fo(x) converges to the adjusted function fo(x). Note that fo(O) = Wo(O+) + fo(O)] 

= W(O+) - f(O+)] = 0 ,and fo(L) = Wo(-L +) + fo(L-)] = H-f(L-) + f(L)] = 0 , and for 

o < x < L , fo(x) = W(x +) + f(x -)]. Thus, by Proposition 2 above and Theorem 3 of Section 

4.2, we have FSS f(x) = FS fo(x) = fo(x), from which (8) follows. If f(x) is also continuous, 

with f(O) = 0 and f(L) = 0, then fo(x) is continuous with fo(L) = fo(-L) = O. Thus, 

Theorem 4 of Section 4.2 applies to fo(x), and we have (9), since fo(x) = f(x) on [O,L]. 0 

Theorem 2. Let f(x) be a piecewise c1 function on [O,L]. Then 

! H f (x -) + f(x +)] 0 < x < L 

FCS f(x) = f(O+) x = 0 

f(L-) x = L . 

If f(x) is also continuous on [O,L] , then the partial sums SN(x) of FCS f(x) 

converge uniformly to f(x) in the sense of (9) . 

(10) 

Proof. We apply Theorem 3 of Section 4.2 to the (piecewise C1) even extension fe(x) in order to 

obtain FCS f(x) = fe(x). Note that fe(O) = t [fe(O-) + fe(O+)] = t [f(O+) + f(O+)] = f(O+) , 

and fe(L) = Hfe(L -) + fe( -L +)] = Hf(L -) + f(L -)] = f(L -) , and for 0 < x < L , fe(x) = 

t [f(x -) + f(x +)] . Hence (10) follows from FCS f(x) = FS fe(x) = fe(x). If f(x) is continuous, 

then fe(x) is continuous, and Theorem 4 of Section 4.2 yields the uniform convergence. 0 

Example 1. Find the Fourier sine and cosine series for the function f(x) = L - x (0 ~ x ~ L), and 
sketch the graphs of FSS f(x) and FCS f(x) in the interval [-3L,3L]. 

Solution. We compute FSS f(x), using Green's formula (cf. (9) of Section 4.1). Recall that sn(x) 

= sin(n7rX/L). Using the inner product notation <g,h> = f:g(X)h(X) dx (now on [0,1] I), 
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Thus, 

Sine and Cosine Series and Applications 

2JL 2 2 2 bn = r /(x)sin(ll7rx/L) dx = r <f,sn> = - r(L/nn') <f,s~> 

= - J~2 [[f(x)s~(x) - f' (X)Sn(x)li: + <f" ,sn>] 

2L 2L 
= -22" (-L·n11'/L + 0) = -. 

11' n n11' 

FSS f(x) = 2L ~ .!. sin(n1rX/L) . 
11' 1.n=l n 

'" 

243 

(11) 

We know from Proposition 2 that FSS f(x) = FS fo(x) which is 70 (x) by Theorem 3 of 

'" 
Section 4.2. Thus, the graph of FSS f(x) is the same as the graph of fo(x) (cf. Figure 4). 

y 
L 

x 
-2L -L o L 2L :'Il; 

-L 

Figure 4 

The restriction of the graph to the interval [-L,L] is the graph of fo(x) which is properly 

'" 
"adjusted" at x = O. The series (11) does not converge uniformly, because 70 is not continuous. 

Note that f(x) is continuous, but f(O)"f 0, as is needed for uniform convergence in Theorem 1. 

2JL For FCS f(x), we compute ao = r ° (L-x) dx = L , and for n ~ 1 , 

an = if: f(x)cos(n1rX/L) dx = i<f,cn> = - i (L/n11')2 <f,c~> 

= - ~L 2 [[f(x)c~(x) - f' (x)cn(x)li L + <f" ,cn>] = ~[-( _l)n + 1] . 
11'n 0 11'n 

Thus, FCS f(x) = ~ + ~ t_ ~ [(l-(-l)n]cos(n1rX/L) 
11' n-1 n 

(12) 

L 4L~ 1 
= 2 + 2"1... 2 cos [(2k+1)1rX/L] . 

11' k=O(2k+1) 
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N 

We know from Proposition 2 above and Theorem 3 of Section 4.2, that FCS fe(x) = fe(x). Thus, 
N 

the graph of FCS f(x) is the same as the graph of fe(x) (cf. Figure 5). 

y 

-3L -ZL -L L ZL 3L 

-L 

Figure 5 

In this case, the series (12) converges uniformly, as can be inferred directly from the coefficients 

that decrease as n -2. Alternatively, uniform convergence is guaranteed by Theorem 2 (which 
does not require f(O) = 0 as in Theorem 1), or we could use Theorem 4 of Section 4.2, since fe(x) 

is a continuous piecewise C1 function and fe(-L) = fe(L). 0 

Example 2. Find the Fourier cosine series of f(x) = sin (x) [0 ~ x ~ 11"] , and sketch the graph of 
FCS ftx), for -211" ~ x ~ 211" . 

Solution. We use Green's formula to compute an' for n = 2, 3, 4, ... : 

an = ~ J1I" f(x)cos(nx) dx = ~<f,cn>= - ~ <f,c~> 
11"0 11" rn 

= - ~2[[f(x)c~(x) -f'(x)Cn(x)]I: + <f11,cn>] 

=- ~2[[(-1)n+1]-<f,Cn>] =- ~2 [(-1)n+1-~an]· 

Thus, n2an=-~[(-1)n+1]+an,andsolvingfor an yields 

_ -2 [(-1)n+1] 
an - 2 ,for n = 2, 3, 4, ... . 

1I"(n -1 ) 

4 Separate calculations reveal that ao = 7r and at = O. Thus, 
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FCS f(x) = ~-~11'f [(_pn+1] cos(nx) = ~-! ,,00 ---!.-COS(2kx). (13) 
11' n=2 (n-l) 11' 11' Lk=14kL;_l 

N 

The graphs of FCS f(x) and fe(x) coincide (cf. Figure 6). 

y 
I sln(x) I 

Figure 6 

Of course, the Fourier sine series of f(x) is just sin(x). One reason why the cosine series might 
be desired, instead of the much simpler sine series, is that f(x) might be the initial temperature 
distribution in a rod with insulated ends, in which case we need to approximate f(x) by a linear 
combination of the functions cos(nx) , n = 0,1,2, .... 0 

Recall (cf. Problem 3 of Section 4.2) that for the problem 

D.E. ut = kuxx 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = 0 ux(L,t) = 0 

I.C. u(x,O) = f(x) , 

(14) 

where the end at x = 0 is held at zero and the end at x = L is insulated, we found that if 

"N "N -A 2kt 
f(x) = L cnsin[(n + t)7rX/L] , then u(x,t) = L cne n sin(Anx), An= (n + t)11'/L. Thus, 

n=l n=l 
for the problem (14), it is desirable to approximate f(x) by a linear combination of the functions 
sin[(n + t)7rX/L] , instead of sin(n7rX/L). Fortunately, it is not necessary to develop from 
scratch a whole new theory of Fourier series in terms of sin [( n + t) 7rX/L]. Indeed, we can obtain 
the new theory from the old one, as follows. 

Let re(x) denote the function defined on [0,21] by 

[ 
f(x) 

re(x) = 
f(2L-x) 

O~x~L 

L ~ x ~ 2L 

Pictorially, the graph of fe(x) is obtained by reflecting the graph of f(x) in the vertical line 
through x = L , as in Figure 7. 
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y 

r(2L-x) 

x, 

o L 2L 

Figure 7 

For this reason, we call fe(x) the even extension of f(x) about x = L (as opposed to fe(x) 

which is the even extension (about 0) considered earlier). We now show that the desired series for 

f(x) in terms of sinr(n + t)7rX/L] is obtained by taking the usual Fourier sine series of re(x) on 
the interval [0,2L]. in Problem 7, the reader is asked to state and prove an analogous theorem for 
series representations in terms of cos[(n + t)1T/L] . 

Theorem 3. The Fourier sine series of re(x) on [0,2L] is given by 

00 

FSS fe(x) = In=oCnSin[(n + !)7rX/L] , 

where 

2fL cn = L /(x)sin[(n + !)7rX/L] dx, n = 0,1,2, .... 

If f(x) [and hence fe(x)] is piecewise C1, then 

{ 
Hre(x -) + re(x +)] 

FSS fe(x) = 
o X = 0 or x = 2L . 

o < x < 2L 

In particular, for 0 $ x $ L , we have 

1 
![f(x -) + f(x +)] 0 < x < L 

FSSre(x) = 0 x = 0 

f(L-) x = L . 

Moreover, if f(x) is piecewise c1 and continuous with f(O) = 0 , then the partial sums 

SN(x) of FSS fe(x) converge uniformly to f(x) on [O,L]. 

(15) 

(16) 

(17) 



Section 4.3 Sine and Cosine Series and Applications 247 

Proof. By definition, the Fourier sine series of te(x) defined on [0,2L] is given by 

00 

FSS te(x) = lk=lbksin(k1rx/2L) , where 2 J2L bk = 2t 0 fe(x)sin(k1rx/2L) dx . 

In order to prove (15) and (16), we must show that 

k = 2n+1 n = 0, 1, 2, ... 

k = 2n n = 0, 1, 2, ... 

[Note that when k = 2n+l , sin(k7rX/2L) = sin[(n + t)1IX/LJ .] First, we show that bk = 0 for 

k even, say k = 2n. Indeed, 

1J2L b2n = r 0 fe(x)sin(n7rX/L) dx = 0 , 

because sin(n1lX/L) is odd about x = Land fe(x) is even about x = L (i.e., consequently, the 
product is odd about x = L , and the integral vanishes). On the other hand, for k = 2n+l , 
sin[(n + t)1IX/LJ is even about x = L, whence 

1{2L 2{L b2n+1 = r 0 fe(x)sin[(n + ~)1IX/LJ dx = r 0 f(x)sin[(n + ~)1IX/LJ dx = cn • 

Thus, (15) and (16) follow. Now, (17) follows directly from Theorem 1, while (18) follows directly 

from (17), upon noting that Hte(L -) + te(L +)] = f(L -). Finally, the uniform convergence 

statement is immediate from Theorem 1, with fe(x) replaced by f(x). 0 

Example 3. Let f(x) = x(2L-x) ,for 0 ~ x ~ L. Find a series representation for f(x) of the form 

(19) 

Is the series uniformly convergent? Estimate the error if this series is truncated. 

Solution. According to Theorem 3, the series (19) with cn defined by (16) will converge 

uniformly to f(x) on [O,L], since f(x) is piecewise c1, continuous and f(O) = O. We compute 
the coefficients cn using Green's formula, as follows. 
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c = iJL f(x)sin[(n + ~)7rX/L] dx = i <f,sn+ 1 > = -i 2 L2 2 <£,S"+l> 
n 0 2 11' (n+~) n 2 

= - 2 2 L 2 [[S~+l (x)f(x) - sn+1 (x)fl (x)]i L + <f" ,sn+1 >] 
11' (n +~) 2 2 0 2 

= - 2 2L 2 [0 - JL 2,sin[(n + ~)7rX/L] dX] 
11' (n+~) 0 

4L2 iL 4L2 
=- 3 3cos[(n+~)7rX/L] = 3 3' 

11' (n+~) 0 11' (n+~) 

N 

Letting SN(x) = In=oCnSin[(n + ~)7rX/L] ,we have 

If(x) - SN(x) I ~ t Icnl ~ 4\2 r(x + ~)-3 dx = 2\2 (N + ~)-2 , 
n=N+1 11' I N 11' 

which provides an error estimate for the truncation SN(x). 0 

Formal solutions versus exact solutions 

In the following examples, we illustrate the use (and potential abuse) of various Fourier series 
representations of solutions of heat conduction problems, in the case where the initial temperature 
distribution is not a finite sum of sine and/or cosine functions, as was assumed in Chapter 3. 

Example 4. Attempt to find an exact solution of the problem 

D.E. ut = uxx 0 ~ x ~ L , t ~ 0 

B.C. u(O,t) = 0 u(L,t) = 0 (20) 

I.C. u(x,O) = x(L-x) . 

Effort. Although f(x) = x(L-x) [0 ~ x ~ Lj is not a finite linear combination of the functions 
sin(n7rX/L), we know from Theorem 1 that FSS f(x) = f(x) on [O,L}. The Fourier sine 
coefficients of f(x) can be computed using Green's formula, or two integratIOns by parts. For x 
in [O,Lj, we have 

f(X)=FSSf(X)=~r. 1 3 sin [(2k+1)7rX/L] . 
11' k=O (2k+1) 

(21) 

At this point, we are inclined to assert that 

L2 00 -[2k+1] 27r2t/L2 
u(x,t) = ~ l e 3 sin[(2k+1)7rX/L] 

11' k=O (2k+1) 
(22) 
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is the solution of problem (20). While (22) clearly satisfies the B.C. and I.C., it is not the case 

that (22) is a C2 function that satisfies the D.E., for ° $ x $ Land t ~ 0. Indeed, the D.E. is 
not satisfied at x = ° when t = 0. Note that uxx(O,O) = f"(O) = -2, while ut(O,O) = ° , since 

u(O,t) = 0. Thus, Ut:f. Uxx at (x,t) = (0,0). Actually, problem (20) has no C2 solution defined 

on the strip ° $ x $ L , t ~ ° , because we have just seen that the I.C. and the B.C. contradict the 
D.E. at (x,t) = (0,0). Here, we also have an example where the superposition principle fails for 
infinite sums. Indeed each term of (22) satisfies the D.E., but the entire sum does not satisfy the 

the D.E.! The sum (22) is also not C2 at (x,t) = (0,0) ,because u (0+,0) = -2 , while xx 

Remark. In the above example, we attempted to obtain a solution of a heat problem, by 
expanding the initial temperature in terms of an appropriate type of Fourier series (e.g., as in 
(21)) and inserting the correct time-dependent exponential factors (e.g., as was done to form 
(22)). We have seen that the resulting infinite sum u(x,t) need not be a solution of the problem 

Indeed, there might not be any C2 solution. Nevertheless, we refer to such infinite sums as formal 
solutions of the problem. More precisely, we state the following definition. 

Definition. Given an initial/boundary-value problem for the heat equation, the ex~ression 
u(x,t), obtained from the appropriate type of Fourier series (depending on the B.C. of the 
initial temperature by inserting the correct time-dependent exponential factors, is nown as 
the formal solution of the problem. (More generally, the term "formal" describes any 
plausible result or procedure which may be unjustified or unjustifiable.) 

In many cases it is true, but rather difficult to show, that the formal solution does satisfy the D.E. 
when t > 0, even if it fails to satisfy the D.E. at t = 0, say due to an initial temperature which is 

not C2. We will demonstrate this in Chapter 7. Frequently, if one truncates a formal solution 
after a sufficiently large finite number of terms, then one obtains an exact solution of the D.E. and 
B.C. which satisfies the I.C. to within any prescribed error, which is all that is necessary in 
applications. In other words, determining whether the formal solution is a solution in the strict 

sense (e.g., whether it is a C2 solution of the D.E.) may be only of mathematical interest. 0 

Example 5. Find the formal solution of the problem 

D.E. ut = kuxx ° ~ x ~ 7r, t ~ ° 
B.C. ux(O,t) = ° ux(1r,t) = ° (23) 

I.C. u(x,O) = sin (x) . 

By truncating the formal solution, find a solution of the D.E. and B.C. that meets the I.C. to 

within an experimental error of .01. Is there any exact solution of this problem which is C2 for 
all (x,t) with ° $ x ~ 7r , t ~ ° ? 
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Solution. From the B.C., we know (ef. Example 1 of Section 3.3) that we should expand sin (x) 
(0 ~ x ~ 1r) into a cosine series. In Example 2, we found 

sin (x) = ~ -! ,00 cos(2nx), ° ~ x ~ 1r. 
1r 1r In=l 4n2 _ 1 

The formal solution of (23) is then 

u(x,t) = ~_! ,00 e-4n2kt. cos(2nx) . 
1r 1r In=l 4n2 _ 1 

(24) 

(25) 

There is no C2 solution of problem (23), because ux(o+,O) = cos(O) = 1 by the I.C. , and yet 

ux(O,o+) = ° by the B.C. (Le., the B.C. contradicts the LC. at (0,0)). In particular, (25) is not a 

solution in the strict sense. The N-th partial sum uN(x,t) = ~ _! ,N e-4n2kt. cos(2nx) of 
1r 1r In=l 4n2 _ 1 

(25) is an exact (indeed, COO) solution of the D.E. and B.C., and 

. 4,00 1 4[ dx 1 luN(x,O)-sm(x)1 ~il -2-~i -2- = iloge[(2N+1)/(2N-1)], 
n=N+1 4n -1 N 4x -1 

which is less then .01 for N ~ 32. 0 

Example 6. Find a formal solution of the following problem: 

D.E. ut = Uxx ° ~ x ~ 1r , t ~ ° 
B.C. u(O,t) = sin(t) u(1r,t) = ° 
LC. u(x,O) = ° . 

Solution. We apply the methods of Section 3.4 involving Duhamel's principle, and we treat the 
infinite sum which arises in a formal manner. A particular solution of the B.C. is easily found to 

be w(x,t) = (1 - i)sin(t). The related problem for the function v(x,t) = u(x,t) - w(x,t) is 

D.E. vt - Vxx = ut - Uxx - wt + wxx = (i -l)cos(t) 

B.C. v(O,t) = ° v(1r,t) = ° 
LC. v(x,O) = u(x,O) - w(x,O) = ° 

A formal use of Duhamel's principle [ef. Theorem 1 of Section 3.4] tells us that 

t 

v(x,t) = Lv(x,t-s;S) ds , 

(26) 

(27) 
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where v(x,tjs) is the formal solution of the associated problem 

0~X~1I",t>0 

B.C. v(O,tjs) = 0 v(1I",tjs) = 0 

I.C. v(x,Ojs) = (i-1)cos(s) . 
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(28) 

The formal solution of (28) is found by computing the Fourier sine series of (i - l)cos(s) and 

then inserting the time dependent exponential factors. The result is 

'" 2 r 1 -n2t. v(x,tjs) = - - cos(s) - e sm(nx) . 
11" n=1 n 

Using this [with t replaced by t-s 1 in (27) and formally interchanging the sum and the integral, 
we obtain the formal solution of (26) : 

v(x,t) = -~ ~ 1 UtcOS(S) e-n2(t-S)ds]sin(nx) 
11" Ln=1 n 0 

The formal solution of the original problem is then 

u(x,t) = (1 - i)sin(t) + v(x,t) 

If we truncate the series for v(x,t) at some integer N > 0 , we obtain a COO function v/x,t) and 

the associated uN(x,t) = (1 - i)sin(t) + vN(x,t). It is easy to check that uN(x,t) satisfies the 

B.C. and I.C. of the original problem exactly, regardless of the value of N. However, a 
computation shows 

(29) 

For any 0 < x ~ 11" , the expression in brackets approaches 0 as N -+ 00 ,since FSS (1 - i) 

= ~ ~ 1 sin(nx) , and Theorem 1 applies. At x = 0 , (29) reduces to cos(t), regardless of N, 
11" Ln=1 n 

and so at x = 0, uN(x,t) will not nearly solve the D.E. as N -+ 00. The given problem has no 

exact solution. (Why?). 0 

Remark. The form of a formal solution to a problem with inhomogeneous B.C. is not unique. In 
Example 6, if we had chosen a different particular solution of the B.C., say 

w(x,t) = (1 - i)3sin(t), then we would obtain a formal solution of the form u(x,t) 

= (1 - i)3sin( t) + v(x,t) , which would have a different form than the original formal solution. 0 
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Smmnary 4.3 

1. Even and odd extensions: If f(x) is defined on [O,L], then the even extension fe(x) of f(x) 

is the unique even function on [-L,L] which is equal to f(x) on [O,L]. If f(O) = 0, then the odd 
extension fo(x) of f(x) is the unique odd function on [-L,L] which is equal to f(x) on [O,L]. 

2. Fourier sine and cosine series: If f(x) 
is the expression 

is defined on [O,LJ, then the Fourier sine series of f(x) 

00 

FSS f(x) = In=lbnsin(n1TX/L) , where bn = f J: f(x)sin(n1TX/L) dx . (Sl) 

The Fourier cosine series of f(x) is the expression 

~ 2JL FCS f(x) = !ao + l..n=lancos(n1TX/L), where an = r 0 f(x)cos(n1TX/L) dx . (S2) 

By Proposition 2, we have FSS f(x) = FS fo(x) and FCS f(x) = FS fe(x). Consequently, the 

convergence theorems for Fourier series in Section 4.2 can be used to prove convergence theorems 
for Fourier sine and cosine series (cf. Theorems 1 and 2). 

3. Other Fourier series and extensions: If a function f(x) defined on [O,L] is extended to a 

function fe(x) on [0,2LJ in such a way that re(x) is even about L, then (cf. Theorem 3) 

00 2fL FSS re(x) = In=ocnsin[(n + t)1TX/L], where cn = r /(x)sin[(n + 1/2)1TX/L] dx. (S3) 

This modified series can be used to represent initial temperature functions f(x) for a rod with 
B.C. u(O,t) = ° and ux(L,t) = ° (cf. also Problem 7). 

4. Formal solutions: In an initial/boundary-value problem for the heat equation with standard 
homogeneous B.C., if one writes down the appropriate type of Fourier series for the initial 
temperature f(xl, and inserts the correct time-dependent exponentia.l factors, then the resulting 
expression u(x,t) is called the formal solution. The formal solution might not be a solution in 

the strict sense, because an infinite sum of product solutions of the D.E. might not be a C2 
function which satisfies the D.E. (cf. Example 4). In other words, the superposition principle does 
not always hold for infinite sums. By truncating the formal solution after Ii. finite number of 
terms, one has an exact solution of the D.E. and B.C.. This finite sum will satisfy the I.C. to 
within experimental error, provided the appropriate Fourier series of the initial temperature 
function f(x) converges uniformly to f(x), and sufficiently many terms are considered. In this 
sense, the question of the validity of formal solutions is not a serious issue in applications, 
although the question is resolved in Chapter 7. For problems with inhomogeneous B.C. the form 
of a formal solution depends on the choice of a particular solution of the B.C .. 
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Exercises 4.3 

1. Verify the basic facts (A)-(E) preceding Proposition 1 concerning even and odd functions. 

2. Show that any function f(x) defined on [-L,L) can be written as the sum of an even function 
and an odd function. Hint. Suppose f(x) = g(x) + hex) ,where g(x) is even and hex) is odd. 
Then solve the equations, f(x) = g(x) + hex) and fe-x) = g(x) - hex), simultaneously for g(x) 
and hex) in terms of f(x) and f( -x). Then check to see that g(x) is even and hex) is odd. 

3. Assuming that f(x) and fl (x) are defined on [-L,L] , show that fl (x) is even if f(x) is odd, 
and vice versa. 

4. Let f(x) = x, ° ~ x ~ L . 

(a) Compute the Fourier cosine series FCS f(x) . 

(b) Compute the Fourier sine series FSS f(x) . 

(c) Graph FCS f(x) and FSS f(x) for -3L ~ x ~ 3L . 
N N 

Hint [For (c)). FCS f(x) = fe(x) and FSS f(x) = fo(x) for all x, as observed in Example 1 . 

5. Repeat Problem 4 in the cases: 

(a) f(x) = 1 , 0 ~ x ~ L . (b) f(x) = cos(x) , 0 ~ x ~ 11" • 

6. In Problem 4, where f(x) = x (0 ~ x ~ L), explain why FCS f(x) converges uniformly to f(x) 
in [O,L) , whereas FSS f(x) does not. Hint. See the proofs of Theorems 1 and 2 . 

7. Let f(x) be defined on [O,L), and define fO(x) on [O,2L) by 

[ 
f(x) 

fO(x) = 0 

-f(2L-x) 

o ~ x < L 

x=L 

L < x ~ 2L. 

State and prove the analog of Theorem 3 ,for FCS fO(x). In heat problems, what sort of B.C. 

will dictate the use of FCS fO(x) ? 

8. (a) Find the formal solution of the problem 

D.E. ut = kuxx -11" ~ X ~ 11" , t ~ 0 

B.C. u(-1I",t) = u(1I",t) ux(-1I",t) = ux(1I",t) 

2 I.C. u(x,O) = x . 
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(b) Show that there can be no solution of problem (*) which is C2 for -7r ~ X ~ 7r and t ~ 0 . 

However, show that there is a COO solution of the D.E. and B.C. that will satisfy the I.e. to within 
any specified error (> o. Hint. Consider ux(±7r,O). 

9. (a) Find the formal solution of the problem 

D.E. u = u t xx 

B.C. u(O,t) = 0 u(l,t) = 0 

I.C. u(x,O) = f(x) = [ x 
I-x 

o ~ x ~ 1/2 

1/2 ~ x ~ 1 . 

(b) If ut(x,t) is formally computed by differentiating each term of the formal solution with 

respect to t, then show that ut (1/2,0) = --00 results. Provide a physical explanation of this 

result by considering the flux of heat through the ends of a small interval centered at x = 1/2. 

10. (a) Find a formal solution of the problem 

D.E. ut = kuxx 0 ~ x ~ 7r 

B.C. u(O,t) = 0 ux( 7r,t) = 0 

[ 
0 0 ~ x < 7r/2 

I.C. u(x,O) = f(x) = 1 
7r/2 ~ x ~ 7r. 

(b) Does this formal solution satisfy the I.C. at x = 7r/2? Why not? Hint. See Theorem 3. 

(c) If we redefine f(7r/2) = 1/2 , and truncate the formal solution to N terms, is it possible to 
ensure that the truncated function uN(x,t) satisfies I uix,O)-f(x) I < .1, for large N? Why not? 

11. Find a formal solution of the problem 

D.E. ut = kuxx 0 ~ x ~ 1 , t ~ 0 

B.C. u(O,t) = -1 ux(l,t) = 1 

I.C. u(x,O) = 0 . 

12. Find a formal solution of the problem 

D.E. ut = kuxx 0 ~ x ~ 10 , t ~ 0 

B.C. ux(O,t) = 2 ux(10,t) = 3 

I.C. u(x,O) = O. 
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13. Find a formal solution of the problem 

D.E. ut = kuxx 0 ~ x ~ 7r , t ~ 0 

B.C. ux(O,t)=2 u(7r,t)=l-e-t 

I.C. u(x,O) = 7· cos(3x/2). 

Hint. Use Duhamel's principle as in Example 6. 
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14. (a) Recall from (24) that sin(x) = ~ -! f + cos(2nx), 0 ~ x ~ 7r. Differentiate both 
. 7r 7r n=l 4n -1 

sides (term-by-term for the right-hand side) with respect to x, and set x = o. Deduce that the 
derivative of an infinite sum cannot always be computed by differentiating termwise. 

(b) Show that the Fourier sine series for cos(x), 0 ~ x ~ 7r, can be obtained by differentiating the 
terms in Fourier sine series (in part (a)) for sin(x). (You may use your answer to 5(b).) Does 
FSS cos(x) = cos(x) at x = 0 and x = 7r? What if 0 < x < 7r ? 

(c) Show that the Fourier cosine series for sin(x) cannot be computed by differentiating the 
terms of Fourier sine series for cos(x) , 0 ~ x ~ 7r. 

Remark. The different results of parts (b) and (c) are explained in Problem 15. 

15. (Differentiation of Fourier series) 

(a) Show that if f(x) is continuous and piecewise c1 on [-L,L] with f(-L) = f(L), then the 
Fourier series of f' (x) can be computed by differentiating term-by-term FS ((x). 

L L 
Hint. Integration by parts implies if f' (x)cos(n7rX/L) dx = (n 7r/L )if f(x)sin(n7rX/L)dx, 

-L -L 
L L 

and if f/(x)sin(n7rX/L) dx = -(n7r/L)if f(x)cos(n7rX/L)dx. Note that integration by parts 
-L -L 

will not be valid in general if f(x) is piecewise c1 but not continuous (Why?). 

(b) In view of part (a), explain the results of parts (b) and (c) in Problem 14, by considering the 
continuity of the even extension of sin(x) and the odd extension of cos(x) (0 ~ x ~ L). 

16. (Integration of Fourier series) 

(a) Show that if f(x) is piecewise continuous on [-L,L] and fL f(x) dx = 0, then its 
-L 

anti derivative G(x):: f: f(x) dx is continuous and piecewise C1 with G(-L) = G(L). Conclude 

directly from part (a) of Problem 15 that FS f(x) can be obtained via term-by-term 

differentiation of FS G(x), and hence that (aside from the constant term) FS G(x) can be 
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obtained from FS f(x) via term-by-term integration of FS f(x). The constant term 

it tL G(x) dx of FS G(x) must be computed separately. 

(b) Find FS x2 from FS x (-L $ x $ L) using the method of part (a). 

(c) Suppose that we omit the constant term in FS x2 (-L $ x $ L) and intep;rate all of the other 
terms of FS f(x). What function has the resulting series as its Fourier series r 

17. (Wirtinger's inequality). Let f(x) be a continuous, piecewise c1 function defined on [-L,L], 
L 

such that J f(x) dx = 0 and f(-L) = f(L). Use Problem 14(a) and Parseval/s equality to show 
-L 

L 2 L 
J f(x)2 dx $ \ J f' (x)2 dx (Wirtinger's inequality), 
-L 7r -L 

with equality holding only when f(x) = alcos( 7rX/L) + blsin( 7rX/L) (Le., an = bn = 0, n ~ 2). 

(b) If f(x) is defined and piecewise CIon [O,L] with f(O) = f(L) = 0, then show that 
Wirtinger's inequality holds with the lower limits 0 instead of -L in the integrals. 
(For related inequalities, see [Beckenbach and Bellman, Chapter 5] and the references therein.) 

18. (The I80perimetric Inequality) Here we use Wirtinger's inequality of Problem 13 to show that 
a "sufficiently nice" closed, curve of length 27r encloses an area of at most 7r (the Isoperimetric 
Inequality), where equality holds only in the case of the circle. Assume that the curve is 

parametrized by the periodic C1 functions x(t), y(t) of period 27r, with unit speed (Le., 

[x/(t)2 + y/(t)2]!:: 1). Moreover, assume that the center of gravity of the curve is at the origin 

(Le., f~7r x(t) dt = f~7r y(t) dt = 0). Let r(t) = x(t)i + y(t)j , and let 1 r(t) 1 = [x(t)2 + y(t)2]!. 

Suppose that r(t) f. 0 and that the angle a(t) from r(t) to r/(t) satisfies 0 $ a(t) $ 7r. 

(a) Show that the area enclosed by the curve is A = f7r !lr(t)1 sin(a(t)) dt, where a(t) is the 

angle from r(t) to r/(t), which we assume is between 0 and 7r. (Draw a pi cure of a "triangular" 

element of the area, with vertices at the ends of position vectors r(t), r(t+~t) and 0.) 

(b) Use the Cauchy-Schwarz inequality <f,g>2 $ IIfl1 211g11 2 (d. Problem 9 of Section 4.2) to 

show that A2 $!7rJ:7r lr(t) 12 dt (Take f(t) =!sin(a(t)) $! and g(t) = Ir(t)I). 

(c) Use part (b) and Wirtinger's inequality (d. Problem 17) to deduce that 

A 2 $ i7r J:) r(t) 12 dt = !7r f/(t)2 + y(t)2 dt $ i7r f7r 1 r' (t) 12 dt = 7r2 . 

(d) Show that A = 7r only in the case of a circle. (Note that one of the inequalities above will be 
strict if sin( a( t)) ¢ 1.) 
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Remarks. (1) For more on isoperimetric inequalities, see [Polya and Szego, 1951] and 
[Osserman, 1978] and the references therein. 
(2) In [W. Blaschke, 1916] it is proved that if L is the length of a polygon with n equal sides 

(but not necessarily equal interior angles) which encloses an area A, then L2 ~ 4n tan (7r/n)·A. 

As n -+ 00, we obtain L 2 ~ 47rA for curves whose lengths and enclosed areas can be approximated 
arbitrarily closely by such polygons. 
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4.4 Stunn-Liouville Theory 

In Chapter 3, and in the chapters to follow, the method of separation of variables is used to 
obtain product solutions which satisfy the D.E. and B.C. of initial/boundary-value problems. 
This method leads to new boundary-value problems involving ODEs and the purpose of this 
section is to study these problems. For example, in the case of the initial/boundary-value 
problem 

B.C. u(O,t) = 0 u(L,t);= 0 

I.C. u(x,O) = f(x) , 

(1) 

the process of separation of variables, where the product solutions u(x,t) = X(x)T(t) satisfy the 
D.E. and B.C. of (1), led to the problem 

D.E. X"(x) + "X(x) = 0 0 ~ x ~ L 

B.C. X(O) = 0, X(L) = 0 , 
(2) 

where " denotes the separation constant. We obtain a more general boundary-value problem, if 
we consider the derivation of the heat equation (cf. Section 3.0 in the case when the material of 
the rod varies from cross section to cross section. Thus, if the finear density, D, the specific heat, 
C, and the thermal conductivity, K , of the rod are functions of x, then we obtain (cf. Problem 8 
of Section 3.1) the D.E. 

C(x)D(x)ut = ~ (K(x)ux) . (3) 

In addition, if we allow a heat source of the form Q(x)u(x,t), then in place of (3) we obtain 

D.E. C(x)D(x)ut = ~ (K(x)ux) + Q(x)u . (4) 

Let the ends of the rod be at x = a and x = b, and consider the homogeneous B.C. given by 

B.C. (5) 

where cl ' c2, c3 and c4 are real constants. For a physical interpretation of such B.C., see 

Example 6 of Section 3.3). Substituting u(x,t) = X(x)T(t) into (4), we get 
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by separation of variables, where A is a constant. In particular, we obtain the D.E. 

~ (KX') + (Q + ACD)X = 0 . 

Setting g(x) = C(x)D(x) and q(x) = Q(x) and using the B.C. (5), we get 

D.E. ~ [K(x)X' (x)] + (q(x) + Ag(X) )X{x) = 0, a 5 x 5 b 

B.C. c1X{a) + c2X'{a) = 0, c3X(b) + c4X'{b) = 0, 

259 

(6) 

(7) 

(8) 

where we assume that K{x) , g{x) > 0 on [a,b] , and that q(x), g{x), K' (x) and X"{x) are 
continuous on [a,bl. The boundary value problem (8) is called a Sturm-Liouville problem. [The 
French mathematicIan, Joseph Liouville (1809-1882), was first to solve a boundary value J?roolem 
by solving an equivalent integral equation. Jacques Charles Fran~ois Sturm (1803-1855) was a 
Swiss mathematician, who in collaboration with Liouville, studied boundary value problems.] 

Definition. The D.E. in (8) is called a Sturm-Liouville equation. A value of the parameter A 
for which a nontrivial solution (Le. X t 0) exists is called an eigenvalue of the problem and a 
corresponding nontrivial solution X{x) of (8) is called an eigenfunction which is associated 
with that eigenvalue. Problem (8) is also calfed an eigenvalue problem. 

Remark. Since both the D.E. and the B.C. of (8) are homogeneous, the trivial function X{x):: 0 
satisfies (8), regardless of the value of A. However, as we will show, for most values of A, the 
only solution is the trivial solution. For example, in Section 3.1 we found that (2) has a nontrivial 

solution only when A is of the form An = {ll1r/L)2 , n = 1, 2, 3, .... (Note that the symbol "An" 

was used to denote n7r/L in Section 3.1.) The eigenfunction corresponding to the eigenvalue An 

is of the form Xn{x) = Ansin{n7rX/L), n = 1, 2, 3,... ,where An is any nonzero constant 

(d. Example 1 below). The eigenvalue problem (2) is easy to solve, because we can explicitly 

solve not only the D.E. but also the equation sin(Lv'X) = O. However, in general, one cannot find 
explicit formulas for the eigenfunctions or the eigenvalues of Sturm-Liouville problems. Although 
explicit solutions are rare, in this section we will establish a number of qualitative properties of 
the solutions of (8). 0 
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Properties of eigenvalues and eigenfunctions 

It is customary to use the dependent variable y instead of X in (8). Thus, (8) becomes 

D.E. ~x (K(x) ~) + (q(x) + Ag(x»y(x) = 0, a ~ x ~ b 

c1y(a) + c2y'(a) = 0 (c~ + c~ * 0) 

B.C. (9) 

where, we assume that K' (x), g(x), q(x) and y"(x) are continuous on [a,b] , and that K(x) and 
q(x) are positive on [a,b]. . 

Remark. Problem (9) is different from the initial-value problems considered in Chapter 1. The 
solution, y(x), of an initial value problem for a linear second-ilrder ODE, is required to satisfy two 
conditions at a single value (e.g, y(xo) = Yo and y'(xo) = Yl)' For the reader's convenience, we 

state the following existence and uniqueness theorem proved in [Simmons, Chapter 11]. 0 

Theorem 1 (Existence and Uniqueness for Initial-Value Problems). Let P(x), Q(x) and R(x) 
be continuous on the interval a ~ x ~ b. If Xo is a point in this interval and Yo and y 1 

are arbitrary real numbers, then the initial-value problem 

D.E. ~ + P(x)~ + Q(x)y = R(x) 

I.C. 

has a unique solution on the interval a ~ x ~ b . 

In case of a boundary-value problem, the solution y(x) must satisfy conditions at two 
distinct values of x. For example, for the D.E. y" + y = 0, the boundary conditions may be 
given by y(x) = 0 and y(L) = 1. But such a problem need not have a solution. In fact, this 
problem has no solution, if L = 211' (cf. Problems 4 and 5). Proofs of the following existence 
theorem for Sturm-Liouville problems are in advanced texts (e.g., [Zalman Rubinstein, p. 173]). 
However, we will sketch part of the argument in the proof of Theorem 9 and in the Remark 
following it. 

Theorem 2 (Existence of Eigenvalues of the Sturm-Liouville Problem (9». The 

Sturm-Liouville problem (9) has an infinite number of eigenvalues, which can be written in 

increasing order as Al < A2 < ... < An < ... , such that I im An = 00. The eigenfunction 
n--;oo 

Yn(x) corresponding to An has exactly n-1 zeros in (a,b). 
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To motivate the subsequent results of this section, we first consider some examples. 

Example 1. Determine the eigenvalues and eigenfunctions of the Sturm-Liouville problem 

D.E. y" +)..y = 0 , 0 ~ x ~ L 
(10) 

B.C. y(O) = 0 , y(L) = 0 . 

Solution. We first note that (9) reduces to (10), if K(x) == 1, q(x) == 0, g(x) == 1, a = 0, b = L, 
c1 = 1, c2 = 0, c3 = 1, c4 = O. We consider the three cases ).. > 0, ).. = 0 and)" < O. But if 

).. = 0 or ).. < 0, then the only solution of (10) is y(x) == 0 (d. Section 3.1), which is not an 
eigenfunction. If ).. > 0, then the general solution of the D.E. is 

y(x) = Asin(xv'X) + Bcos(xv'X) . (11) 

By the B.C., y(O) = B = 0 and y(L) = Asin(Lv'X) = O. Since we want nontrivial solutions, 

A f. 0, and we set sin(Lv'X) = 0, obtaining Lv'X = n1l". Thus, the eigenvalues are ).. = )..n 

= (n1l"/L)2, with corresponding eigenfunctions Yn(x) = Ansin(n1l"X/L), An f. 0 , n = 1,2,3,.... 0 

Remark. For the product solutions of the heat equation in Section 3.1, the symbol ").." denotes 
the square root of the eigenvalue here. To avoid confusion, one may wish to mentally replace ").." 
by "/3" everywhere ").." appears in Chapter 3. Since ultimately mathematics is invariant under 
a change of notation, one should not become too attached to a particular use of some symbol. 
Note that in Example 1 (as well as in the next example), all of the real eigenvalues are positive, 
and )..n -+ 00 as n -+ 00 (d. Theorem 2). Also, Yn(x) has n-l real zeros in (O,L), and by Green's 

formula on [0,1], the eigenfunctions Yl (x), Y2(x), ... are orthogonal on [O,L]. Orthogonality 

results for the general problem (9) are established in Theorem 5 below. Moreover, although we do 
not consider the possibility of complex eigenvalues in Examples 1 and 2, the fact that there are 
none is a consequence of Theorem 7 below. 0 

Example 2. For the eigenvalue problem 

D.E. y" +)..y = 0 , 0 ~ x ~ L, L < 11"/2 

B.C. y(O)-y'(O)=0 ,y(L)+y'(L)=O 

determine the equation whose zeros (roots) are the eigenvalues. 

(12) 

Solution. If ).. = 0 or ).. < 0, then it is easy to check that the only solution of (12) is the trivial 
solution. If ).. > 0 , then the general solution of the D.E. is 

y(x) = Acos(xv'X) + Bsin(xv'X) . (13) 

Since y'(x) = v'X (-Asin(xv'X) + Bcos(xv'X)) , the first B.C. implies that A = Bv'X. This, in 
conjunction with the second B.C. yields 

o = B [2v'X cos(Lv'X) + (1-)..)sin(Lv'X)] . (14) 
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Thus, if B '" 0 and -\ '" 1 (note that L < 7r/2 in (12)), then (14) becomes 

tan(LJX) =..f#-r (-\ > 0) , (15) 

which is the required equation. It can be approximately solved numerically or graphically (cf. 
Figure 4 in Section 3.3, but -\2 ........ -\ by the above Remark). Note that if we had allowed L = 
7r/2 (or any positive odd integral multiple of 7r/2) , then -\ = 1 would have been an eigenvalue 
(Why?). 0 

In order to a study the general linear, homogeneous second-order D.E. when the 
coefficients are not all constants, we introduce the second-order, linear, differential operator 

(16) 

If y is a C2 function on some interval, then L[y] is defined by 

(17) 

and the corresponding linear, homogeneous second-order ODE can be written as L[y] = O. When 
trying to solve the ODE L[y] = 0 with coefficients Po' Pl and P2 which are not all constant, 

one might try to introduce the notion of an "integrating factor" that was used in case of linear, 
first-order ODEs. In Section 1.1, we found that multiplication by the integrating factor 

m(x) = exp [J p(x) dX] reduced the ODE ~ + p(x)y = 0 to the simple form 

o = m(x) ~ + p(x)m(x)y = ~ [m(x)y] . (18) 

In the next example, for the second-order ODE L[y] = 0, we similarly try to find a function, say 
Z = z(x), such that zL[y] is the derivative of a certain combination of y and y' . 

Integrating factors, Lagrange's identity and self-adjoint operators 

Example 3. By means of formal calculations, attempt to find an "integrating factor", z = z(x) , 
such that zL[y] is the derivative of a combination of y and y' ,where L[yJ is given by (17). 

Solution. In order to find z = z(x) , we consider JZ(X)L[y] dx and integrate by parts: 

Jz(x)L[y] dx = J(ZP2Y" + z PlY' + zPoY) dx 

= (zP2)y' - (zP2)'y + J(ZP2)" y dx + (zPl)Y - J(ZP1)'y dx + J zPoY dx . 

(19) 
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Combining the terms in (19) yields 

fz(x)L[y] dx = (zP2)y' - (ZP2)'y + (ZPl)Y + fYL*[z] dx, (20) 

where 

(21) 

Thus, if we choose z = z(x) such that 

L*[z] = 0, (22) 

then, upon differentiating (20) with respect to x, we obtain 

(23) 

While (23) is the desired result, the problem is that the determination of z(x) requires that we 
solve the second--order ODE given in (22), which may be just as hard as solving L[yJ = o. 0 

Although the attempt to find an integrating factor has led to an equally difficult problem, we 
will find that the interplay between the operators Land L * is quite helpful in obtaining 
properties of solutions of Sturm-Liouville problems. In particular, the following identity will be 
used to establish orthogonality results for eigenfunctions associated with different eigenvalues. 

Example 4. Consider the differential operators Land L * defined by (17) and (21) respectively. 

If P2' Pl' Po' Y and z are C2 functions, verify the following identity 

zL[y]-yL*[z] = ~[P2'(Y'Z-YZ')+(Pl-P~)ZY], 

which is known as Lagrange's identity. 

Solution. By (20) we have 

f (zL[y]- yL*[z]) dx = (zP2)y' - (zP2)'y + (ZPl)y . 

(24) 

(25) 

Thus, if we differentiate both sides of (25) with respect to x and rearrange the terms on the 
right-hand side of (25), then we obtain Lagrange's identity (24). 0 

Lagrange's identity (24) provides a relation between Land L*. In the next example, we 

consider the case where L[y] = ~[K(x)~] + q(x)y. This operator appears in the D.E. of the 

Strum-Liouville problem (9), which can be written in the form L[y] + .>.g(x)y = O. Examples 5 
and 6 will show that such operators are the only ones having the property that L = L *. 
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Example 5. Let L denote the linear, second-order differential operator defined by 

L[y] = ~ [K(x) ~] + q(x)y , (26) 

where K(x) and q(x) satisfl the requirements in (9) and y is a C2 function. Find L* for this 
operator. Show that L = L ,in this case. 

Solution. By comparing the expression 

L[y] = K(x)B + K' (x) ~ + q(x)y (27) 

with (17), we see that P2(x) = K(x) , Pl(x) = K'(x) and Po(x) = q(x). Hence, by (21) 

d2 d L *[y] = ~ (yK(x)) - ax (yK' (x)) + q(x)y . (28) 

Carrying out the differentiations, we find that 

L[y] = L*[y] , (29) 

for every C2 function y. This says that the operators Land L* are the same. 0 

Definition. Let Land L* denote the linear, second-order differential operators defined 
by (17) and (21), respectively. Then L* is called the adjoint of L and the differential 
equation L*[y] = 0 is called the adjoint equation. The operator L is said to be self-adjoint, 
if Land L* are the same, that is, L = L*. A homogeneous, linear, second-order ODE is 
said to be in self-adjoint form if the ODE has the form 

~ [P(x) ~] + Q(x)y = o. (30) 

Remark. Note that the Sturm-Liouville equation (9) is in self-adjoint form and that, by 
Example 5, the operator L in (26) is self-adjoint. It turns out that some of the most common 
ODEs of mathematical physics are in self-adjoint form (cf. Bessel's equation and Legendre's 
differential equation which we study in Chapter 9). 0 

Example 6. Show that the linear, second-order differential operator 

L[y] = P2(x)y" + Pl(x)y' + Po(x)y (31) 

is self-adjoint (i.e., L = L*) if and only if p~(x) = Pl(x) , i.e., 

(32) 
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Solution. The adjoint L* of L is given by (cf. (21)) 

L*[y] = ~ (YP2) - ~ (YPI) + YPo = P2Y" + (2P2 - PI)y' + (p~ - pi + Po)Y . (33) 

Thus, L = L* if and only if 2P2 - PI = PI or P2 = Pl' If P2 = PI , then (32) holds (Why?). 0 

Remark. In Problem 6 we show that every linear, homogeneous second-order ODE 

(34) 

where P2(x) > 0 and Po, PI and P2 are continuous, can be transformed into an ODE in 

self-adjoint form, by multiplying both sides of (34) by exp U (PI-P2)/P2 dx]. 0 

The Sturm-Liouville differential operator 

In the sequel, we will focus on the Sturm-Liouville differential operator defined by 

L[y] == ~ (K(x) ~) + q(x)y , (35) 

where K(x) > 0 , g(x) > 0 ,and K' (x), q(x) and g(x) are continuous on [a,b]. (By modifying 
the proofs given below, we can relax the condition that K(x) be strictly positive, by requiring 
that K(x) ~ 0 and that K(x) vanish at most at a finite number of points in [a,b]). We now 
state and prove several fundamental properties of the solution of the following Sturm-Liouville 
problem, with L defined by (35). 

D.E. L[y] + Ag(X)Y = 0 a ~ x ~ b 

B.C. c1y(a) + c2y'(a) = 0 

c3y(b) + c4Y'(b) = 0 

where cI ' C2' c3 and c4 are real constants. 

(36) 

Theorem 3 (A Uniqueness Theorem). Consider the Sturm-Liouville problem (36). If y(x) 
and Y(x) are two eigenfunctions corresponding to the same eigenvalue A, then y(x) = aY(x) , 
a ~ x ~ b , for some nonzero constant a (Le., y(x) and Y(x) are linearly dependent). 

Proof. We consider the function 

and suppose that 

w(x) = Y' (a)y(x) - y' (a)Y(x) , 

[Y'(a)]2 + [y'(a)]2 1 0 . 

(37) 

(38) 



266 Chapter 4 Fourier Series and Sturm-Liouville Theory 

(The case when [VI (a)]2 + [y' (a)12 = 0 is considered in Problem 9). Then, it is straightforward 
to check that w(x) satisfies the fo lowing initial-value problem 

D.E. L[w] + Ag(X)W = 0, a S x S b 

I.C. w(a)=w'(a)=O, 
(39) 

where L is the Sturm-Liouville operator defined by (35). But then, by the uniqueness theorem 
for initial-value problems (cf. Theorem 1 and Problem 3), w(x) :: o. Therefore, 

Y'(a)y(x)-y'(a)Y(x)::O, aSxSb. (40) 

Since y(x) and Y(x) are eigenfunctions, y(x) to and Y(x) t o. Hence, (38) and (40) imply that 
y'(a)Y'(a) f O. Thus, by (40), y(x) = aY(x), where (}' = y'(a)/Y'(a). 0 

Remark. In Theorem 3, we showed that, for the Sturm-Liouville problem (36), there is only one 
linearly independent eigenfunction associated with each eigenvalue A. For this reason, A is said 
to be simple or to have multiplicity one. 0 

Theorem 4 (Grren's Formula for L). Let L be the Sturm-Liouville differential operator 

defined by (35). If y(x) and z(x) are C2 functions on [a,b] , then 

Jb [ ]X-b 
a(zL[y]-yL[z]) dx = K(x) (y'z -yz') x=a (41) 

Proof. Since L is self-adjoint (cf. Example 5), Lagrange's identity (cf. (24)) becomes 

zL[y]- yL[z] = ~ [K(x) (y'z - yz')] . (42) 

Thus, upon integrating both sides of (42) with respect to x from a to b , we obtain (41). 0 

Remark. We note that with K(x):: 1 and q(x):: 0, formula (41) yields Green's formula (for the 

operator d2/dx2) in Section 4.1, as a special case. 0 

The following definition extends the notion of orthogonality, which was introduced in Section 4.1 . 

Definition. A positive, continuous function g(x) defined on [a,b] is called a weight function. 
Two continuous functions f(x) and h(x) defined on [a,b] are said to be orthogonal on [a,b] 
with respect to the weight function g(x) , if 

J~ f(x)h(x) g(x) dx = 0 . (43) 
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In particular, if g(x):: 1 , then (43) reduces to the definition in Section 4.1 . 

Theorem 5 (Orthogonality of Eigenfunctions). Let ~m and ~n be two distinct eigenvalues of 

the Sturm-Liouville problem (36). Then the corresponding eigenfunctions Ym(x) and Yn(x) 

are orthogonal on [a,b] with respect to the weight function g(x) . 

(44) 

Integrating both sides of (44) from a to b and using Green's formula (41), 

(45) 

The B.C. in (36) ensure that the left side of (45) vanishes (e.g., if c2 :/: 0, then y~(a)Yn(a) -

Ym(a)y~(a) = [c2y~(a)Yn(a) - Ym(a)c2y~(a)l/c2 = [--ctym(a)yn(a) + Ym(a)ctYn(a)]/c2] = 0). Thus, 

(46) 

Since ~m:/: ~n , (46) says that Ym(x) and Yn(x) are orthogonal on [a,b], with respect to the 

weight function g(x). 0 

Remark. The previous notions and results (e.g., Lagrange's identity, Green's formula, etc.) make 
sense and are valid, when y(x) is allowed to be complex-valued and the eigenvalues are not 
assumed to be real. In the next theorem, we prove that the eigenvalues must in fact be real. Note 
that the constant a in Theorem 3 can be complex, but each of the eigenfunctions associated 
with ~ is a product of a complex constant and a real-valued eigenfunction (Why?). 0 

Theorem 6. All of the eigenvalues of the Sturm-Liouville problem (36) are real. 

Proof. Let ~ = a + i{J (a,{J real) be an arbitrary eigenvalue of the Sturm-Liouville problem 
(36), and let y(x) be a complex-valued eigenfunction corresponding to ~. Since K(x), q(x) and 
g(x) (in the equation L[u] + ~g(x)y = 0) are real, complex conjugation yields 

~x (K(x)~) + (q(x) + Xg(x»y = O. (47) 
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Thus, X = a - i(3 is also an eigenvalue of the problem (36) with corresponding eigenfunction 

y(x). (Recall that the constants cl' c2' c3 and c4 appearing in the B.C. of (36) are all real). Now 

suppose that .,\:f. X. Then using (46), and the fact that yy = 1 Y 12, we have 

Jb 2 
(.,\ - X) ag(x) Iy(x) 1 dx = 0 . (48) 

Since g(x) > 0, 1 y(x) 12 ~ 0 and y(x) ¢ 0, (48) yields .,\ = X, and thus .,\ is real. 0 

The next theorem shows that under some additional hypotheses, the eigenvalues of the 
Sturm-Liouville problem are not only real, but nonnegative. 

Theorem 7. In the Sturm-Liouville problem (36), suppose that q(x) ~ 0 for a ~ x ~ b 
and that the real constants Cj (j = 1, ... ,4) satisfy the inequalities 

then all the eigenvalues of (36) are nonnegative. Moreover, if 0 is an eigenvalue, then 
q(x) == 0, cl = c3 = 0, and any eigenfunction with eigenvalue 0 must be constant. 

Proof. Suppose that L(y] + "\gy = 0, where y(x) ¢ o. Then 

J b Jb d d Jb 2 Jb 2 o = a y. (L(y] + "\gy) dx = /(x) Ox (K 1x) dx + a q(x)y(x) dx +.,\ a g(x)y(x) dx. 

Using integration by parts for the first integral on the right-hand side, we obtain 

J
b d d [ ] x=b Jb 2 a y Ox (K 1x) dx = y(x)y' (x)K(x) x=a - /' (x) K(x) dx . 

Substituting this expression for the first integral in (50) and rearranging, we obtain 

.,\J:g(X)y(X)2 dx = f:--<t(x)y(x)2 dx + f: y'(x)2 K(x) dx - [y(x)Y'(X)K(X)[:: . 

Now it is straightforward to verify that (49) and the following B.C. 

cly(a) + c2y'(a) = 0 and c3y(b) + c4y'(b) = 0 

imply that y(a)y'(a) ~ 0 and y(b)y'(b) ~ O. Consequently, since K(x) > 0, we have 

-[Y(X)Y'(X)K(X)[:: = y(a)y'(a)K(a) - y(b)y'(b)K(b) ~ 0 

( 49) 

(50) 

(51) 

(52) 

(53) 

(54) 
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Since --q(x) ~ 0 and g(x) > 0 , we conclude from (52) and (54) that AI: g(x)y(x)2 dx ~ 0, and 

so A ~ O. Note that A can be 0, only when all of the terms on the right-hand side of (52) 

vanish. However, this implies q(x):: 0 and y'(x):: 0 (i.e., y is a nonzero constant function). 

Moreover, a nonzero constant function cannot meet the B.C. (53), unless c1 = c3 = o. 0 

The Sturm Comparison Theorem 

In general, one cannot obtain explicit solutions to an eigenvalue problem. However, the 
Sturm-Liouville theory provides a wealth of information concerning the eigenvalues and the zeros 
and oscillation properties of the corresponding eigenfunctions. One of the most useful and 
remarkable results in this theory is the Sturm Comparison Theorem. To motivate this theorem, 
we first consider an example. 

Example 7. Suppose that we have constants A2 > Al > O. Let Yl(x) be any nonzero solution of 

y" + A1Y = 0 and let Y2(x) be any nonzero solution of y" + A2Y = O. Show that between any 

two consecutive zeros of Yl(x), there is a zero of Y2(x). 

Solution. The general solution of y" + A1Y = 0 can be written in the form Asin(x~ + b), 
where A and b are arbitrary constants. Thus, any interval, say J, joining consecutive zeros of 

Yl (x) has length 7r/~, while the distance between consecutive zero of Y2(x) is 7r/~. Since 

7r/..fJ.2 < 7r/~ ,J cannot be entirely between two consecutive zeros of Y2(x) (i.e., J must 

contain a zero of Y2(X)). 0 

As in Examfle 7, the intuitive idea in the general setting (cf. Theorem 8 below) is that the 
size of Ag in L[y + Agy = 0 governs the frequency of oscillation of solutions. However, in the 
general case, the distance between one pair of consecutive zeros need not be the same as the 
distance between another pair. Note that each interior zero of a nontrivial solution has a smallest 
successor (and largest predecessor) for otherwise the derivative would vanish at the zero and the 
solution would be trivial by uniqueness (cf. Theorem 3 and Problem 11). 

Theorem 8 (The Sturm Comparison Theorem). Let L[y] :: ~[K(X)~] + q(x)y , where 

K(x) > 0 on [a,b], and K' (x) and q(x) are continuous on [a,b]. Suppose that Yl(x) and 

Y2(x) are C2 solutions of the respective Sturm-Liouville equations 

(55) 

where A2g2(x) ~ A1g1(x) on [a,b], and gl(X) and g2(x) are continuous on [a,b]. Then between 

any two consecutive zeros a and f3 (where a ~ a < f3 ~ b) of y 1 (x) there is at least one zero 

of Y2{x) , provided that A1g1{x) ¢ A2g2(x) on [a,f3]. 
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Proof. By (55) and Green's formula (41) for the operator L on [a,,8], we obtain 

or 

where we have used Y1(a) = Y1((J) = O. Since a and (J are consecutive zeros of Y1(X), we may 

assume that Y1(x) > 0 on a < x < (J (otherwise, replace Y1 by -Y1 which is also a solution of 

1(y] + A1g1(x)y = 0 with the same zeros as Y1). Then y~(a) > 0 and Y2((J) < 0 (Why?). If 

Y2(x) has no zero in (a,(J), then Y2(x) > 0 on (a,(J), or Y2(x) < 0 on (a,fj). If Y2(x) > 0, then 

the integral on the left-hand side of (56) is strictly positive (Why?), while the right-hand side of 
(56) is nonpositive (Why?). Similarly, if Y2(x) < 0 on (a,(J), then the left-hand side of (56) is 

negative, while the right-hand side of (56) is positive. In either case, we arrive at a contradiction, 
and so Y2(x) must have a zero in (a,(J). 0 

Existenoo of eigenvalues 

One can use the Sturm Comparison Theorem to prove Theorem 2 on the existence of an 
infinite number of eigenvalues of the Sturm-Liouville problem (36). We illustrate the idea in the 
following special case of Theorem 2. 

Theorem 9. Consider the Sturm-Liouville problem 

D.E. y" + q(x)y + Ag(X)Y = 0 

B.C. y(a) = 0, y(b) = 0 , 

where q(x) and g(x) are oontinuous, and g(x) > 0 on [a,b]. Assume that the solution 
Y(X,A) (which depends on the parameter A) of the initial value problem, 

D.E. Y" + q(x)Y + Ag(X)Y = 0 

I.C. Y(a) = 0 , Y'(a) = 1 

is a continuous function of (X,A). Then problem (57) has an infinite number of 
eigenvalues, say A1 < A2 < ... , with lim An = 00. 

n-+oo 

(57) 

(58) 

Proof (sketch). The eigenvalues of problem (57) are precisely those values of A for which 
Y(b,A) = 0 (Why?). We must show that there is a sequence of such values of A which tend 

to 00. For c > 0, let A(C) be a value of A such that q(x) + A(C)g(X) ~ c2, for all x in [a,b]. 
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This is possible, since g(x) has a positive minimum on [a,b] , and q(x) is bounded 
(cf. Appendix A.4). The Sturm Comparison Theorem implies that between any two zeros of a 

nontrivial solution of y" + c2y = 0 ,say sin[c(x-a)] , there is a zero of Y(X,A( c)). In particular, 
if c(b-a) > n7r or c> n7r/(b-a), there are at least n zeros of Y(X,A(C)) in (a,b). The Sturm 
Comparison Theorem implies that as A increases, each zero of Y(X,A) in (a,b) will move to the 
left (Why?). Moreover, as A increases, say at a steady rate, no zero can suddenly appear 
strictly inside the interval, say by means of the graph dipping down between two consecutive 
zeros. Indeed, if this were to happen, then the graph would contact the x-axis tangentially (Here 
we have used the assumption that Y(X,A) is continuous, so that the graph does not jump 
suddenly.) However, the graph always meets the x-axis at a non-2ero angle (Why?). Thus, 
each of the infinitely many new zeros which appear as A -+ 00, must first appear at the right 
endpoint b and move to the left. The values of A at the times of appearance are the eigenvalues 
of the problem (57) (Whl' ?). Moreover, at no finite time can there ever be an infinite number of 
zeros of Y(X,A) in [a,b] tcf. Problem 11). Thus, the eigenvalues form a sequence, tending to 00.0 

Remark. There are some details left out of the above sketch. We did not wish to deprive the 
interested reader of the challenge of filling them in, nor did we want to obsure the main idea of the 
the proof with the full details. The assuml?tion, that Y(X,A) is continuous, can in fact be proved 
and hence it is superfluous (cf. Theorem 3). The argument can be generalized to handle the case 
where the B.C. are of the form c1y(a) + ~y'(a) = 0 and c3y(b) + c4y'(b) = 0, with c2 f. 0 or 

c4 f. o. Indeed, we can always change the I.C. in (58), so that the first of these B.C. is met, and 

the second B.C. is met at some time between the appearance of one zero at the right endpoint and 
the appearance of the next zero. (Simply note that Y' (b,A)/Y(b,A) ranges from -00 to 00 

between the times of appearances of zeros.) Moreover, although we have implicitly assumed that 

K(x) = 1 in Theorem 9, one can change the independent variable, say t = (K1:) , in order to 

convert ~r K(X)~] + q(x)y + Ag(X)Y = 0, into the form z" + Kqz + AKgz = 0, where z(t) = 

y(x(t)), an~ K, q and g are expressed in terms of t. Also converting the B.C., the eigenvalues 
of the new problem are the same as those of the old problem. Thus, we "nearly" have a proof of 
Theorem 2, except for the proof of the continuity of Y(X,A). The proof of the fact that the 
eigenfunction Yn(x), corresponding to the n-th eigenvalue An' has exactly n-1 zeros in (a,b) 

follows easily from the case n = 1 (cf. Problem 16). 0 

In the study of higher dimensional PDEs in Chapter 9, we will encounter more eigenvalue 
problems. In particular in Section 9.5, we consider Bessel's equation of order m, 

(59) 

which arises in problems for a vibrating circular drum and for heat flow in a disk. For each 

nonnegetive integer m the (normalized) C2 solution of (59) is denoted by Jm(x) and is called the 

Bessel function of the first kind of order m. (For an explicit formula see Section 9.5 or Appendix 
A.5). Using the Sturm Comparison Theorem, in the next example we will show, without the 
benefit of an explicit formula for Jm(x), that Jm(x) has an infinite number of positive zeros! 
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Example 8. Using the fact that Jm(x) satisfies the ODE (59), verify that Ym(x) = xtJm(x) 

(x> 0), satisfies the ODE 

1 m2 
y" + [ 1 + 4" -2 ] y = 0 ,x > 0 . 

x 

Use this to show that Jm(x) has an infinite number of positive zeros. 

Solution. First compute y~ in terms of Jm(x). Then for x > 0, we have by (59) 

Next, fix a nonnegative integer m, and let 

1 m2 4" -
gm(x) = 1 + 2 

x 

For each fixed m ~ 0 and 0 < f < 1, we have 

gm(x) > 1 - f, for all x> m/.ff > 0 . 

(60) 

We now apply the Sturm Comparison Theorem to the ODE (60) and the ODE y" + (I-f) y = 0, 
1 

with g(x)::: 1-(. The zeros of the solution sin((1-f)2x) of y" + (1-f)Y = 0 , are of the form 

117r(1-f)-t, n = 0, ±1, ±2, .... Between any two such zeros in the range x> m/.ff, there is a zero 
of Jm(x). In particular, Jm(x) has infinitely many zeros, and we have some idea of where they 

can be found. For more detailed information, see Appendix 5. 0 

Example 9. For a continuous function g(x) on [a,b], consider the Sturm-Liouville problem 

where 

D.E. y" + Ag(x)y = 0, a ~ x ~ b 

B.C. y(a)=O, y(b)=O, 

o < m < g(x) < M . 

Deduce that the following estimates holds for the eigenvalues An: 

1 [n1l"]2 
M b-a 

1 [n1l"]2 < An < m b-a ,n = 1, 2, .... 

In particular, An ~ 00 as n ~ 00. 

(61) 

(62) 

(63) 



Section 4.4 Sturm- Liouville Theory 273 

Solution. By Theorem 2 (or Theorem 9), we know that (61) has an infinite number of eigenvalues 
Al < A2 < ... < An < .... Moreover, by Theorem 2 and the B.C. in (61), the eigenfunction 

Yn(x) associated to An has n+1 zeros in [a,b], say a = Xl < x2 < ... < xn+l = b. For n ~ 1 

7r/.;;:;;M < Xj+l - Xj < 7r/~, j = 1, ... , n , (64) 

by the Sturm Comparison Theorem applied to the ODEs y" + Anmy = 0, y" + Ang(x)y = 0 and 

y" + MAnY = 0 (d. Problem 16). From (64) and the fact that the sum of the lengths of the n 

subintervals [Xj,Xj+l]' j = 1, ... ,n , is the total length b-a, it follows that 

Thus, by (65) we have the desired estimate (63). 0 

Heat problems for the inhomogeneous rod and eigenfunction expansions 

This section was motivated by the initial/boundary-value problem 

D.E. g(x)ut = %x [K(X)Ux] + q(x)u a S X S b, t ~ 0 

B.C. 

I.C. u(x,O) = f(x) 

(65) 

(66) 

for the inhomogeneous rod, where g(x):: C(x)D(x) (specific heat, times linear density), K(x) is 
the thermal conductivity, and q(x)u is a temperature-dependent source or sink. We saw that 
separation of variables, with u(x,t) = X(x)T(t), led to the Sturm-Liouville problem (8). Now let 
Al < A2 < ... < An < ... denote the eigenvalues of (8) (d. Theorem 2), with corresponding 

eigenfunctions Yn(x):: Xn(x). Then for each n, the function 

satisfies the D.E. and B.C. of (66). Formally, we consider the II infinite superposition" 
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(67) 

where we strive to attain 

u(x,O) = f(x) = ~=ldnyn(x) . (68) 

In order to find the constants dn , we use the orthogonality of the eigenfunctions Yn(x) on 

[a,bj , with respect to the weight function g(x) (cf. Theorem 5). Formally using term-by-term 
mtegration, we have 

and hence 

f: f(x)ym(x)g(x) dx' 

dm = J:[Ym(x)j2g(x) dx 
, m = 0,1,2, .... (69) 

Consequently, the formal solution of the initial/boundary-value problem (66) is given by (67), 
where dm is determined by (69). When the initial temperature is (say within experimental error) 

a finite linear combination of the eigenfunctions, then all but finitely many of the dn are zero, 

and the formal solution (67) is then an exact C2 solution of (66). 

The foregoing formal considerations suggest a generalization of Fourier series. To see this, 
let f(x) be defined on [a,bj, and suppose that the integrals in (69) are finite. Then the formal 
series 

(70) 

where dm is defined by (69), is called the eigenfunction expansion of f on [a,bj, with respect to 

the 
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eigenfunctions {y n (x)} ~ =0 • For example, in the special case when a = 0, b = L, g( x) == 1 and 

Yn(x) = sin(n1lX/L), (70) reduces to the Fourier sine series of f. All of the various types of 

Fourier series which we have considered so far are special cases of (70). In Chapter 9, we will 
encounter other types of eigenfunction expansions, as for example, Laplace series and 
Fourier-Bessel series, in connection with our study of PDEs in higher dimensions. These series 
are used to represent functions of several variables, say on a sphere, a disk, or a solid ball. This 
section is an introduction to the one dimensional case. At this point, pure mathematicians are 
likely to pursue some convergence theorems for eigenfunction expansions (cf. [Titchmarshl), while 
individuals in applied fields are probably wondering what numerical techniques are available for 
computing approximations for eigenfunctions and eigenvalues (cf. [Keller]). 
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Summary 4.4 

1. Sturm-Liouville problems: A heat conduction problem for a nonuniform rod with a heat 
source led to the following Sturm-Liouville problem: 

D.E. ~(K(x)~) + (q(x) + Ag(X))Y = 0 a $ x $ b 

c1y(a) + c2y'(a) = 0 (c~ + c~ f 0) 
B.C. 

where K(x) > 0, g(x) > 0, and g(x), q(x), K' (x) and y"(x) are continuous, on [a,b]. 

2. Definitions. The D.E. in (*) is called a Sturm-Liouville equation. The values of the parameter 
A for which a nontrivial solution (Le. y f 0) of (*) exists is called an eigenvalue of the problem 
and a corresponding solution y(x) of (*) is called an eigenfunction (associated with that 
eigenvalue). Problem (*) is also called an eigenvalue problem. 

3. Properties of eigenvalues and eigenfunctions: According to Theorem 2, the eigenvalues for the 
Sturm-Liouville problem (*) form an infinite sequence Al < A2 < A3 ... with An -+ 00, as n -+ 00. 

Moreover, any eigenfunction Yn(x) associated with An has n-l zeros in (a,b). 

(cf. also items 5,7,8 and 9 below). 

4. Self-adjoint form: A homogeneous, linear second-order ODE is in self-adjoint form if the 
ODE has the form 

~P(x)~) + Q(x)y = 0 . 

In particular, the Sturm-Liouville equation in (*) is in self-adjoint form. 

5. Uniquenes: The eigenfunctions of the Sturm-Liouville problem (*) are uniquely determined up 
to a nonzero multiplicative constant (cf. Theorem 3). 

6. Sturm-Liouville differential operator, Lagrange's identity and Green's formula: The operator 

L[y] = ~K(x)~) + (q(x) + Ag(X))Y 

is called the Sturm-Liouville differential operator. Lagrange's identity for L is (cf.( 42)) 

zL[y] - yL[z] = t [K(X) (y' z - YZ')] , 



Section 4.4 Sturm - Liouville Theory 277 

which, upon integration, yields Green's formula for L (cf. Theorem 4) : 

fb [ ]rb 
a (zL[y] - yL[z]) dx = K(x) (Y/z - yz/) x=a' 

where y(x) and z(x) are C2 functions on [a,b] . 

7. Orthogonality of Eigenfunctions: If Am and An are two distinct eigenvalues of the 

Sturm-Liouville problem (*), with corresponding eigenfunctions Ym(x) and Yn(x) , then Ym(x) 

and Y n(x) are orthogonal on [a,b] with respect to the (positive) weight function g(x) 

(cf. Theorem 5), i.e., 

8. Reality of eigenvalues: All of the eigenvalues of the Sturm-Liouville problem (*) are real 
(cf. Theorem 6). 

9. Sturm Comparison Theorem (cf. Theorem 8): One of the most useful and remarkable results 
in this theory is the Sturm Comparison Theorem (cf. Theorem 8). It can be used (cf. Theorem 9 
and the remarks following it) in establishing the properties of eigenvalues and eigenfunctions in 
Theorem 2. In Example 9, we use the Sturm Comparison Theorem to show that for the problem 

D.E. y" + Ag(X)y = 0 

B.C. y(a)=O, y(b)=O, 

where 0 < m < g(x) < M and g(x) is continuous on [a,b]' the eigenvalues An' n ~ 1 , satisfy 

the estimates : 

1 [nll']2 1 [nll']2 
M o=a < An < m b-a 

In Example 8, the Sturm Comparison Theorem is used to prove that Bessel functions have an 
infinite number of zeros. 
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Exercises 4.4 

1. Find the eigenvalues A n and the eigenfunctions Yn(x) of the Sturm-Liouville problem 

y" + AY = 0 (0 ~ x ~ L) with the given B.C. 

(a) y(O) = 0, y'(L) = 0 (b) y'(O) = 0, y(L) = 0 (c) y'(O) = 0, y'(L) = O. 

2. Find the eigenvalues An and corresponding eigenfunctions y n(x) of the eigenvalue problem 

y" + AY = 0 with the given B.C. 

(a) y(O)-y'(O)=O, Y(1I')-y'(1I') =0 (b) y(O)-y(27r) =0, y'(0)-y'(211')=0 

(c) y(O) + y(l) = 0, y'(O) + y'(1) = O. 

3. (a) Prove that the unique solution of the initial-value problem in Theorem 1 , with R(x) == 0, 
y( xo) = y' (xo) = 0 , is the trivial solution. 

(b) ~et y(x) be .an eig~nfun~tion of the Sturm-Liouville probl7m (9). Show that all the zeros of 
y(x) III [a,b] are simple, i.e., If y(xo) = 0, a ~ Xo ~ b, then y (xo) f 0 . 

4. (a) Show that every real value A is an eigenvalue for the problem 

D.E. y" + AY = 0 o ~ x ~ 1 

B.C. y(O) - y(l) = 0 y'(O) + y'(l) = 0 . 

(b) Show that the problem 

D.E. y" + AY = 0 0~X~1I' 

B.C. 1rY(0) - y( 11') = 0 1rY'(O) + y'(1I') = 0 

has no real eigenvalues. 

Remark. Note that the B.C. in Problem 4 (or in Problem 2 (b), (c)) are not of the prescribed 
form given by the B.C. of the Strum-Liouville problem (9). 

5. (a) Show that the following boundary-value problem has no solution: 

D.E. y" + y = 0 

B.C. y(O) = 0 y(211') = 1 . 

(b) If in part (a), the B.C. are changed to y(O) = 0 and y(L) = 1 , then determine all values of 
L > 0 such that the boundary-value problem will have a solution. 
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6. Show that every linear, homogeneous second--order ODE, 

P2(X)Y"(X) + Pl(X)Y'(x) + Po(x)y(x) = 0 , 

where P2(x) > 0 and Po(x), Pl(X) and P2(x) are continuous can be transformed into an equation 

which is in self-adjoint form. 

Hint. Multiply (*) by exp [ J [Plp~ P2] dX] and check that the resulting ODE is of the form 

q2Y" + qlY' + qoY = 0, where q2 = ql . 

7. Let m be a nonnegative integer. Use Problem 6 to transform each of the following equations 
in self-adjoint form: 

(a) x2y" + xy' + (x2_m2)y = 0 ,x> 0 

(b) (I-x2)y" - 2xy' + m(m+I)y = 0 ,-1 < x < 1 

(c) (I_x2)y" -xy' + m2y = 0 , -1 < x < 1 

(d) y"-2xy' +2my=O -oo<x<oo 

(e) xy" + (I-x)y' + my = 0 , 0 ~ x < 00 

Remark. Equations (a)-(e) are called Bessel's equation, Legendre's equation, Chebyshev's 
equation, Hermite's equation, and Laguerre's equation, respectively. 

8. Consider the linear, homogeneous second--order ODE y" + P(x)y' + Q(x)y = O. Use the 

substitution y(x) = z(x)exp[-t J P(x) dx] to reduce this ODE to the form z" + G(x)z = 0 , 

where G = -tp2 -!p' + Q . 

9. Prove Theorem 3 in the case where [Y'(a)]2 + [y'(a)]2 = o. 
Hint. In the proof of Theorem 3, let w(x) = Y(a)y(x) - Y(x)y(a) . 

10. For each nonnegative integer n, let y n(x) denote a (polynomial) solution of the ODE 

[(I-x2)y'(x)]' + n(n+I)y = o. Show that if n:f: m, then Yn(x) and Yrn(x) are orthogonal on 

[-1,1] with respect to the weight function g(x) == 1 . 

11. Let y(x) be a nontrivial solution of the Sturm-Liouville equation (cf. the D.E. of (36» for 
a ~ x ~ b. Show that y(x) can have at most a finite number of zeros in a ~ x ~ b . 
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Hint_ If y(x) has an infinite number of zeros in [a,b] then by the Bolzano-Weierstrass theorem 
(d. Appendix A4), there exists a point Xo in [a,b] and a sequence {xn} of zeros of y(x) such 

that xn -+ Xo as n -+ 00. Next form the Newton quotient of y(x) to conclude that y' (xo) = O. 

This is impossible by Problem 3. 

12. (a) If the inequalities C1-C2 $ 0 and C3'C4 ~ 0 in Theorem 7 are replaced by C1-C2 > 0 and 

c3 - c4 < 0 , explain why these new inequalities are unrealistic for a heat problem. 

(b) Give a specific example which shows that some of the eigenvalues can be negative, if 
c1 -c2 > 0 and C3' c4 < O. Can all of the eigenvalues be negative? 

(c) By considering (67), describe the set of initial temperatures f(x) for which such a rod will 
still have a bounded temperature as t -+ 00. 

13. Without solving (explicitly) the eigenvalue problem 

D.E. y" + ).,y = 0 0 $ x $ 1 

B.C. y(O) = 0, y(l) + y'(l) = 0, 

show that all the eigenvalues are positive. 

14. (a) Example 3 of Section 3.1 involves the heat flow in an insulated circular wire. Show that 
the D.E. and B.C. in this example (cf. (23) of Section 3.1) leads to the eigenvalue problem 

D.E. y" + ).,y = 0 -L ~ x ~ L 

B.C. y(-L) -y(L) = 0, y'(-L) -y'(L) = o. 

(b) Verify that the eigenvalues are ).,n = (n1r/L)2 , n ~ O. For n ~ 1 , find two linearly 

independent eigenfunctions Yn(x) and zn(x). Why does this not violate Theorem 3 ? 

15. Let g(x) be continuous on [a,oo), and suppose that 0 < m < g(x) on [a,oo). Prove that any 
solution of the ODE y" + g(x)y = 0 has infinitely many zeros. 

16. (a) Use the Sturm Comparison Theorem to prove inequality (64). 

(b) Following the considerations in the proof of Theorem 9, show that the eigenfunction Y1(x) 

(for (57)), associated with the smallest eigenvalue ).,1' has no zero in (a,b). 



CHAPTER 5 

THE WAVE EQUATION 

Physical scientists, engineers and applied mathematicians regard the wave equation 

2 
Utt = a (uxx + Uyy + uzz), u = u(x,y,z), a> 0 

in dimension 3, as one of the most important PDEs, because this equation describes the vibrations 
of continuous mechanical systems, and the propagation of electromagnetic and sound waves. We 
have discussed some applications of the wave equation in Section 1.2 of Chapter 1. In this 
chapter, we will study a special case of (*), the one-dimensional wave equation 

2 
Utt = a uxx ' u = u(x,t) , (**) 

when u does not depend on y and z (cf. Chapter 9 for a study of (*)). For definiteness, we 
interpret u(x,t) as the transverse displacement (in a direction perpendicular to the x-axis) of a 
vibrating string at position x, at time t. With this model in mind, in Section 5.1, we use 
Newton's second law to derive (**), and solve this equation when the initial profile and velocity of 
the string is specified by finite Fourier sine series. We also establish the uniqueness of solutions 
by proving that the energy is conserved. In Section 5.2, we derive D'Alembert's formula for the 
solution of initial value problems for the infinite string. The method of images is used with 
D'Alembert's formula to solve several problems for the semi-infinite and finite strings, and to 
prove certain maximum principles which are needed to analyze the error of a solution due to an 
error in the initial conditions. We begin Section 5.3 with a discussion of the various standard 
types of B.C.. The same techniques which were used in Chapter 3 to solve heat problems with 
inhomogeneous B.C. are shown to also work for wave problems. Moreover, a version of Duhamel's 
method is motivated and used to solve problems for the inhomogeneous wave equation which 
results when external forces act on the string. 

Historical Remarks. The subject of partial differential equations, and in particular the study of 
the wave equation, had its beginning in the eighteenth century. Among many other topics, the 
mathematicians and physicists of this era were interested in boundary value problems involving 
vibrations of strings stretched between fixed points and vibrations of columns of air in organ 
pipes, with regard to certain mathematical theories of music. The earliest contributors to such 
theories include Brook Taylor (1685-1731), Daniel Bernoulli (1700-1782), Leonhard Euler 
(1707-1783) and Jean D'Alembert (1717-1783). In the nineteenth century the wave equation was 
applied in the burgeoning field of elasticity, and subsequently in the study of the propagation of 
sound and light waves. During this period, important contributions were made by Simon D. 
Poisson (1781-1840), Georg F.B. Riemann (1826-1866), Hermann von Helmholtz (1821-1894), 
Gustav R. Kirchhoff (1824-1887) and John W.S. Rayleigh (1842-1919). In the twentieth century, 
the wave equation and many associated equations (e.g., the Dirac equation, the Klein-Gordon 
equation, Maxwell's equations, etc.) arise not only in the modern equivalents of previous 
applications, but also in the classical and quantum description of every known elementary 
particle, as well as in general relativity. More recent applications of the wave equation appear in 
the theories of superconductivity, superfluidity, and now, completing the circle, "superstrings" 
which is one of the latest unified field theories that has been proposed. 

281 
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5.1 The Wave Equation - Derivation and Uniqueness 

For a positive constant a, the one-dimensional wave equation 

2 
Utt = a uxx ' u = u(x,t) , (**) 

bears a resemblance to the heat equation ut = kuxx ' The essential difference is due to the 

presence of the second time derivative. Note that if u(x,t) is a solution of (**), then the 
time-reversed function v(x,t) = u(x,-t) is also a solution. This property does not generally hold 
for solutions of the heat equation, except for the time-independent solutions u(x,t) = cx + d. 
We will show that under certain ideal conditions, a solution of the wave equation can be 
interpreted as the time-dependent profile (or amplitude) of a vibrating string. When a real string 
is plucked, eventually air resistance and the conversion of the energy of motion into internal heat 
will reduce the amplitudes of vibrations. However, in an ideal situation where such dissipative 
forces are absent, we could not tell whether a movie of the string was being run forward or 
backward. This is not the case for heat distributions, where the characteristic dampening and 
leveling tells us that time is advancing. In spite of these differences, we will find that the basic 
method for solving the heat equation carries over to the wave equation. 

The derivation of the wave equation 

Consider a homogeneous string which stretches and offers negligible resistance to bending. At 
rest, the string is stretched between x = ° and x = L. The string can vibrate in many ways. 
For example, points on the string might simply move back and forth on the x-axis, so that the 
profile of the string remains flat. Such vibrations are known as longitudinal vibrations. Suppose 
that the position (at time t) of a certain point, say at (x,O,O) when the string is at rest, is given 
by (r1(x,t),r2(x,t),r3(x,t)), {or some functions r1, r2 and r3 . For longitudinal vibrations, we have 

r2 == r3 == 0. Generally, the functions r1 , r2 and r3 can be shown to obey a system of three 

PDEs each of which is typically nonlinear (cf. [Antman] and Problem 7). In order to simplify 
matters, we assume that the string vibrates in a plane, say the xy-plane (Le., r3(x,t) == 0). Also, 

we will assume that the string under consideration is vibrating in such a way that r1(x,t) == x, so 

that the point corresponding to x is displaced by r2(x,t), only in the y-direction at time t. 

Such vibrations are said to be transverse vibrations. To simplify the notation, we denote r2(x,t) 

by u(x,t). In the process of showing that u(x,t) must obey the wave equation, we will prove 
that only a certain class of strin~s will admit nontrivial transverse vibrations. We refer to such 
strings as being "linearly elastic' within a given range of stretching. (The precise definition is 
given below, but roughly, this means that the tension at any point in the string is proportional to 
the the local stretching factor). Although there are no real physical strings which are linearly 
elastic for an arbitrarily large range of stretching, we can at least say that solutions of the 
resulting wave equation are valid as long as the degree of stretching is not too extreme. In the 
following derivation, at no time will we make the usual (but actually unnecessary) assumption 

that terms such as ux(x,t)2 can be neglected, in order to arrive at a linear wave equation. 
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u u 

TR(XD,t) 

u(Xa,t) ------_ ... _-----_. 

x x 
o L 0 Xa L 

(a) (b) 

Figure 1 

In Figure l(b), u(xo,t) is the vertical displacement, at time t, of the point on the string 

that would be at Xo on the x-axis, if the string were in the rest position of Figure l(a). By 

assumption of transverse vibrations, there is no horizontal displacement. The vector TR(xo,t) 

(cf. Figure 2( a)) is the force that the portion of string to the right of Xo exerts on the portion to 

the left of xo' We call TR the right-tension at xo' at time t. Similarly, we define the 

left-tension TL(xo,t). We assume that TR(xo,t) is tangent at Xo to the graph of u(x,t), as a 

function of x, and we assume that TL(xo,t) = -TR(xo,t). This last assumption might seem to 

imply the points of the string will never move, since the net force on each point is TL + TR = O. 

However, since the mass of a point is 0, the acceleration of a point is not determined by 

Newton's equation F = rna. To obtain the acceleration of a point xo, we need to take the limit 

of the ratio of the net force on the portion of the string above the interval [xo-h, Xo+h] to the 

mass of this portion, as h .... 0 (cf. Figure 2( a)). 

u u 

(a) (b) 

Figure 2 

We compute this limit as follows. Let the magnitude of the left(or right)-tension at Xo at time 

t, be denoted by T(Xo,t). This is called the tension at Xo at time t. We assume that the 

tension is the positive constant To, when the string is straight (as in Figure l(a)). If the string is 

stretched by a factor of s , relative to its length at rest, then the new tension will be of the form 
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g(s)'To ' for some function g(s), which depends on the nature of the string. That is, we are 

assuming that the function g depends only on s, and not on other quantities such as the rate of 

stretching or temperature variations due to bending. Of course, g(l) = 1 , because when the 

string has not been stretched (Le., s = 1), the tension is To. We assume that g(s) is C1 for 

stretches s which are encountered during vibrations. Using these assumptions together with the 

restriction that the vibrations are transverse, we will show that Newton's second law impies that 
g(s) = s (Le., the tension in the string is proportional to the stretching factor s). Then we will 

see that the PDE for u(x,t) which results (without any of the usual dubious statements about u~ 
being negligible) is necessarily a linear PDE, namely the wave equation. 

Definition. A string is linearly elastic for a ~ s ~ b, provided that, when the string, at tension 
To, is stretched by a factor of s in [a,b], the tension becomes Tos (Le., g(s) = s). 

More precisely, we will show that, in conjunction with Newton's law, the assumption that the 
string admits nontrivial transverse vibrations actually implies that the string is linearly elastic for 
s in any range which is encountered during such a vibration. In Figure 2(b) above, the string in 

the interval [x,x + box] has been stretched by about a factor of (box2 + bou2)!jbox which tends 

to s == (1 + u~)!, as box -+ o. The direction of the right tension at x is approximately the same 

as that of the unit vector (boxi + bouj) j (box2 + bou2)!, which approaches the exact unit tangent 

vector (i + uJ)j(1 + u~)! = ~ (i + uxj) ,as box -+ o. Thus, 

Consequently, the net force on the string between x - h and x + h, as in Figure 2(a), is 

Since we are considering only transverse vibrations, the mass of the portion of the string, from 
x-h to x+h, remains the same as it would be if the portion were in the straight rest position, 
namely 2hD, where D is the mass per unit len~th of the string when straight (Le., D == the 
linear density of the straight string in Figure l(a»). By Newton's law and the assumption of 
purely transverse vibrations, the acceleration of the string at x is 

= 1 a [T ] = 1 a [T g{§l]. + 1 a [T g{§l ]. u ox. R U ox. 0 S 1 U ox. 0 s Ux J 

Equating the and j components of both sides, we have 
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0= (To/D) ~ [¥)] (I) 

and 

Utt = (To/D).~uxx + (To/D)'~ [~] ux ' (J) 

where s = (1 + u;)t . Thus, (I) implies that G(s) == g(s)/s is independent of x. Now 

(I' ) 

for all Xl and x2 in [O,L] (Why?). For any fixed time t, we may choose xl to be a point such 

that UX(xl,t) is O. (Here we assume that the ends of the string are fixed and apply Rolle's 

theorem.) Thus S(XI,t) = 1, and since G(I) = g(I)/1 = 1, (I') yields 1 = G(S(x2,t)) for any 

x2 and any t during the vibration. In other words, g(s) = s for any stretch s which is 

encountered during a transverse vibration. Thus, the PDE (J) reduces to the wave equation 

Remark. In many derivations, the PDE (J) is linearized (cf. Section 1.2) by the outright 

assumption that u2 is negligible, so that one can (all too conveniently!) set s = 1 in the PDE . x 

(J), which then becomes the linear wave equation (**). However, the assumption that u; is 

small presupposes some knowledge about the solution of the typically nonlinear PDE (J) (cf. 
Example 11 of Section 1.2, for the pitfalls of linearization). Rather than introducing this 
questionable assumption, we have shown that it is unnecessary to do so, by demonstrating that 
g(s) = s follows from the assumption of transverse vibrations and Newton's law. The property 
g(s) = s means that the string behaves as a spring or a rubber band which is stretched, but not 
by too much, so that Hooke's law holds (cf. Example 6 of Section 1.1). However, not all strings 
satisfy g( s) = s, except in a very short interval about s = 1. For example, the tension in a piece 
of twine can increase enormously even for small stretches, whereas for a string of taffy the tension 
may even eventually decrease upon stretching. In essence, we have shown that such strings do not 

admit purely transverse vibrations u(x,t) for which the stretching factor, (1 + ux(x,t)2) t, lies 

outside the range of linear elasticity for some (x,t). 0 

Solving the standard initial value problem for a string with fixed ends 

As with the heat equation, we first find all of the product solutions of Utt = a2uxx' using the 

method of separation of variables. Substituting u(x,t) = X(x)T(t) into Utt = a2uxx' we get 

X(x)T"(t) = a2X"(x)T(t) or ~ = ~ = c = ±,A2 , 
a 2T(t) X(x) 
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where A is some nonnegative constant. The ODE X" = ± A2X for X(x) is exactly the same as 

for the heat equation in Section 3.1, but the solutions of the ODE Til = ±A2a2T for T(t) are 
different, because of the second time derivative. The possible product solutions fall into the 
following three cases, where cl' c2' dl and d2 are arbitrary constants: 

Case 1 (c = _A2 < 0): 

(1) 

Case 2 (c = A2 > 0): 

u(x,t) = (dleAat + d2e -AatH cleAX + c2e -AX). (2) 

Case3 (c = A2 = 0): 

(3) 

We will now formulate one of the simplest standard initial/.boundary-value problems for 
the wave equation. Recall that in solving Newton's equation mx '(t) = Flt), it is necessary to 
specify x( to) and x I (to) in order to obtain a unique solution for the position x( t) of a particle. 

For the wave equation (whose derivation was based on Newton's equation), it is also necessary to 
specify not only the initial profile u(x,O) of the string, but also the initial velocity ut(x,O). 

Otherwise, we will not obtain a unique solution u(x,t). First we assume that the ends of the 
string are fixed (Le., u(O,t) = 0, ulL,t) = 0), although in Section 5.3, we consider the cases 
where one or both of the ends are allowed to slide vertically. We expect that under reasonable 
circumstances the following standard problem will have a unique solution: 

2 
D.E. Utt = a uxx' ° ~ x ~ L, --00 < t < +00 , 

B.C. u(O,t) = 0, u(L,t) = 0, 

{ 
u(x,O) = f(x), 

I.C. 
ut(x,O) = g(x), 

(initial position) 

(initial velocity). 

(4) 

We require that u(x,t) have a C2 extension to an open domain that contains the strip ° ~ x ~ L, --00 < t < 00. As with the heat equation, the only product solutions which satisfy the 
B.C., are of the form (1), where c2 = ° and A = n7r/L, n = 1, 2, 3, .... By taking linear 

combinations of such solutions of the D.E. and B.C., we obtain a solution of the form 
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Note that 

Substituting t = ° in (5) and (6) yields 

In summary, we have shown the following result. 

Proposition 1. A solution of the problem 

is 

D.E. ° ~ x ~ L, -w < t < +00 , 

B.C. u(O,t) = 0, u(L,t) = 0, 

N 

1 
u(x,O) = f(x) = lnN=lBnSin(n11X/L), 

I.c. 

ut(x,O) = g(x) = t=l Ansin(n11X/L) 

287 

(5) 

(6) 

(7) 

(8) 

(9) 

Remark. Here we have expressed u(x,t) in terms of the Fourier sine coefficients Bn and An of 

f(x) and g(x) respectively. Note that An in (5) is (L/n7ra)An . 0 

Of course, one can pose problems where f(x) and g(x) are not finite sine series as above. 

But if f(x) and g(x) are continuous and piecewise c1 on rO,L), with f(O) = f(L) = ° and 
g(O) = g(L) = 0, then we know that f(x) and g(x) may be unitormly approximated to within any 
small positive error by partial sums of their Fourier sine series (d. Theorem 1, Section 4.3). Thus, 
such f(x) and g(x) can be replaced by finite sine series within experimental error. Later we will 
show that two solutions must be close, if the initial profiles and velocity distributions of the two 
solutions are close (d. the Corollary to Theorem 5 in Section 5.2). 
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Example 1. Solve the initial/boundary-value problem 

2 
D.E. Utt = a Uxx ' ° ~ x ~ L, -00 < t < +00, 
B.C. u(O,t) = 0, u(L,t) = 0, 

[ 
u(x,O) = f(x) = 2sin(~), 

I.C. 

ut(x,O) = g(x) = sin(¥) - 3sin(~) . 

Solution. We simply apply Proposition 1 with B3 = 2, Al = 1, A5 = -3, and with all of the 

other An and Bn equal to zero. Then 

Note that to get the solution quickly, one can simply insert a factor of cos{mrat/L) in the terms 
involving sintn1lX{L) in f(x) and insert a factor of (L/mra)sin(n7rat/L) in the terms involving 
sin(n1lX/L) in g(x, and then add the results to get u(x,t). 0 

Harmonics 

The individual terms of the series (5), namely (for n = 1,2,3, ... ) 

( ) [A · (n7rat) (n7rat)] . (n1lX) un x,t = nsm -r- + Bncos -r- sm L (10) 

are called the harmonics or overtones of the string with fixed ends at x = ° and x = 1. 

These constitute a complete family of product solutions of the D.E. Utt = a2uxx with B.C. 

u(O,t) = u{L,t) = 0, as n runs through the values 1,2, .... If An and Bn are not both zero, 

we can rewrite un(x,t) as follows. Let Rn:: (A; + B;)'t. Then there is a On' such that cos{On) 

= An/Rn and sin{ On) = Bn/Rn ,since (An/Rn)2 + (Bn/Rn)2 = 1. Thus, 

un(x,t) = Rn[cos(On)sin{~) + sin(On)cos(~)]sin(T) = Rnsin(~ + 0n)sin(T) . 

We see that un(x,t) oscillates between ±Rnsin{n1lX/L) as t varies. Rn is called the amplitude 

of un(x,t) and On is the phase of un(x,t) (cf. Figure 3, where Rn= 1, L = 6 ). 
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u u u 

Figure 3 

The time that it takes a harmonic to complete one oscillation is called its period. The period is 
inversely proportional to n. To find the period of the n-th harmonic, we set ll1rat/L = 211" and 
solve for t, obtaining t = 2L/na. The frequency of a harmonic is the number of oscillations per 
unit time, and it is just the reciprocal of the period. Hence, the period and frequency of the n-th 
harmonic of the string (with fixed ends) are respectively given by 

p = 2L and 
n na 

Uniqueneljs and the energy integral 

1 na 
vn = p = 2L. 

n 
(11) 

As with the heat equation, there is the uniqueness question. Can there be two different 
solutions to problem (4) for a given f(x) and g(x)? 

Theorem 1 (Uniqueness). Let u1(x,t) and u2(x,t) be C2 solutions ofthe following problem 

D.E. 2 
Utt = a uxx' ° $ x $ L, -00 < t < +00, 

B.C. u(O,t) = A(t) , u(L,t) = B(t) , 

I.C. u(x,O) = f(x) , ut(x,O) = g(x) . 

Then u1(x,t) = u2(x,t) for all ° $ x $ L, -00 < t < +00. 

Proof. Let v(x,t) = u1(x,t) - u2(x,t). Note that v satisfies the related problem with 

homogeneous B.C. and I.C .. In particular, v(x,O) = ° and vt(x,O) = 0. We need to show that 

v(x,t) = 0 for all t. In the proof of the corresponding Theorem 1, in Section 3.2, we 

accomplished this by proving that J: [v(x,t)] 2 dx = ° via differentiation with respect to t. 

Here, we will prove that the function 
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(12) 

is zero. Once this is done, then vt(x,t) =.0 for all x in [O,L] and all real t, and (as required) 

t 

v(x,t) = v(x,t) - v(x,O) = L vt(x,t) dt = 0. 

We compute H'(t), using Vtt = a2vxx and differentiating under the integral (cf. Appendix A.3) : 

H'(t) = J: [a22vxvxt + 2vtvtt] dx = 2a2 J: [VXVxt + vtvxxl dx 

2fL o 2 IL = 2a 0 ox (vxvt ) dx = 2a [vx(x,t)vt(x,t)] 0 = 0, 

since (by the B.C. v(O,t) = ° and v(L,t) = 0) vt(O,t) =~ v(O,t) = 0, and similarly vt(L,t) = 0. 

Since H' (t) = 0, we know that H(t) is constant, but this constant is 0, since H(O) = ° 
according to the initial conditions for v (note that vx(x,O) = ~ v(x,O) = 0). 0 

Remark. The function H(t) (cf. (12)) in the above proof is actually proportional to the total 
energy of the string given by v(x,t). Indeed, the kinetic energy of the segment of the string from 

x to x + ill is approximately !(DLlx)[ut (x,t)]2, where D is the mass per unit length. The 

work done (energy expended or potential energy) in stretching the segment from Llx to 

(Llx2+Llu2)t ~ [1 + ux(x,t)2]tLlx = sLlx , is the following integral of the force (tension) with 

respect to the increase r in the length of the segment during the stretching process. 

f(S-I)LlX Llx+r r 2 I (s-I)Llx 
To ----x-::- dr = To·(r + O"X"":":") ° uX ~uX ° 

= ToLlx(s -1 + !(s _1)2) = !To(s2 -1)Llx = ! To[ux(x,t)12 ill , 

where we have assumed, as in the derivation of the wave equation, that the string is linearly 
elastic, with rest tension To. Hence, the potential energy of the segment of string from x to 

x + Llx is ~ !To[ux(x,t)]2 Llx. When this is added to the kinetic energy and the result is 

integrated, we get the energy integral (or simply, energy) of the string at time t 

E(t) (13) 
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which is tD times H(t) in (12), using v for u. For an unforced string, we expect E(t) to be 
constant. Thus, it is not surprising that H/(t) = ° in the preceding proof. Of course, the 
physical intuition is no substitute for the explicit computation of H' (t) above, but it does lead us 
to consider the function H( t) in the first place. In other words, the physical basis for the proof of 
the uniqueness (Theorem 1) is the law of conservation of energy. 0 

Example 2. Calculate the energy of the n-th harmonic 

( ) [A ' (n1l'at) (n1l'at)) . (n1l'X) u x,t = nsm ----r;- + Bncos ----r;- sm T . 

Solution. The energy E(t) is defined by (13), and we know from the proof of Theorem 1 that 
E(t) is constant. Thus, E(t) = E(O), and so we only need to compute E(O): 

E(O) = ~ J~ [To[Ux(x,0))2 + D[ut (x,0)]2] dx 

1 JL [ n 11' n 1I'X 2 n 1I'a . n 1I'X 2] =:2 0 TO[L Bncos(T)] + D[T Ansm(T)] dx 

L L 
= ~(!!.[)2 [ToB~ J ° cos2(T) dx + Da2 A~ J ° sin2(T) dX] 

n 2 11'2 2 2 2 11'2 2 2 2 11'2 2 2 
="""4L (ToBn + Da An) = 4L To (Bn + An) n = 4L ToRn n , 

.I. 2 2 2. . 
where we recall that a == (To/D)2 and Rn = An + Bn IS the square of the amplItude of the 

harmonic. It is possible, but rather lengthy, to compute E(t) directly by considering [ux(x,t))2 

and [ut(x,t)f, Of course, we know that the end result will be E(O) anyway. 0 

Remark. Note that the energy of the n-th harmonic is proportional to n2 for a given amplitude, 
and it is proportional to the tension and the square of the amplitude. However, unlike the 

frequency /In = tnLvT;JIT, the energy is independent of the linear density D. 0 

Example 3. (The motion of the plucked string) Find the formal solution of the problem for the 
motion of the plucked string: 

D.E. 2 
Utt = a uxx' o ~ x ~ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

I.C. u(x,O) = f(x), ut(x,O) = 0, 

where f(x) is the function with graph shown in Figure 4. 

(14) 
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U 

U o ------------------------------------------------: 

o 

Figure 4 

: 
! 
! 
! 
! 
! x 

L 

(uo > 0, 0 < Xo < L) 

(Le., the string is "plucked" at some fixed Xo in (O,L), lifted to the displacement Uo and 

released with zero initial velocity, Le., ut(x,O) = 0). 

Solution. We have 

o ~ x ~ xo' 

Xo ~ x ~ L. 

The formal solution of problem (14) is obtained by computing the Fourier sine coefficients Bn of 

f(x) (cf. Proposition 1) and using formula (9) with N = 00. (The notion of a formal solution was 

introduced in Section 4.3.) Note that f is continuous and piecewise C1. Integration by parts is 
valid for such functions. Thus, 

The endpoint evaluation is zero, since f(O) = f(L) = 0 , and from the fact that 

o ~ x < Xo 

Xo < x ~ L, 

we obtain 

Bn = f ;11"[ to ~ cos(nr) dx + r ~r cos(nr) dX] 
o 0 Xo 0 

2 [ L]2 [u . (nn) u . (nn)] 2Luo [1 1]. (nn 
= r n 11" ~ sm -,:;-0 - ~r sm T = ~ Xo + L-Xo sm -,:;-0) 

2 
_ 2L uo_ 1 sl·n(n nO) -2 ,-,:;-. 

11" Xo (L-xo) n 

The formal solution is 
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(15) 

Let uN(x,t) denote the sum of the first N terms of(15). Then uN(x,t) is a COO solution of the 

D.E. with the given B.C .. Moreover, uN(x,O) is the N-th partial sum SN(x) of FSS f(x), and 

thus we know that for N sufficiently large uN(x,O) will approximate f(x) to within any 

preassigned error (cf. Theorem 1 of Section 4.3). Hence, for practical purposes, the problem of the 
plucked string is solved. While it is possible to prove that the sum (15) converges (i.e., u(x,t) is 

defined for all (x,t)), u(x,t) is not C2 and hence is not a strict solution of the D.E .. Using the 
techniques of Section 5.3, one can show that for most times t, the graph of u(x,t) in (15) consists 
of three line segments whose slopes do not match at the two interior corners where pairs of them 
join. Indeed, the two corners move in opposite directions (and with horizontal speed a) around 
the parallelogram formed by the original profile and its reflection through the point tL on the 
x-axis (cf. Figure 5 below). Observe that u(x,t + 2L/a) = u(x,t). In particular, the string 
returns to the ori,ginal plucked position at t = 2L/a and repeats its motion. The values L/n, 
2L/n, 3Ljn, ... , (n-l)L/n, where sin(n11X/L) vanishes are called the nodes of the harmonic 
cos(n1rat/L)sin(n11X/L). Formula (15) shows that the harmonics, with Xo as a node, drop out of 

the sum, because of the factor sin(n11Xo/L). 0 

u 

.......... ~ ....... .. 

. ', ..... ".! ~ 

j.-at --k-at -..i x 
0 ", . 

........ 
" ......... 

.... " ...... 
......... 

Figure 5 
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Summary 5.1 

1. Derivation of the wave equation: Under the assumption that a string of linear density D, 
stretched with tension To between two points, is executing only transverse vibrations, we 

demonstrate (via Newton's equation F = rna) that the amplitude u(x,t) of the vibration must 

obey the wave equation Utt = a2uxx ,where a2 :: TolD. In the course of the derivation, we 

prove that a string which undergoes transverse vibrations must be linearly elastic (Le., the tension 

at any point is of the form sTo ' where s:: (1 + u~)t is the local stretching factor). 

Consequently, it is not necessary to assume that u~ is negligible in order to achieve a linear wave 

equation for u(x,t), for transversely vibrating strings. 

2. The standard problem for fixed ends (Proposition 1): A solution of the problem 

is 

D.E. ° ~ x ~ L, -00 < t < +00 , 

B.C. u(O,t) = 0, u(L,t) = 0, 

N 

[ 

u(x,O) = f(x) = lnN=1 Bnsin(T)' 

I.C. 

ut(x,O) = g(x) = ~n=1 Ansin(T) 

(81) 

(82) 

3. Harmonics: The product solutions of the D.E. and B.C. of (81) are called harmonics and they 
are of the form (where n = 1,2,3, ... ) 

where Rn = (A; + B;)t is the amplitude of the harmonic, and An/Rn = cos On' Bn/Rn = sin On 

define the phase On' 
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4. Energy: The energy at time t of any solution u(x,t) of (SI) is given by 

IJL [ 2 2] E(t) ="2 0 To[ux(x,t)] + D[ut(x,t)] dx, (S4) 

which was shown to be constant in the proof of the uniqueness theorem (Theorem 1). The energy 
2 

of the harmonic un(x,t) in (S3) was computed to be it To R~ n2 in Example 2. 

5. Uniqueness: Theorem 1 implies that (S2) is the unique solution of the problem (SI). More 
generally, even if the B.C. in (SI) are replaced by u(O,t) = A(t) and u(x,t} = B(t) and if f(x) 
and g(x} are not necessarily finite Fourier sine series, Theorem 1 states that there is at most one 

(possibly no solutions) C2 solution of the resulting problem. The proof proceeds by showing that 
the energy of the difference of two solutions is time-independent and initially zero. 

6. The plucked string: The formal solution for the problem of the plucked string is found in 

Example 3. By truncating the formal solution, one can produce COO solutions of the D.E. and B.C. 
which meet the I.C. to within any preassigned experimental error. However, it can be shown that 

the full sum of the formal solution converges to a function (which is not even C1) with corners 
which move in opposite directions around a parallelogram, as in Figure 5. 

Exercises 5.1 

1. Solve the problem 
2 

D.E. Utt = a uxx' o S x S L, ~ < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

I.C. u(x,O) = f(x), ut(x,O) = g(x). 

in the following cases: 

(a) f(x) = 3sin(![) - sin(!p), g(x) = ~sin(~), (b) f(x) = [sin(![)]3, g(x) = 0, 

(c) f(x) = 0, g(x) = sin(![)cos2(![), (d) f(x) = [sin(![)]3, g(x) = sin(![)cos2(![). 

Hint. For (b) and (c), use trigonometric identities. For (d), use the superposition principle. 

2. Suppose u(x,t) solves Utt = a2uxx ' (a f 0). 

(a) Let a, (3, Xo and to be constants, with a f o. Show that the function v(x,t), given by 

v(x,t) = u( ax+xo,(3t+to), satisfies v tt = ((3a/0')2 v xx . 



296 Chapter 5 The Wave Equation 

(b) For any constant w, let x = cosh(w)x + a·sinh(w)t and t = a-1.sinh(w)x + cosh(w)t. 

Recalling that cosh2(w) - sinh2(w) = 1, show that x = cosh(w)x - a,sinh(w)t and 

t = _a-I. sinh( w)x + cosh( w)t (Le., (x,t) -+ (x,t) is an invertible change of variables.) 

(c) Define u(x,t) = u(x,t). Show that Utt - a2uxx = Utt - a2uxx ' mnt. By the chain rule, 

Ux = uxxx + uttx = uxcosh(w) + uta-1sinh(w), and compute Uxx and Utt similarly. 

Remark. The transformations (x,t) -+ (x,t), known as Lorentz transformations, mix space and 

time. Part (c) shows that the wave equation Utt - a2uxx = 0 retains its form under Lorentz 

transformations. In this way, Albert Einstein (1879-1955) was led to his famous unification of 

space and time (Le., relativity). In most physics books, cosh(w) is written as (1_v2/a2)-t, and 

sinh(w) is then :I: i'(1-v2/a2)-t (Why?), where vi is the relative velocity of two observers, 

and a = C:: the speed of light Rj 2.99 x 108 m.s-1 . 

3. In the derivation of the wave equation (Section 5.1) we did not consider the effect of gravity 

which exerts an additional force of -2hDg j on the segment of string between Xo - hand 

Xo + h, where g = 32 ft/sec2 is the acceleration due to gravity. 

(a) Deduce that u(x,t) obeys Utt = a2uxx - g , if the effect of gravity is considered. 

(b) Find a solution of Utt = a2uxx - g which satisfies the B.C. u(O,t) = 0 and u(L,t) = 0 and 

which is time-independent [Le., u(x,t) = U(x)]. What does this solution represent? 

4. In Section 5.3, we show that the B.C. ux(O,t) = 0 means that the end x = 0 of the string is 

free to slide vertically (and similarly, for the end x = L). Show that the proof of Theorem 1 
yields uniqueness in the cases when one or both ends are free to slide. 

5. Let v(x,t) and w(x,t) be two C2 solutions of the problem 

2 
D.E. Utt = a uxx' 0 ~ x ~ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = O. 

(a) Use the technique in the proof of Theorem 1 to show that 

~ f: [a2vx(x,t)wx(x,t) + vt(x,t)wt(x,t)] dx = O. 

mnt. vxtwx + vxwxt + vxxwt + vtwxx = (vtwx + vxwt)x. 
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(b) Let B(v,w) = J: [!Tovxwx + !Dvtwt] dx. 

In part (a), we proved that B(v,w) is a constant, independent of t. Note that the energy Eu of 

u(x,t) is B(u,u). Establish the result 

B(v+w,v+w) = B(v,v) + B(w,w) + 2B(v,w). 

(Le., Ev+w :f: Ev + Ew' unless B(v,w) = 0). 

Hint. Rather than writing out B(v+w,v+w) in terms of an integral, note that B clearly has the 
properties B(ut,u2) = B(U2'Ut) and B(ut+u2,u) = B(ut,u) + B(u2,u), which are all that is 

needed to get (*). 

(c) Show that for any two harmonics, say un(x,t) (formula (10)) and um(x,t) where m f= n, we 

have B(um,un) = 0. Conclude from (b) that the energy of um + un is the sum of the energies of 

un and um. Is this still true if n = m? Why not ? 

(d) Show that the energy of u(x,t) = 2:Jn~a Ansin(~) + BnCOS(~)] sin(T) is 

2 N 

Eu = 7r4to 2n=t n2[B~ + (LAn/n7ra)2]. 

N N N N 

Hint. Eu = B(u,u) = B(2n=tUn , 2n=tUn) = 2n=tB(un,un) + 2 2B(um,un) = t=tB(un,un). 
m<n~N 

6. Consider the problem 

D.E. Utt = Uxx' ° ~ x ~ 7r, -00 < t < 00, 

B.C. u(O,t) = 0, u(7r,t) = 0, 

I.C. u(x,O) = x( 7r - x), ut(x,O) = 0. 

(a) Find a solution of the D.E. and B.C. that satisfies the I.C. to within an error of .00l. 

(b) By computing Utt and Uxx at (x,t) = (0,0), show that there is no C2 solution of the problem. 

7. Consider a string which vibrates in the xy-plane, but not necessarily transversely. When the 
string is at rest the points on the string have coordinates of the form (x,O) (0 ~ x ~ L). Suppose 
that at time t, the point which was in the rest position (x,O), has xy--<:oordinates (r(x,t),u(x,t)) 
[e.g., for transverse vibrations r(x,t) = x and for longitudinal vibrations u(x,t) = 0]. 

(a) Show that the local stretching factor s at the point corresponding to x is (r~ + u~)! . 
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(b) Suppose that the tension at the point corresponding to x is still of the form g( s)T o. Show 

that by virtue of Newton's equation ( F = rna) r(x,t) and u(x,t) satisfy the system 

rtt = b~ [To ¥)rx] and utt = b~ [ To ~ ux] , 

where s = (r~ + u~)t, with B.C. r(O,t) = u(O,t) = u(L,t) = ° and r(L,t) = 1. 

(c) When will these equations decouple, in the sense that they can be solved separately? 

(d) The equations are still valid if D and To are allowed to be positive c1 functions of x, but 

then To(x) cannot be brought outside of the parentheses. Assuming that g(s) = s, find the 

unique time-independent (steady-state) solution (R(x),U(x)) of the system with the given B.C., 
L 

assuming that f ° [To(x)]-l dx < 00. When is R(x):: x? (Le., when the string is in the 

standard configuration (x,O), ° ~ x ~ L, under what circumstances is the string really at rest ?) 

8. For a string that vibrates transversally in a medium, say air, one must take air resistance into 
account. Assuming that the force due to the air resistance is proportional (but oppositely 

directed) to the velocity ut(x,t) j, show that u(x,t) obeys the equation Utt = a2uxx - kUt ' for 

some real k> 0. 

9. Use separation of variables to find all product solutions of the problem (with k > 0) 

2 D.E. Utt = a Uxx - kut , ° ~ x ~ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

for the string with air resistance and fixed ends. 
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5.2 D'Alembert's Solution for Wave Problems 

We have seen that one can represent the solution of the problem (where N < 00) 

D.E. 

B.C. 

I.C. 

by the series 

2 
Utt = a uxx ' 0 ~ x ~ L, -w < t < 00, 
u(O,t) = 0 u(L,t) = 0 , 

N N 
u(x,O) = f(x) = 2n=lBnsin(r), ut(x,O) = g(x) = 2n=lAnsin(r) 
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(1) 

(2) 

If f(x) and g(x) are not finite Fourier sine series, but are continuous and piecewise C1 and 
vanish at x = 0 and x = L, we may approximate f(x) and g(x) to within any (positive) 
experimental error by truncations of their Fourier sine series (cf. Theorem 1 of Section 4.3). Thus, 
problem (1) has been solved for all practical purposes, for such f(x) and g(x), as nearly as 
anyone can say. However, in order that the theory have predictive value, we need to know that 
small changes in f(x) and g(x) induce small changes in the solution. Otherwise, two different 
approximations, both within experimental error, may lead to significantly different solutions. 
This property of "continuity of solutions with respect to variations in the I.C." was established 
for the heat equation by the use of the Maximum Principle (cf. Theorem 2 of Section 3.2). 
However, a direct translation of the Maximum Principle to the case of the wave problem (1) is 
false, as the following example shows. 

Example 1. In problem (1) take f(x) = 0 and g(x) = sin(1lX/L). Show that the maximum of the 
solution u(x,t) does not occur when t = 0, x = 0 or x = L. 

Solution. The solution is u(x,t) = ;asin(7rat/L)sin(1lX/L). Note that u(x,t) vanishes at the 

ends and also initially (Le., u(O,t) = 0, u(L,t) = 0, u(x,O) = 0). However, u(x,t) ¢ 0 as a direct 
translation of the Maximum Principle for the heat equation would imply. Indeed, the maximum 
of u(x,t) occurs at x = tL, t = tL/a (as well as t = (2n + t)L/a, n = 0, ±1, ... ). 0 

The reason for the failure of the direct translation of the Maximum Principle is that it does 
not take into account both of the I.C. in (1). Eventually (cf. Theorem 5), we prove that the 
solution u(x,t) of (1) obeys the following type of maximum principle: 

max lu(x,t)1 ~ max If(x) I +~ max Ig(x)l. 
O~x~L O~x~L a O~x~L 

(3) 

-w<t<oo 
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Note that this involves both f(x) and g(x), and the absolute values cannot be removed. Using 
(3), we will establish (cf. Corollary of Theorem 5) the desired result that small changes in the I.C. 
produce small changes in solutions. This was done for the heat equation in Theorem 3 of Section 
3.2. The key to obtaining (3) is D'Alembert's formula for the solution of the wave equation on 
an infinite string (-00 < x < (0) with I.C. u(x,O) = f(x) and ut(x,O) = g(x) , namely, 

1 1 JX+~ u(x,t) = 2[f(x-at) + f(x+at)] + 2aa g(r) dr . 
x-at 

(4) 

This formula is of great interest in itself, and it avoids the problem of convergence of infinite series 
in the Fourier series approach. Our first goal is to derive D'Alembert's formula (4). 

Derivation of D'Alembert's formula 

We can write the wave equation in the form 

[:2 - a2 ~]U(X,t) = 0, (5) 

where the expression in parentheses is a differential operator which operates on the function u to 

yield Utt - a2uxx. This operator can be factored into two first-order operators: 

[fi2 2 rP ] [a a ] [a a ] at 2 - a &2 u = at - a ox at + a ox u . (6) 

We can use this factorization to find the general solution of the wave equation. Suppose that 

u(x,t) is any C2 solution of (5). Note that 

In other words, the function y(x,t) == ut + aux solves the PDE Yt - ayx = 0. Since the 

characteristic lines (cf. Section 2.1) of this PDE are of the form x+at = const., we know that the 

solution y must be of the form y(x,t) = h(x+at) for some c1 function h. Thus, 

ut + aux = y(x,t) = h(x+at) . 

The characteristic lines for this first-order PDE for u are x-at = const.. In view of the form of 
the right-hand side h(x+at), we make the change of variables 
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w = x - at and z = x + at . 

Letting v(w,z) = u(x,t), we obtain 

ut + aux = vwwt + vzzt + a(vwwx + vzzx) = 2avz = h(z) . 

Thus, v(w,z) = I ia h(z) dz + G(w) = F(z) + G(w), or 

u(x,t) = F(x+at) + G(x-at) . (7) 

Hence, we have shown that an arbitrary solution of the wave equation can be written in the form 

(7), where F and G are arbitrary C2 functions. Converselx, one can easily check that any 
function of the form (7) is a solution of the wave equation (Le., t 7) is the general solution). If we 
graph the function F(x+at) as a function of x at a fixed time t, we obtain the graph of F(x) 
translated to the left by a distance of "at", as the reader may verify. Thus, F(x+at) describes 
a wave with initial profile F(x) moving to the left with speed a. Similarly, G(x-at) yields a 
wave traveling to the right with speed a. We have shown that the general solution of 

Utt = a2uxx is a superposition of two waves traveling in opposite directions with speed a. 

Example 2. We know that cos(Aat)sin(Ax) is a (product) solution of Utt = a2uxx' Hence, it 

must be possible to rewrite cos(Aat)sin(Ax) in the form F(x+at) + G(x-at). Do it. 

Solution. Using the identity cos(,8)sin( a) = HSin( a+,B) + sin( a-,B)], with a = Ax and ,8 = Aat, 

cos(Aat)sin(Ax) = ~ [sin(A(x+at)) + sin(A(x-at)] . 

This exhibits the "standing wave" product solution, as a superposition of waves traveling to the 
right and left with speed a. 0 

Theorem 1 (D'Alembert's Formula). Let f(x) be C2 and let g(x) be C1 (-00 < x < 00). Then 
the unique solution of the problem 

is given by 

2 
D.E. Utt = a uxx' -00 < X < 00, -00 < t < 00, 

I.C. u(x,O) = f(x), ut(x,O) = g(x), 

1 1 Ix+at 
u(x,t) = 2 [f(x+at) + f(x-at)] + -2 g(r) dr . 

a x-at 

(8) 

(9) 
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Proof. We know that if a solution of (8) exists, then it must be of the form u(x,t) = F(x+at) 

+ G(x-at), where F and G are C2 functions. The I.C. will be satisfied precisely when 

f(x) = u(x,O) = F(x + O·a) + G(x - O·a) = F(x) + G(x), 

g(x) = ut(x,O) = F' (x)a - G' (x)a. 

(10) 

(11) 

Integrating the second equation, we obtain the following pair of equations for the unknown 
functions F(x) and G(x) : 

F(x) + G(x) = f(x) and F(x) - G(x) = if: g(r) dr + C, 

where C is an arbitrary constant. Adding and subtracting yields 

F(x) = Hf(x) + U: g(r)dr + C], (12) 

and 

G(x) = Hf(x) - U: g(r)dr - c] = Hf(x) + U: g(r)dr - c]. (13) 

These equations are identities in the sense that they hold for all values of x, as in sin2(x) 

= 1 - cos2(x). Because of this, we may substitute x + at for x in (12) and x - at for x in 

(13), and obtain valid results [e.g., sin2(x+at) = 1 - cos2(x+at)], namely, 

1 [ 1fxtat ] F(x+at) = 2" f(x+at) + a ° g(r)dr + C , G(x-at) = -21 [f(x-at) + lfO g(r)dr - C]. (15) 
a x-at 

Adding these expressions, we obtain (9). However, the above argument was based on the 
assumption that a solution of the problem (8) exists. We have just shown that if a solution 
exists, then it must be given by the D'Alembert's formula (9). We must finally show that u(x,t), 
given by (9), actually solves problem (8). Note that F(x) and G(x) defined by (12) and (13) 

are C2, since f(x) is C2 and g(x) is C1 ((g(r) dr is C2, since its derivative g(x) is cl). 
° The right-hand side of (9) is F(x+at) + G(x-at) for the C2 functions F and G, and hence we 

know that u(x,t) defined by (9) solves the D.E.. The initial conditions of (8) are met, since F(x) 
and G(x) given by (12) and (13) satisfy (10) and (11), by construction. 0 

Remark. There are no boundary conditions in problem (8), because the string has no ends. For a 
finite string, say ° $ x $ L, the functions f(x) and g(x) would only be defined on [O,L], and 
f(x±at) would be undefined for t large, making the solution (9) undefined. We overcome this 
problem later by extending (in various ways that depend on the B.C.) f(x) and g(x) to 
functions which are defined for all x. 0 
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Example 3. Solve 2 
D.E. Utt = a uxx' -w < x, t < 00, 

I.C. u(x,O) = 1 2' ut(x,O) = 0 . 
1 + x 

Solution. This is problem (8) with f(x) = (1 + x2)-1 and g(x) = O. By (9), the solution is 

u(x,t)=A[ 1 + 1 ] (16) 
£, 1+(x+at)2 1+(x-at)2. 

The graph of the initial profile u(x,O) = (1 + x2)-1 is shown in Figure 1(a) below. 

u u 

1 

------
~ 

--- -". 
-1 a 1 -2 -1 a 1 

1 

1 + x 2 1 [ 1 
'2 1 + (x+1)2 

+ 1 ] 
1 + ( x-1)2 

(a) (b) 
Figure 1 

At t = 1/a the graph of u(x,t) is the solid curve in Figure 1(b), obtained by graphically adding 
the two dashed profiles corresponding to the two terms of solution (16) at t = 1/a. As t 
increases, the ~raphs of the two terms move apart . Eventually, the solution looks like two waves 
shaped as in (a) but with half the amplitude, one moving with speed "a" to the left and the other 
moving with speed "a" to the right . You may wish to verify that this behavior actually takes 
place by experimenting with a long rope. 0 

Example 4. Solve 2 
D.E. Utt = a Uxx ' -w < x, t < 00, 

2 I.C. u(x,O) = 0, ut(x,O) = 2 . 
1 + x 

What is the limit of the amplitude u(x,t) at any fixed x, as t -+ 00 ? 

Solution. Here the string is initially straight (u(x,O) = 0), but has a variable upward velocity at 

t = O. The upward velocity at x is 2(1 + x2)-1 . By (9), 

u(x,t) = 21Jxtat 2(1 + r2)-1 dr = l[arctan(x+at) - arctan(x-at)J. 
a x-at a 
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At t = l/a the profile is the sum (solid) of the two dashed curves shown in Figure 2(a) below. 

u 

o 

- 1 

(a) 

2 
a 

i" , 2 x 
" . 

........... ---

Figure 2 

u 

l!. 
a 

- - - :;;~-~--~-t-~ 

! 
a 

-1 1 

t=~ a 

(b) 

As time advances, the dashed curves move to the right and left and the graph of the profile 
appears as in Figure 2(b). Note that for each fixed x we have 

1 · ~ 
lim u(x,t) = aJarctan(oo) - arctan(-oo)] = a' 0 
t ... oo 

Theorem 2 (A maximum magnitude principle). Let f(x) be C2 and g(x) be C1 
(-00 < X < (0). Suppose that Mf = rna x I {( x) I < 00, and that I is the maximum of 

-oo<x<oo g 

all of the absolute values I Jd g(x) dx I as c and d vary over all possible values. Then 
c 

the solution u(x,t) of 

2 
D.E. Utt = a Uxx ' -00 < x, t < 00, 

I.c. u(x,O) = f(x), ut(x,O) = g(x), 

satisfies 
1 I u(x,t) I $ Mf + 2a Ig , (-00 < x, t < (0). 

Proof. Using D'Alembert's formula (9), we obtain 
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Remark. When g(x) == 0, we have I u(x,t) I ~ Mf , i.e., the magnitude of u(x,t) is never greater 

than the largest magnitude of u at t = O. Indeed, when g(x) == 0, we have the following 
maximum/minimum principle in the usual sense (cf. Problem 8). 

mi n f(x) = mi n u(x,O) ~ u(x,t) ~ max u(x,O) = max f(x) (for g(x) == 0) . 
-OO<X<OO -oo<x<oo -oo<x<oo -OO<X<OO 

When g(x) ~ 0 for all x, note that I = foo g(x) dx. In Example 4, we have g -00 

I = foo 2(1+x2)-1 dx = 2'!r, and hence g -00 
lu(x,t) I ~ '!ria. It is important to realize that 

foo I g(x) I dx can be infinite, yet I (defined as in Theorem 2) might be finite. Indeed, this is the 
-00 g 

case for g(x) = sin(x), where I = f'!r sin(x)dx = 2, but foo I sin (x) I dx = 00. 0 g 0 -00 

In addition to the maximum magnitude principle (Theorem 2), D'Alembert's formula 

1 1 Jx+at 
u(x,t) = 2[f(x+at) + f(x-at)] + 2a x-atg(r) dr, 

yields a number of properties of solutions of the wave problem for the infinite string. 

Property 1. Disturbances propagate with speed a. 

The value u(xo,to) depends only on the values of g in the interval [xo - ato, Xo + ato] 

and on the values of f at the endpoints of this interval. Geometrically, this is the interval cut 
out by the characteristic lines that pass through the point (xo,to), as shown in Figure 3. 

x-at /0 0 

char.cteri.tic linea 

Figure 3 

x+at 

0"'-

Definition. The interval [xo - ato, Xo + ato] is called the interval of dependence for the point 

(xo,to), [since u(xo,to) depends only on the values u(x,O) and ut(x,O) for x in this 

interval]. 
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The physical interpretation is that "a" represents the speed at which a disturbance moves 
along the string. Such a disturbance cannot reach the point Xo on the string within time to, 

unless it is no further than ato units away when t = 0, (i.e., unless it is within the interval of 

dependence of (xo,to))' In Chapter 7, we will find that the interval dependence of the point 

(xo,to) for the heat equation for the infinite rod consists of the entire rod if to > ° (i.e., 
according to the heat equation [but not in "reality", since the speed limit is c], heat travels with 
infinite speed). 0 

Property 2. Odd/even initial data yield odd/even solutions. 

If f(x) and g(x) are odd, then u(x,t) is odd in the x-variable, since 

1 IJ-x+at 
u(-x,t) = 2[f(-x + at) + f(-x - at)] + 2a -x-atg(r) dr 

1 1 JXiat = 2[-f(x - at) - f(x + at)] - 2a g(-s) ds 
x+at 

= -i[f(x - at) + f(x + at)] + iaJx-atg(s) ds 
x+at 

1 1 Jx+at 
= ,[f(x + at) + f(x - at)] - 2a x-atg(s) ds 

= - u(x,t). 

Actually, we can get u(-x,t) = -u(x,t) by a uniqueness argument. Simply note that the function 

v(x,t) = -u(-x,t) satisfies the D.E. Vtt = a2vxx with v(x,O) = -u(-x,O) = -f(-x) = f(x), and 

vt(x,O) = -ut(-x,O) = --g(-x) = g(x), i.e., v(x,t) and u(x,t) solve the same problem (8) of 

Theorem 1. Uniqueness and the definition of v imply that u(x,t) = v(x,t) = -u(-x,t). Hence 
u(-x,t) .= -u(x,t). With a similar argument one can show that if f(x) and g(x) are even so is 
u(x,t) [I.e., u(-x,t) = u(x,t)]. 0 

Property 3. Periodic initial data yield periodic solutions. 

If f(x) and g(x) are periodic functions of period 2L, then u(x,t) is also periodiC of period 
2L in x. This follows easily from D' Alembert 's formula, but there is also a uniqueness argument 
[v(x,t) == u(x+2L,t) solves the same problem]. This fact is useful in dealing with finite strings. It 
can be shown (d. Problem 11) that if f(x) and g(x) are periodic of period 2L and 

J\ g(x) dx = 0, then u(x,t) is not only periodic in x of period 2L, but also periodic in t of 

period 2L/a. 0 
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Example 5. Let f(x) and g(x) be C2 functions which are 0 for I x I ~ 10. Suppose that 
u(x,t) is the solution of the wave equation Utt = 4uxx with u(x,O) = f(x) and ut(x,O) = g(x). 

Verify that u(40,t) = 0 for t ~ 15. 

Solution. Here a = 2 and intuitively we do not expect the initial disturbances f(x) and g(x) to 
spread faster than with speed 2. Since these disturbances are confined to the interval (-10,10) 
for t = 0 (d. Figure 4), we expect u(x,t) to vanish outside the interval (-10-2t,10+2t). The 
point x = 40 lies in this interval only if t > 15, and therefore u( 40,t) = 0 for t ~ 15. Indeed, 
using the D'Alembert's formula, we have 

1 IJ40+2t 
u(40,t) = 2[f(40+2t) + f(40-2t)] + 4" g(r) dr, 

40-2t 

which vanishes for t ~ 15, since f(x) and g(x) vanish on [40 - 2t,40 + 2t] for t ~ 15 .0 

u u 

-"'- f'I.. X - ..... X 

-20 -10 v 10 20 40 -30 -20 -10 10 20 30 40 

u(x,O) u(x,15) 

Figure 4 

Example 6 (The semi-infinite string). Let f(x) be a C2 function defined for x ~ 0 such that f(O) 
= 0 and f"(O) = o. Solve the following problem for the semi-infinite string (0 ~ x < (0), with 
fixed end at x = o. 

2 D.E. Utt = a Uxx 

B.C. u(O,t) = 0 

o ~ x < 00, -00 < t < 00, 

I.C. u(x,O) = f(x) , ut(x,O) = O. 

(17) 

Solution. We exploit Property 2. Note that f(x) is defined for x ~ 0, but we can consider (d. 
Figure 5) the odd extension fo(x) , -00 < x < 00 (i.e., fo(x) = f(x) for x ~ 0, and fo(x) = -f(-x) 

for x ~ 0). 
y y 

o x o x 

f(x) 

Figure 5 
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The "related extended problem" is 

2 D.E. Utt = a Uxx ' -00 < x, t < 00, 

I.C. u(x,O) = fo(x) , ut(x,O) = 0 , (18) 

According to D'Alembert's formula, the solution of this problem is 

u(x,t) = ~[fo(x+at) + fo(x-at)] . (19) 

By Property 2, we know that u(x,t) in (19) is odd in x, since fo(x) is odd. Thus, u(O,t) = 0 

(as can be seen directly from (19)), and so u(x,t) in (19) satisfies the B.C. in (17). The 

assumption that f"(O) = 0 is necessary in order that fo(x) be C2 at x = 0 (otherwise 

f~(O+) f f"(O)). Hence, u(x,t) is a C2 solution of Utt = a2uxx• Moreover, 

u(x,O) = ~[fo(x + a·O) + fo(x - a·O)] = fo(x), 

which is the same as f(x) when x ~ 0 (Le., the I.C. of (17) is met). 0 

Remark. The technique used in Example 6 is known as the method of imag~. We began with 
problem (17) on the interval 0 ~ x < 00 with a boundary condition at x = o. By considering the 
inverted mirror image (odd extension) of the initial data, we were able to convert the problem 
(17) to the familiar problem (18) on the infinite strin~. The odd extension forces (18) to vanish at 
x = o. If the B.C. of (17) were changed to ux(O,t) = 0 (physically, this means that the end 

x = 0 is free to slide vertically; d. Section 5.3), then we would select the even extension fe of f 

(assuming f'(O) = 0) in the related extended problem. The solution of (18), with fe(x) instead 

of fo(x), would be u(x,t) = t[fe(x+at) + fe(x-at)], and ut(O,t) = a(fe)'(at) + (-a)(fe)'(-at) 
= o. If g(x) is not zero, one uses the same sort of extension for g(x) as is used for f(x). This is 
illustrated in the next example. 0 

Example 7. On a semi-infinite string with fixed end, a wave has the profile f(x) (d. Figure 6) at 
t = o. We assume that for small t, u(x,t) = f(x+at), Le., the wave is moving to the left with 
speed a. At t = 2, the wave makes contact with the end. What happens after t = 2 ? 

u 

x 

f1xed end 

Figure 6 
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Solution. We have u(x,O) = f(x) and ut(x,t) = af/(x+at), whence ut(x,O) = af/(x). Thus, we 

seek a solution of the problem 

2 
D.E. Utt = a Uxx ' ° ~ x ~ 00, -00 < t < 00, 

B.C. u(O,t) = 0, 

I.C. u(x,O) = f(x), ut(x,O) = af' (x). 

Because of the B.C., we take the odd extensions of f(x) and g(x) = af/(x). The odd extension of 
g(x) is not a(fo)' (x). Indeed, (fO)/(X) is even (cf. Problem 3 in Section 4.3, where one shows 

that the derivative of an odd function is even and vice-versa). Instead, the odd extension of 
f' (x) is (fe)' (x), since (fe)' (x) is odd and agrees with fl (x) when x ~ 0. Thus, the related 

extended problem for the infinite string is 

2 
D.E. Utt = a Uxx ' -00 < x, t < 00, 

The solution of this extended problem is given by D'Alembert's formula 

1 1 Jx+at 
u(x,t) = 2 [fo(x+at ) + fo(x-at)] + 2a x_ata(fe)' (r) dr 

= ~[fo(x+at) + fe(x+at)] + ~[fo(x-at) - fe(x-at)] 

1 1 
= 2(fo+fe)(x+at) + 2(fo-fe)(x-at) . (20) 

In Figure 7, we have graphed fo(x) , fe(x), Wo+fe)(x) and ~(fo-fe)(x). 

u u 

u U 

Ax -4. -,2 .... X - • z. 4. V • 

Figure 7 
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We now see that the solution (20) is the superposition of a wave with initial profile 
t [fo(x)+fe(x)] moving to the left, and a wave with initial profile t [fo(x)-fe(x)] moving to the 
right. These waves contact each other at t = 2 and partially cancel each other for 2 < t < 4. 
When t > 4, the wave moving to the left has completely passed into the "imaginary" domain 
x < ° and the originally fictitious wave, moving to the right, lies entirely in the domain x > 0. 
Therefore, the wave heading toward the end x = ° in our original picture appears to bounce 
back, but it will be inverted upon its return. 0 

Solving finite string problems by the method of images and D'Alembert's formula 

The method of images can also be used to solve the problem for the finite string: 

° ~ x ~ L, --00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

I.C. u(x,O) = f(x), ut(x,O) = g(x), 

(21) 

which we have previously solved (within experimental error) using Fourier sine series, assuming 

that f(x) and g(x) are continuous and piecewise C1 and vanish at x = ° and at x = L. Here we 
solve the problem in a different way. In the case of the semi-infinite string, we extend f(x) and 
g(x), and formulate a related extended problem on the infinite string. The function f(x) , ° ~ x ~ L, is extended in two steps: 

(a) Let fo(x) be the odd extension of f(x) to [-L,1]. 

(b) Let lo(x), --00 < x < 00, be the periodic extension of fo(x) of period 21. 

The steps are illustrated in Figure 8. 

Figure 8 
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Thus, we have imaginatively extended the initial profile f(x) of the finite string to the profile 

to(x) of an infinite string. We can do exactly the same for the initial velocity g(x), obtaining 

go(x). The next theorem states that the finite string (0 ~ x ~ L) behaves as if it were part of the 

infinite string with I.C. given by to(x) and go(x). 

Theorem 3. Let f(x) and g(x) be functions defined for 0 ~ x ~ L and let to(x) and go(x) 

be the periodic extensions of the odd extensions of f(x) and g(x). Assume that to(x) is C2 

and go(x) is Cl. (This holds if f(O) = f(L) = 0, f"(O) = fll(L) = 0 and g(O) = g(L) = 0 

with f(x) C2 and g(x) Cl for 0 ~ x ~ L). Then the (unique) solution of the problem (21) is 

given by 

1 1 Ixtat N 

u(x,t) = 2[to(x+at) + to(x-at)] + -2 go(r) dr, 
a x-at 

which is the solution for the infinite string with initial conditions u(x,O) = to(x) and 

ut(x,O) = go(x), -00 < x < 00. 

(22) 

Proof. By Theorem 1, with f(x) and g(x) replaced by to(x) and go(x), we know that (22) 

solves the D.E. with I.C. u(x,O) = to(x) and ut(x,O) = go(x). Now, to(x) = f(x) and go(x) = 
g(x) for 0 ~ x ~ L, whence (22) satisfies the I.C. of (21), as well as the D.E .. Since Theorem 1 of 

Section 5.1 implies uniqueness, we only need to check that the B.C. are satisfied by (22). Indeed, 

since to and go are odd. To check that the B.C. u(L,t) = 0 is satisfied, we observe that to 

and go are "odd about x = L" in the sense that to(L-x) = -to(L+x). This is easily seen from 

Figure 8, but one can also compute to(L-x) = -to(-L+x) = -to(2L-L+x) = -to(L+x). Thus, 

1 lIL+~ 
u(L,t) = 2[to(L+at) + to(L-at)] + 2a go(r) dr = 0, as required. 0 

a L-at 

The next theorem shows that (22) is the same as the solution obtained using Fourier sine series. 
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Theorem 4. If to(x) is C2 and go (x) is c1, then the solution of problem (21) is given by 

the following formula (which is equivalent to (22) by Theorem 1, Section 5.1) 

u(x,t) = l:=1 [Ansin(¥) + BncoS(~)] sin(T)' (23) 

where 

Bn = i-f>(x)Sin(T) dx and An = n;af:g(x)Sin(T) dx, n = 1,2,3,... . (24) 

Proof. By Property 3, u(x,t) , given by (22), is a C2 periodic function in x for each fixed t, 

since to(x) is C2 and go(x) is C1 . Also, u(O,t) = u(L,t) = 0. Thus, Theorem 1 of Section 4.3 

implies that u(x,t) is equal to its Fourier sine series for each fixed t, Le., 

(25) 

where 

(26) 

It remains to show that 

(27) 

Since u(x,t) is C2, we may differentiate under the integral in (26) (cf. Appendix A.3) to obtain 

where we have used Green's formula (cf. (9) of Section 4.1). Thus, bn(t) is a solution of the 

ODE b~(t) + (n1ra/L)2bn (t) = 0, and so bn(t) must be of the form 
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(28) 

Using (24), (26) and (28), we have 

dn = bn(O) = iJ: u(x,O)sin(nr)dx = i-J>(x)Sin(T)dx = Bn 

and 

Thus, dn = Bn and cn = An' and (27) is established. 0 

Remark. Theorem 4 is the first instance where we have proven that a formal infinite series is an 

actual solution of a PDE under certain assumptions (l'o(x) is C2 and go(x) is C1). Note that 

we did not prove this by verifying that each term of (23) satisfies the D.E .. In general, there is no 

infinite superposition principle. Instead, we were able to establish the existence of a C2 solution 
using the method of images and D'Alembert's formula, and then (knowing the existence of the 
solution) we determined what its Fourier sine series had to be. We have not yet done such a thing 
for the heat equation, because we have not yet established anything like D'Alembert's formula for 
the heat equation. We eventually do this in Chapter 7, thereby justifying infinite series solutions, 
under certain assumptions, for the heat equation. 0 

We can also use D'Alembert's formula to prove the following maximum magnitude 
principle for the wave problem for the finite string with fixed ends. 

Theorem 5 (A maximum magnitude principle). IT l'o(x) is C2 and go(x) is cl, then the 

solution u( x, t) of the problem 

D.E. Utt = a2uxx' ° ~ x ~ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

I.C. u(x,O) = f(x), ut(x,O) = g(x), 

satisfies 

lu(x,t) 1 ~ Mf + ~a Mg , where Mf = max If(x) 1 and M = max Ig(x) I· ° ~ x~L g ° ~ x~L 
Proof. We know from (22) in Theorem 3, that 

(29) 
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Clearly, I to(X) I S Mf , whence t I to(x+at) + to(x-at) I S Mf · It remailfS to prove that 

I Ix+at I 
go(r) dr S LM . 

x-at g 
(30) 

Since f~L go(r) dr = ° and go is periodic, we know that the integral of go over any interval of 

length 2L is ° (Proposition 1, Section 4.2). By deleting a subinterval of length 2kL (k ~ 0, an 
integer) from the interval [x - at,x + at] , starting from the left endpoint x - at, we can 

conclude that (+atg (r)dr reduces to an integral of go(r) over an interval of length < 2L. If 
x-at 0 

this remaining interval has length S L, then the absolute value of the integral of go(r) over it, is 

no greater than LMg . If the interval has length between Land 2L, then it must contain at 

least one of the points 0, ±L, ±2L, ±3L, .... However, recall that go is odd about these points. 

Thus, cancellations of the integral of go' over subintervals placed symmetrically about these 

points, will reduce the interval of integration to a length ~ L. Hence, we have shown (30). 0 

Corollary (Continuous dependence on initial data). Let ut(x,t) and u2(x,t) be solutions of 

the following respective problems (0 ~ x ~ L, -00 < t < 00): 

D.E. 2 
Utt = a uxx' 

[U(O,t) = A(t), 
B.C. 

u(L,t) = B(t), 

D.E. 

B.C. [ 
u(O,t) = A(t), 

u(L,t) = B(t), 

I.c. I.c. 1 u(x,O) = ft(x), 1 u(x,O) = f2(x), 

ut(x,O) = gt(X), ut(x,O) = g2(X). 

If I ft(x) - f2(x) I S f and I gt(x) - g2(x) I S 8, for some f, 8> 0, then 

(31) 

Proof. Apply Theorem 5 to the case when u = ut - u2, f = ft - f2' and g = gt - g2. Note that 

Mf ~ f and Mg S 8. 0 

Remark. This corollary shows that a small changes in the initial position and initial velocity will 
lead to a small change in the solution. Since u, f and f have units of length, while Ut' g and 8 
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have units of velocity, the "conversion factor" tL/a is necessary, so that tLb/a has units of 
length. Actually, we can choose our time scale so that tL/a = 1. With such units, the time that 
it takes for a disturbance to travel from one end to the other is L/a = 2. Using this time scale, 
(31)becomes iUl-U2iSf+b. 0 

Example 8. In Example 3 of Section 5.1, suppose that the maximum initial height Uo of the 

plucked string is only known to within an error of ~uo and the initial velocity of the plucked 

point is only known to be zero within an error of ~vo (say, due to an unsteady hand). Estimate 

the error ~u(x,t) in the "solution" due to these uncertainties. (We ignore the fact that the 

problem has no C2 solution, since f(x.) is not c1. One could overcome this by replacinl$ f(x) 
by a truncation of FSS f(x) which is valid to within an error of much less than ~uo or ~vo). 

Solution. The error in the initial profile is greatest at xo' where it is ~uo, because the error 

tapers off to 0 linearly as one approaches the ends. Similarly, the maximum error for the initial 

velocity is ~vo' Inequality (31) yields i~u(x,t)i S ~uo + 2~ ~vo' 0 

Remark. An analysis of the motion of the plucked string, by means of D' Alembert 's formula, is 
the subject of Problem 10. 0 
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SummaryS.2 

1. The general solution of the wave equation: By taking advantage of the factorization 

a: - a2~ = (at - aax)(at + aax) of the wave operator, one can successively solve two 

first-order PDEs to obtain the general solution 

u(x,t) = F(x+at) + G(x-at) 

of the wave equation Utt = a2uxx on the entire xt-plane. 

2. D'Alembert's formula (Theorem 1): Let f(x) be C2 and let g(x) be c1 (-00 < X < 00). Then 
the unique solution of the problem (tor the infinite string) 

is given by 

2 
D.E. Utt = a uxx' -00 < X , t < 00, 

I.c. u(x,O) = f(x), ut(x,O) = g(x) , 

1 1 Jx+at 
u(x,t) = -2 [f(x+at) + f(x-at)] + 2a g(r) dr . 

x-at 

(Sl) 

(S2) 

3. A maximum magnitude principle for infinite strings (Theorem 2): Let Mf = max I f(x) I, 
-oo<x<oo 

where f(x) is C2 and suppose that I is the maximum of all of the absolute values I fd g(x) dx I 
g c 

as c and d vary over all real numbers. Then the solution u( x, t) of the problem 

2 
D.E. Utt = a Uxx ' -00 < x, t < 00, 

I.c. u(x,O) = f(x), ut(x,O) = g(x), 

satisfies 
1 I u(x,t) I S Mf + 2a Ig , (-00 < x, t < 00). 

4. Properties of solutions of the infinite string problem (Sl): 

Property 1. The value u(xo,to) of the solution only depends on the values of f(x) and g(x) in 

the interval of dependence [xo-ato,xo+ato] (Le., disturbances propagate with speed a). 

Property 2. If f(x) and g(x) are both odd (or both even), then the solution u(x,t) is odd (or 
even) in x. In particular, u(O,t) = ° in the odd case and ux(O,t) = ° in the even case. 
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Property 3. If f(x) and g(x) are periodic of period 2L, then the solution u(x,t) is periodic in x 

of period 2L. If J:L g(x) dx = ° also, then u(x,t) is periodic in t of period 2L/a. 

5. The method of images: For a semi-infinite string problem (x ~ 0) with a fixed end (i.e., with 
B.C. u(O,t) = 0), one extends the initial data f(x) and g(x) (originaily defined for x ~ 0) oddly 
to form a related problem for the infinite string with initial data fo(x) and go(x). By Property 2 

in part 4 above, the solution of this related problem will be odd in x, and hence will meet the 
B.C .. For the B.C. ux(O,t) = ° (a free end), the even extensions fe(x) and ge(x) are used for 

the initial data in the related problem for the infinite string. The problem of the finite string with 

fixed ends at x = ° and x = L, is solved by using the periodic extensions to(x) and go(x) in 

the related infinite string problem (d. Theorems 3 and 4). 

6. A maximum magnitude principle for the finite string with fixed ends (Theorem 5): IT to(x) is 

C2 and go(x) is cl, then the solution u(x,t) of the problem 

2 
D.E. Utt = a uxx ' ° ~ x ~ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

I.C. u(x,O) = f(x), ut(x,O) = g(x), 

satisfies 

L 
lu(x,t)1 ~Mf+2aMg' where Mf = max If(x)1 and Mg= max Ig(x)l. 

O~x~L O~x~L 

Exercises 5.2 

1. Find the solution of 

in the following cases: 

(a) f(x) = x2, g(x) = x 

(d) f(x) = 1, g(x) = ° 

2 D.E. Utt = a Uxx ' -00 < x, t < 00, 

I.C. u(x,O) = f(x), ut(x,O) = g(x), 

2 2 
(b) f(x) = e -x , g(x) = 2 axe-x (c) f(x) = 0, g(x) = 1 

(e) f(x) = sin(x) ,g(x) = acos(x) (f) f(x) = ° , g(x) = sin2(x) . 

2. Suppose u(x,t) solves the problem in Problem 1, where f(x) and g(x) vanish for Ixl ~ 10 
and a = 2. Show that u(0,4) = 0, and explain this in terms of the interval of dependence for the 
point (0,4) (d. Property 1). 
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3. Let u(x,t) be the solution of the problem in Problem 1, where f and g are even. 

(a) Use D'Alembert's formula to show that u(x,t) is even in x (Le., u(-x,t) = u(x,t)). 

(b) Let v(x,t) = u(-x,t). Show directly (without D'Alembert's formula) that v(x,t) satisfies 
the D.E. and I.C .. 

(c) Why can we conclude from (b) that v(x,t) = u(x,t), thereby obtaining the result in (a)? 

runt. See the arguments in the discussion of Property 2. 

4. Solve D.E. 2 
Utt = a uxx' O$x$oo, -oo<t>oo, 

B.C. ux(O,t) = 0, 

3 I.C. u(x,O) = x , ut(x,O) = 0. 

3 runt. See the Remark following Example 6. Note that fe(x) = I x I . 

5. Redo Example 7 in the case when the end x = ° is free to slide vertically (Le., with the B.C. 
ux(O,t) = 0). In particular, show that the wave "bounces off", without being inverted. 

6. Suppose that in Problem 1, f(x) is C2, g(x) is c1, and both f(x) and g(x) vanish outside 
some finite interval, say [-b,b]. 

(a) Prove that for any fixed x, we have 

1 [ 1 Jb lim u(x,t) = 2a g(r) dr = 2a g(r) dr. 
t-+oo -00 -b 

(b) Show that regardless of how large some fixed value to is, there is some value Xo for which 

u(xo,to) = 0. 

(c) For fixed t, prove that lim u(x,t) = ° . 
x-+ ±oo 

7. Consider the problem 

D.E. ° $ x $ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

I.C. u(x,O) = 3sin(1lX/L) - sin(41lX/L), ut(x,O) = !sin(21lX/L) . 



Section 5.2 D'Alemberl's Solution for Wave Problems 319 

Verify explicitly that D' Alembert 's formula (22) and the Fourier series solution (23) are indeed 
equal (as is guaranteed by uniqueness). (Both solutions will reduce to the answer of Exercise l(a), 
Section 5.1). 

8. (a) For a solution u(x,t) of 

2 
D.E. Utt = a uxx' -00 < x, t < 00, 

I.C. u(x,O) = f(x), ut(x,O) = 0, 

show that we have the maximum/minimum principle 

min f(x) ~ u(x,t) ~ max f(x) , -00 < x, t < 00. 

-00 <x<oo -00 <x<oo 

(b) Show that the analogous maximum/minimum principle for the problem of a finite string with 
fixed ends and the same I.C. is false, but we still have 1 u(x,t) 1 ~ max 1 f(x) I. 

O~x~L 
Hint. Consider cos(7rat/L)sin(1IX/L). 

9. (a) Show that, in view of the B.C. and I.C., the following problem has no solution by 
considering the D.E. at x = 0, t = ° : 

° ~ x ~ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = 0, 

I.C. u(x,O) = f(x) = x(L - x), ut(x,O) = g(x) = 0. 

(b) Suppose we reverse f(x) and g(x) in the above problem in part (a). Prove that there is a 
sofution in this case (cf. Theorem 3). 

10. By using the method of images and D'Alembert's formula, show that the plucked string of 

Example 3 in Section 5.1 behaves as in Figure 5 in that example. Hint. Consider to(x), and first 

examine the case when the string is plucked at Xo = tL. 

11. Show that if f(x) [a C2 function] and g(x) [a C1 function] are periodic of period 2L and J:L g(x) dx = 0, then u(x,t), given by D'Alembert's formula, is periodic in t of period 2L/a. 
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5.3 Other Boundary Conditions and Inhomogeneous Wave Equations 

We have mentioned before that the boundary condition ux(O,t) = 0 means that the end 

x = 0 is free to slide vertically. We now derive this result, by showing that if F(t)j is a vertical 
force applied to the end x = 0 and To is the rest tension, then 

(1) 

The vertical component of the force acting on the portion of the string above the interval [O,~x] 
is F ~(t) = Toux(~x,t) + F(t), which is the sum of the vertical component of the right tensIOn at 

x = ~x (cf. the derivation of the wave equation in Section 5.1) and the vertical component of the 
applied force at the end x = o. The average vertical acceleration of the portion 0 ~ x ~ ~x is 
then F ~x(t)/(D~x) by Newton's second law (where D = linear density of the string). Then, 

the vertical acceleration at the end x = 0 is given by the limit 

. F~x(t) . [To[Ux(~x,t) - ux(O,t)] Toux(O,t) + F(t)] 
11m OLSOx = 11m OLSOx + OLSOx 
~x~o ~x~O 

To. Toux(O, t) + F(t) 
= J:J uxx(O,t) + 11m OLSOx 

~x~O 

This limit can only exist (Le., the end x = 0 can only have a well-defined acceleration) if the 
numerator Toux(O,t) + F(t) vanishes. In other words, Utt(O,t) will not exist unless (1) holds. 

In particular, ux(O,t) = 0 if the end is free, namely when F = O. In a similar way it can be 

shown that if G(t)j is the external vertical force applied to the end x = L, then 

~t u (L,t) = . 
x 0 

(2) 

As with the heat equation, the following standard possibilities for homogeneous boundary 
conditions arise : 

(a) both ends are fixed (Le., u(O,t) = u(L,t) = 0), 

(b) one end is free and the other end is fixed (e.g., ux(O,t) = 0 and u(L,t) = 0), 

(c) both ends are free (Le., ux(O,t) = 0 and ux(L,t) = 0). 
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With some appropriate modifications, nearly all of the results and techniques that we have 
covered in case (a) carryover to cases (b) and (c). For example, the reader may check that the 
proof of Theorem 1 (uniqueness) in Section 5.2, still ap-plies in the cases when, in the B.C., u(O,t) 
and/or u(L,t) are replaced by ux(O,t) and/or ux(L,t) respectively (cf. Exercise 4 of Section 

5.1). In the examples that follow, we illustrate the use of the Fourier series approach and the 
method of images in the solution of problems with one or both ends free. We then move on to the 
case of inhomogeneous B.C., and finally cover a version of Duhamel's principle which is used to 
solve the inhomogeneou:; wave equation that arises when a string is subject to external driving 
forces between the ends. 

Example 1. By using separation of variables and Fourier cosine series, solve the following problem 
for a finite string with free ends for appropriate initial data f(x) and g(x) : 

D.E. 2 
Utt = a Uxx ' o $ x $ L, -00 < t < 00, 

B.C. ux(O,t) = 0, ux(L,t) = 0, (3) 

I.C. u(x,O) = f(x), ut(x,O) = g(x). 

Solution. Separation of variables leads to the three cases of product solutions of the D.E. (cf. (1), 
(2) and (3) of Section 5.1). For the Case 1 product solution 

To avoid the useless trivial solution with d1= d2= 0, the B.C. ux(O,t) = 0 forces c1 = 0 (recall 

.\ > 0). The B.C. u (L,t) = 0 yields the condition sin('\L) = 0 or .\ = n7r/L, n = 1,2, .... x 
This gives an infinite family of product solutions of the D.E. and B.C., namely the harmonics 

The reader may check that no Case 2 product solution meets the B.C., except u(x,t) = O. 
However, there is a Case 3 product solution meeting the B.C., 

uo(x,t) = Aot + Bo . (5) 

This solution represents a straight string drifting vertically with velocity Ao. We do not 

encounter this solution when one or both ends are fixed. By applying the superposition principle, 
we obtain the more general solution of the D.E. and B.C. 

(6) 

We have 
N 

u(x,O) = !Bo + In=lBn cos(T) , (7) 

N 

ut(x,O) = 1Ao + In=lT An cos(T) . (8) 
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Thus, in the event that f(x) and g(x) are finite cosine series of the form (7) and (8), then u(x,t) 

is given by (6). If f(x) and g(x) are continuous and piecewise c1, then Theorem 2 of Section 4.3 
ensures that the Fourier cosine series of f(x) and g(x) converge uniformly to f(x) and g(x). 
Thus, within any positive experimental error, such functions f(x) and g(x) can be represented in 
the form (7) and (8) by truncating their Fourier cosine series at a sufficient number of terms. 0 

Remark. If we let N tend to 00, then the expression (6) might not converge to a e2 solution of 
the problem (Le., (6) might only be a formal solution), and even if it does, a direct proof would be 
difficult without appealing to theorems which justify differentiating an infinite sum 
term-by-term. Instead, as we have found in the case of fixed ends (d. Theorem 3 of Section 5.2), 
the method of images and D'Alembert's formula can be used (d. the next example) to express 
solutions in a different way, without infinite sums and the difficulties associated with them. 0 

Example 2. Solve the problem in Example 1, by the method of images and D'Alembert's formula. 

Solution. The method of images for problem (3) with free ends differs only in one respect from the 
corresponding treatment for the case of fixed ends (cf. (21) in Section 5.2). Indeed, all we do is 

replace the odd periodic extensions to(x) and go(x) by the even periodic extensions te(x) and 

ge(x). The extension te(x) of a function f(x) on [O,L] is illustrated in Figure 1. 

Figure 1 

If the extension te(x) is e2 and ge(x) is e1, then one can show (see the proof of Theorem 3 

in Section 5.2) that the e2 solution of problem (3) is given by 

1 1 Jx+at N 

u(x,t) = 2[te(x+at) + te(x-at)] + n::- ge(r) dr. 
.Ga x-at 

(9) 

The initial data f(x) and g(x) have been evenly extended about x = 0 and x = L, and thus 

the function u(x,t) will be even about x = 0 and x = L. Hence, u (O,t) = 0 and u (L,t) = 0 x x 

(Why?). Thus, (9) gives us a solution of (3) for 0 ~ x ~ L, as long as te(x) is e2 and ge(x) is 

e1, which will be the case if f(x) is e2 with f'(O) = f'(L) = 0 and g(x) is e1 with g'(O) 
=g'(L)=O (Why?). 0 
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Remark. Having established the existence of the C2 solution u(x,t), given by (9), when le is 

C2 and ge is cl, the analog of Theorem 4 in Section 5.2 (with the analogous proof) yields 

In this way, we establish that the Fourier series approach in Example 1 is valid even when N = 00 

(Le., (10) does indeed converge to a C2 function), provided that le is C2 and ge is C1. 0 

Example 3. Let u(x,t) solve the problem 

D.E. ° $ x $ 2, -00 < t < 00, 

B.C. u(O,t) = 0, ux(2,t) = 0, (11) 

I.C. u(x,O) = f(x) = !x3(2 - x)3, ut(x,O) = g(x) = 0. 

Thus, the end at x = ° is fixed, and the end at x = 2 is free. Use the method of images to 
determine the profile u(x,t) at t = 0, 2, 4, 6, 8. 

Solution. The graph of u(x,O) = !x3(2 - x)3 is shown in Figure 2. 

1 
2 

o 

u 

1 2 

Figure 2 

x 

The method of images dictates that we extend this initial profile to all x, -00 < X < 00, in such a 
way that the extension is odd about x = ° (to insure u(O,t) = 0) and even about x = 2 (to 
insure ux(2,t) = 0). The only extension with these properties is graphed below if Figure 3. 
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Figure 3 

Let us denote the function having this graph by F(x). Note that F(x) is periodic of period 8, 
odd about 0, and even about 2. It is awkward to WrIte down some explicit formulas for F(x) in 
all of the various intervals. Instead, it is easier to simply find the value of F(x) from its graph 

and f(x) (e.g., F(-9) = -1/2, F(4.25) = -(.25)3(1.75)3/2, etc.). Of course, the appropriate 
extension for g(x) = 0 (0 ~ x ~ 2) is G(x) = 0 (-00 < X < (0). The solution of the associated 
infinite string problem 

D.E. -00 < x, t < 00, 

I.c. u(x,O) = F(x), ut(x,O) = G(x) = 0, 

is given, via D' Alembert 's formula, by 

u(x,t) = ~[F(x + t) + F(x - t)] . (12) 

This yields the solution of (11), if we restrict u(x,t) to the interval 0 ~ x ~ 2. (Note that F is 

C2 and therefore u(x,t) in (12) is C2. If we had used x2 instead of x3 in the definition of 

f(x), there would be a problem because F"(O+) :f. F"(Oj in this case, and F would not be C2). 
Now (12) says that each of the "bumps" in the initial profile splits into two waves of half the 
original amplitude moving in opposite directions with unit speed. At t = 2 the left-moving 
bum~ from the interval [2,4] will meet the right-moving (inverted) bump from the interval 
[-2,0 in the "real" interval [0,2]. These bumps will exactly cancel each other at t = 2/ so that 
u(x,2 = 0 for 0 ~ x ~ 2. Similarly, at t = 4 the (inverted) left-moving bump from [4,6] will 
meet the (inverted) right-moving bump from [-4,-2] to produce u(x,4) = -f(x) for 0 ~ x ~ 2. 
The reader can check that u(x,6) = 0 for 0 ~ x ~ 2. And at t = 8 the string returns to its 
original position. Indeed, we know this by (12) and the fact that F(x) is periodic of period 8. 0 

Remark. It would be possible, although much more tedious, to solve this problem using the 
Fourier series approach as was done in Example 1. The product solutions of the D.E. and B.C. of 

(11), with 2 replaced by an arbitrary length L (and D.E. Utt = a2uxx) are found to be 

un(x,t) = [Ansin[(n+t )![t] + Bncos[(n+t) 7rLt]] sin[(n+t )£!], (13) 

for n = 0, 1, 2, .... The formal solution of 
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is given by 

Other B.C. and Inhomogeneous Wave Equations 

2 D.E. Utt = a Uxx ' 0 ~ x ~ L, -,x) < t < 00, 

B.C. u(O,t) = 0, ux(L,t) = 0, 

I.C. u(x,O) = f(x), ut(x,O) = g(x), 

u(x,t) = ~ un(x,t), 
In=o 

where un(x,t) is given by (13), and for n = 0, 1,2, ... , 
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(14) 

(15) 

Bn = if: f(x) sin[(n + i)¥l dx, An = (n+f) 1I"a f: g(x) sin[(n + i)¥l dx. (16) 

For the specific f(x) and g(x), given in (11) with L = 2 and a = 1, we could (with some 
effort) compute Bn. Of course An = O. Even without computing Bn, we can answer the 

questions posed in Example 3. Indeed, u(x,2) = 0, because cos[(n+t)7rt/2] = 0 when t = 2. 
Also, u(x,4) = -f(x), because cos[(n+t)411"/2] = -1. Similarly, u(x,6) = 0, and u(x,S) = f(x). 
Note that cos [(n+t)7rt/2] is periodic of period S. For arbitrary times t, the alternative 
formula (12) is vastly superior to (15), since (15) not only involves an infinite sum, but also the 
Bn must be computed in order to determine the terms for arbitrary values of t. 0 

The methods of Section 3.3 for the standard time-independent B.C. carryover without 
difficulty to the case of the wave equation. We illustrate this in the next examples. 

Example 4. Solve the problem 

2 
D.E. Utt = a Uxx ' 0 ~ x ~ 11", -,x) < t < 00, 

B.C. u(O,t) = -1, ux(1I",t) = 2, (17) 

I.C. u(x,O) = sin(x/2) + 2x - 1, ut(x,O) = -2sin(3x/2). 

Solution. As in Section 3.3, we choose a particular solution of the D.E. and B.C.. The simplest 
choice is the steady-state (time-independent) function up(x,t) = 2x -1. The solution of (17) is 

then u(x,t) = up(x,t) + v(x,t) , where v(x,t) is the solution of the related homogeneous problem 

2 
D.E. Vtt = a vxx' 0 ~ x ~ 11", -,x) < t < 00, 

B.C. v(O,t) = 0, vx(1I",t) = 0, 

I.C. 1 
v(x,O) = u(x,O) - u (x,O) = sin(x/2), 

v,(x,O) ~ u,(x,O) -~Up)'(X'O) ~ -2sin(3x/2). 

(17') 
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By applying the superposition principle to the product solutions (13) (cf., the D.E. and B.C. in 
(11) and (17')), we obtain 

( t) (at) . (x) 4 . (3at) . (3x) v x, = cos "2 sm"2 - 3a sm 2 sm "2 ' 

Thus, u(x,t) = 2x - 1 + v(x,t) is the solution of (17). If the I.C. of (17') had not been a finite 
sinf(n+t)x]-series, then we would have a formal solution, which hopefully could be truncated, 
stilf meeting the I.C. within an error of experimental size. We could also attempt to solve the 
related homogeneous problem for v by the method of images, as in Example 3. 0 

Example 5. Solve 2 
D.E. Utt = a Uxx ' o ~ x ~ L, -00 < t < 00, 

B.C. ux(O,t) = c, ux(L,t) = d, (18) 

I.C. u(x,O) = f(x), ut(x,O) = g(x). 

Solution. Note that the B.C. mean that the end x = 0 is subject to a downward force c/To and 

the end x = L is subject to an upward force d/To (cf. equations (1) and (2)). Thus, we expect 

the string to drift vertically if c # d. Indeed, there is no steady-state particular solution of the 
D.E. and B.C., unless c = d. Instead, we try a particular solution of the form up(x,t) 

= kt + H(x). This will not work, since the D.E. implies H" = 0 and therefore H(x) = c1x + c2 , 

but then the B.C. are not met unless c = c1 = d. The next guess is up(x,t) = kt2 + H(x). Then 

the D.E. yields 2k = a2H"(x), whence H(x) = kx2/a2 + c1x + c2 • The constants k and c1 
can be found in terms of c and d using the B.C., and we simply set c2 = O. Thus, 

a2(t-c) 2 d-c 2 up (x, t) = 2 t + 2L x + cx. (19) 

The solution of (18), if it exists, is then u(x,t) = up(x,t) + v(x,t), where v(x,t) solves the 

following familiar related homogeneous problem (cf. Example 1) : 

D.E. o ~ x ~ L, -00 < t < 00, 

B.C. v x(O,t) = 0, v x(L,t) = 0, 

I.C. v(x,O) = f(x) - up(x,O), vt(x,O) = g(x) - (up)t(x,O). 0 

The inhomogeneous wave equation and related problems 

As with heat problems (cf. Section 3.4), the introduction of time-dependent B.C., such as 
u(O,t) = c(t), in wave problems leads to an inhomogeneous D.E .. For example, consider 
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D.E. 2 
Utt = a uxx' o S x S L, -00 < t < 00, 

B.C. u(O,t) = c(t), u(L,t) = d(t), 

I.C. u(x,O) = f(x), ut(x,O) = g(x) . 
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The function w(x,t) = r(d(t) - c(t)) + c(t) satisfies the B.C., but not the D.E .. Hence, v(x,t) 

= u(x,t) - w(x,t) will not satisfy the wave equation, but rather the D.E. in the related problem 

D.E. Vtt - a2vxx = -(wtt - a2wxx) = -r(d"(t) - c"(t)) - c"(t), 

B.C. v(O,t) = u(O,t) - w(O,t) = 0, v(L,t) = u(L,t) - w(L,t) = 0 

!V(X,O) = u(x,O) - w(x,O) = f(x) - r(d(O) - c(O)) - c(O), 

I.C. 

vt(x,O) = ut(x,O) -wt(x,O) = g(x) -r(d'(O) -c'(O)) -c'(O). 

Thus, we are led to consider the inhomogeneous wave equation 

2 
Utt - a Uxx = h(x,t) , 

(20) 

(21) 

where h(x,t) is a given function which is proportional to the vertical component of an external 
force density applied to the string. Indeed, we may rewrite (21) in the form 

D ~x Utt = To ~x Uxx + D ~x h(x,t) , (22) 

where D is the linear density, To is the tension of the string at rest and ~x is the length of a 

small portion of string centered at x. Equation (22) is then Newton's equation for this portion. 
The first term on the right-hand side of (22) is nearly the force due to the tensions at the ends of 
this portion (cf. the derivation in Section 5.1, where ~x = 2h). The second term must then be 
the external force applied to this portion. Thus, D h(x,t) is the linear force density (i.e., force 
per unit length) imposed on the string. In the case of gravity, we would have D h(x,t) ~ 

= -D ~x g or h(x,t) = -g = -32 ft/sec2. Note that h(x,t) may be referred to as the applied 
acceleration at (x, t ). 

Heat problems with an inhomogeneous D.E., due to internal heat sources, were solved in 
Section 3.4 using Duhamel's principle, whereby solving the inhomogeneous D.E. was accomplished 
by solving a family of related problems in which the source appears in the initial conditions 
instead of the D.E .. The same idea works for wave problems with inhomogeneous D.E. (21). For 
simplicity, we first consider the infinite string problem 
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2 D.E. Utt - a Uxx = h(x,t) , -00 < x, t < 00, 

I.e. u(x,O) = 0, ut(x,O) = ° . (23) 

The motivation for the method of Duhamel is as follows. Suppose the acceleration h(x,s) is 
applied to the string at t = s - ~s and that the acceleration is promptly turned off at t = s. 
The string will acquire a velocity of h(x,s)~s, and its position change is h(x,s)(~s)2/2. 
Assuming that ~s is small, the change in I?osition is "negligible". The effect of the Imposed 
acceleration is then v(x,tjs)~s, where v(x,tjS) is the solution of 

2 
D.E. Vtt = a Vxx ' -00 < X < 00, t ~ s, 

I.e. v(x,SjS) = 0, vt(x,Sjs) = h(x,s). (24) 

This problem has initial conditions given at the arbitrary time t = s, instead of t = 0. We can 

write v(x,tjs) = v(x,t-Sjs), where v(x,tjs) solves the familiar problem with I.e. given at t = 0. 

'" 2", 
D.E. Vtt = a Vxx ' -00 < X < 00, t ~ 0, 

I.e. v(x,OjS) = 0, vt(x,Ojs) = h(x,s). (25) 

By D'Alembert's formula, we know that the solution of (25) is given by 

'" 1 Ix+at v(x,tjs) = 2a h(r,s) ds , 
x-at 

(26) 

and therefore the solution of (24) is 

'" 1 Ix+a( t-S) 
v(x,tjs) = v(x,t-Sjs) = 2aa h(r,s) dr. 

x-a( t-s) 

We expect that the solution of (23) will be the integral from s = ° to s = t or superposition of 
all the effects v(x,tjs)~s with respect to s. In other words, let us hypothesize that the solution 
of (23) is given by 

It It '" 1 It Ix+a( t-S) u(x,t) = v(x,tjS) ds = v(x,t-SjS) ds = 2a h(r,s) dr ds . 
o 0 0 x-at t-s) 

(27) 
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The above heuristic argument is not a proof. A rigorous statement and proof are as follows. 

Theorem 1 (Duhamel's principle for the wave equation). Let h(x,t) be a c1 function, 
-00 < x, t < 00. Then (27) is the unique solution of the problem 

2 D.E. Utt - a Uxx = h(x,t) -00 < x , t < 00 

I.C. u(x,O) = 0, ut(x,O) = ° . (28) 

Proof. We know from (26) that v(x,t;s) is C2, since h(x,t) is assumed to be c1. We can then 

twice apply Lemma 1 of Section 3.4, once with g(t,s) = v(x,t;s) = v(x,t-s;s), and then with 

g(t,s) = vt(x,t;s) to obtain 

N Jt N Jt N ut(x,t) = v(x,O;s) + 0 vt(x,t-s;s) ds = 0 vt(x,t-s;s) ds, 

(29) 

N It N It 2N Utt(x,t) = vt(x,O;t) + 0 Vtt(x,t-s;s) ds = h(x,t) + 0 a vxx(x,t-s;s) ds 

= h(x,t) + a2uxx(x,t), 

where we have used the D.E. of (25) and Leibniz's rule (cf. Appendix A.3) in the final equation. 

This shows that u(x,t) in (27) is a C2 solution of the D.E. in (28). By (27), u(x,O) = 0, while 
(29) yields ut(x,O) = 0. Uniqueness is evident from the fact that if ul and u2 are two solutions 

of (28), then v = ul - u2 satisfies Vtt = a2vxx with I.C. v(x,O) = ° and vt(x,O) = 0. Hence, 

v == ° by the previous uniqueness result (Theorem 1 in Section 5.2). 0 

Remarks. The double integral (27) with respect to rand s admits a nice geometrical 
interpretation. Indeed, it is the integral of the function h over the characteristic triangle (or 
region of influence) of the point (x, t) shown in Figure 4 : 

t 

t 

......... ------------ .. ~----~ 

ri x 
x 

x-a(t-s) 

Figure 4 
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The integral with respect to r "sums" the values of h along the horizontal segments of the 
triangle and the integral with respect to s "sums" the results for these segments. Equation (27) 
says that u(x,t) is the integral of h over the characteristic triangle of the point (x,t). 0 

When the I.C. in (28) are no longer trivial, the problem can be treated by splitting the 
problem into two pieces, as we have done previously in Section 3.4 in the context of heat 
problems. We illustrate this in the following example. 

Example 6. Solve D.E. 

I.C. 

Utt -uxx = x-t, -00 < x, t < 00, 

2 u(x,O) = x , ut(x,O) = sin(x). (30) 

Solution. We split the problem up into two familiar problems for functions u1(x,t) and u2(x,t): 

The solution of (30) is then u(x,t) = u1(x,t) + u2(x,t) (Why?). From D'Alembert's formula, 

u1(x,t) = ~[(x+t)2 + (x-t)2] -~[cos(x+t) -cos(x-t)] . 

We compute u2(x,t) using Theorem 1 and (27): 

1 It IX+ ( t-S) 1 It [r2 ] x+t-s 
U2(x,t) = 2" (r-s) dr ds = 2" "2 - sr ds 

o x-(t-s) 0 x-t+s 

.!. It [(x+t-S)2 _ (x+s-t)2 _ s(x+t-s) + s(x+s-t)] ds 
2 0 2 2 

.!. It [2s2 _ 2s(x+t) + (x+t)2 _ (x-t)2] ds 
2 0 2 2 

t3 _ t2(x+t) + t2 _ t3 t2x 
3 2 x - -1)+ 2' 

The solution u(x,t) = u1(x,t) + u2(x,t) may be checked directly. 0 

Duhamel's principle also applies in the case of a finite string, as the following examples 
illustrate. In Example 7, there is an applied force density, but the B.C. and I.C. are 
homogeneous. Example 8 is an instance of the type problem with time-dependent B.C. (but 
homogeneous D.E.) which was the original motivation for this subsection (cf. (20)). As in 
Example 6, one can handle the case where both the D.E. and B.C. are inhomogeneous, by splitting 
the problem into two parts, and adding the solutions of the two parts. 
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Example 7. A string of length 71" with fixed ends and initially at rest is driven by a harmonic 
vertical force density proportional to sin( wt)sin(x), where w is a positive constant. Find the 
displacement u(x,t) by solving the problem 

D.E. Utt = a2uxx + Asin(wt)sin(x) , 

B.C. u(O,t) = 0, u(7I",t) = 0, 

I.C. u(x,O) = 0, ut(x,O) = 0. 

° ~ x ~ 71", t ~ 0, 

(31) 

Solution. Duhamel's principle works in the presence of homogeneous linear boundary conditions 
such as we have here. In other words, we expect that the solution of (31) is given by 

It", '" 
u(x,t) = ov(x,t-s,s) ds, where v(x,t;s) is the solution of 

'" 2", 
D.E. Vtt = a Vxx ' ° ~ x ~ 71", t ~ 0, 

B.C. v(O,t;s) = 0, v(7I",t;s) = 0, (32) 

I.C. v(x,Ojs) = 0, vt(x,Ojs) = ASin(ws)sin(x). 

Since s is just a constant, we easily obtain 

v(x,tjs) = ~sin(ws) sin(at) sin(x) . 

Then, 

u(x,t) = It v(x,t-SjS) ds = rt ~ sin(ws) sin [a(t-s)] sin(x) ds 
o J 0 

= ~ sin(x) I: sin(ws) sin[a(t-s)] ds. 

Let the last integral be denoted by I(t). By using Green's formula, 

I: [f"(s)g(s) - f(s)g"(s)J ds = [fl (s)g(s) - f(s)g' (s)J I: ' 
(a2_w2) I(t) = [wcos(ws)sin[a(t-s)] + aSin(WS)Cos[a(t-s)]]: = asin(wt) - wSin(at). 

For W 1= a, we then obtain 

u(x,t) = t 2 [a sin(wt) - W sin(at)] sin(x). 
a(a -w ) 

(33) 
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To find the solution for w = a, we take the limit of (33) as w -+ a, using L'Hospital's rule: 

u(x,t) = Z sin(x) I im at cos(~~1 - sin(at) = -A [t cos(at) - siniat)] sin(x). (34) 
w-+a 

Any doubts concerning these methods may be dispelled by directly checking that (33) or (34) 
solve problem (31). Note that (33) remains bounded as a function of t, and its amplitude 
becomes lar,ger as w -+ a. In other words, we have the phenomenon of resonance as the driving 
term Asin(wt)sin(x) approaches the natural harmonic ASin(at)sin(x) of the undriven string. 
Indeed, for w = a we obtain the solution (34) whose amplitude grows without bound as t -+ 00. 

Incidentally, bridges (which, in a certain sense, might be thought of as strings) have been known 
to collapse under the influence of periodic winds, because of the phenomenon of resonance. 0 

Remark. For finite string problems, as an alternative to using Duhamel's principle, one can carry 
out the following steps. 

Step 1. Try to approximate the forcing term h(x,t) in the D.E. Utt = a2uxx + h(x,t) by a 

Fourier series (of the type appropriate to the B.C.) whose Fourier coefficients are functions of 
N 

t, say h(x,t) = l hn(t)sin(ll1rx/L), when the ends are fixed [h(x,t) is of this form in (31)]. 
n:l . 

N 

Step 2. Assume that u(x,t) = In:l un(t)sin(n1lX/L) (say when the ends are fixed) and 

substitute this form into the D.E. Utt - a2uxx = h(x,t). Equate coefficients of the two sides, 

obtaining the ODEs un"(t) + (an7l'/L)2un(t) = hn(t), n = 1,2, ... N. 

N 
Step 3. From the initial conditions u(x,O) = f(x) = In:l Bnsin(n1lX/L) and 

N . 
ut(x,O) = In:l Ansin(n1lX/L) (finite sums, say within experimental error), we know that 

un(O) = Bn and u~(O) = An' Solve the ODEs in Step 3 subject to these initial conditions. 

N 
Step 4. With un(t) found in Step 3, the solution is u(x,t) = In:1Un(t)sin(n1lX/L) . 

In Example 7, we obtain u1"(t) + a2u1(t) = ASin(wt), with initial conditions u1(O) = 0 

and u~(O) = 0, whose solution is the coefficient of sin (x) in (33) [or (34), if w = a]. For n > 0, 

un(t) :: O. If it happens that h(x,t) is not a finite Fourier series in x, then the infinite series 

obtained by this procedure must be regarded as a formal solution (cf. the definition 
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in Section 4.3), until proven otherwise. One advantage of using Duhamel's principle (in 
conjunction with the method of images) is that infinite sums can be avoided, if desired. 

Example 8. Find a formal solution of the problem 

2 
D.E. Utt = a Uxx ' ° ~ x ~ L, -00 < t < 00, 

B.C. u(O,t) = 0, u(L,t) = A sin(wt), (35) 

I.C. u(x,O) = 0, ut(x,O) = Awx/L . 

Solution. The function w(x,t) == A(x/L)sin(wt) satisfies the B.C. of (35). Thus, by writing u(x,t) 
= w(x,t) + v(x,t), we obtain the following related problem for v(x,t) with homogeneous B.C .. 

D.E. Vtt - a2vxx = A r ifsin(wt), ° ~ x ~ L , -00 < t < 00 , 

B.C. v(O,t) = 0, v(L,t) = 0, (36) 

I.C. v(x,O) = 0, vt(x,O) = Awx/L - Awx/L = ° . 
Note that the choice of I.C. ut(x,O) = Awx/L is compatible with the B.C. u(L,t) = Asin(wt) at 

x = 1. The cancellation, producing vt(x,O) = 0, is fortuitous. There is some freedom in choosing 

w~x,t) satisfying the B.C. (i.e., w(x,t) does not have to be linear in x). Perha(>s the choice of 
w x,t) should be motivated to achieve simplicity in the related problem for v(x,t). We formally 
so ve problem (36), using Duhamel's principle, but we could achieve the same result by using the 

procedure in the preceding remark. According to Duhamel's principle, v(x,t) = f~ v(x,t-Sjs) ds, 

where v(x,tjs) solves 

D.E. 

B.C. 

I.C. 

,., 2,., 
v tt = a v xx ' ° ~ x ~ L, -00 < t < 00, 

v(O,tjs) = 0, v(L,tjs) = 0, 

v(x,Ojs) = 0, vt(x,Ojs) = A r w2sin(ws). 

(37) 

This problem has no exact solution, since the second B.C. contradicts the second I.C. at x = L . 
One could construct a formal solution by taking the odd, periodic extension (of period 2L) of the 

initial velocity for v and using D'Alembert's formula, but the extension is not continuous, let 

alone C1. Instead, we construct a formal solution of (37) from the Fourier sine series of x in [O,L]. 

Indeed, FSS x = 2L ~ (_1)n+1 sin(nr) 
1r In=l n 

yields v(x,tjs) = ¥ r (At+1 sin(ws) sin(~) sin(nr)· 
1r a n=l n 

Using the result (assuming w f nn/L) 
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Jt sinews) sin[n1ra(t-s)] ds = (n1ra/L)sin(wt) - w sin(ll1rat/L), 
o ---y:-- (n1rajL)2 _ w2 

we obtain the formal solution 

2 n1ra . ( t) . (nr.at) 
A. 2ALw ~ n ---y:-- Sill W - W SIll -r . nn 

u(x,t) = LX sm(wt) - -r L_ (-1) 2 n a 2 2 sm(---y:--). 
1r a n-1 n [( +) -W 1 

The reader may check that the infinite sum is the same formal solution for v(x,t) that would be 
obtained, if one were to use the procedure in the preceding remark. Also, note that we again (cf. 
Example 7) have the phenomenon of resonance, as W -+ ll1rajL for some n. If W = n1rajL, then 
the n-th term in the sum should be replaced by its limiting value as w -+ n1ra/L. This term is 
unbounded as t -+ 00. If the sum is truncated at n = N, then the resulting function uix,t) 

satisfies the B.C. and I.C. of (35), but it does not quite meet the D.E. : 

(uN)tt - a2(uN)xx = ¥ [x - ;L l:=.'-lr+1 sin(nf)] sin(wt). 

The quantity in brackets approaches 0 as N -+ 00, provided that 0 ~ x < L. If x = L, the right 

side is Aw2sin( wt), regardless of N, suggesting that there is no exact solution of the original 
p'roblem. This is probably not a serious difficulty. Indeed, if we restrict x to the interval 
lO,L - b] for any small 0> 0, then for N large enough, uN(x,t) satisfies the wave equation to 

within any given experimental error. Choosing 0 to be much less than the radius of an atom, it 
seems unlikely that anyone will consider this to be a significant defect in applications. 0 
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Summary 5.3 

1. Boundary conditions: If the end x = ° of a string is allowed to side vertically (Le., 
transversely) and if a vertical external force F( t)j is applied, then ux( 0, t) = -F( t) ITo. Thus, if 

no vertical force is applied to the end (i.e., the end is free), then the boundary condition 
ux(O,t) = ° holds, and similarly ux(L,t) = ° for a free end at x = 1. 

2. Solving wave problems with fixed or free ends: Wave problems, where each end is free or 
fixed, can be solved by two different methods: 

A. The Fourier series method: Find the product solutions of the D.E. which meet the B.C., 
and write (or approximate) each of the functions f(x) and g(x) in the I.C. u(x,O) = f(x), 
ut(x,t) = g(x) as Fourier series of the type which is appropriate to the B.C. (e.g., a Fourier cosine 

series, if both ends are free). Then form a superposition of the product solutions in order to meet 
the I.C. (cf. Example 1). 

B. The method of images: Extend the initial displacement u(x,O) = f(x) (0 ~ x ~ L) to a 
function defined for all x, which is even about each free end and odd about eac-h fixed end. (Such 
an extension is unique.) Do the same for the initial velocity ut(x,O) = g(x). Then the solution 

for the finite string problem is given by D'Alembert's formula for the infinite string with initial 
data being the above extensions defined for all x (cf. Examples 2 and 3). 

Solutions obtained, using either method A or B, give the same values for u(x,t), even 

though the respective formulas for u(x,t) may appear different. If the extension of f(x) is C2 

and the extension of g(x) is c1 , then a unique (C2) solution for the wave problem will exist. 

3. Inhomogeneous time-independent B.C.: For wave problems with B.C. of the form u(O,t) = a 
or u (O,t) = a, and u(L,t) = b or u (L,t) = 0, first find a function u (x,t) which solves the x x p 
D.E. and B.C .. Then form the related problem for v(x,t) = u(x,t) - Up(X,t), with homogeneous 

B.C. , which can be solved using either of the techniques in 2 above. 

4. The inhomogeneous wave equation: In problems where there are time--dependent B.C. (e.g., 
u(O,t) = A( t)), one typically encounters the inhomogeneous wave equation of the form 

2 Utt = a Uxx + h(x,t) , (Sl) 

when considering the related problem with homogeneous B.C.. The function h(x,t) can be 
interpreted as being proportional to a time--dependent externally applied force density. For the 
infinite string, with zero initial amplitude and velocity, the solution of the inhomogeneous wave 
equation is 

1 It x+a( t-S) 
u(x,t) = 2a I h(r,s) dr ds . 

o x·a( t-s) 
(S2) 
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which is the integral of h over the characteristic triangle of the point (x,t). If the initial data is 
not trivial, then we simply add D'Alembert's solution to (S2). The solution (S2) was obtained by 
applying Duhamel's principle in the context of the wave equation. Duhamel's principle also can 
be used to solve wave problems for finite strings with an external forcing term (cf. Examples 7 
and 8). Solutions can also be obtained (cf. Remark preceding Example 8) by first writing the 
source h(x,t) as a Fourier series (of the type appropriate to the B.C.) with time-dependent 
coefficients hn(t), and then assuming a solution u(x,t) of the same form, where the coefficients 

un(t) are determined by solving the second-{)fder ODEs u~(t) + (n11'a/L)2un(t) = hn(t), with 

initial values un(o) and u~(o) determined by the I.C .. 

Exercises 5.3 

1. (a) Show that ux(L,t) = G(t)/To (cf. (2)), where G(t)j is the force applied to the end x = L. 

(b) Explain how a boundary condition ofthe form ux(O,t) = b·u(O,t) (b> 0) would arise. 

2. Solve 2 
D.E. Utt = a Uxx ' ° ~ x ~ 11', --00 < t < 00, 

B.C. ux(O,t) = 0, ux(11',t) = 0, 

I.C. u(x,O) = cos2(x), ut(x,O) = sin2(x). 

(a) using the Fourier series approach, 

(b) using the method of images. 

3. Give a simple argument to demonstrate that the function F(x) of Example 3 is the only 
extension of f(x) which is even about 2 and odd about 0. 

4. Redo Example 3 in the cases where the B.C. are replaced by 

(a) u(O,t) = 0, 

u(2,t) = 0, 

(b) ux(O,t) = 0, 

ux(2,t) = 0. 

Determine the profile u(x,t) in these cases for t = 1,2,3,4 and ° ~ x ~ 2. 

5. (a) Sketch a derivation of the fact that the harmonics un(x,t) in (13) form a complete family 

of product solutions for the problem 2 
D.E. Utt = a uxx' 

B.C. u(O,t) = 0, ux(O,t) = 0. 
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(b) What is the lowest frequency of the harmonics in (13)? How does this compare with the 
lowest frequency when both ends are fixed? 

6. Solve 

7. Solve 

8. Solve 

9. Solve 

° ~ x ~ 11", -u < t < 00, 

B.C. ux(O,t) = -1, ux(1I",t) = 1, 

x2 
I.C. u(x,O) = 1r - x + 2cos(3x), ut(x,O) = cos(x). 

2 -t () D.E. Utt = a Uxx + e cos x , -u < x, t < 00, 

I.c. u(x,O) = 0, ut(x,O) = 0. 

2 -t () D.E. Utt = a Uxx + e cos x -u < x, t < 00, 

I.c. u(x,O) = f(x), ut(x,O) = g(x). 

D.E. Utt = a2uxx + cos(wt)sin(3x), ° ~ x ~ t1l", W> 0, -u < t < 00, 

B.C. u(O,t) = ° (fixed end), ux(7I'/2,t) = ° (free end), 

I.c. u(x,O) = 0, ut(x,O) = 0. 

(a) Using Duhamel's principle. 
N 

(b) By assuming a solution ofthe form In=oun(t)sin((2n+1)x). 

(c) For what value of the constant w is resonance obtained? 

10. Find a formal solution of the problem 

2 
D.E. Utt = a Uxx ' ° ~ x ~ L, -u < t < 00, 

B.C. ux(O,t) = 0, ux(L,t) = sin(wt), 

I.C. u(x,O) = 0, ut(x,O) = * x2. 

For what values of w do we have resonance? 



338 Chapter 5 The Wave Equation 

11. Find a formal solution of the problem 

2 
D.E. Utt = a Uxx ' ° ~ x ~ 1, --iX) < t < 00, 

B.C. u(O,t) = sin(wt), ux(l,t) = 0, 

I.e. u(x,O) = 0, ut(x,O) = w COS(7rX). 

For what values of w do we have resonance? 



CHAPTER 6 

LAPLACE'S EQUATION 

Laplace's equation plays an important role in a vast array of applications in gravitation 
theory, electrostatics, steady-state temperature problems, fluid mechanics, etc.. Some of these 
applications were already discussed, in broad terms, in Section 1.2. Here, we concentrate on 
Laplace's equation in dimension 2, namely u + u = O. In Section 6.1, we outline the xx yy 
applications in this two-dimensional setting, discuss the invariance of Laplace's equation under 
translations and rotations of coordinates, and introduce the two basic boundary-value problems 
for Laplace's equation, namely the Dirichlet and Neumann problems. In Section 6.2, we solve 
boundary-value problems for rectangular regions. We express Laplace's equation in terms of 
polar coordinates in Section 6.3, in order to obtain the mean-value theorem for harmonic 
functions and solve the Dirichlet problem for the annular region between concentric circles. Also 
in Section 6.3, the Poisson integral formula is established for the solution of the Dirichlet problem 
for the disk, with given continuous data on the circular boundary. While the 
Maximum/Minimum Principle for Laplace's equation is used in various places in Sections 6.2 and 
6.3, the proof is deferred to Section 6.4, by which time there is ample motivation for results of a 
more theoretical nature. In Section 6.5, we utilize the close relationship between Laplace's 
equation and complex variable theory to solve problems of two-dimensional ideal fluid flow, 
steady-state temperatures and electrostatics. The applications of conformal mappings are kept at 
a very concrete level, and we do not assume any prior knowledge of complex-variable theory. 

Historical Remarks on Laplace, Dirichlet, Poisson and Neumann 

Here we include a few brief biographical sketches of the key individuals who contributed to 
the early development of potential theory (Le., the theory of boundary-value problems for 
Laplace's and Poisson's equation). 

The French theoretical physicist and mathematician Pierre Simon de Laplace (1749-1827) 
was so famous in his own time that he was known as the Newton of France. With the support of 
D'Alembert, Laplace became a professor at the Ecole Militaire of Paris. Laplace's primary 
interests were celestial mechanics, probability theory, and his personal advancement (but not 
necessarily in this order). Indeed, it seems that his political views shifted with the volatile social 
climate in France during his lifetime, so as to maximize his acquisition of titles and wealth. 
However, his flexibility probably also saved him from imprisonment or execution during the 
French Revolution. In his magnum opus, the Mecanique celeste, published in five volumes 
(1799-1825), Laplace developed potential theory. While Laplace did not always acknowled~e 
contributions of other mathematical physicists (a notable omission in this work was Lagrange s 
name), he expanded the frontiers of potential theory so extensively, that the key equation ~u = 0 
bears his name. We note, however, that this equation had been found earlier (in 1752) by L. Euler 
in his studies of hydrodynamics. In Laplace's other masterpiece, Theore Analytique de Probabilires 
(1812), he included many of his discoveries in probability theory. While Laplace pursued honors, 
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titles and wealth, he also gave generous assistance to many younger scientists. Among his many 
proteges were Cauchy and Poisson. 

The eminent German mathematician Gustav Peter Dirichlet (1805-1859) was a pupil of 
Geor?, Simon Ohm (1787-1854), the German physicist who is best known for his discovery of 
Ohm slaw (E = RI). While Dirichlet's main interest was in number theory, he made significant 
contributions to algebra, Fourier series, and theoretical mechanics. At the beginning of his career, 
Dirichlet was inspired by the works of Laplace and Poisson whom he met in Paris. In 1850, 
Dirichlet published an important paper that deals with the boundary-value problem which bears 
his name. In 1855, when the great mathematical genius Karl Friedrich Gauss (1777-1855) died, 
Dirichlet became Gauss' successor at the University of Gottingen. After Dirichlet's death, his 
notes on applied mathematics, as well as his celebrated Vorlesungen fiber Zahlentheorie were 
edited and published by his pupil and friend Richard Dedekind. 

Another brilliant French mathematical physicist of this period was Simeon-Denis Poisson 
(1781-1840). Poisson was a student and protege of Laplace and owed to his teacher his first 
appointment at the newly founded Ecole Poly technique. Throughout his life, Poisson pursued 
many weighty administrative and pedagogical responsibilities. Nevertheless, his list of nearly 300 
original publications is very impressive. Most of Poisson's books were published during his last 
ten years, and according to historians these books exhibit an uncommon gift for clear exposition of 
the state of mathematical physics at that time. Poisson worked closely with Laplace. In 1833, 
Poisson pointed out that the gravitational potential u, within a region of density p, obeys the 
inhomogeneous version of Laplace's equation, namely ~u = 47rGp (cf. (1) of Section 1.2), which is 
now known as Poisson's equation. As an indication of the breadth of his studies, there is the 
Poisson distribution in probability theory, the Poisson bracket in theoretical mechanics, the 
Poisson ratio in elasticity theory, the Poisson Integral Formula (cf. Section 6.3), and the Poisson 
Summation Formula of Fourier transform theory (cf. Section 7.5, Problem 10), and more. 

The Neumann problem (cf. (11) of Section 6.1) was named after the German physicist Carl 
Gottfried Neumann (1832-1925). Neumann, who led a quiet life, was a productive researcher and 
successful professor at the University of Leipzig from 1868 until his retirement in 1911. He was 
especially prominent in the field of potential theory. Neumann is also remembered for his service 
in founding and editing the prestigious German mathematical periodical, the Mathematische 
Annalen. 
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6.1 General Orientation 

Laplace's equation in dimension two for a function u = u(x,y) is 

Uxx + Uyy = ° or ~u = ° , (1) 

where ~ == ~ + t? 2 is the Laplace operator or the Laplacian. A function u, which solves (1) 
Ox {}y 

at all points (x,y) in some open region D, is said to be harmonic on D. (The same term applies 
to solutions in higher-dimensions, as well.) Recall that solutions of second-order equations are 

required to have continuous second partial derivatives (e.g., harmonic functions on Dare C2 on 
D.) As we will demonstrate in Section 6.3, harmonic functions actually turn out to be infinitely 

differentiable (Le., COO). 
Although we live in three dimensions, equation (1) arises in many applications, and the 

associated boundary-value problems for (1) are usually easier to solve than the three-dimensional 
analogs. As the following example illustrates, it often happens that the desired solution u(x,y,z) 
of the three-dimensional Laplace equation Uxx + Uyy + uzz = ° is already known to be 

independent of z, in which case we need only to solve (1) for u(x,y). 

Example 1. Suppose a uniform electrical charge density is applied to the z-axis. Find the most 
general form for the resulting harmonic electrostatic potential u(x,y,z). 

Solution. Since the physical situation is unchanged by translations in the z-direction, we deduce 
that u(x,y,z) does not depend on z, say u(x,y,z) = u(x,y). Thus, we seek appropriate solutions 
of (1). Note also that the physical situation is unchanged by rotations about the z-axis, in which 

case we deduce that u(x,y) = f(r), where f is a C2 function and r = (x2 + y2)1/2 is the 
distance from (x,y,z) to the z-axis, Le., the distance from (x,y) to (0,0). By the same 
computation as in Example 1 of Section 1.2, we find that in terms of f(r), (1) becomes 

Letting g(r) = f'(r), (2) becomes a first-order linear (or separable) equation for g. We obtain 

g(r) = Cr-1, and so f(r) = C log(r) + K, for arbitrary constants C and K. Thus, 

u(x,y) = i C log(x2 + l) + K (3) 

is the general form of the potential. For C > 0, note that, unlike the potential 

-C(x2 + y2 + z2r-t + K of Example 1 of Section 1.2, the potential (3) increases without bound 

as x2 + y2 -+ 00. This means that no finite amount of energy will suffice to transport an oppositely 
charged particle arbitrarily far from the z-axis. In the gravitational context, escape velocities are 
infinite in dimension two. 0 
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As we have already observed in Example 2 of Section 1.2, the heat equation 
ut = k(uxx + Uyy + uzz) reduces to Laplace's equation, when u is a steady-state temperature 

distribution, since ut = ° if u is time-independent. Moreover, if u does not depend on z, say 
as in a flat plate which is insulated on its upper and lower surfaces, then a steady-state 
temperature distribution satisfies (1). The reader may still wonder why the higher-dimensional 
heat equations are of the form ut = kAu, involving the Laplacian Au, instead of some other 

combination of the spatial derivatives, say Uxx + uxy + Uyy . The next example shows how 

symmetry considerations dictate that the heat equation for two-dimensional heat flow is given by 
ut = k(uxx + Uyy). This argument is more elementary than the usual derivation which is based 

on the nontrivial higher-dimensional analog of Green's formula. 

Example 2. Show that, if the temperature u(x,y,t) in a flat, homogeneous heat conducting plate 
(without heat sources) obeys a second-order linear PDE, then this PDE must be of the form 

(4) 

for some constant k > 0. 

Solution. The general second-order linear PDE for u = u(x,y,t) is 

q1 Uxx + q2Uyy + ruxy + r 1 uxt + r2uyt + SUtt + a1 Ux + ~Uy + bUt + cu = f . (5) 

All of the coefficients and f must be constants, because the plate is homogeneous and the 
physical circumstances (e.g., heat conductivity constant) do not depend on time. Since (5) must 
reduce to the one-dimensional heat equation (kuxx - ut = 0) when u does not depend on y, 

we must have r 1 = 0, s = 0, a1 = 0, c = 0, and f = 0, and we may take q1 = k and b = -1 

(Why?). Similarly, when u does not depend on x, (5) must reduce to -kuyy + ut = 0, in 

which case r2 = 0, a2 = ° and q2 = k. So far, we have deduced that (5) must be of the form 

(6) 

Thus, we need only to show that r = 0, in the hypothetical heat equation (6). Note that the 
function u(x,y,t) = rt + xy satisfies (6). If we rotate the xy-coordinate axes, in the clockwise 

direction, by 90°, the point which had coordinates (x,y) will have coordinates (y,-x). Since the 
laws of heat conduction are insensitive to the angular position that we choose for the axes, we 
know that u should still be a solution of (6) under the replacement of x by y and y by -x. 
However, under this replacement, the function u becomes rt - xy which is not a solution of (6) 
unless r = 0. Thus, (4) is the only second-order linear PDE that can govern heat flow in the 
given circumstances. 0 

Remark. In the same way, we can deduce that the only possible second-order linear PDE for the 
amplitude u(x,y,t) of a homogeneous transversely vibrating membrane is 

(7) 



Section 6.1 General Orientation 343 

the two-dimensional wave equation with disturbance speed a. A similar argument yields the 
three-dimensional heat and wave equations. In certain situations, a more accurate heat or wave 
equation might be nonlinear. For example, the amplitude u(x,y) of a steady membrane, say a 
soap film spanning a nonplanar loop, is known to obey the minimal surface equation (24) in 
Example 11 of Section 1.2, instead of Laplace's equation, as (7) suggests. However, (7) is the only 
possible linear approximation to the "true" PDE (if any) for the amplitude, and (1) is the best 
linear approximation of the minimal surface equation (cf. Example 11 of Section 1.2). 0 

Rotational Invariance of the Laplacian l1 

We now demonstrate that at any point p = (xo,yo), we have that Uxx + Uyy is twice the 

average of the second directional derivatives of u at p along all of the lines in the xy-plane 
which pass through p. Since this average is clearly unchanged by a rotational change of 
coordinates, this demonstration implies that the Laplacian u + u retains its form under a xx yy 
rotation of coordinates. (A direct proof of this is requested in Problem 1.) The line through p, 
making an angle 0 with the positive x-direction i, is parametrized by 
r(t) = (xo + t cos(O), Yo + t sin(O)). The first derivative of u at p, along this line, is 

~ u(r( t)) I = ~u(xo + tcos( 0), Yo + t sin( 0)) I = ux(xo, yo)cos( 0) + uy(xo, Yo)sin( 0) 
t=O t=O 

The second derivative of u at p along this line is then 

2 
~u(r(t))1 =U (p)cos2(O)+2u (p)cos(O)sin(O)+u (p)sin2(O). (8) 
dt t=O xx xy yy 

As the angle 0 varies, the average value of the second derivatives is 

(9) 

since I:11"COS2(O) dO = I:11"sin2(O) dO = 11", and I:/n(o)cos(O) dO = 0 (Le., since sin(O) and 

cos(O) are orthogonal of norm-square 11" on the interval [-11", 11"1). Since the average (cf. (9)) of 
the second derivatives is the same if all of the lines are rotated about p by the same amount, we . 

deduce that Uxx + Uyy = u __ + u __ , under a rotational change of coordinates from (x,y) to 
xx yy 

(x,y). A similar argument can be used to prove the invariance of Uxx + Uyy + uzz under 

rotations about a point in space. In that case, one forms the average of the second directional 
derivatives over a sphere of directions represented by unit vectors. 
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Boundary-Value Problems for Laplace's Equation 

Here we will describe two standard boundary-value problems for Laplace's equation. They 
are known as the Dirichlet problem and the Neumann problem. Let D be a region in the 
xy-plane and suppose that D is bounded by a finite number of "nice" closed curves (not part of 
D) all of whose points form a set which we will denote by C (cf. Figure 1) . 

Figure 1 

. . 

. . 

.. .. 

If we adjoin to the open set D all of the boundary points in C, then we obtain a closed set, 
which we denote by DUC, the union of D and C. Let f be a given continuous function defined 
on the boundary C. From a physical perspective, we think of D as a heat~onducting plate and 
f as a prescribed steady temperature distribution on the border C of the plate. Thus, the 
Dirichlet problem asks for a steady-state temperature (in the interior of the plate) which is 
induced by the prescribed temperature on the boundary C. From a mathematical point of view, 
the Dirichlet problem asks for a solution u of Laplace's equation on D (i.e., a harmonic function 
on D), such that for any point p on C, u(x,y) can be made arbitrarily close to f(p) by 
requiring that (x,y) (in D) be sufficiently close to p. In other words, if we define u(p) to be 
f(p) at each point p on C, we thereby extend the domain of u from D to DUC, and we 
require that the extended function u be continuous on DUC and satisfy Laplace's equation on 
D. The Dirichlet problem is concisely written as 

Dirichlet problem: D.E. Uxx + Uyy = 0 on D 

(10) 

B.C. u(p) = f(p) for all p on C. 

Here, it is implicitly required that the function u extend continuously (via the values of f on C) 
to DUC. Otherwise, one could claim that by taking u to be 0 throughout D and to be f on 
C, the problem is solved. 

Remark. In previous chapters, we required that solutions of second-order PDEs have C2 
extensions past the boundary of the domain where they are defined. However, insofar as the 
Dirichlet problem is concerned, we require only that the function u itself (not its second partials) 

extend continuously to the boundary. In this way, we do not need to assume that f is C2 on C 
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(Le., f is only assumed to be CO) in order to solve the Dirichlet problem. Of course, 
experimentally, there is no way to determine the degree of differentiability of a temperature 
distribution. Indeed, the question is meaningless. One can always approximate, to within 

experimental error, a physical temperature distribution by a COO function (e.g., through any 
finite set of data points, one may draw a smooth curve). However, mathematics goes beyond what 
is relevant for concrete engineering problems, and to a small extent, so will we. 0 

Using the same notation as above, the Neumann problem asks for a harmonic function u 
on D such that, at each point p on C, the directional derivative of u in the outward normal 
direction n(p) (perpendicular to C) is equal to the value g(p), where g is some given 
continuous function defined on C (cf. Figure 2). (There is a difficulty, which we will not address 
here, concerning what is meant by the outward normal at corner points of C, if any.) 

Figure 2 

Concisely, we write 

Neumann problem : D.E. Uxx + Uyy = ° on D 

B.C. Vu(p) . n(p) = g(p) for all p on C. 
(11) 

Here we have tacitly assumed that Vu extends continuously from D to DUC. In physical terms, 
the normal component of the temperature gradient is given on the boundary C of a 
heat-conducting plate (Le., the rate of heat loss or gain through the boundary points is 
prescribed), and we are to determine resulting steady-state temperature (if such exists) inside the 
plate. On physical grounds, in order that such a steady-state temperature distribution should 
exist, the net heat flux through C must be zero. Thus, we suspect (correctly) that the Neumann 
problem will have no solution, unless we assume that the average value of the function g on C 
is zero. This assumption is known as the compatibility condition. The analog of this 
compatibility condition for the one---dimensional heat flow in a rod (0 ~ x ~ L) is -ux(O, t) + 
ux(L, t) = ° (d. Example 6 of Section 3.3, where there is not steady-state particular solution 

unless a = b). 
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There are other important boundary-value problems for Laplace's equation. For instance, 
one can combine the Dirichlet and Neumann boundary conditions to get a B.C. of the third kind, 
namely Vu(p) . n(p) + ku(p) = h(p), for a given continuous function h defined on C and a 
constant k (which is usually positive in applications). Also, in the above problems, we can 
replace Laplace's equation by its inhomogeneous analog, that is, Poisson's equation 

Uxx + Uyy = q(x,y). (12) 

In the context of steady-state temperatures, the function q(x,y) is proportional to a 
time-independent, internal heat source density, perhaps due to radioactivity or microwaves. 
Particular solutions of Poisson's equation (12) can often be obtained by means of the integral 
formula 

up(x,y) = ~ f f D log[(x - X)2 + (y - y)2jq(x,Y) dx dy, (13) 

which is a solution of (12) when q is a "reasonably nice" function on D. (cf. Problem 9 of 
Section 6.4.) Using the particular solution (13), we can reduce the boundary-value problems for 
Poisson's equation to corresponding problems for Laplace's equation, as the following example 
illustrates. 

Example 3. Reduce the Dirichlet problem for Poisson's equation, 

D.E. Uxx + Uyy = q(x,y) on D 

B.C. u(x,y) = g(x,y) for (x,y) on C, 

to a related Dirichlet problem for Laplace's equation. 

(14) 

Solution. Let up(x,y) be a particular solution (e.g., (13)) of the D.E., and let v be a solution of 

the related Dirichlet problem: 

D.E. v xx + v yy = 0 on D 

B.C. v(x,y) = g(x,y) - up(x,y) for (x,y) on C. 
(15) 

Then, a solution of (14) is u(x,y) = up(x,y) + v(x,y). Hence, by solving (15), we obtain a 

solution of (14). 0 
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The General Solution of Laplace's Equation 

Recall that the general solution of the wave equation Utt - a2uxx = 0 was found (in 

Section 5.2) by factoring the wave operator, t? 2 - a2t? 2 = (~ - a~)(~ + a~), into two 
at ax 

first-Drder operators. Then by adding the general solutions of ut - aux = 0 and ut + aux = 0, 

we obtained the general solution u(x,t) = f(x + at) + g(x - at) of the wave equation. If we 

replace t by y and set a = i =.;=r, then the wave equation Utt - a2uxx = 0 becomes 

Laplace's equation. Thus, the general solution for the wave equation suggests that the general 
solution of Laplace's equation is (in some sense) 

u(x,y) = f(x +iy) + g(x - iy). (16) 

It is rather awkward to define precisely what kind of functions f (or g) of the complex variable 

z = x + iy (or z = x - iy) should be allowed in (16). The simplest suitable functions are the 

power functions f(z) = zn (or g(z) = zn) for various integers n ~ O. For example, note that z2 

= (x2 - y2) + i2xy, which is a complex solution of Laplace's equation (i.e., the real and 
imaginary parts are harmonic). A complex solution of Laplace's equation is called a complex 

harmonic function. By using zn for n = 0, 1, 2, 3, ... , one can generate infinitely many linearly 
independent complex harmonic functions (cf. Problem 5). More generally, if f(z) is a power 

series (i.e., an infinite superposition of the functions zn), say f(z) = ~=o anzn (for complex 

constants ao' al , a2, ... ), which converges for z in some open disk about z = 0, then f(z) is a 

complex harmonic function. Such power series functions are said to be complex analytic (about 
z = 0). For example, 

eZ = f(z) = ~=o zn/n! = exp(x + iy) = eXcos(y) + iexsin(y) 

is harmonic and complex analytic. Power ser i es funct ions of the form ~=o anzn , which 

converge in some disk about z = 0, are called conjugate-analytic (about z = 0), and they are 

also complex harmonic functions. With some effort, one can prove that any complex harmonic 

function defined about z = 0 can be written in the form (16) with f(z) analytic and g(z) 

conjugate-analytic. Thus, properly interpreted, (16) is a general solution of Laplace's equation. 

We will see more of the close connection between harmonic functions and complex-variable theory 

in Section 6.5, where analytic functions are used to find the streamlines of ideal fluid flows around 

certain obstacles, or equipotential curves about charged conductors in two-dimensional 

electrostatics. 



348 Chapter 6 Lap/ace '8 Equation 

Summary 6.1 

1. Applications of Laplace's Equation: Solutions u = u(x,y,z) of Laplace's equation, 
u + u + u = 0 (or u + u = 0 when u = u(x,y)), can be interpreted as steady-state xx yy zz xx yy 
temperature distributions, electrostatic potentials, gravitational potentials, velocity potentials for 
certain fluid flows (cf. Section 6.5) and more. 

2. The rotational invariance of the Laplacian: The two-dimensional Laplacian of u, namely 
Uxx + Uyy ' at any point p = (x,y) is twice the average of the second directional derivatives of 

u at p, along all lines through p. Because of this geometrical interpretation, the Laplacian of u 
is independent of translations or rotations of coordinates. The fact that the Laplacian ~ appears 
in so many applications is related to the rotational invariance of ~. 

3. Boundary-value problems for Laplace's equation: Let D be a region in the xy-plane, which 
is bounded by a finite number of "nice" curves (not part of D) whose union is C, the boundary of 
D. There are two standard types of boundary-value problems for Laplace's equation on D, the 

Dirichlet problem: D.E. Uxx + Uyy = 0 on D 

B.C. u(p) = f(p) for all p on C, 
and the 

Neumann problem: D.E. Uxx + Uyy = 0 on D 

Vu(p) . n(p) = g(p) for all p on C (n(p):: the normal to C at p). 

Here, f and g are given continuous functions on C. The function u(x,y) is required to be a 

C2 solution of the D.E. in D. In the Dirichlet problem, the function u on D, along with its 
prescribed values f(p) on C, is required to be continuous on DUC. In the Neumann problem, 
Ux and uy must extend continuously to C, in such a way that the B.C. holds. 

Exercises 6.1 

1. Define the new coordinates in the xy-plane by 

x = ax + by + e and y = cx + dy + f , 

where a, b, c, d, e, and f are constants, with ad - bc 1= 0, to ensure that the inverse 

transformation exists. Let u(x,y) = u(x,y) (Le., u is simply u in terms of the new variables). 
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(a) Show that if u is C2, then 

Uxx + Uyy = (a2 + b2 )u __ + 2(ac + bd)u __ + (c2 + d2)u __ . 
xx xy yy 

(b) Suppose that (x,y) are the new coordinates obtained by rotating the original axes by some 
angle 0 in the counterclockwise direction. Then verify that a = cos( 0), b = sin( 0), c = -sin( 0), 
and d = cos(O). Deduce from part (a) that u + u = u + u in this case, so that the xx yy -- --xx yy 
form of Laplace's equation is retained under rotations, as well as translations of coordinate axes. 

2. Let ul and u2 be harmonic functions (i.e., solutions of Laplace's equation). 

(a) Show that ClUl + C2u2 is harmonic for any constants cl and c2 . 

(b) If u(x,y) is harmonic, deduce that x u(x,y) is harmonic only if u(x,y) = ay + b, for 
some constants a and b. 

(c) Give an example of two harmonic functions whose product is not harmonic. 

3. Use separation of variables to find all harmonic functions of the form u(x,y) = X(x)Y(y). 
Remember to consider the cases where the separation constant is positive, negative, and zero. 

4. Show that the real and imaginary parts of (x + iy)3 are harmonic. (In Problem 5(d), the 
reader is asked to demonstrate this fact for arbitrary nonnegative integral powers of x + iy .) 

5. Note that :2 + ~2 = (~- i~)(~ + i~). The two factors lead us to consider the two 

complex, first-order equations fx + ify = 0 and fx - ify = O. 

(a) Show that the complex-valued function f(x,y) = u(x,y) + iv(x,y) solves fx + ify = 0, if 

and only if u(x,y) and v(x,y) satisfy the first-order system Ux = Vy and uy = -vx ' These 

two equations are known as the Cauchy-lliemann equations. 

(b) If u and v are C2 functions which satisfy the Cauchy-Riemann equations, then show 
that u and v must be harmonic. 

(c) Suppose that U(x,y) + iV(x,y) = (x + iy)(u + iv), where u and v are C2 functions 
which satisfy the Cauchy-Riemann equations. Show that U and V also solve the 
Cauchy-lliemann equations. 

(d) Deduce from (b) and (c) that the real and imaginary parts of (x + iy)n are harmonic 
tor all nonnegative integers n. 
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Remark. If f = u + iv, where u and v. are cl functions which satisfy the Cauchy-Riemann 

equations (or equivalently, fx + ify = 0), then it turns out that f(x + iy) = u(x,y) + iv(x,y) is 

a complex analytic function of the complex variable z = x + iy. The function f = u - iv 

satisfies f - if = 0, and so f is a conjugate-analytic function of z. x y 

6. Descibe, in terms of steady-state state temperature distributions, the difference between the 
physical significance of the Dirichlet problem and the Neumann problem for Laplace's equation. 

7. (a) What is the physical significance of q(x,y) in Poisson's equation Uxx + Uyy = q(x,y) in 

the steady-state temperature scenario? 

(b) Give a physical explanation for why the Neumann problem 

D.E. Uxx + Uyy =.q(x,y) for (x,y) in D. 

B.C. Vu(p) . n(p) = g(p) for all p on C , 

for Poisson's equation, will have no solution, unless we assume the compatibility condition 

I ID q(x,y) dxdy = Ic g(p(s)) ds, 

where s denotes the arclength parameter along the boundary C of the region D. 
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6.2 The Dirichlet Problem for a Rectangle 

The proof of the following uniqueness theorem will be postponed until Section 6.4 (cf. also 
Problem 10, for rectangles). 

Theorem 1 (The Uniqueness Theorem for the Dirichlet Problem). There is at most one 
solution of the Dirichlet problem for a bounded open set D, with a continuous function 
F given on the boundary of D. 

Thus, knowing that any solution that we find is the only solution with the given boundary values, 
we now proceed to solve the Dirichlet problem in the case that D is the rectangle 0 < x < L, 
o < y < M. Suppose that F is 0 on three of the sides, and F equals a suitable continuous 
function f( x) on the remaining side y = 0 (cf. Figure 1). 

y 

F=O 
M 

.. 

F = 0 :: F=O 

x 

o F(x .0) = f(x) L 

Figure 1 

More precisely, we attempt to solve the following Dirichlet problem: 

D.E. uxx + Uyy = 0 0< x < L, o <y < M 

[ u(x,O) = f(x), u(x,M) = 0 O~x~L (*) 
B.C. 

u(O,y) = 0, u(L,y) = 0 o ~ y ~ M. 

In order that the B.C. be consistent, we must assume that f(O) = f(L) = O. The product 
solutions U\x,y) = X(x)Y(y) of the D.E. are easily determined by separation of variables. By 
the D.E., X I(X)Y(Y) + X(x)Y"(y) = 0, and hence for come constant c, 

X"(x)/X(x) = -Y"(y)/Y(y) = c = ±b2 . 



352 Chapter 6 Laplace's Equation 

Consequently, we obtain the following results. 

C8.'Ie 1 (c = _b2 < 0) : 

u(x,y) = [c1cos(bx) + c2sin(bx)] [d1eby + d2e-by] . 

C8.'Ie 2 (c = b2 > 0) : 

u(x,y) = [c1ebx + c2e-bx] [d1cos(by) + d2sin(by)] . 

C8.'Ie 3 (c = 0) : 

u(x,y) 

(1) 

(2) 

(3) 

One can check that the only product solutions which meet the three homogeneous B. C. of (*) 
are constant multiples of the following family of Case 1 product solutions: 

un(x,y) = sin(nmc/L)sinh[n7r(M - y)/L], n = 1,2, .... (4) 

See Example 1 below regarding the Case 3 product solutions, and the related Example 7, where 
the Case 1 product solutions are also expressed in terms of hyperbolic functions. Recall that the 
hyperbolic sine and cosine are defined by 

(5) 

Since sinh(O) = 0, we know that (4) meets the B.C. u(x,M) = o. By the superposition 
principle, a more general solution of the D.E. and the homogeneous B.C. of (*) is 

u(x,y) 
N 

In=l An sin(nmcjL)sinh[n7r(M - y)/L] . (6) 

Setting y = 0, we obtain 

N 
u(x,O) = In=l An sinh(n7rM/L)sin(nmc/L) . (7) 

Thus, when f(x) in (*) is of the form in (7), the unique solution of problem (*) is (6). By 

Theorem 1 of Section 4.3, if f(x) is continuous and piecewise C1, with f(O) = f(L) = 0, then 
the partial sums SN(x) of the Fourier sine series of f(x) converge uniformly to f(x}. Hence, in 

this case, to within experimental error, we may assume that f(x) is of the form (7), where 
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L 
An = [sinh(ll1rM/L)]-l i-J ° f(x)sin(n11X/L) dx , 

for n=1,2, ... ,N. If the B.C. of (*) are changed to 

u(x,O) = 0, 

u(O,y) = 0, 

u(x,M) = g(x) 

u(L,y) = ° 

then in place of the product solutions (4), we have 

un(x,y) = sin(n11X/L)sinh(nny/L). 

Consequently a more general solution of the D.E. and the homogeneous B.C. of (9) is 

N 

u(x,y) = In=l Bn sin(n11X/L)sinh(nny/L) , 

and 
N 

u(x,M) = In=l Bn sinh(n7rM/L)sin(n11X/L) . 
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(8) 

(9) 

(10) 

(11) 

(12) 

Assuming that g(x) is adequately represented by the N-th partial sum of its Fourier sine series, 
we get that (11) is the harmonic function which meets the B.C. (9), where 

L 
Bn = [sinh(n7rM/L)]-l i-f og(x)sin(n11X/L) dx . (13) 

By adding solutions (6) and (11), we obtain the solution of the Dirichlet problem with B.C. 

u(x,O) = f(x), 

u(O,y) = 0, 

u(x,M) = g(x) 

u(L,y) = ° 
O~x~L 

° ~ y ~ M, 

where we assume that f(x) and g(x) are finite Fourier sine series with at most N terms. The 
solution of the Dirichlet problem with B.C. of the form 

u(x,O) = 0, 

u(O,y) = h(y), 

u(x,M) = ° 
u(L,y) = k(y) 

O~x~L 

° ~ y ~ M, 
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can be obtained by simply switching the roles of x and y (and the limits L and M) and 
replacing f by h, and g by k, in the formulas (8) and (13). By the superposition prmciple 
we obtain the following result. 

Theorem 2. Let an' bn, cn' and dn be the Fourier sine coefficients (assumed to vanish for 

n> N) of f(x), g(x), h(y), and k(y). Then the solution of the Dirichlet problem 

D.E. 

B.C. 

is 

where 

uxx + Uyy = ° 0< x < L, ° <y < M 

{ u(x,O) = f(x), u(x,M) = g(x) O~x~L 

u(O,y) = h(y), u(L,y) = k(y) ° ~ y ~ M, 

u(x,y) = l:=l [Ansin(ll1rx/L) sinh[ll1l'(M - y)/L] 

+ Bnsin(ll1rx/L) sinh(ll1ry/L) 

+ Cnsin(n1rY /M) sinh[ll1r(L - x)/M] 

+ Dnsin(n1rY/M) sinh(n7I'X/M)] , 

An = an/sinh(n7rM/L) Bn = bn/sinh(n7rM/L) 

Dn = dn/sinh(n7rL/M). 

(14) 

(15) 

Note that the solution (15) vanishes at the corners of the rectangle. This is because we 
have implicitly assumed that the functions f, g, h, and k vanish at the endpoints of their 
intervals of definition. In general, the continuous boundary data for the Dirichlet problem will 
not vanish at the corners. However, we can easily handle this case by subtracting, from the 
unknown function u, a particular solution U which has the prescribed values at the corners. 
The next example shows how to find U. Letting v = u - U, we then solve (as above) the related 
Dirichlet problem for v which has boundary data that vanishes at the corners (cf. Problem 4 for 
a specific example). 

Example 1. Find the unique harmonic function of the form 

U(x,y) = a + bx + cy + dxy, (16) 

where a, b, c and d are constants, such that U(O,O) = A, U(L,O) = B, U(O,M) = C and 
U(L,M) = D, for given constants A, B, C, and D. Deduce from this result that any Case 3 (d. 
(3)) product solution that satisfies the two B.C. u(O,y) = ° and u(L,y) = 0, for ° ~ y ~ L, 
must be identically zero. , 
Solution. Note that U(O,O) = A implies a = A. Then U(L,O) = B implies a + bL = B or 
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b = (B - a)/L. Similari;:, U(O,M) = C implies c = (C - A)/M. Also, U(L,M) = D implies 
d = (D - a - bL - cM)/lLM) = (D + A - B - C)/(LM). Thus, we have found the unique values 
for the constants a, b, c and d in terms of the given constants A, B, C and D. Observe that 
any Case 3 product solution u, when multiplied out, is of the form (16). The B.C. u(O,y) = 0 
and u(L,y) = 0 (0 ~ y ~ M) imI?ly that u vanishes at the corners of the rectangle (Le., 
A = B = C = D = 0). Hence, u(x,y):: 0 by what we have just shown. 0 

Example 2. Solve the problem 

D.E. 

B.C. 

uxx + Uyy = 0 

{ 
u(x,O) = 0, 

u(O,y) = sin(y), 

O<x<7r,O<y<7r 

u(x,7r) = 5 sin(2x) -7 sin(8x) 

u(7r,y) = 0 o ~ y ~ 7r. 

Solution. Method 1 (By inspection). Note that the three product solutions of the D.E. which 
are relevant to the B.C. are sin(2x)sinh(2y), sin(8x)sinh(8y) and sin(y)sinh(7r - x). By 
forming a superposition, we have 

u(x,y) = E sin(2x)sinh(2y) + F sin(8x)sinh(8y) + G sin(y)sinh(7r - x). 

The inhomogeneous B.C. dictate that E = 5/sinh(27r), F = -7/sinh(87r), and G = l/sinh( 7r). 
Also, the homogeneous B.C. are met. In this method, one should carefully check that all of the 
B.C. are met. 

Method 2 (Deriving the solution via separation of variables). In spite of the fact that 
separation of variables was carried out for Laplace's equation in general, some instructors will 
insist that this procedure be repeated in every specific problem. One then determines the product 
solution which meet each set of three homogeneous B.C. (There are four possibilities, depending 
on which B.C. is taken to be inhomogeneous. Only two of the B.C. in the above problem are 
inhomogeneous, whence only two possibilities need to be considered here.) By forming a 
superposition of the resulting product solutions, we find the solution as in method 1. This was 
essentially the method employed in obtaining the solution (15) of the general problem (14). 
Although this method 2 is cumbersome, it is one way of ensuring that the student understands 
how formula (15) was derived. 

Method 3 (Using the derived formula (15)). Note that b2 = 5, bs = -7, c1 = 1 and all 

other Fourier sine series coefficients for the boundary functions are zero. Remember to divide by 
the correct factors to obtain B2, Bs and C1 (Le., E, F and G in Method 1). 0 

The Maximum/Minimum Principle for harmonic functions on rectangles. 

In Section 6.4, we prove the Maximum/Minimum Principle for harmonic functions. In the 
special case of rectangles, this principle is as follows. 

The maximum (and minimum) of a function u(x,y), which is continuous on a closed rectangle 
D: 0 ~ x ~ L, 0 ~ y ~ M, and which is harmonic in the interior D, must achieve its maximum 
and minimum on the boundary (Le., on one of the four edges). Moreover, if the maximum or 
minimum is also achieved at a point in the interior, then u must be constant on D. 
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Actually, the principle holds for any reasonably nice, bounded (Le., of finite extent) region with 
boundary. Uniqueness of solutions of the Dirichlet problem for such regions follows at once from 
the Maximum/Minimum Principle, since the maximum and minimum of the difference of two 
solutions occurs on the boundary, where the difference is zero. The next example illustrates the 
Maximum/Minimum Principle. 

Example 3. Find the points where the harmonic function u(x,y) = x3 - 3xy2 + xy - x achieves 
its maximum and minimum values in the square region 0 5 x 5 1, 0 5 y 5 1. 

Solution. To find the maximum and minimum for u, one would usually compute Ux and uy' 

and solve the equations Ux = 0 and uy = 0 simultaneously for x and y, in order to find the 

critical points in the interior of the square. Then one would have to search the boundary for 
competing extreme values. However, since u is harmonic (uxx = 6x and Uyy = -6x), the 

Maximum/Minimum Principle implies that we need only to consider the boundary, since no 
interior crItical point can be a maximum or minimum, unless u is constant. On the boundary, 

u(x,O) = x3 - x 

u(O,y) = 0 

u(x,l) = x3 - 3x 

u(l,y) = _3y2 + y 
(17) 

One easily finds the maxima and minima for each of the functions (17). The largest maximum 
occurs when x = 1 and y = 1/6, with u(1,1/6) = 1/12. The smallest minimum is at (1,1), 
with u(l,l) = -2. The Maximum/Minimum Principle then yields -2 5 u(x,y) 5 1/12 for any 
point (x,y) in the square region. 0 

Remark (Formal Solutions). Recall that in cases where the boundary (or initial) data of a 
boundary-value problem cannot be expressed in terms of a finite Fourier series of the correct 
form, then the solution procedure leads us to an infinite series expression which is called a formal 
solution of the problem (cf. Section 4.3 for a discussion of formal solutions). Formal solutions may 
or may not actually converge to a solution of the problem. Nevertheless, by truncating the formal 
solution at a finite number of terms, one can often obtain a genuine solution of the D.E. which 
meets the B.C. by an experimentally allowable error. This is all that is needed in engineering 
applications. In Example 4, we find the formal solution of a Dirichlet problem and in Example 5, 
we analyze the truncation error using the Maximum/Minimum Principle. 0 

Example 4. Find the formal solution of the problem 

D.E. uxx+uyy=O 0<x<1I'", 0<y<1I'" 
3 u(x,1I'") = 0 { u(x,O) = x (x - 11'"), 05x511'" 

B.C. (18) 
u(O,y) = 0, u(1I'",y) = 0 05 y 5 11'". 

Solution. We have found (cf. equation (4)) that the product solutions of the D.E. which satisfy 
the homogeneous B.C. are the multiples of un(x,y) = sin(nx)sinh[n(1I'" - y)J, n = 1,2,3, .... 

Since x3(x - 11'") is not a finite sine series, we seek a formal solution of the form 
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u(x,y) = ~=l Ansin(nx)sinh[n(1I" - y)], where the An are determined by the inhomogeneous 

B.C. x3(x - 11") = u(x,O) = ~=l Ansin(nx)sinh(n1l"). In other words, Ansinh(n1l") is the Fourier 

sine coefficient an = ~ f1l" x3(x - 1I")sin(nx) dx. Applying Green's formula twice (as in Example 6 
11" 0 

of Section 4.1, except that here we use the interval [0,11"]), we obtain 

(19) 

Alternatively, a tedious calculation involving four integrations by parts, yields the same result. 
Hence, the required formal solution is 

( ) ,00 . ( ) sinh!nk1l" - y)] 
u x,y = In=l ansm nx sin (n1l") , (20) 

where an is given by (19). 0 

Remark. Applying theorems about the validity of termwise differentiation, one can prove that the 
formal solution (20) is in fact the exact solution of (18). In a practical situation, the data for 
the B.C. can only be specified to within some experimental error, say l > o. Thus, in practice, 
one need only determine a solution which meets the B.C. within l. Even if we were to prove 
that the formal solution is exact, we would still have to figure out where to truncate the series in 
order to evaluate the solution (to within the error l) at various points (x,y) in the square. 
Thus, for concrete applications, not only is a proof of the validity of termwise differentiation 
unnecessary, but also it is not sufficient. The following example illustrates an error analysis. 0 

Example 5. Find a value for N, such that the truncation uN(x,y), at the N-th term, of the 

formal solution u(x,y) in (20) meets the B.C. of (18) to within an error of l. Use the 
Maximum/Minimum Principle to analyze the difference between two truncations uN(x,y) and 

uM(x,y) in the square region. 

Solution. Note that uN(x,O) is the N-th partial sum of the Fourier sine series of 

f(x) = x3(x - 11"). Since f(x) is c1 with f(O) = f( 11") = 0, we know that FSS f(x) converges 
uniformly to f(x) in the interval [0,11"] by Theorem 1 of Section 4.3. More precisely, for 
0$ x $ 11", we have (where an is given by (19)) 

Ix3(x - 11") - uN(x,O) I = I t ansin(nx) I $ t I an I 
n=N+l n=N+l 

$ 1211" t n-3[1 + 8/(1I"2n2)] $ 2411" t n-3 , 
n=N+l n=N+l 
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2 2 00 -3 Ioo -3 where we have used the fact that 1 + 8/( 1f' n ) < 2, for n ~ 1. Since l n ~ x dx 
n=N+l N 

= !N-2, we get I x3(x - 1f') - uN(x,O) I ~ 121f' N-2. Thus, it suffices to choose N ~ (121f'/ f)I/2, 

in order that uN(x,y) meet the B.C. of (18) to within an error of f. One would also like to 

know that if two solutions differ by at most f on the boundary, then they differ by at most f 
inside the square. Since the difference of two harmonic functions is harmonic, this is a direct 
consequence of the Maximum/Minimum Principle. For two truncations uN(x,y) and uM(x,y) of 

the formal solution (20), we have (for M > N) the following estimate of the difference on the 
boundary where y = 0 and 0 ~ x ~ 1f': 

On the other three edges of the boundary, both uM(x,y) and uN(x,y) are zero. Thus, by the 

Maximum/Minimum Principle, we have 

(21) 

Inequality (21) can be improved by a direct estimation, without usin~ the Maximum/Minimum 
Principle. Indeed, when y > 0, we have 2 sinh[n(1f' - y)] = exp[n(1f'- y)] - exp[n(y - 1f')] = 

e-nY(en1f' _e2nYe-n1f') ~ e-nY(en 1f' _e-n1f') = 2 e-ny sinh(n1f'), whence sinh[n(1f'-y)]/sinh(n1f') ~ 
-ny f e . Using this act, we obtain 

Thus, for y > 0, the estimate (22) improves (21) dramatically, since e-(N+l)y decreases 
rapidly as N increases. For example, at the center p = (1f'/2, 1f'/2), choosing N = 5 and 
M = 10, we have, by (21), IUlO(P) - u5(p) I ~ 121f' (1/25 - 1/100) ~ 1.13. However, (22) 

improves this bound by a factor of e -31f' ~ 8 x 10-5. Explicit evaluation, using a calculator, 

yields u5(p) = -1.411748 ... and ulO(P) = -1.411747 ... (i.e., the difference is less than 10-5). 0 
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Example 6 (The compatibility condition for a. Neumann problem). The Neumann problem for a 
rectangle is 

D.E. Uxx + Uyy = 0 o < x < L, 0 < y < M 

B.C. [ 
uix,O) = f(x), uix,M) = g(x) 0 $ x $ L 

ux(O,y) = h(y), ux(L,y) = k(y) 0 $ y $ M . 

(23) 

Show that problem (23) has no solution, unless the following compa.tibility condition holds 

L L M M 
J ° g(x) dx - J ° f(x) dx + J ° k(y) dy - J ° h(y) dy , 

i.e., the integral of the outward unit normal component of Vu around the boundary is O. 

Solution. If u(x,y) is a solution of (23), then 

M L M L L M 
o = J J (u + u ) dx dy = f f u dx dy + J JUdY dx o 0 xx yy 0 0 xx 0 0 yy 

M L 
= J ° [Ux(L,y) -ux(O,y)] dy + fo [uy(x,M) -uy(x,O)] dx 

M M L L 
= J ° k(y) dy - J ° h(y) dy + J ° g(x) dx - J ° f(x) dx , 

(24) 

where we have used the Fundamental Theorem of Calculus, and the fact that we may change the 
order of integration (d. Appendix A.2). 0 . 

Remarks. (1) Alternatively, some readers may recognize that the compatibility condition is an 
immediate consequence of the following special case of Green's theorem, 

J C Vu' n ds = J C Ux dy - uy dx = H R (uxx + Uyy) dxdy , 

i.e., the flux of the gradient of u through the boundary is the integral of ~u in the interior. 
This result holds for domains R of finite extent which are bounded by a finite number of regular, 
simple closed curves C. Hence the compatibility condition is necessary in order to solve the 
Neumann problem for such domains. 

(2) If a solution of (23) exists, it is not unique, since one can always add a constant to a 
solution to obtain another solution. However, in Problem 9, we lead the reader through the 
demonstration that any two solutions of (23) must differ by a constant. Also, while it is 
implicitly required that u and u be continuous on the closed rectangle, we do not demand x y 
that the second partials of u extend continuously to the closed rectangle. 0 
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Example 7. Find the product solutions X(x)Y(y) of the D.E. and homogeneous B.C. of the 
problem. 

D.E. Uxx + Uyy = 0 

[ 
u/x,O) = f(x), 

B.C. 
ux(O,y) = 0, 

O<x<L, O<y<M 

uy(x,M) = 0 0 ~ x ~ L (25) 

ux(L,y) = 0 0 ~ y ~ M. 

Solution. Recall that any product solution of the D.E. must be of one of the forms (1), (2) or 
(3). We first show that there is no nonzero Case 2 product solution which meets the last two 
B.C .. In Case 2, we have ux(O,y) = b(cl - c2)(dlcos(by) + d2sin(by», whence the B.C. 

ux(O,y) = 0 yields cl = c2 or dl = d2 = O. Then 0 = ux(L,y) 

= bcl(ebL -e-bL).(dloos(by) + d2sin(by» implies cl = 0 or dl = d2 = O. Thus, in Case 2, 

the last two B.C. force the product solution to vanish. In Case 1, 0 = ux(O,y) yields 

0= bc2(dleby + d2e-by), whence c2 = 0 or dl = d2 = O. Also, 0 = ux(L,y) 

= -bclsin(bL)(dleby + d2e-by) implies that, in order to avoid a trivial solution, we must have 

sin(bL) = 0 or b = n7r/L, for integers n ~ 1. Also, uy(x,M) = 0 implies dlebM - d2e-bM = 

O. Thus, dleby + d2e-by = e-bM(dlebMeby + d2eb(M-y» = e-bM(d2e-bMeby + d2eb(M-y» 

= 2 e -bMd2cosh[b(M - y)]. Thus the Case 2 product solutions which meet the three 

homogeneous B.C. are the constant multiples of 

un(x,y) = cos(ll7I'x/L)oosh[n7r(M - y)/L] , n = 1,2, .... (26) 

The only Case 3 product solutions (cl + c2x)(dl + d2y) which meet the homogeneous B.C. of 

(25) are constant (d. Problem 6), and we can include these in (26) by allowing n = O. 0 

N 
Example 8. Solve problem (25) when f(x) = In=l ancos(n7rX/L), a finite cosine series without a 

constant term tao. Why must the constant term be zero in order that a solution should exist? 

N 
Solution. Let u(x,y) = In=l Anun(x,y), where un is given by (26). Then, by the superposition 

principle, u satisfies the D.E. and the homogeneous B.C. of (25). Note that 

N 

U (x,O) = \' -An(n7r/L) sinh(n7rM/L)cos(n7rX/L) . 
y In=l 

(27) 
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This is f(x), if 

An = -anL [ll1r sinh(ll1rM/L)]-l, n = 1,2, ... , N. (28) 

Observe that since (27) has no constant term, (27) can agree with f(x) , only if f(x) has no 
L 

constant term. Also, by Example 6, !3.0 = t f 0 f(x) dx must vanish in order for a solution to 

exist. For each constant Ao, we obtain a solution 

N 

Ao + In:1 An cos(ll1rx/L)cosh[ll1r(M - y)/L], (29) 

where the An are expressed in terms of the given an by (28). By Problem 9, all solutions of 

N 
(25) are of the form (29), when f(x) = In:1 ancos(ll1rx/L). 0 
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Surrunary 6.2 

1. The Dirichlet problem for the rectangle: Suppose that an' bn, cn and dn are the Fourier sine 

coefficients (which are assumed to vanish for n > N) of f(x), g(x), h(y), and k(y), respectively. 
Then by the superposition principle, the solution of the Dirichlet problem 

is 

where 

D.E. uxx + Uyy = 0 o < x < L, 0 < y < M 

[ 
u(x,O) = f(x), 

B.C. 
u(O,y) = h(y), 

u(x,M) = g(x) 

u(L,y) = k(y) 

u(x,y) = 2::=J Ansin(n1lX/L) sinh[ntr(M - y)/L] 

+ Bnsin(n1lX/L) sinh(n1lX/L) 

+ Cnsin(ntry /M) sinh[ntr(L - x)/M] 

+ Dnsin(ntry /M) sinh(n1lX/M)] , 

An = an/sinh(ntrM/L) Bn = bn/sinh(ntrM/L) 

Cn = cn/sinh(ntrL/M) Dn = dn/sinh(ntrL/M). 

(Sl) 

(S2) 

Note that the above functions f(x), g(x), h(y), k(y) all vanish at the endpoints of the intervals on 
which they are defined (i.e., the function which they define on the boundary of the rectangle is 
zero at the corners). In the event that the given function on the boundary does not vanish at the 
corners, one can subtract, from u(x,y), a harmonic function with the given values at the corners 
(cf. Example 1), to obtain a related problem with a boundary function which vanishes at the 
corners. 

2. The Maximum/Minimum Principle and the approximation of boundary functions: For 
rectangles, the Maximum/Minimum Principle states that the maximum (and minimum) of a 
function u(x,y), which is continuous on a closed rectangle D: 0 $ x $ L, 0$ y $ M and which is 
harmonic in the interior D, must achieve its maximum and minimum values on the boundary 
(i.e., on one of the four edges). As a consequence, if one uniformly approximates (say to within an 
error f) the given boundary functions, by functions of the form in (Sl), then the solution of the 
Dirichlet problem for the approximate boundary functions will be within f of the exact solution 
(if it exists) throughout the interior of the rectangle. In other words, small changes in the 
boundary functions induce small changes in the solutions (if they exist). 
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3. The Neumann problem: The Neumann problem for a rectangle is 

D.E. Uxx + Uyy = 0 

jUy(X'O) = f(x), 

B.C. 
ux(O,y) = h(y), 

o < x < L, 0 < y < M 

uy(x,M) = g(x) 0 $ x $ L 

ux(L,y) = k(y) 0 $ y $ M . 

The problem (S3) has no solution, unless the following compatibility condition holds 

L L M M J 0 g(x) dx - J 0 f(x) dx + J 0 k(y) dy - J 0 h(y) dy = 0 , 
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(S3) 

(S4) 

i.e., the integral of the outward unit normal component of iu (around the boundary) is o. 
Neumann problems are considered in Examples 7 and 8. 

Exercises 6.2 

1. Verify that if the Case 2 product solution of Uxx + Uyy = 0 (cf. (2)), namely 

u(x,y) = (c1ebx + c2e-bx)(d1cos(by) + d2sin(by)) (b > 0), 

satisfies the B.C. u(O,y) = 0 and u(L,y) = 0, then u(x,y):: o. 

2. Solve the problem 

D.E. uxx+uyy=O 0< x < L, o <y< M 

{ u(x,O) = f(x), u(x,M) = g(x) O$x$L 
B.C. 

u(O,y) = h(y), u(L,y) = k(y) O$y$M, 

(a) when f(x) = 9 sin(871X/L), g(x) = 0 and h(y) = k(y) = 0 

(b) when f(x) = 0, g(x) = sin(7IX/L) and h(y) = k(y) = 0 

(c) when f(x) = 9 sin(871X/L), g(x) = sin(7IX/L) and h(y) = k(y) = 0 

(d) when f(x) = g(x) = 0 and h(y) = 9 sin(87r)'/M) and k(y) = sin(7r)'/M). 

3. Solve the problem 

D.E. Uxx + Uyy = 0 

{
U(X'O) = sl.·n(x), 

B.C. 
u(O,y) = sm(y), 

o < x < '/1", 0 < y < '/I" 

u(x,'/I") = sin (x) 0 $ x $ '/I" 

u('/I",y) = sin(y) 0 $ y $ '/1". 
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4. (a) Find a function of the form U(x,y) = a + bx + cy + dxy, such that U(O,O) = 0, 
U(I,O) = 1, U(O,I) = -1, and U(I,I) = 2. 

(b) Use the answer in (a) to solve the problem 

D.E. Uxx + Uyy = ° ° < x < 1, ° < y < 1 

{
U(X,O) = 3 sin(mc) + x, u(x,l) = 3x -1 ° ~ x ~ 1 

B.C. 
u(O,y) = sin(27ry) - y, u(l,y) = Y + 1 ° ~ Y ~ 1 

lint. Solve the related problem for v(x,y) = u(x,y) - U(x,y). 

5. (a) Show that the formal solution of the problem 

D.E. Uxx + Uyy = ° ° < x < 1r, o<y<1r 

{U(X,O) = 0, u(x,1r) = x( 1r - x) O~X~1r 
B.C. 

u(O,y) = 0, u( 1r,y) = ° O~y~1r 

is 

(b) Estimate the number of terms of the formal solution which are needed to approximate the 
B.C. to within an error of .01. 

(c) It turns out that the formal solution in part (a) is actually the exact solution of the Dirichlet 
problem. Will the truncation, in part (b), of the formal solution be within .01 of the exact 
solution throughout the interior of the square? Explain why. 

6. (a) Verify that if the Case 3 (cf.(3)) product solution u(x,y) = (c1 + cr:)(d1 + d2y) meets 

the B.C. ux(O,y) = ° and uy(x,M) = 0, then u(x,y) = c1d1. 

(b) Show that a (harmonic) function of the form U(x,y) = a + bx + cy + dxy is a Case 3 
product solution, it and only if ad - bc = 0. 

7. (a) Find a solution of the Neumann problem 

D.E. 

B.C. 

Uxx + Uyy = ° 

1 Uy(x,O) : cos(x) - 2cos2(x) + 1, 

ux(O,y) - 0, 

(b) By adding a constant, find a solution such that 

° < x < 1r, 

uy(x,1r) = ° 
uy(1r,y) = ° 

u(O,O) = 0. 

o<y<1r 
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8. (a) Find a formal solution of the Neumann problem 

D.E. Uxx + Uyy = 0 0 < x < L, 0 < y < M 

{
u (x,O) = 0, u/x,M) = g(x) 0 ~ x ~ L 

B.C. y 
ux(O,y) = 0, ux(L,y) = 0 0 ~ y ~ M , 

L 
given that g(x) is continuous and J og(x) dx = o. 

L 
(b) Why is the assumption J 0 g(x) dx = 0 needed in (a) ? 

9. In this problem we demonstrate that, given two solutions u1(x,y) and u2(x,y) of the 

Neumann problem (23), the difference u(x,y) = u1(x,y) - u2(x,y) is constant. 

(a) Explain why the difference u solves (23) with homogeneous B.C. (f = g = h = k = 0). 

(b) Show that (uux)x + (uuy)y = (ux)2 + (uy)2. 
(c) Integrate the identity in (b) over the rectangle (0 ~ x ~ L, 0 ~ y ~ M) to obtain 

J M JL [(u )2 + (u )2] dxdy = JM [u(x,y) Ux(x,y)JIX=L dy + JL [u(x,y) Uy(x,y)JIY=M dx. (*) 
o 0 x y 0 X= 0 0 y= 0 

(d) Use (a) and (*) to deduce that the left side of (*) is o. Conclude that Ux = uy == 0, and 

so u must be identically constant. 

10. Using the same procedure as in Problem 9, prove that the Dirichlet problem for the rectangle 
has at most one solution, such that u, Ux and uy extend continuously to the boundary. 
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6.3. The Dirichlet Problem for Annuli and Disks 

In order to solve the Dirichlet problem when the region D is an annulus or a disk, it is 
most natural to use polar coordinates. Polar coordinates (r,O) of a point in the plane are related 
to its Cartesian coordinates (x,y) by the formulas 

x = r cosO and y = r sinO. (1) 

For any fixed point (x,y), r equals (x2 + y2)t, and there are infinitely many values for ° for 
which equations (1) hold. For (x,y) '" (0,0), all these values of ° differ by 211', but there is a 
unique value for ° which lies in the interval (-11',11'1. (Alternatively, one could use the interval 
[0,211').) Thus, (1) defines a one-t<H>ne correspondence between the punctured plane (i.e., the 
plane minus the origin) and the set of pairs (r,O) such that r > ° and -11' < 0 ~ 11'. This 
correspondence fails at the origin, where r = ° but ° is undetermined. Note that as a moving 
point (x,y) crosses the negative x-axis, ° suffers a jump of 211'. Thus, ° is not a continuous 
function at points on the negative x-axis. If we had restricted ° to the interval [0,211'), then the 
discontinuities would occur on the positive x-axis, but there is no way of defining ° so that it is 
continuous everywhere on the entire punctured plane. There must always be a curve of 
discontinuity which issues from the origin. If the curve of discontinuity is removed from the 
punctured plane, then the transformation (1) will be smoothly invertible on the resulting region. 
For example, if the curve of discontinuity is the nonpositive x-axis and the range of ° is chosen 
to be (-11',11'), then for any point (x,y) which is not on this curve of discontinuity, we can define 
the (smooth) inverse transformation of (1) by 

2 2 1 
r = (x + y )~ , y ~ ° 

y < 0. 

Nevertheless, polar coordinates cannot be well-defined in any region which includes the origin. 
Thus, solutions of Laplace's equation in terms of polar coordinates must be reexamined in 
Cartesian coordinates to see if they are valid about the origin. 

Let u(x,y) be a C2 function which is defined in a region on which polar coordinates (r,O) 
have been chosen such that (1) has a smooth inverse. In terms of these polar coordinates, we let 
U(r,O) == u(x,y) = u(rcosO,rsinO). In this chapter, we refrain from the popular abuse of notation, 
"u(r,O) = u(x,y)". It is not true that Uxx + Uyy = Urr + U 00' Instead, we have the following 

result. 

Proposition 1. With the above notation, 

-1 -2 
Uxx + Uyy = Urr + r Ur + r U 00 (r > 0). (2) 
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Proof. By the chain rule, we have 

Ur = Ux xr + uy y r = Ux cosO + uy sinO and U 0 = Ux Xo + uy YO = -ux rsinO + uy rcosO. 

Hence, 

and 

Urr = u cos20 + 2u sinO cosO + u sin20 xx xy yy 

U 00 = -(uxx Xo + uxy yO) r sinO - Ux r cos 0 + (uyxXO + Uyy YO) r cosO - uy rsinO 

= r2 (uxx sin 20 - 2 uxy cos 0 sin 0 + Uyy cos20) - r( Ux cos 0 + uy sin 0). 

h -2 -1 
T us, Urr + r UOO = u + u - r U. 0 xx yy r 

The Dirichlet problem for the annulus 

For two fixed positive numbers ri and ro (ro > ri), let the annulus A be the open 

region between the inner circle r = ri and the outer circle r = ro (cf. Figure 1). Unlike a disk 

about the pole (0,0), the annulus does not include the pole, and hence we need not worry about 
the lack of uniqueness of polar coordinates at r = O. 

x 

Figure 1 

Given continuous functions f and g on the outer and inner circles, respectively, the Dirichlet 
problem asks for a harmonic function u(x,y) on A, which extends continuously to the boundary 
of A, so that u = f on r = ro and u = g on r = rj" When formulating the Dirichlet problem 

in terms of polar coordinates where -'Jr < 0 ~ 'Jr, we must ensure that the solution, u(x,y) or 
U(r,O), that we obtain, does not jump when (x,y) crosses the negative x-axis. For example, by 
Proposition 1, the function U(r,O) = 0 is harmonic in any open region which does not include 
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points of the negative x-axis, but this function is not harmonic on the annulus A, since it is 
discontinuous on the segment of the negative x-axis between x = -ri and x = -roo One way of 
ensuring that a function U(r,O) gives rise to a harmonic function on A, is to require that U(r,O) 

be a C2 function defined for ri < r < ro and for all real 0, such that the right side of (2) is 0, 

and U(r,O) is periodic in ° of period 211" (Le., U(r,O + 211") = U(r,O)). Fot example, the 
function U(r,O) = r2cosO sinO meets these requirements, and it yields the harmonic function 
u(x,y) = xy. With the above in mind, we formulate the Dirichlet problem for the annulus in polar 
coordinates, as follows: 

1 
U(ro,O) = f( 0) , 

B.C. 
U(ri'0) = g(O) , 

f(O+ 211") = f(O) 

g(O + 211") = g(O) 

P.C. U(r,O + 211") = U(r,O), ri < r < ro . 

(3) 

Here, ° is unrestricted (Le., -00 < 0< 00), and "P.C." stands for "periodicity condition". Note 
that the continuous functions f and g must be periodic (of period 211"), or else the P.C. 
cannot be met. 

As usual, we first seek product solutions of the D.E. of the form U(r,O) = R(r) T(O), 
using separation of variables. Inserting this form into the D.E. in (3), we obtain 

R"(r) T(O) + r-1R/(r) T(O) + r-2R(r) T"(O) = 0 

r2R"(r) + rR/(r) = -f(~f) = c = ± b2 (b ~ 0). 
R(r) 

The ODE for T( 0) is T"( 0) ± b2T( 0) = O. We only get periodic solutions of period 211", when 
b = nand c = +b2 = n2, for n = 0, 1, 2, .... In this case, we obtain 

where an and bn are arbitrary constants. The ODE for R(r) is 

r2R"(r) + rR' (r) - n2R(r) = 0, which is an instance of Euler's equation and is solved by 

assuming that R(r) is of the form rm. Substituting this form into the ODE, we get 
r2m(m_l)rm- 2 + rmrm- 1 - n2rm = 0 or (m2_n2)rm =0. Thus, rm is a solution if m = ±n. 
For n ~ 1, the general solution is 
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n = 1,2,3, ... , 

" 

and when n = 0, 

Ro(r) = Co + dolog(r), 

(cf. Example 1 of Section 6.1). Multiplying the above expressions for Tn(O) and Rn(r), we 

obtain the following family of product solutions of the D.E. and P.C. of (3) : 

Uo(r,O) = ao + ltolog(r) 

(4) 

By the superposition principle, a more general solution of the D.E. and P.C. of (3) is 

N 

U(r,O) = Uo(r,O) + In=1 Un(r,O). (5) 

Suppose that f( 0) and g( 0) are finite Fourier series of the form 

(6) 
N 

g( 0) = !Co + In=1 Cncos(nO) + Dnsin(nO). 

Comparing Fourier coefficients in the equations U(ro'O) = f(O) and U(ri'0) = g(O), we obtain 

the following pairs of equations 

ao + ltolog(ro) = !Ao 

ao + ltolog(ri) = !Co 
(7) 

for n = 1, 2, 3,.... In the first pair, we wish to solve for ao and lto in terms of the given 
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constants Ao and Co, and similarly we wish to solve the other pairs. Recall that the solution of 

the arbitrary system (assuming ad - bc f 0) 

{
ax + by = e 

cx + dy = f 

Thus, we obtain, with Q == ro/ri ' 

i Colog ro - i Aolog ri 
log Q 

is {
X = (ed - fb) / (ad - bc) 

y = (ad - ce)/(ad - bc). 

1 A 1 C 2" 0- 2" 0 

ao = log Q 

(8) 

This provides us with the constants an' bn, cn' dn in terms of the given Fourier coefficients 

An' Bn, Cn, Dn of f( 0) and g( 0). In summary, we state the following result. 

Proposition 2. The solution of (3), where f( 0) and g( 0) are given by (6), is 

N 

U(r,O) = ao + aolog r + Ln=l {[anrn + anr-nl cos (nO) 

+ [bnrn + ,anr-nl sin (nO)}, 

where an' an' bn, and ,an are defined by (8). 

Example 1 (A steady-state temperature problem for the annulus). Solve the problem 

D.E. 

B.C. 

P.C. 

-1 -2 
Urr + r Ur + r U 00 = 0, 

{ 
U(1,0) = 3 + 4cos(20) 

U(2,0) = 5sin( 0) 
U(r,O + 211"} = U(r,O). 

1<r<2 

(9) 

(10) 
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Solution. As we have seen, separation of variables and the superposition principle lead us to a 
solution of the form (9). We could then simply use the formulas (8) with Ao = 6, A2 = 4, 

C1 = 5 and all other An' Bn, Cn, and Dn equal to O. Note that Q:: ro/ri = 2. Rather than 
using the formulas (8), as indicated in Proposition 2, we could also appeal to the method by 
which the formulas (8) were derived. Specifically, if we equate the Fourier coefficients in the 
B.C. with those of U(r,fJ) in (9), using r = 1 and r = 2, then we obtain (cf. (7)) 

{ 
ao + O'olog(l) = 3 

ao + O'olog(2) = 0 

{ 
bl + (31 = 0 

2b1 + !(31 = 5 

Solving these systems, we obtain ao = 3, 0'0 = -3/log(2), b1 = 10/3, (31 = -10/3, a2 = -4/15, 

0'2 = 64/15. All other systems in (7) have solutions zero. The solution of (8) is then 

U(r,fJ) = 3 - 310g(r)/log(2) + (lOr/3 -10r-1 /3) sin( fJ) 

+ (-4r2/15 + 64r-2/15) cos(2fJ). 0 

The Dirichlet problem for the disk 

The Dirichlet problem for the disk of radius ro and center at (0,0) can be expressed as 

D.E. Uxx + Uyy = 0 

B.C. U(ro,fJ) = f(fJ), f( fJ + 211") = f( fJ) , 
(11) 

where U(r,fJ) = u(x,y) = u(rcosfJ,rsinfJ) and f(fJ) is a given periodic, continuous function of 
period 211". 

Remark. In (11) we do not write the D.E. in terms of polar coordinates, because it would not 

make sense at the pole (0,0) which is in the disk (x2 + y2)! < roo One's instinct is to solve 

problem (11) just as in the case of the annulus, but in order to avoid the singularity at the pole 
in (9), set O'n = 0 for n ~ 0 and (3n = 0 for n ~ 1. Then one determines the an and bn 
from the B.C. that now only involves f( fJ). (For the time being, we assume that f( fJ) is a finite 
Fourier series.) While -this approach does yield the solution of (11), there is a potential 

difficulty_ Functions which appear to be C2 in polar coordinates, might not be C2 at (0,0). 
For example, the function U(r,fJ) = r seems nice, but in terms of Cartesian coordinates, we get 
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u(x,y) = (x2 + :y2)t, which is not C1 at (0,0), because the graph z = u(x,y) is a cone with 
vertex at (0,0,0). Also note that the functions cos(nO) and sin(nO) (for n = 1,2, ... ) are not 
continuously definable at (0,0), since each of these functions has vafues ranging from -1 to 1 

on the rays issuing from the origin. On the other hand, r2cos(20) = x2 - y2 is a COO function. 

We now show that in general rncos(nO) and rnsin(nO) are polynomials in x and y, and hence 

are Coo. Let z = x + iy = r cosO + ir sinO = reiO (cf. Euler's formula (26) of Section 1.1). 
Then, we have De Moivre's formula [after Abraham De Moivre (1667-1754), French-born 
English mathematician and a founder of probability theory] : 

(12) 

In other words, rncos( 0) and rnsin(nO) are the real and imaginary parts of the product 
(x + iy) ... (x + iy) [n factors]' But, if this product were multiplied out, the real and imaginary 
parts would be n-th degree pofynomials in x and y. These polynomials are harmonic. Indeed, 

they are the functions rncos(nO) and rnsin(nO) which are harmonic for r > 0, and there is no 
difficulty at the origin, since the second partials of the polynomials are continuous at (0,0.). 0 

Proposition 3. In the Dirichlet problem (11), if 

N 

f( 0) = ~ao + In=1 ancos(nO) + bnsin(nO), (13) 

then the solution of ( 11) is 

N 

U(r,O) = ~ao + In=1 (r/ro)n[ancos(nO) + bnsin(nO)]. (14) 

Proof. It follows from the above remark and the superposition principle, that (14) defines a 
harmonic function throughout the disk. Note that if we set r = ro in the right side of (14), 

then the result is f( 0), whence the B.C. of (11) is met. By the uniqueness theorem for the 
Dirichlet problem (d. Theorem 1 of Section 6.2), (14) is the only solution of (11). 0 

Example 2. Solve the Dirichlet problem for the disk of radius 1: 

D.E. uxx + Uyy = ° 
B.C. U(I,O) = -1 + 8cos2(0) 

P.C. U(r,O + 211') = U(r,O) . 

r < 1 

(15) 
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Solution. The Fourier series of -1 + 8cos2(0) is 3 + 4cos(20), which of the same as the 
function of the first B.C. in Example 1. In spite of the fact that the solution of (10) in 
Example 1 satisfies the B.C., it is not the solution of (15), because the terms involving log(r), 

r-1, r-2 are undefined at the center of the disk. Instead, we use (14) to obtain the correct 

solution U(r,O) = 3 + 4r2cos(20). 0 

The Poisson Integral Formula 

We now derive the Poisson Integral Formula (cf. (20) below) which expresses the solution 
(14) in terms of an integral. We will prove that this formula yields a solution of the Dirichlet 
problem (11), even when the Fourier series of the continuous function f( 0) in (11) has 
infinitely many nonzero terms. So far, we have not proven that (14) is valid when N = 00, since 
the superposition principle can fail for infinite linear combinations, as we have seem in previous 
chapters. However, as a consequence of the Poisson Integral Formula, we find that (14) is in fact 
valid for r < ro' even if N = 00. While the following informal derivation of the Poisson Integral 

Formula is not a substitute for a rigorous proof (cf. Theorem 1 below), this derivation explains 
how the formula arises. 

Proceeding unrigorously, taking N = 00 in (14), and expressing the Fourier coefficients 
an and bn of f as integrals, we get 

Combining the integrals, we have 

U(r,O) = ~ f1!' f(t) { ~ + l:=l (r/ro)n [cos(nt)cos(nO) + sin(nt)sin(nO)] } dt 

=~ f1!' f(t) {~+ l:=l (r/ro)ncos[n(O-t)]} dt. (16) 

We can sum up the series in (16), as follows. Let r == (r/ro)[cos(O - t) + i sin(O - t)]. The 

expression in braces in (16) is then the real part 

(17) 

For I rl < 1, the geometric series l:=l rn (with complex terms rn) converges to r/(1 - r), 

and (17) is 

Re[~ + r/(1 - r)] = ~ Re[(1 + r)/(1 - r)] . 
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For any complex number z = a + ib f. 0, we have l/z = z/ I z 12, where z = a - ib. Thus, 

Since the last term is purely imaginary, we obtain 

Re[~] 1 - I rl2 1- (r/ro)2 

1 - r 11 - rl2 1 - 2 
-(r+r)+lrl 

2 2 
ro - r 

P(r, ro' O-t) . (18) = 2 2 -
ro 2rrocos(0 - t) + r 

The expression P(r, ro' 0 - t) is known as the Poisson kernel. Combining (16), (17) and (18), 

we get the Poisson Integral Formula 

1 J'Tr U(r,O) = 2'Tr -'Tr P(r, ro' O-t) f(t) dt (19) 

Remark. While the above argument suggests that (19) solves the Dirichlet problem (ll), it 
does not constitute a proof, because we have assumed that (14) is valid even when N = 00, and 
we have interchanged the integral and the infinite sum in (16), without justification. Before 
giving the proof, we make a number of observations. The denominator of P(r, ro' 0 - t) in (18) 

is the square of the distance from (r,O) to (ro,t) in polar coordinates (simply compute 

IreiO -roeit I2, using the formula Izl2 = zz). Thus, P(r, ro' t - 0) is a COO function of (r,O), 

as long as r < roo By Leibniz's rule (cf. Appendix A.3), we are free to differentiate U(r,O) [with 

respect to rand 01 as many times as we like, by differentiating P(r, ro' 0 - t) under the 

integral. In particular, we could check that U(r,O) is harmonic (for r < ro) by verifying that 

P(r, ro' 0 - t) satisfies the D.E. of (11) as a function of rand 0, for each fixed t. (Since we 

already know that P(r, ro' 0 - t) defines a smooth function at the pole, there is no difficulty 

there.) This verification is as straightforward as it is tedious, and we will leave it to the diligent 
reader. The fact that P is harmonic is believable since it is twice the sum (although infinite) of 
harmonic functions in (16). Alternatively, for those familiar with complex variable theory, we 

have already exhibited P as the real part of an analytic function of r = (r/ro)ei({}-t), r < ro 

in (18), whence P must be harmonic. At any rate, the fact that P is harmonic together with 
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Leibniz's rule gives the result that U(r,O) in (19) is harmonic for r < roo Thus, in order to 

establish the following result, we need only to check that U(r,O) extends continuously to the 
given function f( 0) on the boundary r = roo 0 

Theorem 1 (The Poisson Integral Formula). Let f( 0) be a continuous periodic function of 
period 21l'. Define 

_ 1 f1l' (r02 - r2) f(t) 
U(r,O) = 2ir 2 2 dt 

1l' -1l'r -2rr cos(O-t) + r o 0 

(20) 

and 
(21) 

Then U (r, 0) is harmonic on the open disk r < r 0' and continuous on the closed disk r $ r o. 

In other words, U(r,O) solves the Dirichlet problem (11). 

Proof. By the above remarks, U(r,O) is harmonic in the open disk. To obtain the continuity of 
U(r,O) on the closed disk, we must show that, given any boundary point (ro'Oo)' U(r,O) 

approaches f( 00) ,as (r,O) approaches (ro'Oo)' We first need to show that 

2 2 
1 f1l' ro - r 
2 2 2 dt = 1, 

1l' -1l' r - 2rr cos( ° - t) + r o 0 

(22) 

for r < roo Observe that the integral is independent of 0, since changing ° only serves to 

translate the integrand (a periodic function of t of period 21!') without changing the integral. 
Thus, the left side of (22) is a harmonic function (by the above remark with flO) == 1) which is 
independent of 0, and thus must be of the form Clog r + K. However, the value of the left side 
(22) is clearly 1, when r = 0, and hence C = 0 and K = 1 (Le., (22) holds for all (r,O) with 
r < ro)' Multiplying by the constant f( 00) in (22), we obtain, 

(23) 

and subtracting corresponding sides of (23) from (20), we obtain 

1 f1l' U(r,O) -f(Oo) = (21l')- -1l' P(r, ro' O-t) [f(t) -£(Oo)J dt. (24) 

To demonstrate the continuity of U(r,O) at (ro'Oo), we must show that the right side of (24) 
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can be made arbitrarily small, by requiring that (r,O) be sufficiently close to (ro'Oo). The 

interval [-11",11"] of integration in (24) may be replaced by the new interval [00 - 11",00 + 11"] (of 

length 211") without changing the value of the integral, since the integrand is periodic of period 
211". For any 8 with 0 < 8 < 11", we split the new interval into three pieces, namely 

We denote the integral, with respect to t, of P(r, ro' 0 - t) [f(t) - f(Oo)] over the interval ii' 

by 11' and define 12 and 13 similarly. To estimate 12, let M( 8) be the maximum of 

I f( t) - f( 00) I as t ranges over the interval i2 of length 28 about 00. Since f is continuous at 

00, M( 8) can be made arbitrarily small by choosing 8 sufficiently small. We have 

1121 = I J P(r, ro' O-t) [f(t) -f(Oo)] dtl $ M(8)j. P(r, ro' O-t) dt $ M(8) , (25) 
12 12 

where in the last inequality we have used (22) and the fact that P(r, ro' 0- t) ~ 0 (for r < ro). 

To estimate 11 and 13, we use 1 - cos x = x2(1/2 - x2/24 + ... ) ~ x2/24 for Ixl $ v'lT. To 

prove this, note that for x2 < 12 the series 1/2 -x2/24 + x4/720 - ... is alternating with terms 

of decreasing absolute value, whence 1/2 - x2/24 (which is ~ 1/24 for Ixl < v'IT) 
underestimates the entire series. Hence, we obtain (for 10- t I < v'IT) 

2 2 2 2 
ro -2rorcos(0-t) + r = (ro -r) + 2ror[1--cos(0-t)] ~ 2ror[1-cos(0-t)] ~ ror(O-t) /12, 

Thus, for I O-tl < v'IT (and since (ro + r)/ro < 2 for r < ro) 

12(r 2 - r2) 24(ro - r) 
P(r,ro,O-t) $ 0 2 < 2 

ror(O - t) r(O- t) 
(26) 

Let M be the maximum of I f( a) I for -11" $ a $ 11". (M exists since f(x) is continuous on the 
closed interval [-11",11"].) Then, 1£( t) - f( 00 ) I $ 2M. Suppose that 0 is within a distance of !8 

from 00 (Le., 10- 00 I < ~8), where ~8 < v'IT - 1I":::J .175. Then, for t in i1 or i3, we have 

Thus, we may use (26) to deduce that 

1 j 24M(ro - r) 
1111 $ 211" . P(r, fo' O-t) If(t) -f(Oo)1 dt < ----=~-

11 f 82/4 ' 
(27) 
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and the same bound holds for 113 1. Hence, from (25) and (27), we have 

(28) 

Given any e > 0, we can choose 8 > ° so small that M( 8) < t (. Then, choosing 0 close to 00 

so that 10 - 00 I < min( to, JIT - 11"), and choosing r close enough to ro so that 

192(ro - r)/(r82) < te, it follows from (28) and (24) that I U(r,O) - f( 00) I ~ (. In other words, 

we can make U(r,O) arbitrarily close to f(Oo), by choosing 0 sufficiently close to 00 and r 

sufficiently close to (but less than) roo 0 

Even for simple functions, the integral (20) may be difficult to evaluate exactl~, but by 
numerical integration, say by Simpson's rule, one can find an approximate value for (20) for an~ 
given (r,O). If it is possible to represent f(O) by a finite Fourier series, then the solution of (11) 
is more conveniently expressed by (14) than by (20). Indeed, in this case, (14) would have to 
be the result of the integration in (20), by the uniqueness theorem for the Dirichlet problem for 
the disk, as the following example illustrates. 

Example 3. Show that for r < 1, we have 

-.l f11" (1 - r2) sin(t) 
2 2 dt = r sinO . 

11" -11" 1 - 2rcos (0 - t) + r 
(29) 

Solution. Both sides of (29) are solutions of the Dirichlet problem for the disk with 

radius ro = 1 with B.C. f( 0) = sin( 0). By uniqueness for the solution of this problem, the two 

sides must be equal for r < 1. Incidentally, (29) is not always valid for r > 1. Indeed, for 

r > 1, the left side is -r-1sin 0, as is shown in Problem 13. 0 

The Mean-Value Theorem and the regularity of harmonic functions 

We now explore some remarkable consequences of the Poisson Integral Formula. 

Theorem 2 (The Mean-Value Theorem). Let u be a harmonic function on some open region 
R. Then the value of u at the center of any closed disk D contained in R is the average (or 
mean) of the values of u on the circular boundary of D. 

Proof. By introducing polar coordinates with pole at the center of the disk, we may assume that 
D is the disk r ~ roo On the boundary of D, u is U(ro'O). Thus, the Poisson Integral Formula 

(20), with r = 0, yields 

1 f11" u(O,O) = U(O,O) = 21r _/(o,ro'O - t)U(ro,t) dt 1 f11" ="2 U(ro,t) dt, 
11" -11" 

(30) 
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since P(O,ro'O - t) = 1 by (18). The final integral is the mean-value (or average) of u on the 

boundary of D. 0 

Although a harmonic function u on an open region R is only required (by definition) to 

be C2, u is actually COO on R, as the following theorem shows. 

Theorem 3 (Regularity of harmonic functions). If u is harmonic on an open region R, then 

u is COO on R. 

Proof. Let p be any point in R and choose polar coordinates (r,O) with p as the pole. 
Suppose that ro is chosen small enough so that the disk r ~ ro is contained in R, and let 

x = r cosO and y = r sinO. Now, P(r,ro'O - t) is infinitely differentiable when viewed as a 

function of (x,y,t) for x2 + y2 < ro 2. Indeed, 

222 r -x -y 
P(r,ro'O - t) = 0 2 2 

[x - rocost] + [y - rosint] 
(31) 

Thus, it follows from repeated use of Leibniz's rule (cf. Appendix A.3) that all of the derivatives 
of u in the disk r < ro can be computed by differentiating under the integral in the Poisson 

Integral Formula. In particular, all of the partial derivatives of u with respect to x and y 

exist at any point p of R, and hence u is COO on R. 0 

Theorem 4 (Infinite series solutions). Let f( 0) be a continuous periodic function of period 211", 
00 

with FS f( 0) = !ao + In=l ancos(nO) + bnsin(nO). Then the the Dirichlet problem 

2 2 1 
(x + Y )2" < ro 

B.C. U(ro'O) = f( 0) 
(32) 

has the (unique) solution U(r,O) given by 

,00 n 
U(r,O) = !ao + /.,n=l (r/ro) [ancos(nO) + bnsin(nO)] (33) 

while U (r 0,0) is defined to be f( 0). (Note that it is not necessary to assume that FS f( 0) 

= f( 0), but if this is the case, then (33) is also valid for r = ro .) 



Section 6.3 The Dirichlet Problem for A nnuli and Disks 379 

Proof. By the uniqueness theorem (cf. Theorem 1 of Section 6.2) and Theorem 1, the solution 
U(r,O) of problem (32) is given by (20) for r < roo Thus, we need only to show that the right 

sides of (20) and (33) are equal. It follows from Theorem 3 that for any fixed r < ro' U(r,O) 

is a COO periodic function of O. Thus, by the convergence theorems of Chapter 4 (e.g., Theorem 1 
of Section 4.2), we know that for fixed r < ro' the Fourier series of U(r,O) converges to U(r,O). 

Thus, it suffices to prove that the Fourier series of U(r,O) is the right side of (33). We compute 
the Fourier coefficients an(r) of U(r,O) : 

1 f7r an(r) = 27r -7r U(r,O) cos(nO) dO 

= [i7r]2 1:11" [1:11" P(r, ro' O-t) f(t) dt] cos(nO) dO 

= [i1l" ] 2 1:7r [1:11" P(r, ro' 0 - t) cos(nO) dO ] f(t) dt 

where we have interchanged the order of integration (cf. Appendix A.2) and used the fact that 

the solution of the Dirichlet problem with boundary function cos(nO) is (r/ro)ncos(nO). A 

similar computation yields the desired result for bn(r). 0 

Remark. Observe that when the n-th term on the right side of (33) is expressed in terms of x 
and y it is an n-th degree polynomial in x and y. Thus, Theorem 4 tells us that a 
function, which is continuous on a closed disk and harmonic in the interior, is equal to a power 
series in x and y (Le., harmonic functions are real analytic in x and y). (We assume that the 
x and y coordinates are chosen so the origin is the center, say p, of the disk.) By a simple 
result of advanced calculus, this power series must be the Taylor series of u at p. Consequently, 
if all of the partial derivatives of u vanish at p, then u must be constant throughout the disk. 
o 
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Summary 6.3 

1. The Laplacian in polar coordinates: For a C2 function u(x,y) on a region such that 
u(x,y) = U(r,O), in terms of polar coordinates, we have 

-1 -2 
Uxx + Uyy = Urr + r Ur + r U 00 . 

2. The Dirichlet Problem for the annulus: The Dirichlet problem for the annulus may be 
expressed in terms of polar coordinates, as follows. 

-1 -2 D.E. Urr + r + r UOO = 0, 

{ 
U(ro' 0) = f( 0), 

B.C. 
U(ri' 0) = g(O), 

P.C. U(r,O + 211") = U(r,O) . 

f( 0 + 211") = f( 0) 

g( 0 + 211") = g( 0) 
(81) 

Here "P.C." stands for "periodicity condition". If f(O) and g(O) are finite Fourier series, then 
the solution of (81) is of the form (cf. Proposition 2) 

N 
U(r, 0) = ao + ll'olog r + In:1 Un(r, 0), (82) 

where 

and the coefficients an' bn, ll'n' and 13n are given in terms of the Fourier coefficients of f( 0) and 

g( 0) by the formulas in (8). 

3. The Dirichlet problem for a disk: The Dirichlet problem for the disk of radius ro and center 

at (0,0) can be expressed as 

D.E. 
2 2 1 

(x + Y )2" < ro 

B.C. U(ro'O) = f(O), f(O + 211") = f(O), 
(83) 

where U(r,O) = u(x,y) = u(rcosO, rsinO) an f( 0) is a given periodic, continuous function. If f( 0) 
is of the form 

N 
f( 0) = !ao + In:1 ancos(nO) + bnsin(nO) , (84) 
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then the solution of (S3) is 

N 

U(r,O) = !ao + In:! (r/ro)n[ancos(nO) + bnsin(nO)]. (S5) 

The solution of (S3) can also be expressed by the Poisson Integral Formula, which in turn can be 
used to justify formula (S5) (for r < ro)' when N = 00 and f( 0) is continuous (cf. Theorem 4). 

4. The Poisson Integral Formula (Theorem 1): Let f( 0) be a continuous periodic function of 
period 211". Define U(ro'O) == f( 0) and set 

1 f1l" (r~ - r2) f( t) 
U(r,O) = 27r 2 dt 

-11" ro - 2rrocos( 0 - t) + r2 
(S6) 

Then U(r,O) is harmonic on the open disk r < ro' and continuous on the closed disk r ~ ro . 

In other words, U(r,O) solves the Dirichlet problem (S3). 

5. The Mean-Value Theorem (Theorem 2): Let u be a harmonic function on some open region 
R. Then the value of u at the center of any closed disk D contained in R. is the average (or 
mean) of the values of u on the circular boundary of D. 

6. Regularity of harmonic functions (Theorem 3): If u is harmonic on an open region R, then 

u is COO on R. Indeed, u is real analytic on R. 

Exercises 6.3 

1. Solve the Dirichlet problem 

-1 -2 D.E. Urr + r Ur + r U 00 = 0 , 1 < r < 2 

B.C. U(2,0) = f(O), U(l,O) = g(O) 

P.C. U(r,O + 211") = U(r,O) 

for the annulus, when 

(a) f( 0) = 1 + 2cosO + cos(20) and g( 0) = sin(20) 

(b) f( 0) = sin20 and g( 0) = sinO cosO 

(c) f( 0) = a and g( 0) = b, where a and b are constants 
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(d) f(O) = a sin(30) and g(O) = b sin(30), where a and b are constants 

(e) f(O) = 1 + 3 cosO-17 sin(80) and g(O) = o. 

2. (a) Show that any harmonic function, defined on the annulus ri < r < ro' which is of the 

form U(r,O) = h( 0) (Le., not depending on r) must be a constant, Le., independent of 0 also. 

(b) Suppose that the harmonic function in (a) is only required to be defined in the upper half 
(0 < 0 < 11") of the annulus. Show that h( 0) need not be constant in this case. If h(O) = a and 
h( 11") = b, then what is h( 0) for 0 < 0 < 11" 1 

3. Solve the Dirichlet problem 

D.E. Uxx + Uyy = 0 

B.C. U(2,0) = f( 0) 

(x2 + i < 4) 

(f(O + 211") = f(O) ), 

for the disk r ~ 2, in the cases where f( 0) is given in the various parts of Problem 1. Why can 
we not just use the answers in Problem 1 to solve the problem here? 

4. (a) Write down the solution of the problem in Problem 3, when f( 0) = tf2 for -11" ~ 0 ~ 11", 
using the Poisson Integral Formula. 

(b) Express the solution in (a) in terms of an infinite series of the form (33) in Theorem 4. Is 
this merely a formal solution, or is it an exact solution ? 

( c) Estimate the number of terms needed in the series in (b) in order to approximate the exact 
solution throughout the disk r ~ 2 to within an error of .01 . 

5. (a) Use (22) to compute the integral J:11" [1 - a cos(x)]-1 dx, where 0 < a < 1. -

(b) Use the Poisson Integral Formula to compute the integral 

J11" 1 
-11" f(x) [1 - a cos(x)]- dx, 

when f(x) is 

(i) cos(nx) n = 0,1,2, ... ( ... ) 3 
1Jl cos X . 

6. Let U1 (r,O) and U2(r,0) solve the Dirichlet problem on the disk r ~ ro with 

U1(ro'0) = f1(0), and U2(r,0) = f2(0). Without appealing to the Maximum/Minimum Principle, 

use the Poisson Integral Formula to deduce that if I f1 (0) - f2( 0) I ~ (, then 

IU1(r,0) - U2(r,0)I ~ ( for r < roo In other words, harmonic functions which are close on the 

circle will be close on the disk. Hint. Use (22) and the fact that P(r,ro,O--t) ~ O. 
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7. (a) Suppose that U(r,O) is harmonic in the disk r < ro' and let V(r,O) == U(Rr,O), where 

R> 0 is a constant. Show that V is harmonic on the disk r < ro/R . 
(b) Assuming that R < 1, use the Poisson Integral Formula and (a) to deduce that 

1 J1I" U(Rr,O) = 27r -11" P(r,ro'O - t) U(Rro,t) dt. 

8. Show that for 0 < r i < r2 < r3, the Poisson kernel (cf. (18)) has the following "convolution" 

property: 

Hint. The left side is a harmonic function of (ri,O) for ri < r3. Apply the Poisson Integral 

Formula to this function on the disk r ~ r 2' 

9. A nearly flat heat conducting plate is in the shape of a disk of radius 5. Assume that the plate 
is insulated on the two flat faces. The boundary of the plate is given a steady temperature 

distribution of f( 0) = 10 rf2, where the central angle ° ranges from -11" to 11". What is the 
steady-state temperature at the center of the plate? 

10. Find solutions U(r,O) of the Neumann problem 

D.E. uxx + Uyy =0 x2 + y2 < ro2 

B.C. Ur(ro'O) = f( 0) 

P.C. U(r,O + 211") = U(r,O) , 

N 
where f( 0) = ~ao + In=i ancos(nO) + bnsin(nO) with N finite and ao = O. Why must we assume 

that ao = 0 ? 

11. To obtain the Neumann problem for the annulus (ri < r < ro)' replace U by Ur in the 

B.C. of (3). Then take f(O) and g(O) to be as in (6). 

(a) Under what condition on Ao and Bo will solutions of this Neumann problem exist? 

(b) Under the condition in (a), find solutions of the Neumann problem for the annulus. 
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Hint. Much work can be avoided by noting that if U(r,O) solves r-1(rUr)r + r-2U OO = 0, then 

V::: rUr solves r-1(rVr)r + r-2V 00 = 0. Thus, solve the Dirichlet problem for V with B.C. 

V(ro'O) = rof(O) and V(ri'0) = rig(O), using the previous formulas (8), then divide by rand 

integrate with respect to r to obtain the desired solutions U of the Neumann problem. 

(c) Let V(r,O) be the difference of any two solutions of a fixed Neumann problem. Show that 

r-1[r(V Vr)]r + r-2(V V 0)0 = (Vr)2 + r-2(V 0)2, using the D.E .. Integrate this result over 

the annulus ri < r < ro with respect to the area element rdrdO to deduce that V must be 

constant. (cf. Problem 9 in Section 6.2). 

12. (a) Show that for r < ro' we have 

(b) Use the result in (a) to deduce that if u is harmonic on the open disk r < ro' continuous 

on the closed disk r ~ ro' and nonnegative, then Harnack's inequality holds: 

r - r r + r 
rO + r u(O,O) ~ U(r,O) ~ rO _ r u(O,O) (r < ro) 
o 0 

(c) Use Harnack's inequality to prove that a nonnegative harmonic function u(x,y), which is 
defined for all (x,y), must be constant. Hint. Consider large ro in (b). 

(d) Use (c) to prove that the graph z = u(x,y) of a nonconstant harmonic function, which is 
defined for all (x,y), must intersect every horizontal plane z = const. (i.e., the ran~e of u is 
the set of all real numbers.). In particular, if there is a constant M such that I u(x,y) I ~ M for 
all (x,y) (i.e., u is bounded), then u:::constant. 

1 f'lr (1 - r2) sin(t) 1 
13. (a) Show that 2i _'" 1 - - - - 2 dt = -r- sin(O) for r> 1. 

II - 2rcos (0 - t) + r 

Hint. Let p = r-1 < 1 and verify that P(r,I,O-t) = -P(p,I,O-t). 

1 f'lr (b) More generally, show that if U(r,O) = 2i -'lr P(r,ro,O---t) f(t) dt for r < ro ,where f(t) is a 

continuous function, then for r > ro ' i7r J:7r P(r,ro,O---t) f(t) dt = - U(r0
2r-1,0) . 

(c) With U(r,O) as in (b), show that V(r,O) = U(ro 2r-1,0) is harmonic for r> ro ,and V(r,O) 

extends continuously to the function f(O) on the circle r = ro' What is lim V(r,O) ? 
r-+oo 
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6.4. The Maximum Principle and Uniqueness for the Dirichlet Problem 

In the previous sections, we have seen that the Maximum/Minimum Principle (or simply, 
Maximum Principle) and its consequence, the uniqueness theorem, are very useful results. 
Without uniqueness, we could not have referred to the solution of the Dirichlet problem, as we did 
many times. Also there are certain places where uniqueness is used in a more subtle fashion. For 
example, the proof of the mean-value theorem (Theorem 2 of Section 6.3) assumes that every 
harmonic function is given in a suitable disk by the Poisson Integral Formula, but this assumes 

uniqueness. For the same reason, in proving that harmonic functions are COO (cf. Theorem 3 of 
Section 6.2) we have used uniqueness. In addition, the Maximum Principle can be used to 
estimate the difference of solutions of Dirichlet problems in terms of the difference in their 
boundary values. This estimation is of great importance in applications (cf. Example 5 of Section 
6.2). Before we prove the Maximum Principle, we first review some essential terminology. 

A subset D of the xy-plane is open if each point of D is the center of some disk (of 
positive radius) which lies entirely inside D. A point p is a boundary point of a subset E of the 
xy-plane, if every disk, centered at p, contains points that are in E and points that are not in 
E. A boundary point of E need not be in the set E. Indeed, an open set cannot contain any of 
its boundary points. A set which contains all of its boundary points is called a closed set. The set 
of all boundary points of E is called the boundary of E. The closure of a set E is the closed set 

E consisting of the points which are either in E or in the boundary of E. For example, if D is 
the open disk r < 1, then D is an open set, and the circle r = 1 is the boundary of D, while 

D is the closed disk r ~ 1. The diameter of the nonempty set E is the maximum distance (if 

such exists) between pairs of points in E. Thus, the diameter of a rectangle ( open or closed) is 
the length of a diagonal, whereas the diameter of a disk is its diameter in the usual sense. If there 
are points in E which are arbitrarily far apart, then the diameter of E is said to be infinite, and 
E is said to be unbounded (e.g., a half-plane, or the exterior of a circle). If the diameter of E is 
finite, then E is said to be bounded. This standard terminology can be tricky. For example, an 
unbounded set can include its boundary (e.g., the closed half-plane y ~ 0). Also, an open interval 
in the x-axis is not an open subset of the xy-plane. A subset E is (pathwise) connected if any 
two points in E can be joined by a continuous curve which lies totally inside E. 

A fact which we will need in this section, is that a function which is continuous on a closed 
and bounded set achieves its maximum at some point in this set (cf. Appendix A.4). A significant 
improvement of this fact for harmonic functions is the Maximum Principle. This states that if D 

is a bounded open set and if u is a continuous function on D and a harmonic function on D, 
then u achieves its maximum on the boundary of D. It is possible that this function u will 
also achieve its maximum at some point of D. However a stronger version of the Maximum 
Principle (the Strong Maximum Principle) implies that in that case u must be identically 
constant if D is connected, as well as bounded and open. While we are concerned with the 
two-dimensional setting, we note that the corresponding Strong Maximum Principle in dimension 
one, for harmonic functions u = f(x), is completely trivial. Indeed, in dimension one, Laplace's 
equation is f"(x) = 0, whence f(x) = ax + b. On any closed interval (a bounded, closed subset 
of the line) such a function achieves its maximum at an endpoint. Moreover, if f(x) also achieves 
its maximum inside the interval, then clearly f(x) must be constant. Of course, the situation in 
dimension two is more complicated. For a specific example illustrating the Maximum Principle, 
see Example 3 of Section 6.2. As a preliminary indication of the unlikely occurrence of a local 
maximum for a nonconstant harmonic function, we offer the following example. 
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Example 1. Let u(x,y) be a harmonic function on some open set D. Show that if u has a local 
maximum at some point p = (xo,yo), then all of the first and second partial derivatives of u at 

p must be zero (Le., the graph is horizontal and flat "to second order" at p). 

Solution. If u has a local maximum ar p, then we know that ux and uy vanish at p. Since 

the graph of u cannot be concave up in any direction, the second directional derivative of u at 
p in any direction cosO i + sinO j must be nonpositive, Le., 

2 
L2 u(xo + t cosO, Yo + t sinO) I = cos20 u (p) + 2sinOcosO u (p) + sin20 u (p) ~ o. (1) 
dt t = 0 xx xy yy 

Setting 0 = 0, we get uxx(p) $ O. Setting 0 = 7r/2, we get uy (p) $ o. Laplace's equation, 

Uxx + Uyy = 0, then implies that uxx(p) = 0 and Uyy(p) = 0 (Why?). Setting 0 = 7r/4 in 

(1), we get uxy(p) ~ 0, while taking 0 = -7r/4 yields -uxy(p) $ O. Thus, uxy(p) = 0 also. 0 

Theorem 1 (The Maximum/Minimum Principle). Let u = u(x,y) be a continuous function 

on D, for some open, bounded set D. If u is harmonic on D, then the maximum and 
the minimum values of u are achieved on the boundary of D. 

Proof. We know (cf. Appendix A.4) that the maximum of u is achieved at some point in D, 
since u is continuous on the closed, bounded set D. We prove the theorem by contradiction. 
Suppose that the maximum is not achieved on the boundary. Then the maximum is achieved at 
some point (xo,yo) in D, say M:: u(xo,yo) > Mb ' where Mb is the maximum of u on the 

boundary of D. Let 

2 2 v(x,y) = u(x,y) + ( [(x - xo) + (y - Yo) 1 , (2) 

for some constant (> o. Then v(xo,yo) = u(xo,yo) = M, and the maximum of v on the 

boundary of D is at most Mb + (d2, where d is the diameter of D. For ( sufficiently small, 

we have M > Mb + (d2 (Le., 0 < ( < (M - Mb)/d2)). For such (, the maximum of v 

cannot occur on the boundary of D, since the value M of v at (Xo,yo) is larger than the value 

of v at any boundary point. There may, however, be points in D where v is greater than M. 

Let the maximum of v be achieved at (xt,yt), which (as we have just seen) must be in D. At 

(xt,yt), we must have vxx $ 0 and Vyy $ 0, since the graph of v cannot be concave up in the 

x or y directions at (xt,yt). Thus, at (xt,yt), we have Vxx + Vyy ~ O. However, by (2), we 

have Vxx + Vyy = Uxx + Uyy + 2( + 2( = 4( > 0, where we have finally used the assumption 

that u is harmonic on D. Thus, we have reached a contradiction, and our original assumption, 

that the maximum of u is not achieved on the boundary, is false. Since the minimum of u is 
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the negative of the maximum of the function -u (also harmonic on D), the minimum of u must 
also be achieved on the boundary of D, by the above result for the maximum. 0 

Remark. Note that we have not used any of the results of the previous sections in the above 
proof. The uniqueness theorem below is a direct consequence of the Maximum Principle, and 
hence we have avoided any circular reasoning (Le., the proof of uniqueness does not involve the 
use of previous results in which uniqueness was assumed). 0 

Theorem 2 (The uniqueness theorem for the Dirichlet problem). For some open, bounded 

set D, let ul and u2 be continuous functions on IT which are harmonic on D. If ul and 

u2 are equal at all boundary points of D, then they are equal throughout IT. In other words, 

there is at most one solution of a Dirichlet problem for D. 

Proof. The difference v:: ul - u2 is a continuous function on IT which is harmonic on D. Since 

v :: 0 on the boundary of D, the Maximum/Minimum Principle implies that v ~ 0 and v ~ 0 

on D. Hence, v:: 0 on IT, and ul :: u2 on D. 0 

We next show that if the prescribed function on the boundary, in a Dirichlet problem for a 
bounded open set D, is changed by at most (, then the solutions (if they exist) differ by at 
most ( throughout D. Roughly speaking, solutions depend continuously on the boundary data. 

Theorem 3 (Continuous dependence of solutions on boundary data). Let ui (for i = 1,2) be 

the solution (if it exists) of the Dirichlet problem 

D.E. ~u. = 0 
I 

B.C. u. = f. 
1 1 

on D 

on C, 

where C is the boundary of the bounded, open set D. If M is the maximum of I fl - f21 

on C, then lu l (x,y)-u2(x,y)1 ~M, forall (x,y) in IT. 

Proof. Let v:: u l - u2. For all (x,y) in IT, we have 

where the first and last inequalities are clear and the middle two inequalities follow from the 
Maximum/Minimum Principle applied to v. Thus, -M ~ v(x,y) ~ M, and I v(x,y) I ~ M for all 

(x,y) in IT. 0 
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Remark. When fl = f2' we have M = 0, and hence Theorem 3 yields the uniqueness theorem 

(Theorem 2) as a corollary. 0 

Example 2. Let u(x,y) be any nonconstant harmonic function on the entire xy-plane. By 
Problem 12(d) of Section 6.3, we know that the zero level set of u , { (x,y) I u(x,y) = 0 } , is 
nonempty. Show that this level set cannot contain any circle. 

Solution. If this were possible, the harmonic function u(x,y) would yield a solution of the 
Dirichlet problem for the disk D enclosed by the circle, where the boundary data is zero. By the 
uniqueness theorem, u would have to be 0 throughout the disk D. We show that u:: 0 
throughout the xy-plane, as follows. Note that at the center p of D, all of the partial 
derivatives of u equal zero. Thus, the Taylor series of u about p would be zero. However, by 
the remark following Theorem 4 in Section 6.3, on any disk where u is harmonic, u is equal to 
its Taylor series about the center of the disk. Since u is harmonic everywhere on the plane, it is 
harmonic on arbitrarily large disks about p. Thus, the vanishing of the Taylor series of u about 
p implies that u:: 0 on the entire plane. Essentially the same argument proves that the zero set 
of u(x,y) cannot contain the boundary of any nonempty, bounded, open set. 0 

Example 3. Suppose that u(x,y) is a continuous function on the closed disk r ~ 1, and assume 
that u is harmonic on the open disk r < 1. If u( cos O,sin 0) ~ sinO + cos(20), then show that we 

have u(x,y) ~ y + x2 - y2, for all (x,y) with x2 + l $ 1. 

Solution. Note that v(x,y):: y + x2 - y2 is a harmonic function with v(cosO, sinO) 
= sinO + cos(20). By assumption, u $ v on the boundary of the disk r ~ 1. Thus, the maximum 
of the harmonic function u - v on the boundary r = 1 must be less than or equal to zero. The 
Maximum Principle then implies that u - v ~ 0 throughout the disk, as desired. 0 

Example 4 (Uniqueness of the Poisson kernel). Suppose that for every continuous periodic 
function f( 0) of period 211", a solution of the Dirichlet problem on the disk r ~ ro ' with 

boundary condition U(ro'O) = f( 0) , is given by the formula 

1 J1I" U(r,O) = 21r -11" Q(r,ro,8-t) f(t) dt (3) 

for some function Q(r,ro,8-t), which is continuous and periodic in t of period 211". Show that 

Q(r,ro,8-t) must equal the Poisson kernel P(r,ro,8-t), for all r < ro and all ° and t. 

Solution. Since the solution U of the Dirichlet problem is unique, we know that (3) holds if Q 
is replaced by P. Thus, we have 

1 J1I" o = U(r,O) - U(r,O) = 21r [P(r,ro,8-t) - Q(r,r ,8-t)] f(t) dt. 
-11" 0 

For any fixed ° and r < ro' let f(t) be the continuous periodic function 
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P(r,r ,8-t) - Q(r,ro,8-t) in this last integral. Then we get J7r [f(t))2 dt = 0, whence f(t) = 0 
o ~ 

for -7r $ t $ 7r. Since f(t) is periodic of period 27r, we then know that f(t) = ° for all t. 0 

The Strong Maximum/Minimum Principle 

The Strong Maximum/Minimum Principle states that if a harmonic function u on some 
connected, open set D achieves its maximum or minimum in D, then u must be identically 
constant on D. It is not necessary for D to be bounded or for u to extend continuously to the 
boundary of D. The goal of this subsection is to prove this result. The main tool to be used is 
the mean-value theorem which was established as a consequence of the Poisson Integral Formula 
(cf. Theorem 2 of Section 6.3). We next show that it is also possible (and instructive) to prove 
the mean-value theorem in an elementary fashion, without the use of this integral formula. This 
alternate proof is based on the following result, where we write V(r ,0) = u(x,y) (cf. Section 6.3). 

Lemma 1. For any C2 function u(x,y) defined on the disk D (r $ R), we have the formula 

J J (u + u ) dx dy = J27r V (R,O) R dO. 
D xx yy 0 r 

(4) 

In other words, the integral of the Laplacian of u over the disk is the integral of the outward 
normal derivative of u along the boundary with respect to the arc length differential ds = R dO. 

Proof. Computing the left side of (4) in terms of polar coordinates, 

= J27r (r V ) 1 R dO + JR r -1 V O( r ,0) 127r dr . 
OrO 0 0 

(5) 

But (5) is the right side of (4), since the second term in (5) is 0, due to the fact that V (and 
hence V 0) is periodic of period 27r in O. To justify the change in the order of integration (cf. 

Appendix A.2), we note that the apparent singularity in r-IV 00 is removable, because (by the 

proof of Proposition 1 in Section 6.3), r-IV 00 extends continuously to the function 

-u (O,O)cosO - u (O,O)sinO on the edge r = 0, 0 $ 0 $ 27r of the rectangle 0 < r < R, x y 
o < 0 < 27r in the r8-plane. 0 
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An alterna.te proof of the mea.n-value theorem (Theorem 2 of Section 6.3) 

In Lemma 1, if u is a harmonic function, then the left side of (4) is zero, and thus (by 
Leibniz's rule, in Appendix A.3) 

J27r d J27r 
0= ° Ur(R,O)dO=QR[ ° U(R,O)dO]. 

J27r 
Hence, ° U(R,O) dO is a constant function of R. This function is 2ru(0,0) at R = 0, whence 

the mean-value theorem holds. 0 

Rema.rk. Lemma 1 holds in much greater generality. Indeed, let D be a bounded open set with 
boundary C consisting of a finite number of smooth, simple, closed curves (e.g., as a slab of Swiss 

cheese), and let u be a C2 function on D. Then, by using a theorem of Green, one has the 
following generalization of (4) 

J J D ~u dxdy = J C Vu . n ds, (6) 

where n is the outward unit normal and ds is the element of arc length. For a rectangle, (6) 
was shown to hold in Example 6 of Section 6.2. As an immediate consequence of (6), we obtain 
the compatibility condition for the Neumann problem 

D.E. ~u = ° on D 

B.C. Vu· n = g on C, 

namely Jc g ds = 0. 0 

Example 5. Let u(x,y) be harmonic in the disk x2 + y2 < ro2. If u achieves its maximum at 

the point (0,0), then show that u must be constant throughout this disk. 

Solution. By the mean-value theorem, we have (for any r < ro) 

J27r J27r ° u(O,O) dO = 2ru(0,0) = ° U(R,O) dO 

J27r 
Subtracting, we obtain ° [u(O,O) - U(r,O)] dO = 0. Since the integrand u(O,O) - U(r,O) is 

continuous and nonnelJ;ative (by the assumption that the maximum of u is achieved at (0,0)), we 
have that u(O,O) - U(r,O) :: 0, as a function of 0. Thus, U(r,O):: u(O,O), for any r < ro' and u 

is constant throughout the disk r < roo 0 
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Theorem 4 (The Strong Maximum/Minimum Principle). Let u be a harmonic function on 
the open connected set D. Suppose that the maximum or minimum of u is achieved at 
some point in D. Then u must be constant throughout D. 

Proof. Let p be the point in D where u achieves its maximum, say M, and let q be any 
other point in D. Since D is connected, we can join p to q by a curve, say with 
parametrization (x(t),y(t)), where x(t) and y(t) are continuous functions for 0 ~ t ~ 1 with 
p = (x(O),y(O)) and q = (x(l),y(l)). We must prove that u(q) = M. Let 

S = {t E [0,1] : u(x(t),y(t)) = M}. Certainly, 0 E S, but we need to show that 1 E S. Let to be 

the smallest real number which is greater than or equal to all numbers in S. (Since S is 
bounded, the existence of such to is guaranteed by an axiom of the real number system, the least 

upper bound axiom.) We must prove that to is in S and to = 1. For each positive integer n, 

there is a number tn in S, such that to - tn ~ n -1, by the definition of to' By the continuity 

of u(x(t),y(t)), we have 

Thus, to E S, and so u achieves its maximum at (x(to),y(to)). Let Do be an open disk, 

completely contained in D, with center (x(to),y(to)). By Example 5, u == M on Do. We now 

prove by contradiction that to = 1. If to < 1, then by the continuity of x( t) and y( t), we know 

that (x(to+b),y(to+b)) is in Do for sufficiently small b > o. Thus, to + b is in S, 

contradicting the definition of to. Hence, we must have to = 1, as desired. Since the minimum 

of u is the negative of the maximum of -u, we also know that if u attains its minimum in D, 
then u is constant throughout D. 0 

Remark. The Maximum/Minimum Principle (Theorem 1) is an immediate consequence of the 
Strong Maximum/Minimum Principle. Indeed, in the notation of Theorem 1, if the maximum (or 
minimum) is not achieved on the boundary of D, then u is constant by Theorem 4, whence the 

maximum (or minimum) is achieved everywhere in IT, and we have a contradiction. Also, since 
the above alternative proof of the mean-value theorem (used in Example 5) did not use 
uniqueness (Theorem 2), the proof of Theorem 1, by means of Theorem 4, is not circular. 0 

Example 6. Suppose that u(x,y) is a continuous function defined on the closed horizontal strip 
-1 ~ Y ~ 1, and assume that u is harmonic for -1 < y < 1. Assume that, for each y E [-l,lJ, 
u(x,y) is periodic in x of period 2 (Le., u(x + 2,y) = u(x,y) for all x). If u is zero on the 
boundary lines y = ±1, then prove that u must be zero throughout the strip. Give an example 
which shows that the conclusion is false if the periodicity assumption is dropped. 

Solution. The square -1 ~ x, Y ~ 1 is closed and bounded. Thus, the continuous function u, 
when restricted to this square, achieves its maximum and minimum at points in the square (cf. 
Appendix A.4). Since u is assumed to be periodic of period 2 in x, the maximum and 
minimum values of u in any translate (in the x-direction) of the square will be the same as in 
the original square. Thus, the maximum and minimum values for u on the strip are achieved at 
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infinitely many points. If anyone of these points is not on the boundary lines of the strip, then 
(by Theorem 4) u must be constant on the strip, and hence identically zero on the strip (Why?). 
If the maximum and the minimum occur on the boundary lines where u is zero, then the 
function is obviously 0 on the strip. Thus, in any case u:: O. Note that the harmonic function 
u(x,y) = cosh( 1TX/2)cos( 1rY /2) is zero on the boundary y = ±1, but it is positive for -1 < Y < l. 
Thus, the periodicity assumption cannot be dropped. This also shows that uniqueness fails for the 
Dirichlet problem on the strip (Why?). 0 
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Summary 6.4 

1. The Maximum/Minimum Principle (Theorem 1): Let u = u(x,y) be a continuous function on 

TI, for some open, bounded set D. If u is harmonic on D, then the maximum and the 
minimum values of u are achieved on the boundary of D. 

2. Uniqueness for the Dirichlet problem (Theorem 2): For some open bounded set D, let ul 

and u2 be continuous functions on TI which are harmonic on D. If ul and u2 are equal at all 

boundary points of D, then they are equal throughout TI. In other words, there is at most one 
solution of a Dirichlet problem for D. 

3. Continuous dependence of solutions on boundary data: Let ui (for i = 1, 2) be the solution 

(if it exists) of the Dirichlet problem 

D.E. ~u. = 0 
1 

B.C. u. = f. 
1 1 

on D 

on C, 

where C is the boundary of the bounded, open set D. If M is the maximum of I fl - f21 on C, 

then I ul(x,y) - u2(x,y) I ~ M, for all (x,y) in TI. 

4. The Strong Maximum/Minimum Principle (Theorem 4): Let u be a harmonic function on the 
open, connected set D. Suppose that the maximum or minimum of u is achieved at some point 
in D. Then u must be constant throughout D. 

Exercises 6.4 

1. Let D be a bounded, open set in the xy-plane and let the functions ul, u2 and u3 be 

continuous on TI and harmonic on D. Show that if ul ~ u2 ~ u3 on the boundary of D, then 

ul ~ u2 ~ u3 throughout D. 

2. Let u(x,y) be a continuous function on TI, where D is some open, connected set. If u is 
harmonic on D, explain why generally it is a waste of time to locate a point where u achieves 
its maximum by solving the equations Ux = 0 and uy = 0 simultaneously. 
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3. By considering product solutions, show that the Dirichlet problem 

D.E. Uxx + Uyy = ° ° < x < 11', ° < y < 00 

B.C. u(x,O.) = 0, u(O,y) = 0, u(1I',y) = ° ° ~ x ~ 11', ° ~ Y < 00. 

has more than one solution. Why does this not contradict Theorem 2 ? 

4. Note that u1(x,y) = 1 + log(x2 + l) and u2(x,y) = 1 -log(x2 + y2) are harmonic, where 

defined. Moreover, these functions are equal on the circle x2 + l = 1, but unequal inside the 
circle. Why does this not contradict Theorem 2? 

5. Show that any plane which is tangent to the graph of a harmonic function (defined on an open, 
connected set D) must intersect the graph in more than one point. Hint. The tangent plane is 
also the graph of a harmonic function. Consider the difference of these functions, and use the 
Strong Maximum Principle. 

6. Use the mean-value theorem to show that for any real constant b with Ibl < 1, we have 

J211' ° log[(l + b cos 0)2 + (b sin 0)2] dO = 0. Show that this equation cannot hold for b > ...j2 . 

7. Let f(x) be a continuous function, defined for all real x, such that I f(x) I ~ M for some 
constant M. 

(a) Show that the Dirichlet problem for the upper half-plane y ~ ° , 
D.E. Uxx + Uyy = ° 
B.C. u(x,O) = f(x) 

~<x<oo,y>o 

~<x<oo, 

does not have a unique solution, by considering the function v(x,y):: y. 

(b) Define u(x,y) = ~ [ y ~(s) 2 ds, and show (at least formally) that u is harmonic for 
-00 (x-s) + y 

y > 0. (The advanced reader may wish to carefully and repeatedly apply Leibniz's rule in 
Appendix A.3 to justify differentiating under the integral. First, consider (X,y) in the region 
-A < x < A, ° < l < Y < 00, for positive constants A and l.) 

(c) For any point (xo,O) on the x-axis, show that u(x,y) in (b) can be made arbitrarily close 

to f(xo) by taking (x,y) (for y> 0) sufficiently close to (xo,O). 

lint. First show that when f(s):: K, for some constant K, the integral in (b) is identically 
K. By taking K to be f(xo), deduce that 
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1 [ y[f(s) - f(xo)) 
u(x, y) - f(xo) = 1r 2 2 ds. 

-00 (x-s) + y 

Split the interval of integration into three pieces, namely (-00, Xo - ~, [xo - 0, Xo + ~ and 

[xo + 0, (0), and estimate each of the resulting three integrals, as was done in the proof of the 

Poisson Integral Formula for the disk (cf. Theorem 1 of Section 6.3). 

Remark. Part (c) establishes that a solution of the Dirichlet problem in (a) is given by the 
formula in (b), which is known as the Poisson Integral Formula for the upper half-plane. 

·0 2 
8. For r < 1 and z = rei, let U(r,O) = Im{[(1 + z)/(1 - z)) }. 

(a) Verify that U(r,O) is harmonic for r < 1. 

(b) Show that lim U(r,O) = 0 for each fixed 0. 
r-+1 

(c) Why can we not use Theorem 1 to conclude that U(r, 0) == O?· 
2 2 

Hint. Show that u(x,y) = -4y Y2 + (x -211. Consider the limit of u(x,y) as (x,y) 
[y + (x-I) ) 

approaches (1,0) within the disk, along the line y = x-I. 

9. Let q(x,y) be a C2 function which is identically zero outside of some disk. Here we 
demonstrate that equation (*) below is a solution of Poisson's equation Uxx + Uyy = q(x,y). 

( a) For any fixed (x,y ) in the plane, let 

u(x,y) = ~ [ [ log[(x - s)2 + (y - t)2) q(s,t) ds dt. 
-00 -00 

Show that u(x,y) = ~ [ [ log[s 2 + t 2) q(x + s,y + t) ds dt. 
-00 -00 

= ~J7r roo q(x + r cos 0, y + r sin 0) log(r) r dr dO, -7r JO 

and use the fact that lim+ r log(r) = 0 (Why?), to deduce from Leibniz's rule that u(x,y) is 
r-+O 

C2, and that Uxx and Uyy can be computed by differentiating under the integral (**). 

(b) Let Q(x,y,r,O) = q(x + r cos O,y + r sin 0). Show that, for r > 0, we have Qxx + Qyy 

= r-1(rQr)r + r-2Q UU. Use this fact to deduce from (a) that Uxx + Uyy = q(x,y). 

Hint. When computing the integral of [(rQr)r + r-lQO~ log r, use integration by parts to find 
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the integral of (rQ) log r with respect to r, and use the Fundamental Theorem of Calculus 
r r 

and periodicity in 0 to compute the integral of r-1Q OO with respect to O. 

10. Let D be a bounded, open set with boundary C, and suppose that each Dirichlet problem 
for Laplace's equation with continuous boundary function has a (necessarily unique) solution. Let 

q(x,y) be a C2 function defined for all (x,y), such that q is zero outside of some disk which 
contains D. Use Problem 9 to show that the Dirichlet problem 

D.E. Uxx + Uyy = q(x,y) on D 

B.C. u(x,y) = f(x,y) on C 

for Poisson's equation has a unique solution, where f is a given continuous function on the 
boundary C of D. Hint. See Example 3 of Section 6.1. 

11. Let D be an open set and let a E D. A Green's function of D with logarithmic singularity 
at a is a real-valued function g(z;a) of z = x + iy E D, such that 

(i) g(z;a) is harmonic in D-{a}, 

(ii) g(z;a)-loglz-al is harmonic in a disk about a, 

and (iii) for each boundary point w of D, the limit of g(z;a), as z approaches w 

from within D, is 0 (Le., g(z;a) continuously extends by zero values to IT-{a}). 

(a) Prove that if a bounded, open set D has a Green's function g(z;a), then g(z;a) is unique. 

(b) With D and g(z;a) as in part (a) and D connected, prove that g(z;a) is positive on D. 

Hints. (a) Consider h(z;a) satisfying (i) - (iii) and apply the Maximum/Minimum Principle to 
h(z;a) - g(z;a). Why is this difference nonsingular ? 
(b) Note that lim g(z;a) = +00, and apply the Strong Maximum Principle to g(z;a) on D 

Z-ia 

minus arbitrarily small disks about z = a. 

12. Let D and C be as in Problem 10 and suppose that D has a Green's function g(z;a) as in 
Problem 11. For z = x + iy and a = s + it, let G(x,y,s,t):: g(z;a). Assume that G and xx 

Gyy extend continuously to IT x IT , so that Leibniz's rule may be applied when needed. Show 

that the solution of the Dirichlet problem in Problem 10, with f(x,y) = 0 on C, is 

u(x,y) = ~ J JD G(x,y,s,t) q(s,t) ds dt , (x,y) ED. 

For the verification that u(x,y) approaches 0 as (x,y) approaches a point on C from within 
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D, the typical reader may formally take the limit under the integral. The more advanced reader 
may try to justify this operation. 

Hint. To show that u(x,y) solves Poisson's equation, write G(x,y,s,t) as loglz-al + {g(zja)­
log I z-a I 1, split the integral into a sum of two integrals, and apply the result of Problem 9. 
Observe tllat the integral of loglz-al q(s,t), with respect to ds dt, over the exterior of D is 
harmonic (Why?). 

13. (a) Verify that the Green's function for the disk r < 1 is g(z;a) = log I (z - a)/(az - 1) I , 
I I 1 . iO 
a < , z = x + ly = re . 

(b) Use part (a) and Problems 11 and 12 to obtain an explicit integral formula for the solution of 
the Dirichlet problem (in Problem 10) for Poisson's equation when D is the disk r < 1, and the 
boundary function f is identically O. What can be done, if the continuous boundary function f 
is arbitrary? 

14. (a) By direct computation, verify that the Poisson kernel P(r,I,8--t) for the unit disk is 

given by P(r,I,8--t) = ~ G(r,O;R,t) I R=1 ' where G(r,O;R,t) = g(reiO ; Reit ) is the Green's 

function for the disk in Problem 13. 

(b) Derive formally the result of (a) by using the following Green's formula for the disk 

(The derivation of this formula is similar to the proof of Lemma 1. It only involves two simple 
integrations by parts and does not require the general Green's formula from vector analysis.) 

Hints. Let U(r,O) be a harmonic function with U(I,O) = f(O), and let V(R,t) = G(r,O;R,t) for 

fixed (r,O). Note that U(r,O) = ~ [~ f: 1r f~ G(r,O;R,t)U(R,t) R dR dt ] , where G(r,OjR,t) is 

g(z;a) of Problem 13 (Why?). Now, formally bring ~ under the integral and apply (*), noting 

f21r 

that ~U(R,t) = 0, by assumption. Finally, obtain U(r,O) = 0 GR(r,O;I,t)U(I,t) dt, whence 

GR(r,O;I,t) = P(r,I,8--t), by the uniqueness of the Poisson kernel (cf. Example 4). 
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6.5 Complex Variable Theory with Applications 

We have seen that the real and imaginary parts of (x + iy)n, for n = 0, I, 2, ... , are 
harmonic functions (cf. Problem 5( d) of Section 6.1, or use De Moivre's Formula (12) in Section 

6.3). One can easily check that the real and imaginary parts of ex+iy = eXcos(y) + iexsin(y) are 
also harmonic. More generally, suppose that we have a function f(z) of the complex variable 
z = x + iy. As we will see shortly, a key property which guarantees that the real and imaginary 
parts of f(z) will be harmonic in an open set D, is that f(z) is differentiable with respect to z, 
in the sense that the limit 

f'(z) = limf(z+h~ - f(z) . 
h-+O 

(1) 

exists at each point z = x + iy in D (Le., (x,y) E D), regardless of how the complex number h 
approaches o. For example, the derivative of z2 is 2z, since 

lim h -l[(z + h)2 - z2] = lim h -1 [2hz + h2] = lim (2z + h) = 2z. 
h-+ 0 h-+ 0 h-+ 0 

A function f(z), such that f' (z) exists for all z in the open set D, is said to be complex 
analytic (or simply analytic or holomorphic) on D. If f(z) is analytic on the entire complex 
plane, then f(z) is called an entire function. Examples of entire functions include polynomials 

p(z) = ao + atz + ~z2 + ... + anzn, where the coefficients ai are constants (possibly complex), 

and the functions eZ, sin z, cos z, sinh z, cosh z, which can be defined in terms of power series in 

z. The function z -1 is not entire, since its derivative -z -2 does not exist at z = 0, but this 
function is holomorphic on the punctured plane fz: z f. O}. The following proposition exhibits a 
relation between analytic functions and harmonic lunctions. 

Proposition 1 (The Cauchy-Riemann Equations). If f(x + iy) = u(x,y) + iv(x,y) is analytic 
on an open set D, then the real and imaginary parts, (u and v, respectively) of f obey the 
Cauchy-Riemann equations in D 

u = v x y and u =-v y x . 

IT in addition, u and v are C2 on D, then they are harmonic on D, and in this case 
f' (z) = Ux + i vx = Vy - i uy . 

(2) 
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Proof. If we take h to be real in (1), then we get (for z in D) 

f' (z) = 1 im u(x+h,y) + iv(x+h,y~ - [u(x,y) + iv(x,y)] = u + iv . (2') 
h-+O x x 

If we take h to be the imaginary number ik, where k is real, then 

f' (z) = li m u(x,y+k) + iv(x,y+k) - [u(x,y) + iv(x,y)] = v - iu . 
ik -+ 0 Ik y y 

Equating the corresponding real and imaginary parts in these two expressions for f' (z), we 

obtain the Cauchy-Riemann equations. If u and v are C2, then using the Cauchy-Riemann 
equations, we obtain u + u = v - v = 0 and v + v = -u + u = 0, whence u xx yy yx xy xx yy yx xy 
and v are harmonic on D. 0 

Remarks. It turns out that the real and imaginary parts of an analytic function are always Coo. 

Thus, our assumption that u and v are C2 is actually unnecessary, but it is needed for the 

above proof. Conversely, if u and v are C1 functions which satisfy the Cauchy-Riemann 
equations, then it can be proved that the function f(z) = u + iv is analytic (cf. Rudin, 1987). 0 

The harmonic function v is called a harmonic conjugate of the harmonic function u, if 
.. l' Fl' 2 2 2 '2 . l' h f . 2 . u + IV IS ana ytlc. or examp e, SInce z = x - y + I xy IS ana ytlC, t e unctIOn xy IS a 

harmonic conjugate of x2 - y2. Since the partial derivatives of v are determined by u via the 
Cauchy-Riemann equations, if u has two harmonic conjugates, then these must differ by a 
constant. If u is harmonic in an open rectangular region R, then there is a function v, such 
that u + iv is analytic in R (Le., u has a harmonic conjugate v on R). This fact is a 
consequence of the next proposition which we will also use later in connection with fluid flow 
problems. Thus, any harmonic function u on R is the real part of some analytic function u + 
iv. Since -v + iu = i(u + iv) is also analytic, we see that u is also the imaginary part of some 
analytic function on R. Note that if v is a harmonic conjugate of u, then -u (minus u) is a 
harmonic conjugate of v, since v - iu = -i(u + iv) is analytic. Thus, strictly speaking, one 
should not say that u and v are harmonic conjugates of each other, as is commonly (indeed, 
almost always) done. 

Proposition 2. Let P(x,y) and Q(x,y) be c1 functions on an open rectangular region R 

(possibly with one or more sides of infinite length, so that R may be a strip). Then there is a 

C2 function f(x,y) on R, such that 

fx(x,y) = P(x,y) and f/x,y) = Q(x,y), (3) 

if and only if the integrability condition P :: Q holds on R. y x 

Proof. If f satisfies (3), then P y = fxy = fyx = Qx' Conversely, we assume that P y :: Qx on 

R, and construct f satisfying (3), as follows. Let (a,b) be a point in R, and let H be any C2 
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function satisfying H = P on R (e.g., H(x,y) = IX P(s,y) ds). Similarly, let K(x,y) be a C2 
x a 

function on R such that Ky = Q on R. Then set u(x,y) = H(x,y) - K(x,y) and note that 

uxy = Hxy - Kyx = P y - Qx = O. Thus, u solves the PDE uxy = 0, which has the general 

solution on R of the form u(x,y) = k(x) - h(y), for C2 functions hand k. Thus, 
H(x,y) - K(x,y) = u(x,y) = k(x) - h(y). Define f by 

f(x,y) = H(x,y) + h(y) and f(x,y) = K(x,y) + k(x) . 

Since the two right-hand sides are equal, it does not matter which equation we use. From the 
first equation, we get that fx = Hx = P, and from the second equation we get fy = Ky = Q. 0 

Proposition 3. Any harmonic function u, defined on an open rectangular region R, has a 
harmonic conjugate v defined on R. 

Proof. By the remarks before Proposition 2, we need only to show that for the given harmonic 
function u, we can solve the Cauchy-Riemann equations vx = -uy and Vy = ux. We apply 

Proposition 2 with P = -uy and Q = ux. Since u is harmonic, we have the integrability 

condition P y = -Uyy = Uxx = Qx' and thus v exists. 0 

Remark. It can be shown that Propositions 2 and 3 remain true, if the rectangular region R is 
replaced by an open region without "holes" (Le., any open region whose exterior is connected). 
Such a region in the plane is called simply-eonnected. Example 3 below shows that this 
hypothesis is necessary. 0 

Example 1. Find a harmonic conjugate of the harmonic function u(x,y) = sin(x)cosh(y) + y, 
defined on the whole plane. 

Solution. Proceedin~ as in the proof of Proposition 2, we inte~rate the equation 
Vy = Ux = cos(x)cosh(y) with respect to y, and Vx = -uy = -sin(x)sinh(y) - 1 with respect 

to x. Then v(x,y) = cos(x)sinh(y) + h(x) and v(x,y) = cos(x)sinh(y) - x + k(y), where hand 

k are arbitrary C1 functions. Comparing these two expressions for v(x,y), we see that 
h(x) = -x + c and k(y) = c, where c is an arbitrary real number. Thus, v(x,y) 
= cos(x)sinh(y) - x + c is a harmonic conjugate of u. The associated analytic function is 

f(z) = u + iv = [sin(x)cosh(y) + y] + i[cos(x)sinh(y) - x + c] , 

which turns out to be sin(z) - iz + ic (cf. Problem 1). 0 
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Example 2. Show that if v is a harmonic conjugate of the harmonic function u, then at any 
point, the gradients Vu and Vu are of equal length and are perpendicular. Conclude that at a 
point where VU"f 0, the level curves of u and v are orthogonal. 

Solution. Using the Cauchy-Riemann equations, for the analytic function f = u + iv, we have 
2 2 2 2 2 2 . 

IVul = (ux) + (uy) = (Vy) + (-vx) = IVvl , whence the gradIents of u and v have 

equal lengths. Note also that the length If'(z)1 of f'(z) = Ux + ivx (cf. (2')) is the same as 

the length of these gradients. The dot product of the gradients is u v + u v = v v - v v xx yy yx xy 
= 0. Hence, the gradients are perpendicular. Recall that the gradient of a function at a point is 
perpendicular to the level curve through the point, if the gradient is nonzero. Thus, the level 
curves of u and v through a point z, where f'(z) "f 0, are perpendicular, since the gradients of 
u and v are perpendicular. 0 

Example 3. Show that the function u(x,y) = ~ log(x2 + y2), or U(r,O) = log r, which is 

harmonic on the punctured plane (r > 0), has no harmonic conjugate defined on the punctured 
plane. However, if the negative x-axis is deleted from the punctured plane, then there is a unique 
harmonic conjugate v of u on this slit plane (which is simply~onnectedj cf. the Remark 
following Proposition 3), such that v is zero on the positive x-axis. Show that the analytic 

function f = u + iv on the slit plane is an inverse of the exponential function eZ (Le., f(z) can 
be regarded as a log function). 

Solution. Since the level curves of u = log r are circles centered at the pole, we know by 
Example 2 that the level curves of a harmonic conjugate v of u must be the rays issuing from 
the origin. (Note that the gradient of u does not vanish, and hence all level curves are indeed 
curves, and v cannot be constant.) Consequently, V(r,O) must be of the form h(O). However, 
the only harmonic functions of this form are the functions V(r,O) = aO + b (cf. Problem 2 of 
Section 6.3). Since v is not constant, we have a"f 0. Thus, V(r,O + 211') "f V(r,O), and so v 
cannot be continuous on the entire punctured plane. On the slit plane, assuming that v is ° on 
the positive x-axis (Le., when 0 = 0), we have b = 0, and V(r,O) = aO. Since ux(I,O) = 1 

and vy(I,O) = a, we must have a = 1, by the Cauchy-Riemann equation Ux = vy' Thus, 

V(r,O) = 0, for -7r < 0 < 7r, and 

f(z) = f(reiO) = log r + iO, r > 0, -7r < 0 < 7r . 

Note that exp[f(z)] = exp[log r + i81 = exp[log r](cosO + i sin 0) = reiO = z, whence f is the 
unique inverse for exp on the slit plane, which is real-valued on the positive x-axis. If we add 
integer multiples of 2m to f(z), we get other inverses for exp which are not real-valued on the 
positive x-axis. For this reason, f(z) is known as the principal branch of the multi-valued log 
function, and f(z) is denoted by Log(z). 0 

Conformal Mapping 

A complex-valued function f(z) of a complex variable z, assigns to each complex number 
z = x + iy, in the domain of f, a new complex number w = f(z) = u(x,y) + iv(x,y). In other 
words, f sends (or maps) points of the z-plane (or xl-plane) to points of the w-plane (or 
uv-plane). A region in the z-plane may be mapped by flZ) to a differently shaped region in the 
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w-plane. As we will soon demonstrate, if f(z) is analytic, the amount of distortion that a disk in 
the z-plane undergoes (when it is mapped by f to the w-plane) decreases as the disk becomes 
smaller, provided that f' (z) does not vanish at the center Zo of the disk. Although the circular 

shape of a small disk about Zo is nearly preserved, the image will be magnified by about a factor 

of about 1 f' (zo) I. For this reason, a mapping given by an analytic function is said to be a 

conformal mapping (Le., locally shape-preserving, but not necessarily size-preserving) when f' (z) 
is nonzero. Before continuing, we consider some examples. 

Example 4. Show that the analytic function f(z) = z2 maps the wedge 0 ~ r ~ 3, 0 ~O ~ a to the 
wedge 0 ~ r ~ 9, 0 ~ 0 ~ 20'. 

Solution. The function f(z) = z2 maps the point (x,y) to (x2 - y2, 2xy), but it is much easier 
to see the mapping geometrically, by using polar coordinates. Indeed, by De Moivre's formula, we 

have f(reiO) = r2ei20, which means that the point, with polar coordinates (r,O), is mapped to 

the point with polar coordinates (r2, 20) (Le., the polar angle is doubled and the distance to the 
pole is squared). In particular, any point in the sector 0 ~ 0 ~ a gets mapped into the sector 
o ~ 0 ~ 20', and the points on the boundary arc (r = 3, 0 ~ 0 ~ a get mapped to the arc (r = 9, 
o ~ 0 ~ 20') (cf. Figure 1). 0 

o 

Figure 1 

Example 5. Suppose that f(z) is an analytic function and f' (zo) = Mei T =1= o. As 0 varies, the 

point Zo + reiO (r> 0) traces out a circle C of radius r about zoo Show that for small r, the 

circle C is mapped by f nearly to a circle of radius M = 1 f' (zo) 1 r about f(zo) and C is 

rotated by T radians. 

Solution. From the definition (1) of f/(Z), we know that f(zo + h) - f(zo) ~ f/(zo)h, for small 

1 h I. Taking h = rei 0 for small r, we then obtain 

f(zo + reiO) ~ f(zo) + (MeiT)reiO = f(zo) + Mr ei(O+T). 



Section 6.5 Complex Variable Theory with Applications 403 

Thus, as 0 varies, we see that the circle C is mapped nearly to a circle about f(zo) of radius 

Mr and the circle is rotated through an angle of T radians, since the point corresponding to 0 
on C is mapped nearly to the point with angle 0 + T on the image curve. Note also that the 
central angle of an arc of C is nearly preserved by the mapping, which means that conformal 
mappings preserve angles. The fact that f' (z) exists is crucial in this demonstration. For 
example, the function g(x + iy) = 2x + iy is not analytic. Indeed, g'(z) does not exist, because 
the Cauchy-Riemann equation Ux = v y is violated. Instead of mapping small circles nearly onto 

small circles, g maps circles onto ellipses which are twice as wide as they are tall. Also, we 

needed to know that f' (zo) :f. o. For instance, in Example 4, where f(z) = z2 and f' (0) = 0, the 

angles at Zo = 0 are not preserved, but rather they are doubled. 0 

One of the key properties of analytic functions f(z), or conformal mappings, which make 
them so useful is that they can transform a harmonic function on a region E of the w-plane into 
a harmonic function on the preimage D of E in the z-plane, in the sense of Proposition 4 below. 
In particular, if one can solve Dirichlet problems on familiar regions E (such as a disk or 
rectangle), one could use f to solve Dirichlet problems on an unfamiliar region D, provided f is 
chosen in such a way that it conformally maps D onto E. However, finding such an f explicitly 
can be difficult, even if one has a table or book of conformal maps. 

Proposition 4. IT h(u,v) is a harmonic function on an open set E of the uv-plane (i.e., the 
w-plane, w = u + iv) and if f(z) = u(x,y) + iv(x,y) is an analytic function on the open set 
D in the xy-plane which maps D into E, then g(x,y) :: h(u(x,y), v(x,y)) defines a 
harmonic function g(x,y) on D. 

Proof. Using the chain rule, gx = huux + hvvx and gxx = huu(ux)2 + 2huvuxvx + hvv(vx)2, 

and we have a similar expression for gyy' Thus, using the solution of Example 2, we obtain 

Hence, if h is harmonic, then g is harmonic. 0 

The next two examples illustrate how it is possible to solve boundary-value problems for 
Laplace's equation on a region by conformally mapping the region to a more familiar region (cf. 
the paragraph before Proposition 4). 

Example 6. Consider a heat-conducting plate D which is the first quadrant of the xy-plane 
minus the quarter disk (r < 1, 0 < 0 < 7r/2), as in Figure 2. Assume that the circular arc is 
insulated and the edge y = 0 (x > 1) is he1d at temperature 0, while the remaining edge x = 0 
(y > 1) is held at temperature 100. Find the steady-state temperature in the plate, by 
conformally mapping D onto a strip by means of the analytic function 
f(z) = Log(z) = log r + iO = u + iv = w (cf. Example 3). 
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y 

Figure 2 

Solution. The region D is defined by r > 1 and 0 < 0< 7r/2. Since u = log r and v = 0, the 
image, say E, of D under the conformal map f, is defined by u > 0 and 0 < v < 7r/2, which 
is the strip (cf. Figure 3) in the uv-plane (or w-plane). The boundary conditions for the 
corresponding problem on E are also indicated in Figure 3. 

v w-plane 

h(u.JT/2) : 100 

o h(u.O): 0 

Figure 3 

By inspection, we see that h(u,v) = 200v/7r is a harmonic function which solves the problem on 
E. Thus, in terms of polar coordinates, the solution of the original problem is 
G(r,O) = h(U(r,O),V(r,O)) = h(log r ,0) = 2000/7r, or in terms of x and y, we obtain 

g(x,y) = h(u(x,y),v(x,y)) = h(tlog(x2 + y2), tan-1(y/x)) = (200/7r)tan-1(y/x). 0 
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Example 7. Let R be a positive constant and define F(z) = R2z -1, for z f O. Show that F 
maps the exterior r > R of the circle r = R onto the interior of this circle minus the pole (Le., 
onto the punctured disk 0 < r < R). Use F to solve the exterior Dirichlet problem 

D.E. u + u = 0 xx yy 

B.C. U(r,O)=f(O), 
(4) 

where f( 0) is a continuous periodic function of period 27r. 

Solution. In terms of polar coordinates, F(reiO) = R2(reiO)-1 = R2r-1e-iO. In other words, F 

maps the point (r,O) to (R2 jr ,-0). If r ~ R, then R2 jr ~ R. Thus, F maps the exterior of 
the circle r = R to the interior of that circle. Note also that the point (R,O) on this circle is 
mapped to the point (R ,-0). Now the Poisson Integral Formula with boundary function f( -0) , 

yields a solution H(r,O) [or h(reiO)] of the Dirichlet problem for r < R, namely 

1 J7r H(r,O) = 27r P(r,R,O - t) f(-t) dt . 
-7r 

Then we use the conformal mapping F to obtain a solution g(reiO) == h(F(reiO)) = h(R2r-1e-iO) 

= H(R2 jr,-O) of the given problem (4), Le., 

G(r,O) = H(R2jr,-0) = i7r [7r P(R2jr,R,-0-t) f(-t) dt = i7r [7r P(R2jr,R,t - 0) f(t) dt 

= 1 J7r (R 2 - R4r -2)f(t) dt = l J7r (r 2 - R2) f(t) dt. (5) 
21i _7rR4r-2 _ 2R3r-1cos(0-t) + R2 27r -7rR2 -2Rrcos(0 -t) + r2 

Note that there are many other solutions of problem (4), since we can always add linear 

combinations of the harmonic functions [(rjR)n - (Rjr)n] sin(nO) (or use cos(nO)), for n = 
1,2, ... , which vanish on the circle r = R. This does not contradict the uniqueness theorem 
(Theorem 2 of Section 6.4), because the exterior of the circle is not a bounded open set. It is 
possible to show that (5) is the only solution which is bounded, in the sense that there is a 
constant M, such that I G(r,O) I ~ M for all (r,O) r ~ 1 (cf. Problem 6.). 0 

Conformal maps in fluid flow, electrostatics and heat theory 

Suppose that the velocity of fluid flow at a point (x,y,z) at time t is of the form 
v = vl(x,y) i + v2(x,y) j (Le., assume that the velocity is actually independent of z and t). 

Such a velocity vector field is said to describe a steady two-dimensional fluid flow. Henceforth, 

we assume that vl and v2 are C1 . If the fluid is "incompressible", then the net amount of 

fluid which leaves any rectangle (a ~ x ~ b, c ~ y ~ d) must be o. In this case, 
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d d b b 
o = J vI(b,y) dy - J vI(a,y) dy + J v2(x,d) dx - J v2(x,C) dx 

c c a a 

d b b d d b 
= J J (VI) dx dy + J J (v2) dy dx = J J [(VI) + (V2)y] dx dy, 

ca x ac y ca x 

where we have used the Fundamental Theorem of Calculus. Since the rectangle is arbitrary, we 
deduce that (VI) + (v2) = o. If this equation holds for all velocity fields v, then the fluid is x y 
said to be incompressible. The quantity (vI)x + (V2)y is known as the divergence of the vector 

field v. Thus, the fluid is incompressible if and only if its velocity fields are divergence-free. 
If a fish swims counterclockwise along the boundary of the above rectangle, making a 

complete lap, the net amount of assistance that it receives from the current is 

b d b d J vI(x,C) dx + J v2(b,y) dy - J vI(x,d) dx - J v2(a,y) dy 
a cae 

This quantity is known as the circulation of the fluid flow around the rectangular loop. If the 
circulation is 0 around any rectangular loop, then this computation reveals that we must have 
(v 2) - (VI) = O. In this case, the fluid flow is said to be irrotational. x y 

Proposition 5. Let v = vIi + v2j be a c1 velocity vector field of an irrotational fluid flow of 

an incompressible fluid. Suppose that v is defined on a simply-ronnected open set R 

(d. the remark following Proposition 3). Then there are C2 functions ~(x,y) and n(x,y), 
defined on R, such that, on R, 

and 
and 

(6) 

(7) 

Proof. The functions ~ and n exist, by Proposition 2 and the remark following Proposition 3. 
The integrability condition for (6) is the irrotationality condition [(v2)x - (VI) = 0], while the 

integrability condition for (7) is the incompressibility condition [(vI)x - (-(v2)} = OJ. 0 

The function ~ is known as the velocity potential of the fluid flow, since V~ = v. The function 
n is known as the stream function, because the level curves n = constant are the streamlines. 
(Simply note that the gradient of n is orthogonal to v, and so v must be tangent to the level 
curves of n.) Observe that (6) and (7) imply that ~ and n satisfy the Cauchy-Riemann 
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equations, namely <Il x = ny and <Il y = -nx. Thus, we have an analytic function 

f(z) = f(x + iy) = <Il(x,y) + in(x,y) , 

which is known as the complex velocity potential of the fluid flow. Also, by Proposition 1, 

and thus 
221 

If/(z)1 = (Vl + v2 )2 . 
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(8) 

(9) 

(10) 

In other words, the conjugate of f/(z) is the velocity vector field (regarded as a complex number) 
at the point (x,y) or x + iy, and the length of fl (z) is the speed of the fluid flow at this point. 
Conversely, given any analytic function f(z), the functions v1 and v2, defined by (9), will be 

the components of the velocity vector field of an irrotational fluid flow of an incompressible fluid. 
Indeed, by' virtue of the Cauchy-Riemann equations, <Il and n will be solutions of the systems 
(6) and l7), whence the compatibility conditions of incompressibility and irrotationality must 
hold, by Proposition 2. 

In the examples below, we examine some analytic functions and the resulting fluid flows 
which they define via (9). Since n is harmonic (by Proposition 1), one can also interpret n as 
an electrostatic potential in a region free of charge, in which case the curves n = constant are 
equipotential curves. The curves <Il = constant are then the lines of force along which charged 
particles will move, since the electric field is proportional to vn, and vn is tangent to the curves 
<Il = constant. (Recall from Example 2 that, since n is a harmonic conjugate of <Il, the level 
curves of <Il and n are orthogonal, when fl (z) * 0.) If n is interpreted as a steady-state 
temperature distribution, then the level curves of n are curves of constant temperature (Le., 
isotherms) and the temperature gradient vn is tangent to the level curves of <Il which then may 
be interpreted as curves of heat flow. Thus, we see that any analytic function provides 
simultaneously a solution of several problems in at least three different contexts. 

Example 8. Let f( z) = z2. Sketch the level curves of the real and imaginary parts of f and 
interpret these curves physically. 

Solution. Since f(z) = (x2 - y2) + i2xy, we have <Il(x,y) = Re(f(z)) = x2 - i, and n(x,y) 
= Im(f(z)) = 2xy. In fluid mechanics, the streamlines (cf. Figure 4) of the fluid flow associated 
with f are the hyperbolas 2xy = constant (Le., the level curves of the stream function n). The 
fluid velocity at the point (x,y) is the gradient of the velocity potential <Il, namely 
v(x,y) = 2xi - 2yj, and the speed of the fluid is 2r, where r is the distance to the origin. Note 
that the streamline 2xy = 0 consists of intersecting curves (Le., the axes). At the intersection, 
this streamline fails to be a "regular" curve. In general, at such a point, the velocity of the fluid 
flow must be 0 (or f/(z) = 0). Indeed, the implicit function theorem guarantees that a level 
curve n = constant will be regular at points where vn * o. At an "irregular point II z of a 
streamline, we then must have 0 = I vn I = I V<lll = I fl (z) I, using Example 2. A point where 
the velocity is zero is a stagnation point. Thus, we know that irregular points on a streamline 
must be stagnation points. We can interpret the picture as the result of two rivers meeting head 
on as they approach the x-axis from above and below. By confining our attention to the first 
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Figure 4 

quadrant (x ~ 0, y ~ 0), we can also think of the flow as resulting from the diversion of a stream 
of fluid when it meets a corner, after it settles to a steady flow. By extending the picture out of 
the page, the streamlines can also be interpreted as equipotential surfaces of an electrostatic 
potential which is produced by two distant positively charged lines (perpendicular to the page) at 
(a,a) and at (-a,-a) and two negatively charged lines at (a,-a) and (-a,a), where a is large, 
and we confine our attention to a small neighborhood of the origin. In electrostatic jargon, this 
potential is produced by a quadrapole at infinity. If we regard the positively charged lines as heat 
sources and the negatively charged lines as heat sinks, the equipotential surfaces are isotherms. 0 

Example 9. Let f(z) = Log(z) = Log(reiO) = log r + iO for r > 0 and -7r < 0 < 7r (Le., f is 
the principal branch of log z; cf. Example 3) . Analyze and interpret this function as was done in 
Example 8. Also, consider the related function i Log(z) = -0 + i log r. 

Solution. Here the streamlines for the fluid flow associated with f(z) are the rays 0 = constant 

(cf. Figure 5). The gradient of the velocity potential, log r, is r -Ie, where e is the unit radial r r 
vector field. Thus, the fluid appears to be emerging from a source at the pole, and the fluid slows 
down as it moves away from the pole. We may interpret the stream function 0 as the 
electrostatic potential which is produced when two oppositely charged, parallel, half-planes 
(x $ 0, y = ±(", extending out of the page) are brought together (Le., as (" -+ 0) along the negative 
x-axis (cf. Figure 5). If the half-planes are regarded as hot and cold objects maintained at 
temperatures -7r and 7r, then the rays 0 = constant are isotherms of the resulting steady-state 
temperature distribution. We now consider the related function i Log(z) = -0 + i log r. Here 
the streamlines are the circles log r = constant, and the velocity is the gradient of -0 which is 

-r-IeO ' whence the flow is in the clockwise sense, and diminishes in speed as r increases. 
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Figure 5 

The electrostatic potential log r is the potential for an infinite, uniformly charged wire which is 
orthogonal to the page (d. Example 1 of Section 6.1). If the wire is viewed as a very cold object, 
then log r may be regarded as a steadY-1>tate temperature distribution with circular isotherms. 
Apparently, there is a heat source at infinity. 0 

Example 10. In the same way as in Examples 8 and 9, supply interpretations of the function 

f(z) = Vo(z + R2z-1), where Vo and R are positive constants and z f O. 

Solution. For Izl large, we have f(z):::: Voz = Vo(x + iy). Thus, the velocity of the associated 

fluid flow is nearly Voi, far away from the pole. In terms of polar coordinates, we have 

Observe that the stream function V o( r - R 2/ r )sin () is zero on the circle r = R and also on the 

x-axis (except at x = 0). Note that this streamline has a self-intersection at z = ±R. We 
deduce from the discussion in Example 8 that these points must be stagnation points, where the 
fluid velocity must be zero. With some work, one can sketch enough of the other streamlines to 
deduce that, outside of the circle, the function f(z) represents the steady fluid flow around a 
circular (or cylindrical) obstacle (d. Figure 6). In electrostatics, the streamlines are the 
equipotential curves produced, when a cylindrical conductor is placed in a uniform electric field 
pointing in the y direction. We remark that on the surface of a conductor, electrons will arrange 
themselves in such a way that they cancel any tangential component of the electric field (Le., the 
static electric field will be normal to the surface of the conductor, which is therefore an 
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Figure 6 

equipotential surface. Suppose that a disk which is maintained at temperature 0 is placed in a 
large heat conducting plate with a uniform temperature gradient in the y direction. The 
isotherms of the resulting steady-state temperature distribution will be the streamlines in 
Figure 6. 0 

Remark. In the above examples, we have essentially determined problems that a given analytic 
function solves. It is much harder to determine the analytic function that yields the solution to a 
given problem. There are catalogs of conformal maps that may help. For example, see H. Kober, 
Dictionary of conformal representations, Dover Publications, Inc., 1957. 0 
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Summary 6.5 

1. Complex: analytic functions: Let fez) be a complex-valued function of the complex variable 
z = x + iy in an open set D of the plane. The derivative of fez) with respect to z is the limit 

f/(z) = lim fez + h6 - f(z) , 
h-+O 

(if it exists) regardless of how the complex number h approaches O. A function fez), for which 
(I (z) exists for all zED, is said to be complex: analytic (or simply analytic or holomorphic) on 
D. If fez) is analytic on the entire complex plane, then fez) is called an entire function. 

2. Cauchy-Riemann equations (Proposition 1): If f(x + iy) = u(x,y) + iv(x,y) is analytic on an 
open set D, then the real and imaginary parts (u and v) of f obey the Cauchy-Riemann 
equations 

u = v x y' u = -v . y x (81) 

If in addition u and v are C2 on D, then they are harmonic on D. Conversely, if u and v 

are C1 and satisfy the Cauchy-Riemann equations on D, then f = u + iv is analytic on D. 

3. Harmonic conjugates: Let u(x,y) and v(x,y) be functions defined on some open set D. 
Then v is a harmonic conjugate of u on D, if u + iv is analytic on D (i.e., if u and v obey 
the Cauchy-Riemann equations (81)). Any two harmonic conjugates of u differ by a constant. 
Proposition 3 states that any harmonic function u defined on a rectangular region R has a 
harmonic conjugate on R. This is still true for simply---connected regions R (i.e., without holes), 
but Example 3 shows that the harmonic function log(r), defined on the punctured plane (Le., 
with hole at (0,0)), does not have a harmonic conjugate on the punctured plane. If u and v are 
harmonic conjugates, then the level curves u = const. and v = const. intersect perpendicularly 
at any point where the common length of their gradients is not zero (cf. Example 2). In 
tw~imensional applications, these curves have the interpretations (depending on the context) of 
being electrostatic equipotential curves, isotherms of a steady-state temperature distribution, 
streamlines of an incompressible, irrotational fluid flow, etc. (cf. Examples 8, 9 and 10). 

4. Conformal mapping: An analytic function f(x + iy) = u(x,y) + iv(x,y) can be regarded as a 
transformation which maps the points in some region D of the xy-plane (or complex z-plane) 
to points in some region E in the uv-plane (or complex w-plane; w = u + iv). If f/(z) f. 0, 
for all z in D, then fez) is called a conformal mapping, because it has the property of 
I?reservin~ angles or small shapes, although there is a local magnification factor equal to about 
I fl (z) I t cf. Example 5). Proposition 4 shows that a conformal maps from D into E can be 
used to transfer a harmonic function on E in the w-plane to the region D in the z-plane. 
This is helpful in solving Dirichlet problems on unfamiliar domains D, if the image domain is 
familiar (cf. Examples 6 and 7). If one wishes to find a harmonic function which is constant on 
some curve (e.g., an isotherm, streamline, etc.), then the real (or imaginary) part of a conformal 
mapping which sends this curve to a vertical (or horizontal) line will be such a function. Every 
analytic function solves some (possibly very interesting) problem, but it is not always easy to find 
the appropriate function which solves a given (even simple) problem. 
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Exercises 6.5 

1. (a) For complex z = x + iy, use the power series definition sin z = z - z3/3! + z5/5! + ... 
and Euler's formula eZ = eX(cos y + i sin y), to deduce that sin(z) = (eiz - e-iz)/(2i) 
= sin(x)cosh(y) + i cos(x)sinh(y). 

(b) Check that sin(z) is analytic by verifying that the Cauchy-Riemann equations hold for the 
real and imaginary parts found in part (a). 

2. The argument in Example 3 shows that the harmonic function log r defined on the punctured 
plane, r f 0, does not have a harmonic conjugate defined on any open rectangular region which 
includes the pole. Why does this not violate Proposition 3? 

3. (a) Show that the circle of radius b > 0, with center at (1,0) (Le. at z = 1), is traced out 

by z = 1 + beiO, as Ovaries. 

(b) Show that the circle in part (a) is not mapped to a "perfect" circle by the function f(z) = z2, 
but the image becomes more circular as b -; O. 

(c) Show directly that for small b, the circle is magnified by a factor of 1 fl (1) I. 

4. Sketch the image of the wedge, 0 ~ r ~ 2, 0 ~ ° ~ 1f/2, when it is mapped into the w-plane 

via w = f(z) = z3. 

5. Use Proposition 4 to deduce that g(x,y) = exp[x2 - y2]sin(2xy) is harmonic. 

6. Suppose that U(r,O) is a continuous function on the exterior (r ~ R) of the disk r < R, and 
assume that U(r,O) is harmonic for r > R, with U(R,O):: 0 and 1 U(r,O) 1 ~ M, for some 
constant M. By completing the following steps, show that U(r,O):: 0 for r ~ R . 

(a) For any fixed ro > R, show that the function V(r,O; ro) :: M log(r/R)/log(ro/R) is 

harmonic for r > 0, and is zero on the circle r = R and equals M on the circle r = roo 

(b) Deduce from the Maximum/Minimum Principle (or use Problem 1 of Section 6.4) that 

1 U(r,O) 1 ~ V(r,O; ro) on the annulus R ~ r ~ roo 

(c) For an arbitrary fixed r, take the limit of both sides of the inequality in (b) as ro -; 00, to 

obtain 1 U(r,O) 1 ~ 0 (Le., U(r,O) :: 0), as required. 
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7. Show that when the Cauchy-Riemann equations, u = v and u = -v , are written in x y y x 

terms of polar coordinates, they yield the equivalent pair of equations, Ur = r-1y 0 and 

-1 
y r = -r U 0' for r > 0 . 

8. (a) For any real number Il' define the function zll' = rll'eill'O, for -1r < 0 < 1r and z = reiD. 

Use Problem 7 to show that zll' is an analytic function of z in the slit plane -1r < 0 < 1r. 

(b) Show that zll' = exp[1l' Log(z)l, where Log(z) is the principal branch of the log function 
defined by Log(z) = log r + iO tcf. Example 3). 

(c) Show that for Il' >~, zll' maps the sector 0 < 0 < 1r/ Il' onto the upper half-plane y > o. 
(d) Roughly sketch the streamlines of the fluid flow which is associated with the analytic function 

f(z) = zll' in the sector 0 < 0 < 1r/ Il', Il' > O. (If this seems difficult, first consider the case 

Il' = 2). What happens to these streamlines under the map in part (c) ? 

9. Let the analytic function f(z) = u(x,y) + i v(x,y) conformally map the open set D in the 
z-plane, in a one-to-one fashion, onto the open region E in the w-plane. Then there is a 
function g(w) = x(u,v) + i y(u,v) which is the inverse of f(z), in the sense that w = f(z) if and 
only if z = g(w). It is possible to prove that g(w) is an analytic function of w, but do not 
bother. Instead, demonstrate that the curves y = constant in D are mapped by f(z) to the 
streamlines of the fluid flow on E associated with the analytic function g. 

10. Let f(z) = sinh(z) = sinh(x)cos(y) + i cosh(x)sin(y). 

(a) Show that for any nonzero c in the interval (-1r/2,1r/2), f(z) maps the horizontal line y = c 
onto a branch of the hyperbola 

v2 u2 
~ - ~ = 1 (u + iv = w = f(z)) 
sin c cos c 

(the upper or lower branch depending on whether c is positive or negative). What happens to 
the x-axis (Le., y = 0) ? 

(b) Noting that all of the hyperbolas intersect the v-axis between 1 and -1, sketch these 
curves, and observe that they fill the entire w-plane, except for the rays v ~ 1 and v ~ -Ion 
the v-axis. 

(c) Deduce from (a) and (b) that sinh(z) maps the horizonal strip -1r/2 < y < 1r/2 (say D) in 
a 1-1 fashion onto the open set E consisting of the w-plane minus the rays in (b). Thus, there 

is an inverse sinh -1(w) on E of sinh(z) on D. 

(d) Deduce from Problem 9 that the fluid flow associated with the analytic function sinh -1(w) 
on E has the hyperbolas as streamlines. Describe the flow in words, and explain how the curves 
could arise electrostatically as equipotential curves, or as isotherms in a steady-state heat 
conduction setup. 
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11. (a) Describe the streamlines of fluid flow with complex velocity potential f(z) = i(z2 - l)t , 
for z = x + i Y not on the segment from -1 to 1 and x > 0, where the square root is defined 
as in Problem 8. Hint. Consider the image of a line (say v = f > 0) slightly above the u-axis 

under the inverse transformation g( w) = (1 - w2) t, w = u + iv, v > O. Is Figure 7 below 
relevant? 

(b) What concrete physical situations will yield isotherms or equipotential curves which are the 
same as the streamlines found in part (a) ? 

x 

-2 2 

Figure 7 



CHAPTER 7 

FOURIER TRANSFORMS 

In this chapter, we introduce the theory of Fourier transforms and use it to find solutions 
of PDEs on infinite domains. For example, we consider in some detail the problem of heat 
conduction in an infinite rod: 

D.E. ut = kuxx --00 < X < 00, t > 0, k > 0, 

I.C. u(x,O) = f(x), (*) 

under various assumptions on f(x). The reader may wonder why such problems are of interest, 
since for practical purposes all domains (rods) are finite. One answer is that usually the form of 
the solution is easier to handle and interpret in the infinite case. This has already been seen for 
the wave equation, where D'Alembert's formula for the infinite string is more tractable than the 
Fourier series solution, which is usually a sum of infinitely many harmonics, whose convergence 
may be difficult to establish directly. In Chapter 5, we used D'Alembert's formula with suitable 
periodic initial data to solve the wave equation for a finite string with fixed or free ends, without 
any Fourier series (cf. Theorem 3 of Section 5.2, or Examples 1 and 2 of Section 5.3). 

The analog of D'Alembert's formula for the heat equation (Le., for problem (*)) is the 
remarkable formula (for t > 0) 

u(x,t) = _1_[ e-(x-y)2/4ktf(y) dy, 
.J4ill -00 

which, as we will prove, is the only "physically reasonable" solution of (*), under various 
hypotheses on f(x). In particular, if f(x) is continuous and periodic of period. 2L, then u(x,t) 
given by (**) provides a periodic solution to the problem of heat conduction in a circular wire of 
length 2L. Note that (**) is visibly simpler to deal with than the formal infinite Fourier series 
solutions in Section 3.4. Solution (**) also has a nice interpretation as a continuous superposition 

(Le., integral) of the contributions (41rkt)--1 e-(x-y)2/4kt f(y) (due to heat sources at various 
points y) to the temperature u(x,t) at x after an elapsed time t. The profiles of these 
contributions due to a fixed point y at various times t is illustrated in Figure 1. The area 
under each of these "Gaussian curves" is f(y) (assumed positive here) and the height is 

-i 
(41rkt) 2f(y). As t increases, the influence of the initial temperature f(y) at y spreads. 
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Figure 1 

Formula (**) and solutions of analogous infinite problems are found by applying Fourier 
transform techniques in a formal, unrigorous fashion. For that reason, the solutions obtained by 
such methods must be verified separately anyway to make sure that they solve the given 
problems. Nevertheless, we will prove some properties of Fourier transforms under various 
assumptions (usually not the most general), so that the reader will have some basis for believing 
that the formal manipulations are likely to lead to a correct solution. We suggest that the reader 
or instructor skip the more difficult proofs during the first reading, and concentrate on the 
examples. 

In Section 7.1, to motivate complex Fourier transforms, we first consider the complex form 
of Fourier series. The basic properties of Fourier transforms are covered in Section 7.2. While we 
defer the proof of the Inversion Theorem to the end of the chapter, we use this theorem in Section 
7.3 to prove Parseval's equality for Fourier transforms. In Section 7.4, we apply Fourier 
transform methods to the heat problem (*) on the infinite rod, thereby formally obtaining the 
formula (**), which is then rigorously shown to solve (*). We also show how Fourier transform 
methods can be applied to problems for the wave equation and Laplace's equation, even though we 
have seen that other methods suffice. In Section 7.5, using (**) together with the method of 
images, we answer the questions which were left unresolved in Section 4.3 concerning the validity 
of formal infinite series solutions for the finite rod. The method of images and (**) are also used 
to solve heat problems for the semi-infinite rod (0 ~ x < (0). We use (**) and the method of 
images for heat problems, essentially in the same way that we used D'Alembert's formula and the 
method of images for wave problems in Section 5.3. The Fourier sine and cosine transforms are 
introduced, but we do not dwell on them, since results obtained by these transforms are easily 
obtained by using the ordinary Fourier transform with the method of images. 

Historical Remarks and Contemporary Perspectives 

In the late eighteenth and early nineteenth centuries, scientists and mathematicians were 
impressed by the success of Fourier series methods for solving initial/boundary-value problems for 
finite intervals, and they sought an appropriate continuous analog 'of Fourier series, involving 
integrals instead of infinite series. This analog would enable them to give integral representions of 
certain functions which are not periodic. Moreover, such representations would lead to more 
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manageable and understandable solutions in closed form (i.e., not involving infinite series; cf. 
(**)). The idea of the Fourier transform (or integral) was inspired by the work Pierre-Simon 
de Laplace (1749-1827), and is largely due to Joseph Fourier (1768-1830), Augustin-Louis 
Cauchy (1789-1857) and Simon D. Poisson (1781-1840). In 1811, all three presented papers 
orally to the Academy of Sciences of Paris, and each had the benefit of verbal accounts of the 
others. 

The concept of a Fourier transform is a special case of the notion of an integral transform 
(or operator; cf. Section 1.2). Given any "reasonable" function K(x,e), we can define the integral 
transform, F( e) or T[~( e), of a function f(x) by 

b 
F(e) == T[f](e) == t K(x,e) f(x) dx , (***) 

where the fixed limits of integration, a and b, may be finite or infinite. Each suitable function f 
is transformed into a new function F or Tr~, according to (***). Such transforms are linear in 
the sense that T[c1f1 + c2f2l = c1T[fll + c2T[t2l. The transform is determined by the choice of the 

limits a and b, and the function K(x,e) is known as the kernel of the transform. Some widely 
used transforms are defined by the kernels and limits in Table 1 below. 

K(x,O Limits of integration Name of transform 

( )_1 -i(x 211" 2 e a = -w , b = 00 Fourier 

-(x 
a = ° b = 00 Laplace e , 

x (-1 
a = 0, b = 00 Mellin 

1 1 b = 00 Hilbert if x+e a = -w, 

1 1 2/( (411"0 -"2 e -4"X a = -w, b = 00 Weierstrass 

Table 1 (Some common integral transforms) 

The choice of which transform to use depends on the nature of the problem at hand. The Fourier 
transform is helpful in solving PDEs, primarily because it converts differentiation into a simple 
algebraic multiplication, in the sense that T[f'lW = ieT[~(e) (cf. Proposition 1 of Section 7.2). 
Laplace transforms are ideally suited for initiaf-value problems for linear systems of ODEs. To 
solve such problems algebraically, the English electrical engineer Oliver Heaviside (1850-1925) 
developed his widely applied "operational calculus", based on Laplace and Fourier transforms. 

As with Fourier series, Fourier transforms have many fundamental uses, apart from solving 
differential equations. The Fourier coefficients an and bn of a function f(x) on [-L,1] tell us 

how prominently the harmonics sin(n7lX/L) and cos(n7lX/L) enter into the makeup of the 

function. For a function f( x) on (-00,00), the Fourier transform F( e) == (211if: f( x)e -i ex dx , at 
-w 

417 



a certain value ~, tells us how prominent the harmonics sin( ~x) and cos( ~x) are in the makeup 
of the function. Often it is useful to think of an object under experimental scrutiny as an 
unknown function, and one primary way of learning about this object is by measuring its response 
to a probe (e.g., light, X rays, microwaves, electronic signals, sound waves, etc.) which is sent at a 
various frequencies ~/27r. The magnitude of the response may be expected to be proportional to 
the prominence of the harmonic of frequency ~ in the makeup of the unknown object (i.e., the 
value of the Fourier transform of the unknown function, at ~). One then hopes to approximate 
the unknown object from these responses. In other words, one hopes to determine a function from 
its Fourier transform. There is a result (the Inversion Theorem) which shows that this can be 
done for a large class of functions. (This is analogous to the convergence theorems for Fourier 
series, which reconstruct certain functions from their Fourier coefficients.) In realistic situations, 
the frequency response of an object may depend on the angle from which the object is probed, and 
so the problem can be much more complicated, and possibly a different multidimensional 
transform may be more suitable. For example, the Radon transform .. and its inversion theorem 
were developed by Johann Radon (1887-1956) in his 1917 paper "Uber die Bestimmung von 
Funktionen durch ihre Integralwerte langs gewisser Manningfaltigkeiten" ([Radon], [Deans]). 
Although this paper was virtually unknown in applied areas before the 1970s, today the use of 
Radon's integral transform is fundamental in such fields as medical diagnostics, atmospheric 
physics, astronomy, spectroscopy, statistics, geophysics, stress analysis, etc.. Since the problems 
of determining objects from their frequency response (i.e., inverse problems or reconstruction 
problems) are nearly universal in science. integral transforms are essential tools of many trades. 
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7.1 Complex Fourier Series 

Recall that the Fourier series of a suitable function f(x) defined for -L ~ x ~ L is 

(1) 

where 
L L 

an = tJ f(x) cos(!!p) dx, (n = 0,1, ... ) and bn = tJ f(x) sin(!!p) dx, (n = 1,2, ... ) . 
-L -L 

To obtain the complex form of the Fourier series, we use the identity 

which yields 
eiy = cos(y) + i sin(y), (2) 

(3) 

Setting y = n7rX/L, and replacing cos(n7rX/L) and sin(n7rX/L) in (1) by the corresponding 
formulae in (3), yields 

FS f(x) = ~ao + L:=l [~an(ein7rX/L + e-in7rX/ L) _~ibn(ein7rX/L _e-in7rX/ L) ] 

= ~ao + L:=l [~(an _ibn)ein7rX/L + ~(an + ibn)e-in7rX/L] (4) 

_ 1 ~ 1( 'b ) in7rX/L ,-I 1( 'b) in7rX/L - 2"aO + L 2" an - 1 n e + L 2" a_n + 1 -n e 
n=l n=---oo 

Let Co = ~ao' For m = 1, 2, 3, ... , we define 

For m = -1, -2, -3, ... , we define 

cm = t(a_m + ib_m) = JrfL f(x) [cos(-T) + isin(-T)] dx = dfL f(x) e-im7rX/ L dx. 
-L -L 

Then (4) can be written in the form 

,00 im7rX/L 1 fL im /L FScf(x) = L cm e , where cm = 2L f(x) e- 7rX dx, m = 0, ±1, ±2, .... (5) 
m=---oo -L 

The formal expression FScf(x) is known as the complex: Fourier series of f(x). 
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In the event that FS f(x) converges at x, we clearly, get the same result whether we use 
FScf(x) or FS f(x), i.e., 

Thus, all of the convergence results of Chapter 4 carryover to the corresponding results for 
complex Fourier series. Ironically, complex Fourier series are often simpler to compute than 
II ordinary II Fourier series. 

Example 1. Compute the complex Fourier series of the f(x) = eax, -L ~ x ~ L, where a is a 
real constant. 

Solution. We have 

kJL eaxe-im7rX/L dx = kJL e(a-(im71/L))x dx 
-L -L 

1 1 e(a-(im7r/L))xI L _ 1 1 [eaLe-im7r_e-aLeim7r] 
2L a - Im7r/L -L - 2" aL - im7r 

m 1 e aL - e -aL. ( L +' ) 
(-1) 2" 2 2 (aL + Im7r) = (_I)m sinh(aL)a2 Im7r 2 . 

(aL) + (m7r) (aL) + (m7r) 

For m ~ 0 the real part of crn is !arn and the imaginary part is !brn' The reader is invited to 

compute these ordinary Fourier coefficients directly. Of course, the complex Fourier series of 

f(x) is just f) Crn eim7rX/ L, where crn is given above. 0 

m=-oo 

The functions eim7rX/ L are complex-valued. The inner product of two complex-valued 
functions f(x) and g(x), piecewise continuous on [-L,LJ, is defined to be the complex number 

L 
<f,g> == J f(x)g(x) dx, 

-L 

where g(x) is the complex conjugate of g(x). Thus, if f(x) = fl(x) + if2(x) and 

g(x) = gl(X) + ig2(x), where fl' f2' gl' g2 are real-valued, then 

(6) 



Section 7.1 Complex Fourier Series 

L 
<f,g> = f [f1(x) + if2(x)][gl(x) - ig2(x)] dx 

-L 

L L 
= f [f1(x)g,(x)+f2(x)g2(X)] dx + if [f2(x)gl(X)-f1(x)g2(X)] dx. 

-L -L 
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While in general <f,g> is not real, the inner product of f with itself is real and nonnegative: 

f
L fL 2 <f,f> = f(x)f(X) dx = If(x) I dx ~ 0. 
-L -L 

Hence the norm IIfll, defined as IIfll = .;<r;f>, makes sense. Also, <f,g> agrees with the 

definition in Section 4.1, when f and g are real-valued. Using the notation em(x) = eim7rX/ L, 

= f cos((m-n)7rX) + iSin((m-n)7rX)] dx = L [ [0 ifmfn 

-L L L 2L if m = n. 

We say that the family {em}, m = 0, ±1, ±2, ... , forms an orthogonal family of norm--square 

lIemll 2 = 21. The complex Fourier coefficients cm are essentially components of the possibly 

complex-valued function f with respect to this family, i.e., 

If the function f(x) is nice enough (e.g., if f is continuous and piecewise C1, with 
f(-L) = f(L)), then we know (cf. Theorem 4 of Section 4.2) that the Fourier series (complex or 
ordinary) converges to f(x), and therefore 

f(x) = l 00 

m=-oo 

-1 
which is the expansion of f in terms of the "orthogonal unit vectors" (2L) 2em• Parseval's 

equality (cf. Section 4.2) assumes a pleasant form in terms of the complex Fourier coefficients: 
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(7) 

It turns out that this result holds for any function (possibly complex-valued) f(x) for which 

r 1 f(x) 12 dx < 00. When f(x) is real-valued, the result follows from Parseval's equality of 
--00 

Section 4.2, since ICml2 = (alml + blml )/4 for m = :1:1, :1:2, ... and ICol2 = a~/4. For 

convenience, we state the following complex form of Parseval's equality. 

Theorem (Parseval's equality). Let f(x) be a real or complex-valued function defined on 

[-L,L]. If IIfll2 < 00, then 

m = 0, :1:1, :1:2, ... , are the complex Fourier coefficients of f(x). 

Example 2. What does Parseval's equality say if f(x) = eax , -L ~ x ~ L (a f. 0 and real)? 

Solution. We have 

From Example 1, Icml2 = 2i2h2(a~)2' so that Parseval's equality yields 
aL +m 7r 

2 . 2 ~oo 1 it cosh(aL) sinh(aL) = 2L smh (aL) L 2 2 2 2 
m=--oo a L + m 7r 

• ~oo 1 7r cosh a7r 
For L = 7r, we obtam L 2 2 = a Sill a7r = 

m=--oo a + m 
i coth(a7r). 0 

The following definition will be useful in the sequel. 
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Definition. A real or complex-valued function defined on (-00,00) is said to be 
R 

absolutely integrable on (-00,00), if f If(x) I dx exists for all R> 0, and 
-R 

[ If(x) I dx == I imfR If(x) I dx < 00. 
-00 R...;oo -R 

423 

For example, (1+x2)-1 is absolutely integrable, since foo (1+x2)-1dx = 7r < 00, but xj(1+x2) is 
-00 

not absolutely integrable. Indeed, while f~R x/(1+x2) dx = 0 , 

The Fourier transform 

Let f(x) be a real or complex-valued func~ion of the real variable x (-00 < X < (0). The 

Fourier transform of f( x) is the function f (~) of the real variable ~ (-00 < ~ < (0) defined by 

f(~) == _1_[ f(x) e-i~x dx == lim fR f(x) e-i~x d'x, 
ITi -00 R...;oo -R 

(8) 

where 
-.I. 

d'x == (27r) 2dx, when the limit (8) exists. 

-.I. )--.1. ) The somewhat awkward factor of (27r) 2 (which we disguise with the notation d'x = (27r 2dx 
is sometimes omitted in other books. With our notation, we will find that, for "nice" functions 
f(x), the following Parseval's equality (for Fourier transforms) holds 

-.I. ' 
(cf. Section 7.3). If the factor (27r) 2 in (8) is omitted in the definition of f( ~), then a factor of 

(27r)-1 must be inserted on the left-hand side of Parseval's equality. Note that in definition (8), 

we implicitly assume that the integral fR f(x)e -i~x dx exists for all real R, but we do not 
-R 

assume that f(x) is absolutely integrable. If the limit in (8) exists, then it is called the 
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Cauchy principal value of the improper integral [ f(x)e -i~xdx. The Cauchy principal value can 
-00 

exist, even if f(x) is not absolutely integrable. 

If ~ = m7r/L, then f(~) looks much like a complex Fourier coefficient. Indeed suppose 
that fl(x) is a "nice" (e.g., piecewise continuous) function defined for -L ~ x ~ L. Extend fl(X) 

to a function defined for all x, by setting 

! fl(x) for Ixl ~ L 
f(x) = 

o for Ixl > L 

The complex Fourier coefficients of fl(x) are given by 

cm = ~ t fl(X) e-im7rX/ L dx = ~ [ f(x) e-i(m7r/L)x dx 
-L -00 

= 4l r f(x) e-i(m7r/L)x d'x = 4l f(m7r/L). 
-00 

A 

Thus, the cm for fl(X) are obtained essentially by evaluating the Fourier transform f(~) of the 

extended function f(x) at the points ~ = m7r/L, m = 0, ±1, ±2, .... We will exploit this fact 
later (d. Section 7.3), but for the remainder of this section, we consider some examples. 

Example 3. Compute the Fourier transform of f(x) = e -a I x I, where a > 0 and -00 < X < 00. 

Solution. 

1 [e-(a+iOx 100 e-(a-i~)x 100] 1 [1 1] 
= IFi -(a+i{) 0 + -(a-i{) 0 = IFi a + i{ + ~ 

Example 4. Find the Fourier transform of the function 

! 1 for Ix I ~ L 
f(x) = 

o for Ixl > L 
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Solution. 

~ote that even though f(x) vanishes for x outside .the interval [-L,L), the same is not true of 

f({). In general, it can be shown that if both f and f vanish outside [-L,L), then f == O. 0 

Example 5. By computing the Fourier transform of the function 

f(x) = [ ~ for 0 ~ x ~ L 

otherwise, 

show that the Fourier transform of a real-valued function need not be real-valued itself. 

Solution. 

f(O = JLe-i~Xd'X = _l_e-i~xIL 
o IE-:::rr:O 

1 e-i~L - 1 
IE -ie 

_1_ cos(~L) - i sin({L) - 1 -ie = _1_ sin({L) - i (1 - cos({L)) 
IE e 

Example 6. Let f(x) = e-ax2/ 2, a> 0, -00 < X < 00. Show that 

f(~) = [ e-ax2/ 2 - i~x d'x = ~ e-e/2a . 
-00 .;a 

o 

a t"2 t"2 
Solution. Completing the square, the exponent in the integrand equals - 2(x + ii) - ~. Thus, 

f(~) = e-e/2a [ e-a(x + i~/a?/2 d'x == e-e/2a I(~) . 
-00 

We will now show that I(~) is actually a constant independent of ~. Indeed, by differentiating 

under the integral (cf. Leibniz's rule, Appendix A.3) we find that 

I/(~) = [ ~e-a(x + i~/a)2/2 d'x = [ e-a(x + i~/a)2/2 [-a(x + i~)) (~) d'x 
-00 -00 

= _i e-a(x + i~/a)2/2IOO = 0, 
alE -00 

i.e., I(~) = 1(0) = [ e-ax2/2 d'x . 
-00 
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To compute 1(0), we resort to an ingenious trick (involving polar coordinates), which the reader 
may have seen before: 

1 f21l"r ar2/2 = e-ar2/21°O = _1 
= 21r 0 JOe - r drd8 -a 0 a ' 

whence 1(0) = _1_. Thus, we obtain 
.ra 

f(e) = e-e/2a [ e-a(x + ie/a?/2 d'x = e-e/2a I(e) = e-e/2a 1(0) = l...e-e/2a . 
~ .ra 

Hence, if f(x) = e-ax2/ 2 , then 

When a = 1, note that f and f turn out to be the same function. There are infinitely many 
linearly independent functions with this property (cf. Problems 13 and 14 of Exercises 7.2). 0 

Remark. Appendix A.6 contains a table of Fourier transforms. 
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Summary 7.1 

1. Complex Fourier series: Let f(x) be a function defined on [-L,L], then the complex Fourier 
series of f(x) is the expression 

FSc f(x) == loo cmeirnx , where cm = Jr t f(x) e-imnx/ L dx, m = 0, ±1, ±2, ... , (SI) 
m=~ ~ 

provided that all of these integrals exist. Since the partial sum of FSc f(x) from -N to N is 

the same as the partial sum of the ordinary Fourier series FS f(x) from ° to N, all of the 
convergence results in Section 4.2 also hold for complex Fourier series. In terms of the complex 
Fourier coefficients, Parseval's equality becomes 

(S2) 

The left-hand side of (S2) is the norm-square IIfll2 and the right-hand side is proportional to 
the sum of the squares of the moduli of the components <f,em> of f, relative to the orthogonal 

family em(x) == eimnx/ L (m = 0, ±1, ±2, ... ) of norm-square 2L. Note that cm = Jr<f,em> . 

2. Fourier transforms: Let f(x) be a real or complex-val~ed function of the real variable x 

(~ < x < (0). The Fourier transform of f( x) is the function f (() defined by 

f(() == _1_[ f(x) e-i(x dx == lim fR f(x) e-i(x d'x, 
/Ii -00 R .... oo -R 

(S3) 

where dx' = dx//Ii, when this limit (the Cauchy principal value) exists. In Section 7.3, we show 
that for "nice" functions f(x), the following Parseval's equality (for Fourier transforms) holds 

(S4) 

Exercises 7.1 

1. Compute the complex Fourier series for each of the following functions defined on [-L,L]: 

(a) f(x) = x (b) f(x) = x2 (c) f(x) = L - Ixl 

(d) f(x) = 2-(L - Ixl) (e) f(x) = xNeax, N = 1,2, ... (f) f(x) = eaxcos(bx) . 
Ixl 
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N . 0 
2. (a) Check that 1: em = 1 + 2cos(O) + 2cos(20) + ... + 2cos(NO). 

n=-N 

\N n 1 _ zN+l 
(b) Use the result L z = 1 _ z 

n=O 
(valid for any complex number z f. 1), to show that 

\N einO = sin[(~ + pOl 
Ln=-N SIn ( () 2) . 

(c) Conclude that 1/2 + cos(O) + cos(20) + ... + cos(NO) = sinJ~~ n"( ~1)0] , 
as was proved differently in Section 4.2. (Recall that this is the Dirichlet kernel.) 

3. Find the Fourier transforms of the following functions: 

[ 
L- Ixl 

(a) f(x) = 0 
Ixl < L, 

Ixl ~ L 

-ax2/2 (c) f(x) =e sin(bx) , a > 0 

(b) f(x) = e-alxl cos(bx), a, b > 0 

4. (a) 9heck t~at the ~ourier transform is linear, i.e., for any complex numbers a and b, 

(af + bg) (~) = af(~) + bg(~) . 

(b) Verify that, for any real number c, [f(x+c)J A (~) = eic~ f(~) and [eicxf(x)J A (~) = f(~--c). 

5. Let f(x) be a continuous, absolutely integrable function defined on (-00,00). Show that if f(x) 
is periodic with period 2L, then f(x) must be identically zero. 

6. Prove the following complex form of Bessel's inequality. Let f(x) be a complex-valued 

function defined on [-L,1]. Suppose that I f(x) 12 is integrable on [-L,LJ. Prove that 

00 2 1 fL 2 1 fL -im7rX/L 1: Icml ~ 2L If(x) I dx, where cm = 2L f(x)e dx, m = 0, ±1, ±2, .... 
m=-oo -L -L 

Hint. Let SN(x) = 1:N cmeim7rX/L denote the N-th partial sum of FSc f(x), and consider 
m=-N 

the mean square error (7~ defined by (7~ = ir fL I f(x) - SN(x) 12 dx. Now use the fact that 
-L 

I f(x) - SN(x) 12 = [f(x) - SN(x)][f(XJ - s;rxJ1, where f(XJ denotes the complex conjugate of f(x). 

The rest of the argument is, almost verbatim, the same as in the real case (see Section 4.2). 
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7. Let f(x) = eif3x ,for -11' $ X $ 11' ,where (3 is a real number, but not an integer. Use 

Parseval's equality for complex Fourier series to show that f) sin2( 1r (f!zm)) = 1r2. 
m=-oo (~m) 

8. Let f(x) = 1rcos( ax) for -11' $ X $ 1r, where 0:' is not an integer. Derive the following 
formula due to Euler 

1 + 20:'2 ,00 (-1 )k _ 0:'1r 
"k=1 0:'2 _ k2 - sin( 0:'11') . 

Hint. First find the complex form of the Fourier series of f(x). 

9. Show that the functions 

{ 
0 if Ixl > 1 

f(x) = 2 if I x I = 1 

1 if Ixl < 1 

and (
0 if x < -1 

g(x) = 1 if -1 $ x < 1 

o if x ~ 1 

have the same Fourier transform. (Note that f and g differ only at a few points). 

10. (The Riemann-Lebesgue lemma for Fourier transforms) Let the complex-valued function 

f(x) be absolutely integrable on (-00,00) (Le., [ I f(x) I dx < (0). In what follows, you may use 
-00 

b b 
the standard result II a f(x) dx I $ t I f(x) I dx . 

(a) Show that f(~) exists, Le., lim _1_ fR f(x)e-i~x dx, exists for any real ~. 
R--;oo /5 -R 

Hint. Show that the integrals, from ±R to ±oo, tend to 0 as R --; 00 . 

(b) Show that If(~)1 $_1_[ If(x)1 dx (Le., If(~)1 is bounded). 
/Ii-oo 

(c) Assume that lim [ If(x)-f(x+a) I dx = O. (This holds if f(x) is absolutely integrable and 
a--; 0 -00 

piecewise continuous, by using the dominated convergence theorem in Appendix A.3 .) 

Show that I im I f(~) I = o. Hint. First show that f(~) = _1_ [ -f(x) e-i~(x - 1r/~) dx 
~--; ± 00 /Ii -00 

= _1_[ -f(y + i) e-i~y dy. Then note that 2f(~) = _1_[ [f(x) -f(x + i)] e-i~x dx. 
{Fi-oo /5-00 
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R 
11. Give an example of a COO function f(x) defined on (-w,oo) for which lim J If(x) I dx 

R-Ioo -R 
R 

does not exist, but for which lim J f(x) dx does exist. 
R-Ioo -R 

12. Let f(x) = { ~ l'f -2 n<x<n+n, 

ot herw i se. 

(a) Draw the graph of f(x) for -4 ~ x ~ 4. 

foo 00 2 
(b) Verify that If(x)1 dx = 2l lin < 00. 

--00 n=l 

n = ±1, ±2, ±3, ... , 

( c) Show that the limit of f( x) as x -I 00 does not exist. In particular, f( x) does not tend to 
zero as x -100. (In contrast, we know that the terms of a convergent infinite series tend to zero). 

(d) Construct a strictly positive function g(x) which is absolutely integrable on (-w,oo), and such 
that lim g(x) does not exist and g(x) is unbounded. Hint. In the definition of f(x), consider 

X-loo 

the effect of replacing 1 by n, n-2 by Inl-3, and 0 by (1+x2)-1. 
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7.2 Basic Properties of Fourier Transforms 

In this section, we establish several formulas which are useful in working with Fourier 
transforms. These formulas are valid for functions which (along with their derivatives) decay 
(Le., tend to 0 as Ixl -+ (0) sufficiently fast. More precisely, we state the following definition. 

Definition. A function f(x) (-00 < X < (0) has decay order (m,n), where m and n are 

nonne~ative integers, if f(x) is Cm and if there is a constant K > 0 such that, for all x 
with Ixl > 1 , 

If(x) I + If'(x)1 + ... + If(m)(x) I ~ Klxl-n . (1) 

Rema.rk. If m = 0, then f(x) is assumed to be a continuous function on (-00,00). Note also that 
the constant K in (1) depends on f, m and n. In other words, f and its first m derivatives 

decay at least as fast as K Jxl-n as Ixl -+ 00. Obviously, if f has decay order (m,n), then it 
also has decay order (m' ,n ) for 0 ~ m' ~ m and 0 ~ n' ~ n. A function which has decay order 

(m,n) for all m, n ~ 0 is called rapidly decreasing. Clearly, any COO function that is identically 
zero outside a closed interval is rapidly decreasing. The following example shows that there are 
rapidly decreasing functions that are never zero. 0 

2 
Example 1. Show that e -x is rapidly decreasing. 

Solution. For any k ~ 0 and for any real x, the following estimate holds : 

= k! x-2k . 

Thus, e -x2 decays faster than k! I x 1-2k for any k ~ o. The m-th derivative of e -x2 is of the 
2 

form Pm(x)e-x , where Pm(x) is an m-th degree polynomial. There is a constant dm, such that 

m -x2 
IPm(x) I ~ dmlxl for Ixl ~ 1 (cf. Problem 9). Thus, if f(x) = e , then for Ixl ~ 1 

If(x) I + If'(x)1 + ... + If(m)(x) I ~ (do + dtlxl + ... + dmlxl m)e-X2 

~ (do + ... + dm)lxlme-x2 ~ k!(do + ... + dm)lxl m- 2k. 

Given any (m,n) (with m, n ~ 0), we can choose k so large that 2k - m ~ n. Then the above 
inequalities show that f(x) has decay order (m,n), whence f(x) is rapidly decreasing (note 
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that the derivatives f(m)(x) = Pm(x)e -x2 are all continuous, as required). The function e -I x I 

is not rapidly decreasing, since its derivatives do not exist at x = 0, even though it has the 
required behavior for I x I ~ 1. 0 

From the differential equation viewpoint, perhaps the single most important property of 
Fourier transforms is that they convert differentiation into multiplication by the function ie, in 
the sense of the next proposition. As we will see, partial differential equations (at least those with 
constant coefficients) are then transformed into simpler ordinary differential equations. 

Proposition 1. Let f(x) have decay order (1,2), i.e., f is C1 and I f(x) I + I f' (x) I 

~ K I x 1-2, for I x I ~ 1 and some constant K > O. Then, for all real e, we have 
, 

[M] (e) = ie fW . 
, 

(2) 

Proof. In order to show that f( e) exists, it suffices to show that f(x) is absolutely integrable (d. 
Problem 10 of Exercises 7.1). We have 

[ If(x) I dx = II If(x) I dx + I If(x) I dx 
--00 -1 Ixl >1 

~ II I f(x) I dx + 2 roo Kx -2 dx = II I f(x) I dx + 2K < 00 • 

-1 J 1 -1 
, 

The same argument shows that [f' (x)] (e) exists. Using integration by parts and the fact that 
1 

lim f(x) = 0, we obtain (recall d'x == (211')2 dx, as in (8) of Section 7.1) 
X-i ± 00 

[f' (x)]' (e) = [ f'(x) e -iex d'x 
--00 

= (211')-t f(x) e-iexl oo 
- [ f(x)(-ie)e-iex d'x = (ie) [ f(x) e-iex d'x = ie f(e). 0 

--00 --00 --00 

Corollary 1. If f(x) has decay order (m,2), then for all real e, 
[lm)(x)] , (e) = imem f(e). (3) 

Proof. Since f(x) has decay order (m,2) we have that f'(x) is of decay order (m-1,2), f"(x) is 

of decay order (m-2,2), ... , and lm-1)(x) is of decay order (1,2). In particular, all of these 
derivatives are of decay order (1,2), and we may repeatedly apply Proposition 1 to obtain 
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[lm)(x)] , (~) = [(lm-l)),(x)]' (~) = i~[lm-l)(x)]' (~) 

= i~[(lm-2)), (x)( (~) = (i~)2[f(m-2)(x)]' (~) = ... = (i~)m f( ~). 0 

Proposition 2. Suppose f(x) has decay order (0,3) , i.e., f(x) is continuous and 

If(x)1 ~Klxl-3 for Ixl ~l, K>O. Then, for all real ~ 

i ~(~) = [xf(x)], (~) . 

433 

(4) 

Proof. Since f(x) has decay order (0,3), both f(x) e -i~x and its derivative with respect to ~, 
namely, -ixf(x)e-i~x, are absolutely integrable and continuous. Thus, Leibniz's rule 
(cf. Appendix A.3) yields 

, 

df d [ -i~x [ ) -i~x i ~(O = i ~ f(x) e d'x = x f(x e d'x. 0 
-00 -00 

Repeated application of this result, as in the proof of Corollary 1, yields the following 

Corollary 2. If f(x) has decay order (0,n+2), then for all real ~ 

in dnf(~) = [xn f(x)] , (~). 
d~n 

In particular, both sides of equation (5) exist ! 

, 

(5) 

Theorem 1. If f(x) is,rapidly decreasing, then 80 is f(~). More precisely, if f(x) has decay 

order (m,n+2), then f(~) has decay order (n,m) for any m, n ~ o. 

Proof. Assume f(x) has decay order (m,n+2). Using the Corollary 1 and Corollary 2, we have 
(for integers a and f3 with 0 $ a ~ m, 0 ~ f3 ~ n), 

Thus, (6) 



434 Chapter 7 Fourier Transforms 

Note that dO: [x;3f(x)] is a sum of terms of the form K xb la)(x), where K is a constant and 
dxO: 

0$ a $ 0: $ m and 0 $ b $;3 $ n. Hence, for some constant C and Ixl > 1, 

Therefore, the integral in (6) is finite, and we find that for an appropriate constant A, 

I (h(;3)(~) I $ A I ~ 1-0: for all 0: and ;3 with 0 $ 0: $ m and 0 $ ;3 $ n. In particular, we can 
take 0: = m, and add up these inequalities for ;3 = 0, ... , n in order to obtain 

where B is some constant. We still need to show that (h(n)(~) is continuous, i.e., for any ~o 

we need to show that (f)(n)(~)..., (h(n)(~o) as ~..., ~o' In order to prove this, we write 

l(h(n)(~)-(f)(n)(~o)1 $ [ Ixlnlf(x)lle-i~x_e-i~oxl d'x 
-00 

= [J + J ] Ixlnlf(x)lle-i~x_e-i~oxl d'x, (*) 
Ixl >R Ixl$R 

where R ~ 1 is a positive constant. Since I f(x) I < K I x l-n- 2 , I x I ~ 1, thus for R ~ 1 

which can be made as small as desired by taking R large enough. Once R is chosen, the second 
integral in (*) can be made as small as desired by taking ~ close enough to ~o' 0 

Remark. We have seen that the Fourier transform of the rapidly decreasing function e -tax2 

_.I. -.I.ae 
(a> 0) i,s a 2 e 2 ,which is also rapidly decreasing. In all of the other examples computed 

so far, f(~) is not rapidly decreasing because f(x) failed to be differer:tiable. In general, the 

nonexistence of f'(x) (even at a single point) slows the decay of f(~). For instance, in 

Example 3 of Section 7.1, we found that the Fourier transform of e -a I x I is _1_ 2 2 a 2 
..fTff a + ~ 

which is ~ /ITiF aC2 for large ~,even though e-alxl decays faster than Ixl-n for any 

integer n > 0, as I x I ..., 00. The fact that e -a I x I is not c1 at x = 0, is responsible for the 
relative slowness in the decay of its transform. .observe that Theorem 1 roughly says that the 

smoothness of f(x) governs the rate at which I f( 0 I appr9aches zero as I ~ I ..., 00, whereas the 

rate of decay of f(x) as Ixl"" 00 governs the smoothness of f(O. 0 
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Example 2. Find a function f(x) which is n.ot rapidly decreasing, but is such that 

I f( e) I $ Km Ie I-m for all I e I ~ 1 and m > ° (Le., f( e) has decay order (O,m) for all m > 0) . 

. 
Solution. Theorem 1 says that f( e) will have decay order (O,m) for all m ~ 0, if f(x) has 

decay order (m,2) for all m ~ ° (Le., f(x) is a COO function whose derivatives [and itselfj all 

decay at least as fast as K Ixl-2 as Ixl -I (0). A function with these properties is f(x) = 

(1 +x2)-1 , and it is also not rapidly decreasing. We do not have to compute f( e) to verify that 
it has decay order (O,m) for all m > 0, although a computation in Example 1 of Section 7.3 

shows that f({) ="fif2 e- I el, which does in fact have decay order (O,m) for all m> 0. 0 

Remark. A beautiful result which supplements Theorem 1 is due to Godfrey H. Hardy 
(1877-1947), one of the greatest analysts of this century. [ G.H. Hardy, A theorem concerning 
Fourier transforms, J. London Math. Soc. , 8 (1933) ,227-231.] Hardy's result is as follows. 

Let f(x) be defined on (-00,00). Suppose that 

where n is a nonnegative integer and K l' K2 are positive constants. Then 

.I. 2 
f(x) = p(x) e-2X ,where p(x) is a polynomial of degree not exceeding n. 0 

Convolutions and their Fourier transforms 
. . 

Often one wants to find a function h(x) whose Fourier transform is the product f(e)g(e) of 
the transforms of two functions f(x) and g(x). It turns out that h(x) is not f(x)g(x) in general. 
In order to find the function h(x), we carry out the following computation, assuming that f(x) 
and g(x) have decay order (0,2) to justify the interchange of order of integration (cf. Appendix 
A.2) and to ensure the existence of all of the integrals: 

= [ [ f(x)g(y) e-ie(x+y) d'x dry (z = x + y) 
-00 -00 

= [ [ f(z-y)g(y) e-iez d'z dry = [ [ f(z-y)g(y) e-iez dry d'z 
-00 -00 -00 -00 

= [ e-iez [[ f(z-y)g(y) dry ] d'z. 
-00 -00 
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Replacing the dummy variable of integration z by x we see that this final integral is the Fourier 
transform of the function 

h(x) = [ f(x-y)g(y) d'y = _1 [f(x-y)g(y) dy, 
-00 .f5 -00 

which is a continuous superposition of the translates f(x-y) of the function f(x) with respect to 
a "weight" g(y). 

Definition. The convolution of the function f with g is the function f*g, which is defined by 

(f*g)(x) == [ f(x-y)g(y) dy , 
-00 

(7) 

provided the integral exists for each x (e.g., if f is bounded and g is absolutely integrable). 

Thus our computation above shows that if f(x) and g(x) both have decay order (0,2), then the 
, , _1 

function with Fourier transform f( e)g( e) is (21r) 2 (f*g)(x). In fact, the above comI,>utation 
remains valid if we merely assume that f and g are piecewise continuous with I f(x) I, I g(x) I ~ 

c I x 1-2. Hence we have the following result. 

Theorem 2 (The Convolution Theorem). Let f(x) and g(x) be piecewise continuous with 

If(x)l, Ig(x)1 ~ const.lxl-2, Ixl ~ 1. Then 

(8) 

To illustrate the use of this result and to motivate the Inversion Theorem to be introduced 
in Section 7.3, we offer the following simple example from ordinary differential equations. More 
involved examples for PDEs will be presented later in Sections 7.4 and 7.5 . 

Example 3. For a given constant k and continuous function f(x), consider the ODE 

~ + ky = f(x) . 

Find a solution of this ODE by formally taking the Fourier transform of both sides of (9). 

Solution. We know from Section 1.1 that the general solution of this problem is given by 

(9) 
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y(x) = e-kx r ektf(t) dt + ce-kx , 
a 

437 

(10) 

where a and c are arbitrary constants. For this ODE there is no advantage in using Fourier 
transform techniques, but it is instructive to see what the technique looks like in this familiar 
setting. In order to take the Fourier transform of both sides of the ODE (9), we make ,the 

assumptions that the solution y(x) exists and is of decay order (1,2). We also assume that f(~) 
exists. Taking the Fourier transform of both sides of (9) and using Proposition 1, we get 

In practice, one often does not know whether the above assumptions hold. Therefore, after the 
final result is obtained below, it must be checked to ensure that it exists and satisfies (9). At any 
rate, from Example 3 of Section 7.1 we know that 

(
Ox < 0 

if g(x) = -kx ' then 
e x ~ 0, 

(Simply disregard the second integral in Example 3 of Section 7.1 .) Thus, by Theorem 2 we have 

, " l ' , 
y(~) = .fEr gWf(~) = .fEr - (g*f) (~) = (g*f) (~) . 

.fEr 

This requires us to assume that f(x) is piecewise continuous with I f(x) 1 ~ const.1 x 1-2, but we 
are going to check our answer anyway. To conclude that y = f*g, we need the Inversion 
Theorem and more assumptions. Nevertheless, we have been led to the hypothetical solution 

y(x) = (g*f)(x) = [ g(x-t)f(t) dt = r e-k(x-t)f(t) dt = e-kx r ektf(t) dt . 
-00 -00 -00 

Now, y(x) exists whenever r ektf(t) dt exists. For example, this would be the case, if 
-00 

-kIt 
1 f( t) 1 ~ const.e for some k' < k and all t < o. Then by the product rule 

y'(x) = -ke-kx r ektf(t) dt + e-kxekxf(x), 
.xl 

and thus y' (x) + ky(x) = f(x), i.e., the hypothetical solution is an actual solution under suitable 
assumptions on f(x). More precisely, we have shown 
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A 
If f(x) is continuous and if f ekt If(t) I dt exists for some real number A, then 

--w 

y(x) = r e-k(x-t)f(t) dt, -00 < x < 00, 
-00 

(11) 

is a solution of y' + ky = f(x). 

Obviously, y(x) in (11) is not the only solution of (9); all other solutions are obtained by adding 

the solutions Ce -kx of the associated homogeneous equation. This illustrates the fact that the 
hypothetical solution given by transform methods is typically not the most general one. The 
reason is that the transform method presupposes that the solution has a certain decay rate. 

Adding Ce -kx to y(x) may destroy any decay property that y(x) might have had, since 

e -kx ... 00 as x'" -00 , if k > O. However, in applications, one often just wants solutions that 
decay in some sense. If there are any such solutions, the method of Fourier transforms will most 
likely provide them and not any extraneous non-decaying solutions. For example, if f(x) is 
continuous and vanishes outside a finite interval, then (11) is the only solution of (9) that is 
bounded (i.e., I y(x) I < const.). On the other hand, if one is not careful, the solution (11) might 
be overlooked if one uses (10). 0 

Example 4. Let f(x) be a rapidly decreasing function defined on (-00,00), and let 

F(~) == 2 fa f(x)cos( ~x) d'x. [This is the "Fourier cosine transform" of the restriction of f(x) to 

(0,00) (cf. Section 7.5).] Show that if the graph of F( () crosses the ~-axis at points arbitrarily far 

from ~ = 0, then all of the odd order derivatives f(2k+1)(0) are zero. In particular, 

if f(x) = l:=o f(:~(O) xn (i.e., if f(x) is given by its Taylor series), then f(x) must be even. 

Solution. By repeated application Green's formula (or by twice as many integrations by parts), 

.fiT2 F(~) = fa f(x)cos(~x) dx = -C2 [[-f(x)~sin(~x) - f'(X)COS(~x)]I: + fa f"(x)cos(~x)dX] 

= C2 f'(O) - C2fa f"(x)cos(~x) dx = C2f'(0) - C2 [ C2 f(3)(0) - C2fa l4)(x)cos(~x) dX] 

= ... = l:=o [(_l)k C2k-2l2k+1)(0)] - (-1)PC2P-2fa f(2p+2)(x)cos(~x) dx. 
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Seeking a contradiction, suppose that f(2p-l)(O) is the first non vanishing odd order derivative. 
Then, the above becomes 

Since f(x) is rapidly decreasing, the term in large parentheses is a bounded function of e. Thus, 

lim .fiT2 e2PF(e) = (_1)P-1f(2p-l)(O) f= O. However, since it is assumed that F(e) = 0 for 
lel-4oo 
infinitely many values of e as I e I tends to infinity, this limit (if it exists) must be zero. 0 
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Summary 7.2 

1. Decay orders: A function f(x) (--00 < X < 00) has decay order (m,n), where m and n are 

nonnegative integers, if f(x) is Cm and if there is a constant K such that 

If(x)1 + If/(x)1 + ... + If(m)(x) I ~ Klxl-n , (S1) 

for all x with I x I ~ 1. A function with decay order (m,n) for all m, n ~ 0 .is said to be rapidly 

decreasing. Theorem 1 states that if f(x) has decay order (m,n+2), then f(() has decay order 
(n,m) for any m, n ~ O. In particular, the Fourier transform of a rapidly decreasing function is 
also rapidly decreasing. 

2. Properties of the Fourier transform: f( () = _1_ [ f(x) e -i(x dx). We list the properties 
/Fi--w 

shown in this section and specify the places where precise conditions for them are stated. 

A. [gfJ' (() = i( f(() (Proposition 1), B. [f(m)(x)] , (() = im (m f(() (Corollary 1), 

C. i~(() = [xf(x)]'(() (Proposition 2), D. in dnf(() = [xn f(x)] , ((), (Corollary 2), 
d(n 

1 2' 1 1 -le f( ()~( () = ~(f*g)' (() , E. (e-2ax) (() = _ e-2a (a> 0), F . (Theorem 2), 
.,fa 211' 

where (f*g)(x):: [ f(x-y)g(y) dy is the convolution of f and g . 
--w 

A more complete list of properties, and specific Fourier transforms, is given in Appendix A.6 . 

Exercises 7.2 

1. Show that if f(x) is absolutely integrable on (--00,00), then 

(a) [eibxf(ax)( (() = ~ f(((-b)/a), a, b real, a f 0 

(b) [f(i + b)( (() = aeiab ( f(a(), a, b real, a f O. 

2. Use the result of Example 6 of Section 7.1 and Corollary 2 to find the Fourier transform of 
each of the following functions : 

2 1 2 4 lax2 
(a) f(x) = x e-2X (b) g(x) = x e-2 ,a> O. 
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3. Show that if f(x) is defined on (-00,00) and has decay order (1,2) (i.e., f is C2 and 
~ . 

If(x) I + If'(x)1 ~Klxl for Ixl ~l,forsomeconstant K>O), then [f'(x)] (~) exists. 

Hint. See the proof of Proposition 1. 

4. Show that if f(x) is defined on (-00,00) and has decay order (m,2)' m ~ 1, then f'(x) has 
decay order (m-1,2). 

5. Show that if f(x) (-00 < X < 00) has decay order (m,n), then f(x) also has decay order 
(m',n'), where 0 ~ m' ~ m and 0 ~ n' ~ n. 

6. Prove that if f(x) (-00 < X < 00) has decay order (0,n+2), then, for all real ~ , 

7. Find the Fourier transform of 

[ 
x2 e -x if x ~ 0 

f(x) = 
o if x < 0 . 

8. Consider Example 3 in the text with k = -1 and f(x) == 1. Then, the problem is to solve the 
very simple ODE y' (x) - y(x) = 1. Is it possible to find any solutions of this ODE using Fourier 
transforms? Hint. See the remarks following equation (11). 

9. Show that if Pm(x) = ao + a1x + ... + amxm, am f 0, m ~ 1, is an m-th degree polynomial, 

then I Pm(x) I ~ dm I x 1m, for I x I ~ 1 and for some positive constant dm· 

10. (a) Consider the ODE y"(x) - y(x) = f(x). Show that a formal use of Fourier transforms 

and the Convolution Theorem leads to a formal solution y(x) = -~ [ e- Ix- yl f(y) dy. 
-00 

Hint. By Example 3 of Section 7.1, the transform of e- Ixl is (27r)-t 2 (1 + ~2)-1 . 

(b) By writing y(x) = - ~[r eY- x f(y) dy + r eX- y f(y) dy] and applying the general 
-00 x 

version of Leibniz's rule (cf. (7) of Appendix A.3), show that the formal solution is valid if f(x) is 
continuous and absolutely integrable or bounded. 
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11. Verify the Convolution Theorem in the following cases: 

.lx2 
(a) f(x) = g(x) = e-2 

Hint (for (b)). (f*g)(x) = 

[
1 for Ixl ~ 1 

(b) f(x) = g(x) = 0 
for Ixl > 1 . 

[
0 for Ixl > 2 

2 - I x I for I x I ~ 2 

12. Let f(x), g(x) and h(x) be rapidly decreasing functions and let a be a constant. Prove 

13. (a) In the computations for Example 6 of 7.1, we found that e-2ax dx = ../27r/a. Joo .1 2 

-00 

Setting a = 2b, we then get [ e -bx2 dx =.fi70, Differentiate this formula n times with 
-00 

respect to b and obtain [ x2n e -bx2 dx = Ii (2n)! . 
-00 .jO(4b)nn! 

.1 2 
(b) Let fm(x) = xme-2X • Show that this is a rapidly decreasing function for m = 0, 1,2, .... 

(c) Recalling that d,g> = [ f(x)g(x) dx, prove (by using the result of (a) with b = 1) that 
-00 

if m + n is even 

if m + n is odd. 

14. (a) By part (c) of Problem 13, we know that fo, f1' f2, ... are not mutually orthogonal (e.g., 

2 .lx2 
d O,f2> t= 0). Find a constant c, such that (x + c)e -2 is orthogonal to fo and f1 . 

(b) Let V n be the set of all linear combinations of fo, f1' ... , fn . Since V n-1 is an 

(n-l )-dimensional subspace of the n-dimensional space V n' there should be exactly one 

function of the form fn + an-1fn-1 + ... + aofo, which is orthogonal to fo, f1' ... , fn-1 (i.e., to all 

functions in V n-1)' Use integration by parts to show that this function is 
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Compute k1(x), k2(x) and k3(x), Note that the factor (- ~)n ensures that kn(x) will be of the 

.I. 2 
form Pn(x)e-2X , where Pn(x) is an n-th degree monic polynomial (Le., the coefficient of xn is 

one). 

(c) Using part (b), show that the functions kn(x), n = 0, 1, 2, ... , are mutually orthogonal. 

Also, prove that IIknl1 2 = <fn,kn> = 2-nn!v'i 

(d) (i) Check that kn'(x) = xkn(x) - 2kn+1(x) (Le., kn+1(x) = Mxkn(x) - kn'(x)] ). 

(ii) Verify also that xkn(x) + ko' (x) = n kn-1(x), n = 0, 1, 2, .... 

2 2 
Hint. For (ii), show that xkn(x) + kn'(x) = Pn'(x)e-tx ,where kn(x) = Pn(x)e-tx as in 

part (b). Then lise integration by parts to show that xkn(x) + kn' (x) is orthogonal to fm(x) 

for m = 0, ... , n-2. Conclude form part (b) that xkn(x) + kn'(x) is proportional to kn-1(x). 

(e) Using (i) of part (d) and Propositions 1 and 2, verify that kn+l(~) = ~[kn'(~) - ~kn(~)], 

and hence that in+1 kn+l(~) = ~[~ in knW - in ko'(~)]. 

. -.I.e 
(f) Since ko(~) = e 2 = ko( ~), from Example 6 of Section 7.1, and since the sequences of 

functions inkn(~) and kn(~) obey the same recursion formula [see (d) and (e)], deduce that 

kn(~) = inkn(~) or equivalently that kn(~) = (-i)nkn( ~). In particular ko, k4' k8' ... are all 

equal to their Fourier transforms. In the terminology of linear algebra, the Hermite functions are 
eigenfunctions of the Fourier transform operator, with eigenvalues 1, i, -1, -i . 

Remark. The functions kn(x) are proportional to the Hermite functions, while the Pn(x) are 

proportional to the Hermite polynomials. These functions arise in the study of the quantum 
mechanical harmonic oscillator which is studied in Section 9.5 (d. also Problem 16 below). It 
follows from the next problem and the Inversion Theorem (d. Section 7.3), that the Hermite 
functions form a complete orthogonal family of functions in the space of functions of decay order 
(0,2), in the sense that there is no nonzero function of decay order (0,2) which is orthogonal to 
all of the Hermite functions. 

15. Let f(x) be a function of decay order (0,2), and let h(x) = e-tx2. Justify the steps in the 
following computation, and use the Convolution Theorem to conclude that if f(x) is orthogonal 

n _.I.x2 
to all functions of the form x e 2 (or equivalently kn(x)), then f(~) == 0. 
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-1 X 2lOO [ xn [ n -1 2 ] = e 2 nT f(y) y e 2Y dy . 
n=O n. -00 

Hint. To justify the interchange of the sum and the integral, it suffices (cf. the Dominated 
~ n n l 2 

Convergence Theorem in Appendix A.3) to find g(y), such that In=o If(y)1 xn)' e-2Y ~ g(y) 

[ ~ nn-12 ~ nn-1 2 
and g(y) dy < 00. However, f(y) ~ M, and so In=o If(y) I xn)' e 2Y ~ M In=o \)' e 2Y 

-00 

= M exy-!y2 whose integral with respect to y is finite, for each fixed x (Why?). 

16. Let H be the differential operator defined by 

[H~(x) == ! [-f"(x) + x2f(x)) . 

In quantum mechanics (cf. Section 9.5), H is essentially the energy operator for the harmonic 
oscillator. The eigenvalues of H are those constants ,\ such that Schrodinger's equation Hf 
= ,\f holds for some nonzero function f (called an eigenfunction of H; cf. Section 4.4). 

(a) From the particular form of H, verify that for any rapidly decreasing f, we have 

[H~' (() = -Mf"(() + (2 f(()) = -[H(f))((). Conclude that if f is an eigenfunction of H, then 

f is also an eigenfunction of H with the same eigenvalue. 

(b) Verify that the Hermite function kn(x) defined in Problem 14(b) is an eigenfunction of H 

with eigenvalue n +!. (In appropriate units, these eigenvalues represent the energy levels of the 

quantum-mechanical harmonic oscillator). Hint. First show that for any C2 function f(x), we 

have ! [-f"(x) + x2f(x)) = ! [-~ + x] [~+ x] [f(x)) + ! f(x). Consider f(x) = kn(x), and 
use (i) and (ii) of part (d) of Problem 14. 

-1x2 
(c) Check that for any function of the form qn(x)e 2 , where qn(x) is a polynomial of 

_lX2 
degree n, we have that H[qn(x)e 2 ) is another function of the same form. 

Remark. From the observation of part (c), we might have guessed that the Hermite functions kn 
are eigenfunctions of H (cf. Problem 14(f)). Indeed, for those who are familiar with linear 
algebra, H is a symmetric (by Green's formula) operator on the space V n of Problem 14(b) and 

H leaves Vn-1 invariant. It then follows that any vector of Vn orthogonal to Vn-1 (say kn(x)) 

must be mapped by H onto a multiple of itself (i.e., kn must be an eigenfunction of H). 
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2 dn 2 
17. Let Hn(x) = [(_l)n/n!]ex - (e-x ). Note that Hn(x) is a multiple of the polynomial 

dxn 
Pn(x) of Problem 14(b), i.e., Hn(x) is proportional a Hermite polynomial. Let z be another 

variable and let D denote the operator ~. 

(b) Define u(x,t,z) and Kn(x,t) by u(x,t,z) = e2xz+tz2 = 1.:=0 Kn(x,t)zn. Show that 

Kn(x,t) solves the heat equation vt = !vxx . Hint. For each z the function u(x,t,z) 

= e2xz+tz2 satisfies this heat equation. Differentiate both sides of ut = !uxx with respect to z 

n-times, and evaluate the result at z = 0. 

Remark. Note that Kn(x,-l) = Hn(x), while Kn(x,O) = 2nxn/nL Thus, curiously, running time 

backward by one unit converts monomials to Hermite polynomials. 

18. (The Poisson Summation Formula). Let f(x) be any function, defined for -00 < X < 00, such 
00 

that for each x, the sum F(x) = l f(x + 2kL) converges (absolutely) to a continuous and 
k=-oo 

piecewise C1 function F(x). Assume that this convergence is uniform for -L ~ x ~ L . 

(a) Show that F(x) is periodic of period 2L, and equals its Fourier series. 

(b) Set x = ° in the complex Fourier series for F(x), to obtain the Poisson Summation Formula: 

00 00 l f(2kL) = F(O) = l cm 
k=-oo m=-oo 

Pay particular attention to the last equality. 

(c) Show that the hypotheses for f(x) are met if f(x) is of decay order (1,2) (i.e., f(x) is cl 
and If(x) I + If/(x)1 ~Klxl-2 for all Ixl > 1 andsomeK). 

19. Use formula (*) of Problem 18 to find a simple expression for the following infinite series: 

(a) l:=1 sin(ak)/k (b) 1.:=1 [sin(ak)/k]2 (c) l:=o 1/(a2+k2) (a"f 0) . 
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20. (a) By taking f(x) = (47rt)-t e-x2/ 4t, t > 0, in (*) of Problem 18, prove that 

(**) 

The famous Jacobi theta function is defined by 
00 2t 

O( t) = l e -m . By choosing L =.fi in 
n=-oo 

(**), verify that O(l/t) =.;t O(t). 

t ~ _m2e4t 
(b) Let w( t) = i e l e . Use the result of part (a) to verify the remarkable fact 

n=-oo 

that w(t) is an even function of t. 

Remark. Let </l(t) = w"(t) - w(t). Then by part (b), </let) is also an even function. One of the 
most celebrated open problem in mathematics, known as the Riemann Hypothesis, is equivalent to 
the assertion that the Fourier cosine transform of </l(t) , Le., 

F(x) = fa </l(t)cos(xt) dt, 

has only real zeros. The famous German mathematician, Georg Friedrich Bernhard Itiemann 
(1826-1866) stated this conjecture in 1859 in his epoch-making 8-page paper entitled U ber die 
Anzahl der Primzahlen unter einer gegebenen Grosse (liOn the Number of Primes Less Than a 
Given Magnitude") (cf. also [H. M. Edwards, 1974J, [PIlya, 1974]). 

21. (a) Use Fubini's theorem (cf. Appendix A.2) to deduce that the convolution (f*g) (x) of two 

absolutely integrable functions f(x) and g(x) is also absolutely integrable (Le., [ I (f*g)(x) I dx 
-00 

~ [ [ I f(x-y)g(y) I dy dx < 00 ). 

-00 -00 

(b) Deduce from part (a) and the Convolution Theorem that the product of the Fourier 
transforms of two absolutely integrable is also the Fourier transform of an absolutely integrable 
function. You may use the fact that the Convolution Theorem holds for any two absolutely 
integrable functions. 

(c) Deduce from (b) that if p(z) is any polynomial such that p(O) = 0, then p(f({)) is the 
Fourier transform of an absolutely-integrable function, provided that f(x) is absolutely 
integrable. 

(d) Why is the condition p(O) ~ 0 necessary in part (c)? Hint. For any absolutely integrable 

function h(x), we have lim Ih({) I = 0 by Problem lO(c) of Section 7.1. 
{-+ ± 00 
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7.3 The Inversion Theorem and Parseval's Equality 

One property of Fourier transforms which is essential, both in applications (cf. remarks 
precedi~g Section 7.1) and in pure mathematics, is that under mild assumptions on f and g, if 

f(~) = g( ~)1 then f(x) = g(x). In other words, we can recover a suitable function f(x) from its 

transform f (~). At the end of this chapter (cf. Supplement), we prove 

The Inversion Theorem. Let f(x) be a piecewise C1 function (Le., f(x) and f' (x) are 

piecewise continuous functions in any finite interval), such that [ I f(x) I dx < 00. Then for 
--00 

each real x, 

(1) 

, 

In particular, if f(x) is also assumed to be continuous, then f(x) is determined by fW 
?y the inversion formula (1). The right side of (1) looks very much like the Fourier transform of 

f( ~), except that there is no minus sign in front of i~x. Sin,ce the integral essentially gives f(x) 

back again, the right side is the inverse Fourier transform of f(~). More precisely, we have: 

Definition. The inverse Fourier transform g(x) of a function g(~) is defined by 

g(x) = [g(~)ei~Xd'~ = limfR g(~)ei~xd'~, 
--00 R...,oo -R 

-.l. 
whenever this limit exists, and where d'~ = (211") 2d~. 

For a continuous piecewise c1 function f(x) with [ I f(x) I dx < 00, the Inversion Theorem 
--00 

simply says that [f(~)r (x) = f(x). 

Remark. The Fourier transform of an absolutely integrable function need not be absolutely 
integrable. Indeed, from Example 4 of Section 7.1 (with L = 1) we know that the Fourier 
transform of the absolutely integrable function 

[ 
1 if Ixl $ 1 

f(x) = 0 
if Ixl > 1 

is 
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It can be shown (cf. Problem 4) that f(~) is not absolutely integrable. For this reason the 
integral (1) in the Inversion Theorem is to be interpreted as a Cauchy principal value, that is, 

Example 1. Compute the inverse Fourier transform of the function g(~) = (a2 + ~2)-1 (a> 0). 

Solution. If we had to do this directly, we would need to compute the integral 

[ 
i tx - e <, 

g(x) = 2 2 d'~. 
-ooa + ~ 

While this is not hard to do using complex contour integration, we will proceed indirectly by using 
the Inversion Theorem. By Example 3 of Section 7.1, we know that the function whose Fourier 

transform is g( ~), is /Fir (2a)-1 e -a 1 x I. Thus, the Inversion Theorem tells us immediately that 

[ ei~x d'~=g(x)=~e-alxl. 0 

-00 a2 + ~2 2a 
(2) 

Remark. Suppose that we make the change of variables ~.., x and x'" -~ in formula (2). Then 

(2' ) 

2 2)-1 Thus, we have fOl!nd the Fourier transform of (a + x as well! The same argument shows 

that, in general, g(~) = g(-~). Indeed, we have 

g(~) = [ g(x) e-i~x d'x = [ g(x) ei(-~)u d'x = g(-~) . 
-00 -00 

(3) 

In other words, the graph of the Fourier transform of a function is just the reflection. in the 

vertical axis of the graph of the inve.rs~ Fourie~ transform of the function. Letting g = f for a 

suitable function f, (3) yields (f) (~) = (ff (-~) = f( -~) by the Inversion Theorem (i.e., 
applying the Fourier transform twice to a function has the effect of reflecting the graph of the 
function). Applying the Fourier transform four times will give the original function back again 

(i.e., f = f; why?). 0 

The relation of Fourier transforms to complex Fourier series 

The inversion formula bears a resemblance to the convergence results for Fourier series (cf. 
Section 4.2). Indeed, one can use complex Fourier series to prove the inversion formula (1), when 
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f(x) is C2 and is zero outside of a finite interval. To do this, let fL be the function f 

restricted to the interval [-L,L]. For any value Xo choose L so large that -L < Xo < Land. 

f(x) = 0 for I x I > L. In terms of complex Fourier series, Theorem 2 of Section 4.2 yields 

f(xo) = fL (xo) = f) cmeim7rXo/L, where cm = Jr fL fL (x) e -im7rX/L dx . 
m=--oo -L 

Since f = fL inside [-L,L] and f = 0 outside [-L,L], we have 

Thus, 

Since the extreme left side of (5) is a constant, independent of L, the sum on the extreme right 
must also be i ndependen t of L. However, this sum is a Riemann sum for the integral 

(6) 

where the intervals of the partition have length ~~ = ,,!/L. Under the assumption that f is C2, 

we know from Theorem 1 of Section 7.2 that f (~) is continuous (indeed, COO) and 

I f(~) I $ C I ~1-2 for I ~I ~ 1. Thus, (6) exists and the Riemann sums (5) will approach (6) as L 
tends to infinity (Le., as ~~ ... 0). However, we have observed that the sums in (5) are 
independent of L and hence each sum must equal (6). Thus as desired, in the limit, (5) becomes 

f(xo) = [ f(~) ei~xo d'x , 
--00 

valid for all xo, provided that f(x) is a C2 function vanishing outside a finite interval. To get 

the more general Inversion Theorem we need a different argument (cf. the Supplement at the end 
of this chapter). However, since we will only use the Inversion Theorem to obtain hypothetical 
solutions of PDEs (which are verified separately) there is no great need for this generality. 

It is also possible to use Parseval's equality for complex Fourier series to obtain Parseval's 

equality (cf. (7) below) for C1 functions f(x) and g(x) which are zero outside of a finite interval 
(cf. Problem 12). Instead, we will prove the following more general form of Parseval's equality by 
using the Inversion Theorem: . 



450 Chapter 7 Fourier Transforms 

. 
Parseval's Equality. H f(x) , f( e) and g(x) are absolutely integrable on (-00,00) and f(x) is 

piecewise c1 on (-00,00), then 

(7) 

Proof. We use the hypotheses to apply the Inversion Theorem to f(x) and to justify the 
interchange of the order of integration (Appendix A.2) in the following computation: 

[ f(x)g(x) dx = [ [ f(e) eiex dIe] g(x) dx (Inversion Theorem) 
-00 -00 -00 

Observe that the inverse transform in the right side of the first equation can differ from f(x) at a 
finite number of points in each finite interval, but this does not affect the value of the integral. 0 

. 
Remarks. When g = f, Parseval's equality yields IIfll = Ilfll for any rapidly decreasing function 

1 

f, where Ilfll = [ I f(x) 12 dx] '1. This means that the Fourier transform is a "rotation" of the 
-00 

vector space of rapidly decreasing functions, since lengths of functions are unchanged. This fact 
can be used to extend the notion of Fourier transform to more general classes of functions (e.g., 
the square-integrable functions for which IIfll < 00, but which may not be absolutely integrable, 

such as x/(l +x2)). In ordinary space, a linear transformation which does not change the distance 
of any point to the origin must be a rotation possibly followed bJ a reflection. In the infinite 
dimensional space of rapidly decreasing functions, we have shown (cf. Problem 14 of Sect~on 7.2) 

that there is an orthogonal family ko(x), k1(x), k2(x), ... of Hermite functions such that kn(e) = 
inkn(e) (Le., the values of kn are rotated by ll1r/2 in the complex plane). 0 

Additional examples 

n _.l.x2 
Example 2. Find the Fourier transform of h(x) = x e 2 ,for n = 0, 1,2, ., .. 

. 
Solution. A direct computation of h( e), using the definition 
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is not very easy. One could differentiate e -te = [ e -tx2 e -iex d'x n-times with respect to e 
-00 

to obtain the ensuing result. Instead, our strategy will be to use the relation h( e) = h( -e) (d. 

(3)). In other words, we compute the inverse transform h(x) of h(e) = ene-te , and then 

replace x in h(x) by -e to obtain h(e) (d. (3)). To compute h(x), we use the formula 

en f(e) = i-n [f(n)(x)] , (e) (d. Corollary 1 of Section 7.2) with f(x) = e-tx2, so that f(e) 

-.I.e = e 2 • Then by the Inversion Theorem, we obtain 

Thus, 

h(e) = h(-e) = i-n (_I)n - e 2'> = in - e-2 '> = in p (e) e-2'> , '_ dn [-.l.t2] dn [ .I.t2] .I.t2 
dem den n 

where Pn (e) is a polynomial of degree n. We have Po( e) = 1, Pl (e) = -e, P2( e) = e2 - 1, and 

in general we can compute inductively: Pn+l( e) = -ePn( e) + Pn 1 (e). 0 

Example 3. Compute I::: [ {2 4 dx, using Parseval's equality and (2/). 
-00 (x + 1) 

Solution. Let g(x) = ~(x2 + 1)-1. By Parseval's equality and Proposition 1 of Section 7.2 , 

Example 4. By means of formal calculations express the Fourier transform of 

h(x) = [ (x - s) f(x-s) f' (s) ds , 
-00 

in terms of f( e) and *( e). State conditions under which the calculations are valid. 

Solution. Let g(x) = xf(x). Then h(x) = (g*f ' )(x) and hence by the Convolution Theorem 
A A A A 

h( e) = (g*f / ) (e) = ~ g( e)[f' (x)] (e)· 
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Now, by Proposition 1 and Proposition 2 of Section 7.2 

whence 

g(~) = i ~(~) and [f'(x)]' ~~) = i~ f(~), 

h(~) = -/5 ~ f(~) ~(~). 

Propositions 1 and 2 require that f(x) be of decay order (1,2) and (0,3) respectively, and thus 
both propositions can be used if f(x) is of decay order (1,3). Then xf(x) and f' (x) will satisfy 
the conditions in Theorem 2 (the Convolution Theorem), as well. Thus, it suffices to take f(x) to 
be of decay order (1,3). 0 

The Convolution Theorem and the Inversion Theorem can be used to solve certain integral 
equations, as the following example illustrates. 

Example 5. Solve for g(x) in the integral equation 

[ g(s) ds _ 1 
2 2 - 2 2 

-00 (x-s) + b x + a 
(a> b > 0 ), (8) 

You may assume that [ Ig(x) I dx < 00 and that g is C1. 
-00 

Solution. If we set f(x) = 2 1 2' then (8) becomes (hg)(x) = ---,..--_1_7<" 
x + b x2 + a2 

Hence, by the Convolution Theorem, 

. 
/5 f(~)g(~) = [) ~ a2 ] (~). (9) 

Now, by Example 1, we have that 

. 
[ x2 ~ a 2 ] (~) = ~ e -a I ~ I . (10) 

Using (10) (with b replacing a) toevaluate f(~),(9)becomes g(~)=_b_e-(a-b)I~I. 
a.['Ii 

Applying (10) again (with a-b replacing a) and using the Inversion Theorem, we obtain 

g(x) = b( a-b) . 0 

a1l'(x2 + (a-b )2) 
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The relation between the Fourier transform and the Laplace transform 

Let f(t) be a function which is zero for t < O. Then 

Although we have previously taken e to be real, if we let e = -is, then we have 

IE {(-is) = fa e-ilt f(t) dt . 

The right-hand side of (11) is called the Laplace transform of f(t), and is denoted by 

L f(s) == fa e-ilt f(t) dt = IE {(-is). 

453 

(11) 

(12) 

Thus, (12) indicates that the Laplace transform of f at s is essentially the Fourier transform of 
f evaluated at -is. Formula (l2) explains the many properties that these transforms have in 

common. The decaying factor e-ilt (s > 0) in (12) enables one to apply the Laplace transform to 
a wide variety of functions which need not decay as t -+ 00. Indeed, the Laplace transform will be 

defined for s sufficiently large, if f(t) $ Keat, for some constants K and a. Thus, one may 
confidently apply Laplace transform techniques to solve systems of ODEs with constant 
coefficients, since the solutions are already known to grow at most exponentially. Moreover, 
initial conditions for such systems can be nicely encoded in the resulting algebraic problem. 
However, for functions which are not identically zero when t < 0, the Laplace transform ignores 
the values of f(t) for t < 0 (Why?), and hence such functions cannot be completely recovered 
from their Laplace transforms, in general. Thus, in spite of the more stringent decay 
requirements, the Fourier transform is usually preferable to the Laplace transform, when one 
wishes to transform functions of an unrestricted variable (e.g., f(x) , -00 < X < (0). 
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Summary 7.3 

1. The Inversion Theorem: Let f(x) be a piecewise c1 function (Le., f(x) and f' (x) are 

piecewise continuous functions in any finite interval), with [ I f(x) I dx < 00. Then for all real x, 
~ 

f(x+) t f(x~=_l_[ I(()ei(x d(. (Sl) 
/Fi - 00 

A proof of the Inversion Theorem is in the Supplement at the end of this chapter, but in this 

section, it was shown that in the case, where f(x) is C2 and is 0 outside of a finite interval, the 
result can be proved by using a convergence theorem (Theorem 2 of Section 4.2) for Fourier series. 

2. The inverse Fourier transform: The inverse Fourier transform of a function g( 0 is 

-.J. 
whenever this limit exists, and where d' ( = (211") 2d(. The Inversion Theorem implies that for 

suitable f(x) (Le., continuous, piecewise c1 and absolutely integrable), we have (If (x) = f(x). 
The graph of the Fourier transform of a function is the ~eflection in the vertical axis of the graph 

of the inverse Fourier trans~orm of the fun~ti?n (Le., g(() = g(-()). In particular, for suitable 

functions f(x), with g = f, we obtain (f) (() = f( -(). This makes it easy to compute the 
Fourier transform of a function whi~~ }~ the Fourier transform of some initial suitable function (cf. 
Example 1). Also, it follows that f = f for suitable f . 

. 
3. Parseval's equality: If f(x), f(() andg(x) are absolutely integrable on (-w,oo) and f(x) is 

piecewise CI on (-w,oo), then 

(S2) 
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Exercises 7.3 

1. Find the inverse transform of each of the following functions : 

(a) g(e) = (l/.ja)e-!e/a, a> 0 (b) g(e) = i(ey'21r)-l(eie -1) (c) g(e) =..flTi [sin(e)/ej. 

Hint. Review the examples of Section 7.1. 

2. Prove that the convolution of two rapidly decreasing functions (cf. Section 7.2) is a rapidly 
decreasing function. 

3. Let n be a positive integer and let h(x) = [ (x - s)n f(x-s) fl (s) ds. 
--00 

Use formal calculations to express the Fourier transform of h(x) in terms of i(e) and i(n)(e). 
Hint. See Example 4. 

[~ 4. Let f(x) = ~ 
if x # 0 

if x = 0 

R 
Prove that lim f If(x) I dx does not exist. 

R-Ioo 0 

1 1 
Hint. If n1r ~ x ~ (n+1)1r, (n = 1,2, ... ), then x ~ (n+1)1r and so 

f (n+1)1r ISixn(x)I dx >_ 1 f(n+1)1r . 2 
(n+1)1r Ism(x)I dx=(n+1)1r' 

n1r n1r 

5. Use the elementary formula faxn e -ax dx = 

the Fourier transforms of the following functions 

(a) fn(x) = [(x + Ixl )/2jn e-x , n = 0,1,2, .... 

n! 

(b) hn(x) = [(x + Ixi)/2jn sin (x) e-x , n = 0, 1,2, ... 

Hint. For part (b), use the formula 2i· sin x = eix - e -ix . 

(n = 0, 1, 2, ... ; Re(a) > 0) to find 

6. (a) Solve the integral equation [ e-tb(x-y)2g(y) dy = e-tax2, where 0 < a < b. 
--00 

(b) Why can there be no absolutely integrable, piecewise continuous function which solves this 
equation when a ~ b? Hint. See Problem 10 of Section 7.1. 
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7. Use Parseval's equality to evaluate the following definite integrals, where a, b > 0 : 

(a) [ 2 1 2 2 dx 
-00 (a + x ) 

( c) [ s ~ n ( bx ~ dx 
-00 x(a + x ) 

(b) [ [sin£ax)] 2 dx 
-00 

_ax2 

(d) [ 2 e 2 dx. 
--00 (b + x ) 

Remark. Note that Parseval's equality, as we have stated it, does not apply to part (b) (Why 
not ?), even though the correct result is obtained anyway. Try doing part (b) rigorously, by using 

(at x = 0) the result (hg)(x) = [ f(e)g(e) eixe de , which is valid when f(x) and g(x) are 
--00 

piecewise continuous and absolutely integrable (so that the Convolution Theorem of Section 7.2 

may be applied) and when (f*g)(x) is continuous, piecewise cl and absolutely integrable (for the 
Inversion Theorem). 

8. Let u(x,t) = ~r-oo [ e-ket I: ekes ~(e,s) ds ] eiex de· 

Show that u(x,t) = _1_[ [It ~e-(y-x)2/(4k(t-s)) dS] dy, assuming that q(y,s) is 
v'41i1< -00 0 .;t:::s 

nice enough (e.g., bounded and continuous) to permit the interchange of order of integration. 

9. Find a function f(x) which solves the integral equation 

f(x) + [ f(x-t) e-t dt= 1 2 . 
o 1 + x 

Hint. Let g( t) = e -t for t ~ 0, and 0 otherwise. Note that the integral in (*) is the 
convolution (f*g)(x). 

10. Evaluate the integral f(x) =.fITi [ (l/e2)(I- cos(e)) eiex de . 
--00 

Hint. Use the Inversion Theorem and Problem 3 of Section 7.1. 

11. Evaluate the integral f(x) == _1_ [ e sin(ex)e-~e de , by considering the effect of replacing ,.fFff-oo 
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12. In the case where f(x) is c1 on (-w,oo) and is 0 outside of some finite interval, say [-L,L], 

show that Parseval's equality [ If(x)1 2 dx = [ If(~)12 d~ follows from Parseval's equality 
-00 -00 . 

for Fourier series in the complex form (cf. Section 7.1). 

Hint. Write the complex Fourier coefficients of f(x) on [-L,L] in terms of the Fourier transform 
of f(x), as was done in the Fourier series derivation of the Inversion Theorem. Then apply 
Parseval's equality for complex Fourier series, and take a limit as L -+ 00 to obtain an integral 
from a Riemann sum (cf. (4), (5), and (6)). 

13. Suppose that f(x) is absolutely integrable and piecewise C1 and f(~) = m(~) for some 
complex constant a. Show that a must be 1, i, -1, or -i. Also show that f(x) is even if 
a = ±1 ,and f(x) is odd if a = ±i. Note that there are many examples of such functions (cf. the 

Hermite functions in Problem 14 of Section 7.2). Hint. First observe that a4 = 1 (Why?). 

F I d fi ( ) - sin [1I'(x-n)] -14. orrea Xfn, eme wnx - 1I'(x-n) ,n-O,±1,±2, ... ,and 

_ {eillX/../Fi -11' ~ X ~ 11' 
Let fn(x) = 

o otherwise 
, 

(a) Using Example 4 of Section 7.1, show that fn(~) = wn(~)' 

(b) Show that [ wn(~)wm(~) d~ = {O for m f n by a formal application of Parseval's 
-00 1 for m = n 

equality, or rigorously, by using the Convolution Theorem (cf. the remark following 
Problem 7(b)). Thus, the functions wn(~) form an orthogonal family of norm-square 1 

on (-w,oo). 
N 

(c) Suppose that for some complex constants cn (-N < n < N), g(x) = }: cnfn(x). Show 
n=-N 

that [ I g(x) 12 dx = }:N I cn 12 = [ I g(~) 12 d~, without using Parseval's equality. 
-00 n=-N-oo 

(d) For g(x) as in part (c), show that get) = [ g(~)sin~(ti~V) d~ . 
-00 

,00 ~ 2 
Remark. Functions of the form g(~) = }: cnwnW, with l Icnl < 00, are known as 

n=-w n=-w , 

Paley-Wiener functions, and the series is known as the cardinal series for the function g(~). Such 
series playa central role in the Whittaker-Shannon sampling theory of band-limited signals (cf. 
[J.R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (New Series) 12 

(1985),45-89]). The result in part (c) implies that w(x,t):: sin~(~~~»)) is a reproducing kernel 
for the class of Paley-Wiener functions. 
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7.4 Fourier Transform Methods for PDEs 

In this section we use Fourier transform methods to derive hypothetical solutions for 
boundary-value problems for PDEs on infinite domains. Since one must always separately verify 
that these hypothetical solutions are actual solutions, there is absolutely no need to justify any 
steps in the derivation of the hypothetical solution. Also, any attempt to justify the Fourier 
transform methods in the derivation of these hypothetical solutions is doomed to failure, because 
these methods presuppose that the solution not only exists (an unwarranted assumption in itself), 
but also that the solution decays rapidly enough so that its transform exists. The Fourier 
transform methods simply provide us with a hypothetical solution (to be justified by other means) 
which we might never have guessed without them (cf. Example 3 of Section 7.2). 

The heat problem for the infinite rod 

Here we will prove that if the function f(x) is continuous and either absolutely integrable (i.e, 

[ I f(x) I dx < 00) or bounded (i.e., I f(x) I $ M for all x), then the following initial-value 
-00 

problem has a solution u(x,t) which is continuous throughout the half-plane t ~ 0, -00 < X < 00. 

D.E. ut = kuxx -00 < X < 00, t > ° 
I.e. u(x,O) = f(x) (t = 0). 

(1) 

This solution is given by the formulas 

1 [ -(x-y)2/4kt u(x,t) = -- e f(y) dy (for t > 0) and u(x,O) = f(x) (for t = 0). (2) 
y'4ill -00 

Note that if we define u(x,t) == ° for t > 0, -00 < X < 00, and u(x,O) = f(x) for t = 0, then we 
also have a solution of problem (1). However, this solution is not continuous at points on the 
x-axis unless f(x) == 0, i.e., we do not have the continuity condition 

lim u(x,t) = f(xo), 
+ (x,t) .... (xo,O ) 

(3) 

for all xo, unless f(x) == 0. Solutions of the D.E. which do not satisfy the continuity condition (3) 

are not of any obvious value. This is why it is important to eventually prove that (2) does satisfy 
(3). Since the partial derivatives with respect to x and t (not y) of the integrand of (2) are 
absolutely integrable with respect to y, Leibniz's rule (cf. Appendix A.3) tells us that u(x,t) in 
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(2) is actually COO for t > 0, -00 < X < 00, even though f(x) need not be C1. In other words, 

the temperature distribution smooths out in an instant. In the event that r I f(x) I dx < 00 and 
-00 

lim f(x) = 0, we will prove that for any T > 0, u(x,t), defined by (2), satisfies 
x--;+oo 

lim max lu(x,t)1 = O. 
x--;±ooO~t$T 

(4) 

Moreover, we will apply the Maximum Principle to deduce that u(x,t) is the unique solution of 
(1) with property (4). Without some additional condition, such as (4), there is no guarantee that 
there is only one solution of (1). Indeed, as the next example shows, there are continuous nonzero 
solutions of (1), even when f( x) == 0, but they do not satisfy (4). 

Example 1. In 1935, the Russian mathematician A.N. Tychonov demonstrated that the problem 

D.E. ut = Uxx -00 < X < 00, t > 0 

LC. u(x,O) = 0 , 

for the infinite rod with a zero initial temperature, has a solution other than the obvious trivial 
solution u(x,t) == 0 (i.e., uniqueness fails !). We sketch the construction of Tychonov's solution. 

-1/t2 

Construction. Let f(t) = [ e 0 
if t f- 0 

if t = 0 

and let 
00 () 2n 

u(x,t) = \' f n (t) .,b -00 < X < 00, t ~ 0 . [,n=o ~2nJ; , 

We may differentiate the above series term-by-term . (For a justification, see D.V. Widder, The 
Heat Equation, Academic Press, New York (1975), Chapter 111.) Thus, 

00 (1) 2n 00 (m) x2(m-l) 00 (n) x2n- 2 
ut = t=o f n+ (t) ~ = L:=1 f (t) (2(m-l»! = t=l f (t) (2n-2)! = uxx ' 

where we have made a change of index m = n+ 1 to get the second sum, and then set n = m to 

obtain the third sum. Since f(O) = 0 and f(n)(O) = 0 for n = 1, 2, 3, ... (cf. Problem 1), 
u(x,O) = 0, and with some effort, one could verify the continuity condition (3). But u(x,t) is not 
identically zero, since u(O,t) = f(t) and f(t) > 0 for all t f- o. 0 
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Obtaining the solution (2) of problem (1) by Fourier transform methods 

Having seen the virtues of the formula 

u(x,t) = _1_[ e-(x-y)2/4kt f(y) dy (t > 0) , 
y'4ill -00 

(5) 

the reader no doubt wonders how one arrives at this formula in the first place. This may be done 
by a purely formal application of the properties of the Fourier transform that we have developed 
in the previous sections. Fourier methods presuppose that u(x,t) exists and (together with f(x» 
possesses a suitable decay order. They do not constitute any proof, but, as we will show below, 
they provide us with the verifiable hypothetical solution given by formula (5). 

Upon taking the Fourier transform of both sides of the D.E. in (1) with respect to the 
variable x, keeping t fixed, we obtain (formally) 

Using Corollary 1 of Section 7.2 (formally, of course), we get 

(6) 

Note that (6) is a first-order ODE in t for each fixed e. The solutions of (6) are of the form 
, -ket 
u(e,t) = F(e) e ,where F(e) can be determined by setting t = ° : 

F(e) = ~(e,O) = [ u(x,O) e-iex d'x = [ f(x) e-iex d'x. 
-00 -00 

, "-ket 
Thus, F(e) = f(e)' and so u(e,t) = f(e) e . We found in Example 6 of Section 7.1 that 

for any constant a > 0. Thus, setting a = 1/2kt, t > 0, we get 

If g(x):: (2kt)-t e-x2/4kt , then by a formal application of the Convolution Theorem, 
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Taking the inverse transform of both sides, with t fixed, we arrive at formula (5) : 

u(x,t) = _1_ (hg)(x) = _1_[ f(y) g(x-y) dy = _1_[ e-(x-y)2/4kt f(y) dy. 
/5 /5-00 v'4ill-oo 

Lest the reader be overjoyed by these formal manipulations, we again remark that they do not 
prove that (2) is the solution of (1). They do not even prove that a solution exists! We now go on 
to prove that (2) is in fact a solution of problem (1), which meets the continuity condition (3). 

The proof of the validity of solution (2) of problem (1) 

We first prove that (2) (or (5)) is a solution of the D.E. ut = kuxx when t > ° and f(x) 

is bounded or absolutely integrable. We can rewrite the formula (5) in the form, 

u(x,t) = [ H(x-y,t) f(y) dy , 
-00 

where 

( ) 1 -(x-y)2/4kt H x-y,t == --e 
v'4ill 

(t > 0) . 

Definition. The function H(x-y,t) in (8) is known as the heat kernel (or source solution 
or fundamental solution) of the heat equation for the infinite rod. 

(7) 

(8) 

We have Ht = kHxx ' as can be verified directly (cf. Example 1 of Section 3.1), and intuitively 

H(x-y,t) represents the temperature distribution at position x at time t due to a concentrated 
initial temperature source at position y (cf. the Figure 1 in the introduction to this Chapter;­
Since Ht = kHxx ' it will follow that (7) is a solution of ut = kuxx for t > 0, if we can justi y 

differentiating (7) with respect to x and t under the integral. Fortunately, for t > 0, all of the 
partial derivatives with respect to x and t of the integrand of (2) are continuous and absolutely 
integrable with respect to y (cf. Example 1 of Section 7.2). This is clear, if f(y) is continuous 
and absolutely integrable or bounded. (Indeed, due to the rapid decay of H(x-y,t) in the 

variable y, we could have only required that I f(y) I < Ce I y I .) Hence, for t > 0, we may freely 
differentiate u(x,t) in (7) according to Leibniz's rule (cf. Appendix A.3). Thus, u(x,t) in (7), 
satisfies the D.E.. Note that f(y) is constant with respect to x and t, so that no assumption 
about the differentiability of f(y) is needed. 
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It remains to show that the continuity condition (3) holds. We know that, for t > 0, 

[ H(x-y,t) dy = _1_[ e-(x-y)2/4kt dy = 1, 
-00 v'41i1<t -00 

(9) 

[ laz2 1 
by the result e-2 dz = .j27rja, proved in Example 6 of Section 7.1 . (Take a = (2kt)-

-00 

and z = x-y). Consider u(x,t) given by (7). Then by (9), we have 

I u(x,t) - f(xo) I = I [ H(x-y,t)f(y) dy - f(xo) [ H(x-y,t) dy I 
-00 -00 

(10) 

= I [ H(x-y,t)[f(y) -f(xo)] dy I ~ [ H(x-y,t)lf(y) -f(Xo) I dy. 
-00 -00 

To prove the continuity condition (3), we must show that I u(x,t) - f(xo) I (or the last integral in 

(10)) can be made as small as desired by taking (x,t) (in the half-plane t > 0) sufficiently close 
to (xo,O). In order to do this, we split the last integral in (10) into three pieces: 

fX-O H(x-y,t) I f(y)-f(xo) I dy + fX+O H(x-y,t) I f(y)-f(xo) I dy + roo H(x-y,t) I f(y)-f(xo) I dy, 
-00 x-o Jx+o 

where (j is a positive constant. Let these integrals, from left to right, be denoted by 11 ,12 and 

13. Since f(y) is continuous, for any given (. > 0, we can guarantee that I f(y) - f(xo) I < (. in 

12 ,if x is sufficiently close to Xo and (j is sufficiently small. Then 

f~{j f~{j [ 12 = H(x-y,t)If(y)-f(xo)I dy ~ H(x-y,t) (. dy ~ (. H(x-y,t) dy = (.. 
x-{j x-{j -00 

In other words, we can make 12 as small as we like by choosing x sufficiently close to Xo and (j 

small enough. We now show that regardless of the choice of 0> 0, the integrals 11 and 13 can be 

made as small as desired, by taking t > ° sufficiently small. We work only with 13 , since 11 is 

handled in the same way. We have 

13 = roo H(x-y,t) If(y)-f(xo)I dy = _1_ roo e-(x-y)2/4kt If(y) -f(xo)I dy 
Jx+o v'41i1<t Jx+{j 
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When f(x) is bounded, say If(x) I ~ M , then each of the last integrals in (11) is no greater than 

which can be made as small as desired by taking t sufficiently small and positive. When f(y) is 
not necessarily bounded, but absolutel~ integrable, the second integral in tIl) is treated as in the 
bounded case, but the first integral in tIl) is estimated as follows: 

roo 2/ -{j2/4kt roo _.1 [ 
_1_ L e-z 4kt If(x+z) I dz ~ e J ~ If(x+z) I dz ~ t 2 If(y) I dy. 
~ {j ~ {j v'47rK exp( fj2 / 4kt) --00 

A single application of L'Hospital's rule reveals that the limit of the last quotient tends to 0, as 

t .... 0+, while the last integral is finite since f(x) is absolutely integrable. Thus, whether f(x) is 
bounded or absolutely integrable, for any positive value of {j, we can make 13 (and similarly It) 

arbitrarily small by taking t sufficiently small and positive. Recall that we already showed that 
the continuity of f(x) ensures that 12 can be made arbitrarily small for x sufficiently close to 

Xo and {j sufficiently small. As we have noted, these facts and (10) ensure the continuity 

condition (3). In summary, we have established the following key result. 

Theorem 1. Let f(x), --00 < X < 00, be continuous and either bounded or absolutely integrable. 
Then the function u(x,t), defined by 

u(x,t) = _1_[ e-(x-y)2/4kt f(y) dy (for t > 0) and u(x,O) = f(x) (for t = 0), (12) 
~ --00 

is COO in the domain {(x,t): t > 0, --00 < X < oo}, continuous in {(x,t): t ~ 0, --00 < X < oo}, 
and satisfies ut = kuxx for t > 0, --00 < X < 00. In particular, (12) solves the problem 

D.E. ut = kuxx --00 < X < 00, t > ° 
(13) 

I.C. u(x,O) = f(x) , 

together with the continuity condition u(x,t) .... f(xo) as (x,t) .... (xo ,0+). 

In the next example, we illustrate the use of Theorem 1 and the fact that the evaluation of the 
integral in (12) may be difficult even in the case when f(x) is a simple function. The reader who 
has access to symbolic integration on a computer (e.g., Macsyma, Maple, Derive or Mathematica) 
can verify the result (14) given below. 
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-ax2 
Example 2. Solve problem (13) in the case where f(x) = e cos(,8x), a ~ 0. 

Solution. Since f(x) is bounded and continuous, one solution of (13) is (for t > 0) 

u(x,t) = _1_ [ e-(x-y)2/4kt e-ay2cos(f3y) dy = _1_ Re[[ e-(x-y)2/4kt e-ay2+if3y dy] . 
J4il<t -00 J41iR -00 

The last integral is evaluated, as follows. We combine the exponents and complete the square: 

e -(x-y)2/4kt e-ay2+if3y = exp [_!C[y2 - 2S-1(ill+i.B)yl- x2/4kt] (where c:: ~ + 2a) 

= exp[-H'[y - S-1(ill+i.B)12 + H S-2(ill+i.B)2 -x2/4kt] . 

For fixed x, let 1:: S-l(ill+i.B). Then the real part of this last expression is 

e-X2/4ktRe[e-!Cr]Re[e-!C(Y-1)2] = exp [-x2/4kt+!C' Re[rl] cos(!c·Im[r]) Re[e-!C(Y-1)2]. 

Note that only the last factor involves y, and by the solution of Example 6 of Section 7.1, 

[ e-!t5(Y-1)2dy = ~ = Re[ e-!C(y-1?dy], even when 1 is a complex constant. Thus, 
-00 -00 

(14) 

Thus u(x,O) = e -ax2 cos(,8x). If a = 0, (14) is the product solution e -fktcos(,8x) of the D.E.. 0 

Remark. Observe that (14) is not the only solution of the problem, because one can add to (14) 
any constant multiple of Tychonov's solution in Example 1. In order to achieve uniqueness, one 
can impose some restriction on the behavior of solutions u(x,t) for Ixl large (i.e., some 
boundary conditions at ±oo are needed). From a physical perspective, one attractive condition is 
that the desired solution tend to zero as I x I ..... 00. In this case, we have the following result. 0 
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Theorem 2 (Uniqueness Theorem). Suppose that f(x) is continuous and absolutely integrable, 
for -00 < X < 00, and f(x) -+ 0 as x -+ ±ro. Then the function u(x,t) defined by 

u(x,t) = _1_[ e-(x-y)2/4kt f(y) dy (for t > 0) and u(x,O) = f(x) (for t = 0), (15) 
y'4ill -00 

is the unique, continuous (for t ~ 0) solution of the problem 

D.E. ut = kuxx -00 < X < 00, t > 0 

I.C. u(x,O) = f(x) (16) 

"B.C." lim max lu(x,t)1 =0, for all T>O. 
x-+±oo 0 ~ t ~T 

Proof. If there are two solutions, say ul and U2 of (16), then we would have for each small 

( > 0, and Xo > 0 sufficiently large, 

Then, as a consequence of the Maximum Principle (cf. Theorem 3 of Section 3.2), we have 
lul(x,t)-u2(x,t)1 ~(intherectangle -xo~x~xo, O~t~T. Thus,givenany (x,t) inthe 

half-plane t > 0, we can deduce that I ul(x,t) - U2(x,t) I is smaller than any positive number (, 

by choosing T > t and Xo sufficiently large. Thus, ul(x,t) = u2(x,t). Hence, we have shown 

that if (16) has a solution, then there is only one solution. It remains to show that (15) is this 
solution. By Theorem 1, we need only to prove that (15) satisfies the "B.C." in (16). 

Using (9) to get the second inequality below, for t > 0, we have 

lu(x,t)1 ~ -l-f e-(x-y)2/4ktlf(y)I dy + -l-f e-(x-y)2/4ktlf(y)1 dy 
y'4ill I y-x I ~A y'4ill I y-x I > A 

~ max If(y)1 + _1_ e-A2/4kt[ If(y)1 dy. 
x-A ~ y~x+ A y'4ill -00 

(17) 

For A sufficiently large, the second term can be made arbitrarily small, since we can show that 

the absolute maximum of the function (411"kt)-te -A 2 /4kt is (2re)-t A-I, as follows: 

d [_1_e-A2/4kt] = 1 e-A2/4kt [211"k] [A2 -t] 
(It y'4ill (411"kt)3/2 t TI 
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is negative for t> A2/2k, and positive for 0< t < A2/2k. The maximum of (411"kt)-te-A2/4kt 

(at t = A2/2k) is (2re)-tA-1. Thus, for A sufficiently large, we can make the second term in 
(17) as small as desired, and then for I x I sufficiently large (and A fixed) the first term goes to ° as x -+ ±oo, since lim f(x) = 0. Thus, the "B.C." in (16) holds for (15). 0 

x-+±oo 

Remark. Theorem 2 implies that the solution (14), with a > 0, is the only solution which meets 
the condition I im max I u(x,t) I = 0, but when a = 0, Theorem 2 does not apply since 

x-+%oo O~t~T 

cos(.ax) is not absolutely integrable, nor does it tend to zero as x -+ %00. However, e -tPktcos(.8x) 
is the unique solution which is periodic in x of period 211"/.8. Indeed, such a solution defines a 
solution on a circular wire, and we already have proved uniqueness in that case (cf. Example 1 of 
Section 3.2). 0 

Example 3. Find a formal solution of 

D.E. ut = kuxx + q(x,t) -00 < X < 00, t > ° 
I.C. u(x,O) = 0. 

(18) 

Solution. The following formal manipulations serve only to provide a hypothetical solution whose 
validity could be justified directly, under certain assumptions concerning the source term q(x,t). 
We first take the Fourier transform of both sides of the D.E. with respect to x. Thus, we obtain 

(19) 

Note that equation (19) is a first~rder linear ODE in t. Thus, if we multiply (19) by the 

integrating factor eket, then we obtain 

But by the I.C. u(x,O) = 0, ~(~,O) = F(~) = _1_ [ u(x,O) e -i~x dx = 0. Hence, 
/Fi-oo 

and a formal application of the Inversion Theorem yields 
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= _1_[ [Jt ~e-(y-x)2/(4k(t-s)) dS] dy, 
JfiI< -w 0 Jt=S 

cf. Problem 8 of Section 7.3. The same hypothetical solution can also be obtained by a formal 
application of Duhamel's principle (cf. Problem 10). 0 

Example 4. Suppose f(x) is a continuous, odd function defined on (--w,oo). If f(x) is absolutely 
integrable on (--w,oo) and if f(x) -+ ° as x -+ ±oo, show that the unique continuous solution of the 
following problem is also odd in the variable x: 

D.E. ut = kuxx --w < X < 00, t > ° 
I.C. u(x,O) = f(x) 

"B.C." I im max u(x,t) = 0, for all T > ° . 
x-+±oo ° ~ t ~T 

Show that the conclusion is false if the "B.C." is deleted. 

(20) 

Solution. Method 1. By Theorem 2, the unique continuous solution of problem (20) is given by 

u(x,t) = _1_ [ e -(x-y)2/4kt f(y) dy (for t > 0) and u(x,O) = f(x) (for t = 0). 
JfiI<t -w 

We are given that u(x,O) is an odd function. If t > 0, then letting z = -y, 

u(-x,t) = _1_ [ e-(x+y)2/4kt f(y) dy = __ 1_[ e-(x-z)2/4kt f(-z) dz = - u(x,t) , 
JfiI<t -w J41iR 00 

since f(-z) = -f(z). Thus, u(x,t) is an odd function of x. 

Method 2. Observe that -u(-x,t) also solves (20) and use uniqueness (cf. Theorem 2). 

Without the "B.C.", we can add the (even) Tychonov solution to the above odd solution, thereby 
obtaining a solution which is not odd. 0 

Remark. Without the "B.C.", we can also obtain more than one odd solution of (20), because we 
can differentiate Tychonov's solution with respect to x and get an odd solution with zero initial 
data which can be added to the above standard solution to obtain another odd solution. 0 

Example 5. Let f(x) be continuous and absolutely integrable on (--w,oo), and let 

u(x,t) = _1_[ e-(x-y)2/4kt f(y) dy 
v'4iKf -w 

(t > 0) . 

Verify the following relation and give a physical interpretation of it : 

[ u(x,t) dx = [ f(y) dy . 
-w -w 

(21) 

(22) 
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Solution. Since the integrand of (21) is absolutely integrable over the xy-plane, in the following 
calculations we may interchange the order of integration (cf. Appendix A.2). 

[ u(x,t) dx = [ [_1_[ e-(x-y)2/4kt f(y) dy] dx 
-00 -00 v'4iiXt -00 

= [ _1_ [[ e-(x-y)2/4kt dX] f(y) dy = [ f(y)dy, 
-00 v'4iiXt -00 -00 

where we have used the fact that [ H(x-y,t) dy = 1 (cf. (9)). Equation (22) may be regarded 
-00 

as a special case of the law of conservation of energy. Indeed, at any time t > 0, the left side of 
(22) is (in appropriate units) the total heat energy in the rod at time t, while the right side of (22) 
is the initial total heat energy. 0 

Example 6. For t > 0, consider the fundamental solution (cf. (8)) 

(23) 

of the heat equation ut = kuxx. For fixed t, we denote the function H(x,t) of x by tH(x) , so 

as not to confuse it with the partial derivative Ht . Show that 

(t > 0). (24) 

Solution. According to the definition of convolution (cf. Section 7.2), for t > ° 
( )() [ [ 1 -(x-y)2/4kt 1 -y2/4kt H* H x = H(x-y) H(y) dy = - e --e dy 
t t -00 t t -00 v'4iiXt y'41iR 

_ 1 e-x2/8kt [ -(y-tx)2/2kt d 
- 47rkt e y 

-00 

__ 1_ e-x2/8kt - H() - -2t x, 
~ 

where we have used (9), with x replaced by tx. In Problem 8, a different (and eaSier) approach, 
which uses the Convolution Theorem, yields the more general result that sH*tH = (s+t)H , for 
all positive sand t. This other approach is easier, because it is much simpler to multiply Fourier 
transforms of functions than to convolve the functions. 0 

Remark. Solution (21) can be written as u(x,t) = (tH* f)(x) (Why?). For s > 0, let g(x) = 
u(x,s). Since u(x,s+t) is the solution at time t with initial temperature g(x), 
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Comparing the extreme left with the extreme right, it is not surprising that sH*tH = (s+t)H . 

Indeed, this argument shows that one can expect this convolution property of fundamental 
solutions of equations with translational invariance with respect to a variable. 0 

Example 7. Find a continuous solution of the problem 

-00 < X < 00, t > 0 

I.C. u(x,O) = f(x) , 
(25) 

where A is a constant and f(x) is a continuous, bounded function. Give a physical 
interpretation of the D.E. in (25). 

Solution. Formally applying the Fourier transform to the D.E., we obtain 

Thus, formally ~(e,t) = e-Atf(e)e-ket (Why?). Since e-At does not involve e, we have 

u(x,t) = [~(e,t)r(x) = e-At[f(e)e-ket] = e-At _1_[ e-(x-y)2/4ktf(y) dy. 
v'4ill -00 

by a formal use of the Convolution Theorem. Using Theorem 1, it is easy to check that this 

function solves the problem. Indeed, note that u(x,t) = e -Atv(x,t) ,where v t = kv xx' Thus, 

-At -At ) -AO ( ) () ut = -Ae v + e vt = -AU + kuxx ' as required. Moreover, u(x,O = e v x,O = f x . 

If A > 0, then the presence of the term -AU in the D.E. might arise from a heat flux 
through the lateral surface of the rod, say because of faulty insulation (cf. Problem 4 of Section 
3.1). If A < 0, then the term -AU represents a heat source whose strength is proportional to the 
temperature, say due to a chemical or nuclear reaction. 0 

The derivation of D'Alembert's formula using Fourier transform methods 

Although the treatment of the wave equation in Chapter 5 is adequate as it stands, it is 
instructive to obtain D'Alembert's formula by Fourier transform methods. Consider the problem 

-00 < x, t < 00 

I.C. u(x,O) = f(x) , ut(x,O) = g(x). 
(26) 
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We proceed formally again. The justification of the end result was already done in Chapter 5. 
Taking the Fourier transform of both sides of the D.E. with respect to x we get 

, 2 2' 2' 
Utt((,t) = a (i() u((,t) = -(a() u((,t), 

whence 
, , 

u((,t) = c1(()cos(a(t) + c2(()sin(a(t) and ut((,t) = -a( c1(()sin(a(t) + a( c2(()cos(a(t). 

Now, upon applying Fourier transforms to the I.C., we get 

"'" "A 

f(() = u((,O) = c1(() and g(() = ut((,O) = a( c2((). 

Thus, 

~((,t) = f(() cos(a(t) + ~(() Si~ta() . (27) 

We would like to apply the Convolution Theorem at this point, but we have not found any 
function whose transform is cos(a(t). In fact, ther,e is no "ordinary" function with this property. 

Instead, we formally take the inverse transform of f (()cos( a(t) : 

[f(()cos(a(t)r (x) = [ f(()cos(a(t) ei(x d'( = ~[ f(() (eia(t + e-ia(t) ei(x d'( 
-00 -00 

= ~ [ f(() ei(x+at)( d'( + ~ [ f(() ei(x-at)( d'( = ~ [f(x+at) + f(x-at)]. (28) 
-00 -00 

To invert the second term in (27), we may use the Convolution Theorem, since we know from 
Example 4 of Section 7.1 that 

if [ 
1/2a 

h(x) = 0 
Ixl ~ at 

Ixl > at 

The Convolution Theorem and (29) then yield 

then h( () = _1_ sini~{) . 
IE 

Adding (28) and (30) produces (but does not prove) D'Alembert's formula: 

1 Ix+at 
u(x,t) = W(x+at) + f(x-at)] + 2a g(y) dy . 

x-at 

(29) 

(30) 

(31) 



Section 7.4 Fourier Transform Methods for PDEs 471 

There is another way of producing (31) that involves the Dirac delta "function" 6(x). This is not 
a function in the usual sense, since it is declared to have the property that for any function f(x), 

[ 6(x)f(x) dx = f(O). 
-00 

(32) 

If 6(x) were a usual function, then changin~ f(x) to a different value at the single point x = 0 
would not change the left-hand side of (32), but the right-hand side would be changed. In 
particular, the left side of (32) cannot be defined the way integrals are usually defined (e.g., as 
limits of Riemann sums), because the integrand is not an ordinary function. Instead, one way to 
view the left-hand side of (32) is that it is merely a fancy way of writing f(O). In other words, 

(32) is the definition of SOO 6(x)f(x) dx. Similarly, we define 
-00 

[ 6(x-<:)f(x) dx = [ 6(c-x)f(x) dx = f(c) , 
-00 -00 

for any real number c. The Fourier transform of 6(x-c) is then (by (33)) 

[ 6(x-<:) e-ixe d'x = _1_ e-ice . 
-00 .fFi 

Note that we then have (declaring that linearity is to hold) 

~[ [6(x+c) + 6(x-c)]e-ixe d'x = _1 (eice + e-ice) = 
-00 2.fFi 

_1_ cos( ce). 
IE 

(33) 

(34) 

In other words, cos(ce) is the Fourier transform of M6(x+c) + 6(x-<:)]. Although the 

Convolution Theorem was only proved in the context of certain nice ordinary functions, we 
observe that since 

we ought to have 

f(e)cos(aet) = _1 f(e) M6(x-at) + 6(x+at)], (e), 
.fFi 

[f(e)cos(aet)r (x) = [f * M6(x-at) + 6(x+at)]] (x) 

= [ f(y) M6(x-y-at) + 6(x-y+at)] dy = W(x-at) + f(x+at)] . 
-00 



472 Chapter 7 Fourier Transforms 

Again, this does not justify the end result which was separately proven in Chapter 5. 
Note that the Dirac delta "function" allows us to write the solution (31) as a single "integral" as 
was done for the heat equation (cf. (12)), namely 

where 

u(x,t) = [ [k(x-y,t)f(y) + h(x-y,t)g(y)] dy, 
-00 

1 

k(z,t) == Mb(z-at) + b(z+at)] and h(z,t) == ( 2~ Izl ~ at 

otherwise. 

(35) 

The Dirac delta "function" belongs to a class of objects known as generalized functions or 
distributions. The language of distributions is quite convenient for the treatment of situations 
where the quantities involved are too singular to be represented by ordinary functions. This 
happens, for example, when a force, which is applied for an infinitesimal time, yields a finite 
change in momentum. Such a force is called an impulse and it is represented by a delta 
"function", as engineering students will quickly point out. 

Example 8. By formal calculations find an integral representation for the solution of 

2 D.E. Utt = a uxx - u --00 < x, t < 00 

_.lX2 (36) 
I.C. u(x,O) = e 2 ,ut(x,O) = ° . 

Solution. If we take the Fourier transform of both sides of the D.E. with respect to x, we obtain 

, 2 2' , , 22' 
Utt(~,t) = a (i~) u(~,t) - u(~,t) or Utt(~,t) + (1 + a ~ ) u(~,t) = ° . (37) 

Since (37) is a second-{)rder, linear homogeneous ODE in t, with constant coefficients, we find 
that the general solution of (37) is given by 

where Cl(~) and C2(~) are arbitrary functions. Moreover, 

Setting t = ° in the expressions for u(~,t) and Ut(~,t) and using the I.C., we find that 
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and 

where we have used the result of Example 6 of Section 7.1. Hence, 

Finally, a formal application of the Inversion Theorem yields the integral representation 

u(x,t) = _1_[ ~(~,t)ei~x d~ = 2_i e-!ecos(tj1+a2~2)cos(~x) d~, (38) 
.fE -w ~O . 

since u(~,t) is an even function of ~. All of the partial derivatives of the integrand of (38) with 
respect to x and t are absolutely integrable with respect to ~. Thus, (38) can be shown to be a 
valid solution of (36), by differentiating under the integral (d. Appendix A.3). 0 

Remark. The Fourier transform method may not be applicable (not even formally). Consider 

D.E. Utt = uxx + 2x -w < X < 00, t > 0, 

2 I.C. u(x,O) = x, ut(x,O) = 0 . 

In Theorem 1 of Section 5.3, we found that a straightforward application of Duhamel's principle 

yields the solution u(x,t) = x2 + t2 + xt2. On the other hand, it is clear that we cannot take the 
Fourier transform of both sides of the D.E. with respect to x, since the Fourier transform of 

h(x) = x does not exist. Nor does the Fourier transform of f(x) = x2 exist. 0 

Laplace's equation in a half-plane 

The following result (save uniqueness) is a consequence of Problem 7 of Section 6.4. 

Theorem 3. Let f( x), -w < X < 00, be a bounded, continuous function. Then the problem 

D.E. u + u = 0 xx yy -w<x<oo, y>O 

B.C. u(x,O) = f(x) 
(39) 

-w<x<oo. 

has a unique bounded and continuous solution on the half-plane y ~ 0, namely 

u(x,y)=~[ 2 y 2 f(s)ds. (40) 
-w y + (x-s) 
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Remark. Formula (40) is known as Poisson's integral formula for the upper half-plane. 

Formula (40) can be found using Fourier transforms. Proceeding formally, we take the 
Fourier transform of the D.E. with respect to x, treating y as a constant: 

Treating ~ as a constant, the general solution of this "ODE" is 

( 41) 

. 
If u(~,y) grows expopentially as y -I 00, we do not expect that u(x,y) will be bounded as y -I 00 • 

Thus, we impose on u(~,y) the conditions that 

Then (41) is of the form 

. . 
where c(~) = Cl(~) + c2(O. We use the B.C. to get f(~) = u(~,O) = c(O. Thus, 

By Example 3 of Section 7.1 , we have (for fixed y) 

e -y I ~ I = [_1 2 2 y 2]· (0 . 
.,f'Ey + x 

The Convolution Theorem then yields the desired formula (40). Again, this is not a proof that 
(40) is a continuous solution of problem (39) for y ~ 0, but we at least have a hypothetical 
formula that may be verified, as in Problem 7 in Section 6.4. 0 

Example 9. Solve the problem 

D.E. Uxx + Uyy = 0 -w < X < 00, y > 0 

B.C. u(x,O+) = f(x) = 1 if -1 < x < 1 [
0 if x <-1 

2 if x>1. 

Solution. In this example, the boundary function f(x) has some jump discontinuities. 
Nevertheless, if we use the formula (40), we obtain 
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u(x,y) = ~ [ 2 Y 2 f(s) ds. 
--00 Y + (x-s) 

1 1 r = 1 [ 0 . Y ds + 1 J y ds + 1 2y ds 
7r -00 y2+(x-s)2 7r -1 y2+(x-s)2 7r 1 y2+(x-s)2 

= ~ [arctan(X;I) + arctan(X;I)] + 1 , 

which is a harmonic function, for y > O. Recall that v(x,y) == arctan(y Ix) = () is harmonic for 
x > 0 by Laplace's equation in polar coordinates (cf. Proposition 1 of Section 6.3). Thus, 
v(y,x+l) and v(y,x-l) will be harmonic for y> 0.) Moreover, we can easily check that 

Observe also that 

lim u(X'Y)=[~ 
y ..... O+ 2 

if x < -1 

if -1 < x < 1 

if x > 1 . 

lim U(-I,y)=-~+1 and lim U(I,y)=~+1. 
y ..... O + y ..... O+ 

One should note that u(x,y) does not approach the same value regardless of how (x,y) 
approaches (-1,0) (or (1,0)) in the upper half-plane. For example, let 0' be an arbitrary angle 
between -7r/2 and 7r/2. It (x,y) approaches (-1,0) along the ray (x+l) = tan(O') y (y> 0), 

then u(x,y) = (0' + arctan(x-l))7r-1 + 1 approaches (0'- 7r/2)7r-1 + 1 = (0' + 7r/2)7r-1, which y 
ranges from 0 to 1, as 0' ranges from -7r/2 to 7r/2. 0 

Example 10. Consider the problem 

D.E. u + u = 0 xx yy 

-x2 
B.C. u(x,O) = e . 

-00 < X < 00, y > 0 

If u(x,y) is the unique solution (40) which is continuous and bounded, then show that 

[ u(x,y) dx = .fir, for each y ~ O. 
--00 

-x2 
Solution. Since e is bounded and continuous, formula (40) yields (for y > 0) 

1 [ Y _S2 
U ( X , Y ) = i 2 2 e ds . 

--00 Y + (x-s) 

If we integrate both sides of (43) with respect to x, then we obtain 

(42) 

(43) 
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[u(x,y)dx = [~[ 2 Y 2e-s2dsdx. 
--00 --00 --00 Y + ( x -s ) 

(44) 

Since the integrand is absolutely integrable for y > 0, we can interchange the order of integration. 

U ~ng [ e -S2 ds =.,fi (cf. Example 6 of Section 7.1), (44) then yields (42) : 
--00 

[ u(x,y) dx = [ ~ [[ 2 dx 2] e-s2 ds = ~.![ e-s2 ds = .,fi. 
--00 --00 --00 Y + ( x -s ) y --00 

[ [ -x2 
Since u(x,O) dx = e ds =.,fi, (42) also holds for y = 0. 0 

--00 --00 

Remark. For the B.C. u(x,O) = f(x), where f(x) is continuous and absolutely integrable, the 

same argument (cf. Problem 13) yields the result [ u(x,y) dx = [ f(x) dx. 0 
--00 --00 
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Summary 7.4 

1. Fourier transform methods for PDEs: In general, for PDEs in which at least one variable is 
unrestricted, Fourier transforms may be used to find a hypothetical solution which must be 
verified by other means. This verification is necessary, because when the Fourier transform is 
applied to a PDE, one is already assuming not only that a solution exists, but that it has all of the 
properties which are needed in order to apply the results in Sections 7.2 and 7.3. The success of 
the method is largely due to the fact that the Fourier transform with respect to a variable, say x, 
converts each partial derivative with respect to that variable into an algebraic multiplication by 
ie. In our examples, the PDEs were for unknown functions of two variables, and so these PDEs 
became 0 DEs in the remaining variable. In higher dimensions (e.g., for ut = u + u ) one xx yy 
has to take the Fourier transform in more than one variable to obtain an ODE (d. Section 9.1). 
It frequently happens that when one checks a hypothetical solution, it turns out to be valid in 
greater generality than the Fourier methods presuppose. For example, formula (S2) below yields a 

valid solution even when £(0 does not exist (e.g., when f(x) = cos (x) or even x2). 

2. The heat problem for the infinite rod (Theorem 1): Let f(x), -00 < x < 00, be continu~)Us and 
either bounded or absolutely integrable. Then the function u(x,t), defined by 

u(x,t) = _1_[ e-(x-y)2/4kt f(y) dy (for t > 0) and u(x,O) = f(x) (for t = 0), (Sl) 
y'4"1iR -00 

is COO in the domain {(x,t): t > 0, -00 < X < oo}, continuous in {(x,t): t ~ 0, -00 < X < oo}, 
and satisfies ut = kuxx for t > 0, -00 < X < 00. In particular, (12) satisfies the problem 

D.E. ut = kuxx -00 < X < 00, t > ° 
I.C. u(x,O) = f(x) 

(S2) 

together with the continuity condition (3) (i.e., lim + u(x,t) = u(xo,O)). 
(x,t ) --;(xo,O ) 

3. Uniqueness for the heat problem on the infinite rod: Without further assumptions solutions of 
problem (S1) are never unique, because one can always add Tychonov's solution (d. Example 1) 
to obtain other solutions. If we adjoin to problem (Sl) a "boundary condition" at infinity, 

"B.C." lim max lu(x,t)1 = 0, for all T > 0, (S3) 
x--;±oo ° ~ t~T 

then (S2) is the unique solution of (Sl) with (S3), provided that f(x) is continuous, absolutely 
integrable and lim f(x) = ° (cf. Theorem 2). 

x--;±oo 
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4. Fundamental solution: The heat kernel, source solution or fundamental solution of ut = kuxx 
is 

H(x-y,t) = _1_e-(x-y)2/4kt , for t > o. 
v'41iR 

One can think of H(x-y,t) as the temperature at x at time t due to an initial concentrated 
heat source at y. Defining tH(x) == H(x,t), we can write (S2) as u(x,t) = (tH*f)(x) (Le., the 

convolution of the heat kernel with the initial temperature. For positive sand t, it is easily 
shown that tH*sH = (s+t)H, by applying the Convolution Theorem (cf. Problem 8 and the 

Remark following Example 5). 

5. D'Alembert's formula and the Poisson integral formula for the upper half-plane: One can also 
use Fourier transform techniques to obtain D'Alembert's formula for the wave problem on the 
infinite string and the Poisson integral formula for the upper half-plane: 

1 Jx+at l[ u(x,t) = W(x+at)+f(x-at)] + 2a g(r)dr and u(x,y) = 1r 2 y 2 f(s) ds (y> 0). 
x-at -00 y + (x-s) 

With appropriate assumptions on the functions f and g , the verification that these formulas 

provide solutions of the Utt = a2uxx and Uxx + Uyy = 0 was carried out in Section 5.2 and in 

Problem 7 in Section 6.4 , respectively. 

Exercises 7.4 

1. (a) By means of formal calculations verify that if 

00 () 2n 
u(x,t) = \' f n (t) x , -00 < X < 00, t ~ 0, where 

£n=O {2n)T 
then u(x,t) satisfies the heat equation ut = uxx . 

(b) Prove that f(n)(O) = 0, for n = 1,2, .... 

-1/t2 

f(t) = { e 0 

Hint. Consider the limit of the Newton quotient [f(t) - f(O)]/t, as t .... o. 

2. Solve the problem 

I.C. u(x,O) = 0 . 

if t # 0 

ift=O 
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3. Let f(y) be a piecewise continuous, bounded function (i.e., If(x) I $ M, for some constant M). 

(a) Show that u(x,t) =_1_[ e-(x-y)2/4ktf(y)dy = _1_[ e-s2 f(x+2sv'Kt)ds (t>O). 
v'4ill -00 Ii -00 

(b) Use the result of part (a) and the Dominated Convergence Theorem of Appendix A.3, to 

prove that if f is continuous at xo , then u(x,t) -; f(xo) as (x,t) -; (xo,O+) . 

4. Suppose that f(x) is a continuous, even function defined on (-00,00). If f(x) is absolutely 
integrable on (-00,00) and if f(x) -; 0 as x -; ±oo, show that the unique continuous solution 
u(x,t) of the following problem is also an even function of x: 

D.E. ut = kuxx -00 < X < 00, t > 0 

I.C. u(x,O) = f(x) 

"B.C." lim max lu(x,t)1 = 0, for all T > O. 
x-;±oo 0 $ t $T 

5. Let F(x) = (27r)-2 e -2 S ds denote the normal distribution function. Verify that .1 IX .1 2 

-00 

F(-oo) = 0, F(oo) = 1, and F(-x) = 1 - F(x). 

6. Let u(x,t) = (411-kt)-t[ e-(x-y)2/4kt f(y) dy, t > 0, where f(y) = 1 if a $ y $ band 
-00 

f(y) = 0 otherwise. Express u(x,t) in terms of the normal distribution function defined in 
Problem 5. 

, 

7. (a) Show that g(x) is a rapidly decreasing function if and O?ll if g({) is a rapidly decreasing 

function. Hint. Use Theorem 1 of Section 7.2, and show that (g) (x) = g(-x). 

(b) For t > 0, let u(x,t) = _1_[ e(x-y)2/4kt f(y) dy, where f(x) is a continuous function 
v'4ill -00 

which is identically zero outside some finite interval. For each fixed t > 0, show that u(x,t) is a 

rapidly decreasing function of x , even though f(x) might not be C1. 
Hint. Use the Convolution Theorem and Theorem 1 of Section 7.2, and use part (a). 

(c) Suppose that in part (b), we assume that f(x) is bounded, continuous and absolutely 
integrable, but not that it vanishes outside of some finite interval. Give an example which shows 
that u(x,t) is not necessarily rapidly decreasing in x, for fixed t > O. 
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8. As in Example 6, let tH(x) = _1_ e-x2/4kt, k, t > 0. Use the Convolution Theorem and 
v'4ili 

the Inversion Theorem to prove that sH*tH = (s+t)H, for all s,t > 0. Give a physical 

interpretation of this result. Is it possible to get the same result via the method of Example 6 ? 

9 Let P (x) y for y > 0. Use the method of Problem 8 to prove that 
. y 1r(x2 + y2) 

P y*P z = P y+z for y, z > 0. 

10. Obtain the formal solution of the inhomogeneous heat problem of Example 3, through a direct 
application of Duhamel's principle (cf. Section 3.4). 

11. Use the Fourier transform method (formally) to solve the following wave problem: 

2 
D.E. Utt = a Uxx -00 < x ,t < 00, a f ° 
I.C. u(x,O) = 2sin(x)/(1+x2) , ut(x,O) = ° . 

Hint. It is not necessary to explicitly compute the Fourier Transform of f(x) == 2sin(x)/(1+x2), 

but note that cos(a~t) = Meia~ + e-ia~). 

12. (a) Consider the ODE Y"(t) + w2y(t) = f(t) (w f 0), with initial conditions y(o) = 0, y' (0) 
= 0. Use Leibniz's rule (cf. Appendix A.3) to verify that if f(t) is continuous, then the solution 

t 
of this problem is y(t) = 1.. f f(s)sin[w(t-s)] ds. Show that Duhamel's principle yields a quick 

w ° 
derivation of this solution (cf. the argument leading up to (25) in Section 5.3). 

(b) Use part (a) to solve the inhomogeneous wave equation with homogeneous I.C.: 

2 
D.E. Utt = a Uxx + h(x,t) , -00 < X < 00, t > ° 
I.C. u(x,O) = 0, ut(x,O) = ° , 

by using formal Fourier transform methods. Show that if h(x,t) is C1, then the "solution" is 

C2 for -00 < X < 00, t > 0, and satisfies the D.E.and I.C .. Verify that lim u(x,t) = 0. 
t--+O+ 
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13. Let u(x,y) (y ~ 0) be the unique continuous, bounded solution of the problem 

D.E. Uxx + Uyy = 0 

B.C. u(x,O) = f(x) , 

-00 < X < 00, y > 0 

481 

where f(x) is continuous, bounded, and [ If(x) I dx < 00. Show that [ u(x,y)dx = [ f(x) dx. -w -w-w 

14. Solve the Dirichlet problem 

D.E. 

B.C. 

Uxx + Uyy = 0 -00 < X < 00, y > 0 

[
1 ifx>O 

u(x,O+) = f(x) = 
-1 if x < 0 . 

15. For complex z = x + iy and a = s + it, let g(z;a) = log I z-al -log I z-al . Show that 

() (.) I - 2y - at g z,a - 2 2 . 
t=O Y + (x-s) 

Remark. The function g is a Green's function for the upper half-plane y > 0 (cf. Problem 11 of 
Section 6.4). It may be interpreted as the potential at z caused by oppositely charged particles 

at the points a and a in the xy-plane. Note that g(z;a) = 0 when y = O. The result (*) is 
analogous to the result proved in Problem 14 of Section 6.4. In both cases, the Poisson kernel for 
the Dirichlet problem is the outward normal derivative (in the a variable) of the Green's 
function, evaluated on the boundary. This result holds for suitably nice regions, and we show it in 
Section 9.6 (at least formally) for compact manifolds with boundary. 

16. Let u(x,t) = v'4~kt f-w e-(x-y)2/4kt f(y) dy, t > 0, where f(y) = [ : 
if y < 0 

if y > 0 

and a and b are nonzero constants. Show that u(x,t) can be expressed in the form 

(b-" '\ IX / v'4TI 2 u(x,t) = t(a+b) + ~ e-S ds, 
.[i 0 

t > 0 (cf. Problem 9 of Section 3.1) . 

17. (a) In Problem 16, choose a = 10 and b = O. Show that for any t > 0 (no matter how 
small), we have that u(x,t) > 0 for any x (no matter how large). Conclude that the heat 
equation implies (contrary to relativity theory) that heat diffuses with infinite speed. 

(b) Suppose that f(x) is bounded, continuous and nonnegative for all real x, and that f(x) > 0 
somewhere (possibly only in some small interval). Show that for any positive value of t, 

u(x,t) :: v'4~kt [ e-(x-y)2/4kt f(y) dy is positive for all x. -w 
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7.5 Applications to Problems on Finite and Semi-Infinite Intervals 

In this section we will solve some problems where x is restricted to a finite or 
semi-infinite interval (e.g., 0 ~ x ~ L or 0 ~ x < (0). This is done using the method of images, 
whereby such problems will be extended appropriately (depending on the B.C.) to related 
problems where x is unrestricted. In this way, we can use the previous results for unrestricted x 
which were obtained by Fourier transform methods or by other means (e.g., as with D'Alembert's 
formula). Since the method of images was already used extensively for wave problems in Chapter 
5, we will concentrate on heat problems, and Dirichlet/Neumann problems for Laplace's equation. 

We begin by settling the theoretical question (left dangling in Chapter 3) concerning the 
existence and uniqueness of solutions of the finite interval problem 

D.E. ut = kuxx o ~ x ~ L, t > 0 

B.C. u(O,t) = 0, u(L,t) = 0 

I.C. u(x,O) = f(x) , 

where f(x) is continuous and f(O) = f(L) = o. 

(1) 

Remark. Note that here the D.E. is not required to hold when t = 0, since we do not want to 

insist that f(x) is C2. However, we do require that u(x,t) be continuous for t ~ 0 and 0 ~ x ~ 
L. This means that u(x,t) not only must satisfy the D.E. for t > 0, but also 

lim + u(x,t) = u(xo,O). 0 
(x,t) .... (xo,O ) 

(2) 

Theorem 1. Let fo(x), -00 < X < 00, be the periodic extension ofthe odd extension fo(x), 

-L ~ x ~ L, of f(x). Then the only solution of problem (1), which meets (2), is 

u(x,t) = _1_[ e-(x-y)2/4kt fo(y) dy (for t > 0) and u(x,O) = f(x) (for t = 0). (3) 
v'4ill -00 

Proof. We already know from Theorem 1 of Section 7.4 that the function u defined by (3) is 
continuous and satisfies the D.E. for_ 0 ~ x ~ Land t > O. Since u(O,t) i~ the integra~ of an odd 

function, it is O. Moreover, since fo(y) is also odd about x = L (Le., fo(L-y) = -fo(L+y) ), 

the other B.C. u(L,t) = 0 is also met. Uniqueness was proved in Theorem 1 of Section 3.2. 0 
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The following result implies that, for problem (1), the formal infinite series solution 
(which was not proven to be generally valid in Chapter 3) is in fact equal to the genuine solution 
(3) when t > 0 (Le., the formal solution is valid for t > 0 and satisfies the condition (2) ). 

Theorem 2. The solution (3) of (1) is equal (for t > 0) to the convergent series 

(t > 0), (4) 

where 
L 

bn = i- fof(X) sin(T) dx, n = 1,2,3, .... 

Proof. We know from Theorem 1 of Section 7.4 and by inspection that u(x,t) in (3) is a COO odd 
periodic function (of {>eriod 2L) of x, for each t > O. Thus, by Theorem 1 of Section 4.3, we 
know that u(x,t) of (3) is equal to the Fourier sine series of its restriction to [O,L), for each t > 0 : 

We may differentiate under the integral Bn(t) (by Leibniz's rule, since u(x,t) is COO for t > 0) : 

L L 
B~(t) = i- f 0 ut(x,t) sin(T) dx = i-f 0 kuxx(x,t) sin(T) dx 

L 
= -k(!!.f)2 i-f 0 u(x,t) sin(T) dx = -k(!!.f)2 Bn(t) , 

where we have used Green's formula. Hence, Bn(t) = cne-kn2ilt/L2 for some constant cn ' and 

it remains to show that cn = bn' First, 

L 
cn = lim Bn(t) = lim i-f u(x,t) sin(T) dx 

t-+ 0 + t-+ 0 + 0 

=lim i-_1_[ [fLe-(x-y)2/4ktsin(T)fo(Y)dX] dy (cf.AppendixA.2) 
t-+ 0 + v'4ill -00 0 

= lim i-_1_[ e-(0-z?/4kt [fL sin(T) fo(x+z) dx] dz 
t-+ 0 + v'4ill -00 0 

(y = z-x) . 

Now we use the fact that for a continuous, bounded function h(z), 
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(5) 

which is implicit in Theorem 1 of Section 7.4 (Why?). Note that i- J~ sin(T) fo(x+z) dx is a 

continuous, bounded function of z (Why?). Letting h(z) in (5) be this function, we obtain 

cn = lim i-_l_[ e-(0-z)2/4kt UL sin(T) fo(x+z) dx] dz 
t-l 0 + .y'41iXt -00 0 

= h(O) = i-J~ sin(T) fo(x+O) dx = i-J~ sin(T) f(x) dx = bn · 0 

Note. Formula (3) may not be valid if t = 0, since f(x) may not equal its Fourier series. If f(x) 

is continuous and piecewise el, with f(O) = f(L) = 0, then (4) is valid, even for t = 0, by 
Theorem 1 of Section 4.3. 0 

We can also justify the existence, uniqueness and Fourier series representations of solutions 
of the heat equation on a finite interval with other types of B.C. and continuous initial data. 
Rather than doing this for all the standard B.C., we will just consider the case of the circular wire 
which is modeled by the problem: 

D.E. ut = kuxx -00 < X < 00, t > 0 

"B.C." u(x+2L,t) = u(x,t) (6) 

I.C. u(x,O) = f(x), 

where f(x) is any continuous periodic function of period 2L. Of course, periodic functions of 
period 2L correspond to well-defined functions on a circle of circumference 21. In the following 
solution (7), we could replace the complex Fourier series by "ordinary" Fourier series, if desired. 

Theorem 3. The unique continuous solution of problem (6) is given by the following equivalent 
formulas, for t > 0 , 

u(x,t) = 

where 

e-(x-y)2/4kt f(y) dy 

l ~( t cn e -n2rkt/L2 e -in1rX/L, 
n=~ 

cn = Jr JL f(x) e -inlTX/L dx . 
-L 

(t > 0) (7) 
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Proof. We know from Theorem 1 of Section 7.4 that the integral in (7) is COO for t > 0, and 
solves the D.E .. It is also periodic. Indeed, replacing x by x + 2L in the integral and changing 
variables by the formula z = y - 2L, we obtain the same result since f(y) = f(z+2L) = f(z). 
Thus, the first expression of (7) is equal to its Fourier series. Now, using the same calculation as 
in the proof of Theorem 2, we can establish that this Fourier series is the same as the infinite sum 
in (7). Again, a separate formula is needed for t = 0, unless f(x) is continuous and piecewise 

C1 . Uniqueness was proved in Example 1 of Section 3.2. 0 

Miscellaneous solved heat problems for the semi-infinite rod 

Example 1. Solve the problem 

D.E. ut = kuxx 0 < x < 00, t > 0 

B.C. u(O+,t) = 0 (8) 
I.C. u(x,O+) = f(x) , 

where f(x) is continuous and absolutely integrable on [0,00), f(O) = o. Is the solution unique? 

Solution. Let fo(x) denote the odd extension of f(x) (Le., fo(x) = -f( -x), for x ~ 0 ). 

Note that fo(x) is continuous on (~,oo), since it is assumed that f(O) = o. Moreover, it is easy 

to see that fo(x) is absolutely integrable on (~,oo) and that fo(x) -+ 0 as x -+ ±oo. Thus, by 

Theorem 1 of Section 7.4 we know that the function 

u(x,t) = _1_[ e-(x-y)2/4kt fo(y) dy (for t > 0) and u(x,O) = fo(x) (for t = 0), (9) 
y'4ill -00 

is a continuous solution of the problem 

~ < x < 00, t > 0 

I.C. u(x,O) = fo(x) . 
(10) 

Since u(O,t) = 0 by inspection of (9), u(x,t) will satisfy not only the D.E. and I.C., but also the 
B.C. of problem (8). It is perhaps more satisfactory to express u(x,t) in terms of f(y) rather 
than in terms of fo(Y). For this reason, we rewrite the integral (9) in the form 

u(x,t) = _1_ [fO e-(x-y)2/4kt[_f(_y)]dy + roo e-(X-y)2/4ktf(y)dY]. 
y'4ill -00 J 0 

Now, if we use the change of variables y = -s in the first integral, interchange the limits of 
integration, and replace the dummy variable s by y, then we obtain that 
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u(x,t) = _1_[[e-(X-y)2/4kt _e-(x+y)2/4kt)] f(y) dy. 
~O 

(11) 

This represents the solution as a continuous superposition of fundamental solutions due to 
concentrated sources of strength f(y) at y, and of strength -f(y) at -yo Although the solution 
(11) is the one which is most al?propriate for applications, it is not unique (cf. the Remark 
following Example 4 of Section 7.4), because no "B.C." at x = 00 was imposed. 0 

Example 2. Attempt to solve the problem posed in Example 1, by using the even extension fe(x) 

of f(x) (Le., fe(x) = f(-x) for x < 0 ). 

Solution. Once again it is easy to verify that fe(x) is continuous and absolutely integrable on 

(--00,00). Hence, by Theorem 1 of Section 7.4, the function given by 

u(x,t) = _1_[e-(x-y)2/4ktfe(Y)dY (fort>O) and u(x,O)=fe(x) (fort=O), 
~ -00 

is a continuous solution of the problem 

D.E. ut = kuxx --00 < X < 00, t > 0, 

and a fortiori u(x,t) will satisfy the D.E. and the I.C. of the given problem (8) of Example 1. 
Now, since fe(x) is even, we can express u(x,t) in the form 

u(x,t) = _1_ r[e-(x-y)2/4kt + e-(x+y)2/4kt] f(y) dy, 
~JO 

but u(x,t) does not generally meet the B.C. (e.g., u(O+,t) > 0, if f(x) > 0 for x> 0). 0 

Example 3. Solve the problem 

D.E. ut = kuxx 0 < x < 00, t> 0 

B.C. ux(o+,t) = 0 

I.C. u(x,O+) = f(x) , 

where f(x) is continuous and absolutely integrable on [0,00). 

Solution. For this problem, we take the even extension fe(x) of f(x). Then, as in Example 1, 
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u(x,t) = _1-1: [e-(x-Y?/4kt + e-(X+y)2/4kt] f(y) dy. 
JfiKt 0 

In Problem 3, the reader is asked to supply the details of the verification of this solution. 0 

Remark. It appears that the technique of odd or even extension (Le., the method of images), 
which was used in Example 1 and Example 3, is limited to problems with homogeneous B.C .. 
However, this method can also be used to solve the problem of the semi-infinite rod with a 
time-dependent temperature prescribed at the end x = 0 (cf., Example 5 below). First, we need 
a result (Example 4) concerning the Fourier transform of the second derivative of a suitable odd 
function with a jump discontinuity at x = o. 0 

Example 4. Let g(x) be an odd function which is C2 on (--00,00), except at x = o. Assume that 

g(O+), g'(O+) and gff(O+) exist, and suppose that g(x), g'(x) and gff(X) are absolutely 
integrable and tend to zero as x -+ 00. Then show that 

(12) 

In other words, due to the possible jump discontinuity at x = 0, there is a correction term which 

must be added to the usual expression -e2 g(e) (d. Corollary 1 of Section 7.2). 

Solution. Since gff(X) is odd, we have 

(gff)A(e) = (gff(X) e-iexd'x = fa gff(X) (e-iex_eiex) d'x. (13) 

Using 2isin( ex) = (eiex - e -iex) and Green's formula, we obtain 

(gff) A W = -2ifa gff(x) sin(ex) d'x 

= -2 i [g'(x)sin( ex) - g(x)ecos( ex)] I 00 + + 2ie2 roo g(x) sin( ex) d'x , 
~ 0 JO 

which reduces to (12), since g(x) is odd, and g(x) and g'(x) tend to zero as x -+ 00. 0 

Example 5. Use the result of Example 4 formally, to find a hypothetical solution of the problem 

B.C. u(O+,t) = h(t) 

I.C. u(x,O+) = 0 , 

x> 0, t > 0, 

where h(t) is a given continuous function, for 05 t < 00, with h(O) = o. 
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Solution. We define u(O,t) = 0 for each t ~ 0, and for each fixed t, let v(x,t) be the odd 

extension of u(x,t) in the x-variable. Note that v(O+,t) = h(t), v(O,t) = 0, and v(O-,t) 
= -h(t). If u satisfies the D.E., then vt = Vxx ' except possibly when x = O. Taking the 

Fourier transform of both sides of the D.E. with respect to x, keeping t fixed, we formally 
obtain from Example 4 (with g(x) = v(x,t)) 

or (14) 

The general solution of the first-<>rder linear ODE (14) is 

and the initial condition u( ~,O) = 0 implies that F(e) == O. Hence, we have 

(15) 

Formally applying the Inversion Theorem and interchanging the order of integration, etc., 

where we have used Example 6 of Section 7.1. Simplifying the last expression and recalling that 
v(x,t) = u(x,t) for x> 0, we obtain the hypothetical solution 

u(x,t) = ~ r (t-s)-4 e-x2/ 4(t-s) h(s) ds, x, t > O. 
2.{ff 0 

(16) 

Again, we have merely shown that if a solution of the problem exists and has all·of the properties 
which are needed in order to justify the above formal manipulations, then the solution is given by 

(16). Nevertheless, one could check directly that (16) solves the D.E., that u(x,O+) = 0, and (as 

is done in the next example) that u(O+,t) = o. 0 
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Example 6. For u(x,t) given by (16), show that, despite appearances, we have u(o+,t) = h(t) 
(not necessarily 0), for t > o. Use the fact that 

which may be easily verified by the change of variable y = 1x2 . 

Solution. In (16), change the variable of integration from s to y = x2/(t-s) , so that 

dy = x2/(t-s)2 ds. We then obtain (cf. Appendix A.3) 

which is h(t) by (17) with a=!. 0 

(17) 

Example 7. Assuming the validity of the solutions found in Examples 1 and 5, solve the problem 

D.E. u = u t xx x> 0, t > 0 

B.C. u(O+,t) = h(t) 

I.C. u(x,O+) = f(x) , 

where h(t) and f(x) are continuous, and f(x) is absolutely integrable. 

(18) 

Solution. Since the D.E., B.C. and I.C are linear, the superposition principle implies that a 
solution of (18) is simply the sum of the solutions which were found in Examples 1 and 5 : 

u(x,t) = _1 r[e-(x-y)2/4t _ e-(x+y)2/4t] f(y) dy + ~J\-x2/4(t-Y)(t - y)--! h(y) dy. 0 

v'41it J 0 ,ffi 0 

Example 8. Give a physical interpretation of the problem 

x> 0, t > 0 

B.C. ux(o+,t) = au(O+,t) 

I.C. u(x,O+) = g(x) , 

(19) 

where a is a positive constant and f(x) is a given continuous function. Find a hypothetical 
solution and discuss the circumstances under which it is valid. 
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Solution. We have a semi-infinite rod, whose initial temperature at each cross-section x is 
given by the function g(x). The B.C. means that heat flows through the end of the rod at a rate 

which is proportional to the temperature u(O+,t) at the end. This boundary condition often 
occurs in practice when there is faulty insulation or imperfect thermal contact at the end (cf. the 
discussion near the end of Section 3.3). To find a hypothetical solution, we again make all of the 
assumptions about a solution u(x,t) of (19) (including existence) which are necessary in order 
that we may carry out the following steps. Let v(x,t) = ux(x,t) - a u(x,t). Then the B.C. of 

problem (19) becomes v(O+,t) = 0, which was considered in Example 1. Assuming that u is 

C3 and g is C1, we have that v is C2 and v solves the problem 

D.E. vt = kvxx x> 0, t > 0 

B.C. v(O+,t) = 0 (20) 

I.C. v(x,O+) = g' (x) - ag(x) == f(x) . 

(Note that vt = uxt - aUt = k(uxxx - auxx ) = kvxx.) By Example 1, the solution of (20) is 

where 

v(x,t) = fo B(x,y,t) f(y) dy , 

B(x,y,t) == _1_ [ e-(x-y)2/4kt _e-(x+y)2/4kt ] . 
y'4ili 

For v given by (21), we can solve the first-{)rder "ODE" u - au = v for u, and obtain x 

u(x,t) = -€ax r e-ar v(r,t) dr , 
x 

(21) 

(22) 

which is not the most general solution, but it is the only one which might not grow rapidly with 
increasing x. From (21) and (22), we have (formally interchanging the order of integration first) 

u(x,t) = -€ax To r e-ar B(r,y,t) dr f(y) dy 
o x 

= -€ax roo r e -ar B(r,y,t) dr eay ~ [e -ay g(y)] dy 
JO x y 

= eax fo e-ay ~ [ eay ( e-arB(r,y,t) dr ] g(y) dy , 

where we have integrated by parts with respect to y, noting that B(r,O,t) = B(r,oo,t) = 0 and 

assuming that e -ay g(y) is bounded for y ~ O. Carrying out the differentiation, we have 
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u(x,t) = fa [( ea(x-r)[By(r,y,t) + aB(r,y,t)] dr ] g(y) dy, (23) 

which is a hypothetical solution of (19). For t > 0, one can check that the inner integral (say 
I(x,y,t) ), and all of its partial derivatives with respect to x and t, exist and are rapidly 
decreasing functions of y. In what follows, let g(x) be continuous for x > 0, and assume that 

for all sufficiently large x, I g(x) I < xP for some positive constant p. Then Leibniz's rule can be 

repeatedly applied in order to deduce that for t > ° , (23) defines a COO function u(x,t). 
Moreover, by using Green's formula, one can verify directly that It(x,y,t) = kIxx(x,y,t), whence 

(19) satisfies the D.E. ut = kuxx' One can check explicitly that for t > 0, ux(O,t) = au(O,t), by 

applying Leibniz's rule and using the fact that B(O,y,t) = By(O,y,t) = 0. Finally, one could, with 

considerable effort, show that for x > 0, u(x,o+) = g(x). (To begin, one can show that for any 

positive x, lim roo I(x,y,t) dy = 1.) Thus, regardless of what assumptions were made during the 
t! ° JO 

derivation of the hypothetical solution, (23) gives us a solution of problem (19), when g(x) is 
assumed to be continuous and grows no faster than some polynomial as x -+ 00. 0 

Fourier sine and cosine transforms 

When solving problems where x is restricted to the semi-infinite interval [0,(0), as an 
alternative to the method of images, one can utilize the Fourier sine and cosine transtorms to be 
defined below. The Fourier sine and cosine transforms bear the same relation to the ordinary 
Fourier transform as the Fourier sine and cosine series bear to the ordinary Fourier series. 

Definition. Let f(x) be a function defined for ° ~ x < 00. Then the Fourier sine transform of 
f(x) is 

and the Fourier cosine transform of f(x) is 

provided these integrals exist. 

When f{x) is real-valued and fe(x) and fo(x) denote the even and odd extensions of f(x) , 

... ... "" .. 
fc({) = (fe) ({) and -ifs({) = (fo) ({). 
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Thus anything that can be done using the sine and cosine transforms, can also be done with the 
usual Fourier transform by considering extensions. Just as the theory of Fourier sine and cosine 
series reduces to the theory of ordinary Fourier series, the theory of Fourier sine and cosine 
transforms reduces to that of the ordinary Fourier transform. In particular, one can use the 
Inversion Theorem for the usual Fourier transform to establish the related inversion formulas for 
these one-sided transforms (for x > 0) 

f(x+) + f(x-) = /Ifff [ f (e) sin(ex) de (24) 2 o s 
and 

f(x+ ) + f(x-) = /Ifff fa fc(e) cos(ex) de, (25) 2 

where it is assumed that f(x) is piecewise C1 and absolutely inte~rable on [0,00). 
In the next example, we illustrate the use of formula t25) in a problem for Laplace's 

equation on the quadrant, 0 < x < 00 and 0 < y < 00. However, one can also get the solution 
immediately by evenl,r extending the problem to the upper half-plane, and using Poisson's 
integral formula (cf. t40) of Section 7.4 and replace f(x) by fe(x)), which we .found via the usual 

Fourier transform methods. 

Example 9. Find a hypothetical solution of the problem 

D.E. Uxx + Uyy = 0 0 < x < 00, 0 < y < 00 

B.C. 1 
u (o+,y) = 0 

U(:,o+) ~ f(x) , 

where it is assumed that u(x,y) is bounded and u(oo,y) = ux(oo,y) = 0, 0 < y < 00 . 

Solution. Proceeding formally, we take the Fourier cosine transform of the D.E. with respect to 
x, keeping y fixed. The choice of the Fourier cosine transform here is suggested by the B.C .. 
(The reader may consider the reason why the Fourier sine transform is unsuitable.) We obtain 

(~ )c(e,y) = /Ifff ru (x,y) cos(ex) dx = -/Ifff ru (x,y) cos(ex) dx, 
IT JOIT JOxx 

where (uyy)c(e,y) denotes the Fourier cosine transform of Uyy ' Integrating by parts twice, 

-/Ifff r u '(x,y)cos(ex) dx = [-/Ifff u (x,y)cos(ex)]oo - e/Ifff ru (x,y)sin(ex) dx J 0 xx x x=O J 0 x 

[ ] 00 2 [ 2 A 

= -e/Ifff u(x,y)sin(ex) + e /Ifff u(x,y)cos(ex) dx = e uc(e,y), 
x=O 0 
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where we have used the B.C. and the assumption that u(oo,y) = ux(oo,y) = O. Thus, 

• 2 • 
(uyy)c(e,y) - e uc(e,y) = 0 , 

and the general solution of this ODE in y is ~c(e,y) = c1(e)eey + c2(e)e-ey, where c1(e) and 

c2( e) are arbitrary functions of e. Since the given problem requires that u(x,y) be bounded, we 

assume that c1 (e) = 0 for e > 0 and c2( e) = 0 for e < o. Thus, ~c( e,y) = c( e)e -I ely, where 

c(e) = c1(e) + c2(e)· In particular, uc(e,O) = c(e). It follows from the second B.C. that 

c( e) = ~c( e,O) = .f2Ti fo u(x,O)cos( ex) dx = IlJi fof(X)COS( ex) dx = fcC e) 

Thus, ~c(e,y) = fc(e) e-I ely, and by the Inversion Theorem for one-sided transforms (d. (25)) 

u(x,y) = IlJi fo fc(e) e-I ely cos(ex) de = ~ fo [fo f(s) cos(es) ds ] e-ey cos(ex) de· 

If the order of integration is switched, then the integral with respect to e can be explicitly 
computed and the resulting solution will be the same as the solution obtained by using the even 
extension of f(x) for f(s) in the Poisson integral formula (40) in Section 7.4. 0 
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Summary 7.5 

1. Heat problems for finite or semi-infinite rods: Solutions of heat problems for finite or 
semi-infinite rods can be obtained, by the method of images, from the solution of Theorem 1 in 
Section 7.4 for the infinite rod. This is done via the method of images, in the same way that 
solutions of finite string problems were obtained from D'Alembert's formula for the infinite string 
in Chapter 5. In the case where each end is insulated or maintained at 0, the extension of the 
initial temperature to the infinite rod must be chosen so that it is odd about each end which is 
held at ° and even about each end which is insulated. In Example 5, the heat problem with a 
prescribed time-<iependent temperature at the end is solved by the method of images, which 
shows that the method of images is not limited to problems with homogeneous B.C .. 

2. The caBe of the finite rod with ends held at ° (Theorem 1): Consider the finite rod problem 

D.E. ut = kuxx 0$ x $ L, t > 0, 

B.C. u(O,t) = 0, u(L,t) = ° (SI) 

I.C. u(x,O) = f(x) , 

where f(x) is continuous and f(O) = f(L) = ° , and we require that u(x,t) be continuous for 
t ~ ° and ° ~ x $ L. This means that u(x,t), not only must satisfy the D.E. for t > 0, but also 

lim + u(x,t) = u(xo,o) . 
(x,t)-+(xo,O ) 

(S2) 

We have: 

Theorem 1. Let fo(x), --00 < x < 00, be the periodic extension of the odd extension fo(x) , 

-L $ x $ L, of f(x). Then the only solution of problem (SI), which meets (S2), is 

u(x,t) = _1_[ e-(x-y)2/4kt fo(y) dy (for t > 0) and u(x,O) = f(x) (for t = 0). (S3) 
v'41iR ~ 

3. The validity of formal solutions: Integral formulas such as (3) are helpful in establishing the 
validity of the formal infinite Fourier series solutions heat problems on finite rods which were 

discussed in Section 4.3. The integral formulas show that the solutions exist and are actually COO 
for t > 0 , even if the continuous initial temperature distribution has corners. The proof of the 
validity of the formal solution consists of showing that for each t > 0, the Fourier series of the 
integral formula solution is the same as the formal solution (cf. Theorem 2 and its proof). We do 
not verify the formal solution by means of the superposition principle, which we have seen can fail 
for infinite series. When t = 0, the formal solution may not converge to f(x), but the continuity 
condition (S2) holds, since (S2) holds for the equivalent integral solution. 
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4. Fourier sine and cosine transforms: Let f(x) be function defined for 0 $ x < 00. Then the 
Fourier sine transform and the Fourier cosine transform of f(x) are given by 

fs( {) = .f1Ti fa f(x) sin( {x) dx and f c( {) = .f1Ti fa f(x) cos( {x) dx , 

respectively, provided these integrals exist. When f(x) is real-valued, 

'" A ,... A 

fc({) = (fe) Wand -ifs({) = (fo) ({). 

One can use the Inversion Theorem for the usual Fourier transform to establish the related 
inversion formulas for these one-sided transforms (for x > 0) 

f(x+) + f(x-) = .f1Ti roo f ({) sin( {x) d{ and f(x+) + f(x-) = y'2"J7r roo f ({) cos( {x) de 
2 JO s 2 JO c 

where it is assumed that f(x) is piecewise c1 and absolutely integrable on [0,(0). 
Example 9 illustrates the use of the Fourier cosine transform in solving a Dirichlet/Neumann 
problem in a quadrant, although a direct application of the method of images is simpler. 

Exercises 7.5 

1. Find a solution of the problem 

D.E. ut = kuxx ' x > 00, t > 0, 

B.C. ux(o+,t) = 0 

I.C. u(x,O+) = f(x) , 

where f(x) is continuous and absolutely integrable on [0,(0) and f(x) -+ 0 as x -+ 00. 

2. By means of formal calculations find a hypothetical solution of the problem 

D.E. ut = Uxx ' x > 0, t > 0 

B.C. ux(o+,t) = h(t) 

+ I.C. u(x,O ) = 0 , 

where h( t) is a suitable continuous function. 
Hint. Seek a solution u(x,t) which is an even function of x (cf. Examples 4,5 and 6). 
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3. Find a hypothetical solution of the problem 

D.E. ut = Uxx 0 < x < 00, t > 0 

B.C. UX(O+,t) = h(t) 

I.C. u(x,O+) = f(x) , 

where h(t) and f(x) are suitable continuous functions. 

4. (a) Using Fourier transform methods (formally), find a hypothetical solution of the 
inhomogeneous heat equation with homogeneous I.C. and B.C. : 

D.E. ut = kuxx + h(x,t) 

B.C. u(O+,t) = 0 

I.C. u(x,O+) = 0 . 

0< x < 00, t > 0 

(b) Show that the hypothetical solution found in part (a) can also be obtained directly by a 
formal use of Duhamel's principle. Hint. See Section 3.4 for Duhamel's Principle. 

5. Use both the method of images and Fourier sine transforms to find a solution of 

D.E. Uxx + Uyy = 0 0 < x, y < 00 

[
U(o+,y) = 0 

B.C. 

u(x,O+) = f(x) , 

where it is assumed that u(x,y) is bounded and u(oo,y) = ux(oo,y) = 0, 0 ~ y < 00. 

Show that the two solutions are actually the same. 

6. (a) As in Example 5, find an integral formula for a hypothetical solution of the wave problem 

D.E. Utt = uxx 0 < x < 00, t > 0 

B.C. u(O+,t) = h(t) 

I.C. u(x,O+) = ut(x,O+) = 0 , 

where it assumed that u(oo,t) = ux(oo,t) = 0, t > O. 

You may use the fact that the solution of the ODE y"(t) + ~2y(t) = g(t) with y(O) = y'(O) = 

0, is given by y(t) = f~ g(S)Sin[{~t-s)J ds (cf. Problem 12 of Section 7.4). 
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(b) By assuming a solution of the form u(x,t) = F(x + t) + G(x - t), arrive at a simpler 
hypothetical solution: u(x,t) = h(t-x) if x < t, and u(x,t) = 0 if x ~ t. Under what 

circumstances will this solution be a C2 solution of the D.E. for t,x > 0 ? 

Hint. Note that from the I.C., we know that F(x) + G(x) = 0 and F'(x) - G'(x) = 0 for 
x> O. Thus, u(x,t) = 0 for 0 < t < x. Now, use the B.C. h(t) = u(O,t) = G(-t) to 
determine G(s) for s < 0, thereby obtaining u(x,t) for 0 < x < t. 

(c) Evaluate the answer in (a) explicitly, when h(t) == 1 for t > O. 

7. In Problem 6, replace the B.C. by ux(O+,t) = h(t), t > O. Find the hypothetical solution 

u(x,t) of the resulting problem by the method of your choice. Under what assumptions on h(t) is 

u(x,t) a C2 solution of the D.E. for x> 0 and t > 0 ? 

8. (a) Solve the following Dirichlet problem for the quarter-plane, where g(y) and f(x) are given 
bounded, continuous functions with g(O) = f(O) = O. Is there only one solution? 

D.E. Uxx + Uyy = 0 , 0 < x, y < 00 

( 
u(O+,y) = g(y) 

u(x,O+) = f(x) , 

B.C. 

(b) Solve the problem in part (a) by converting the problem to a problem in the upper half-plane 

by means of the conformal mapping F(z) = z2 of the quarter-plane to the half-plane. 

9. (a) Use Fourier transforms to find a hypothetical solution u(x,t) of the following problem, 
where b is a constant: 

D.E. ut + bux = h(x,t) -00 < x, t < 00 

I.C. u(x,O) = f(x) . 

(b) Under what assumptions on h(x,t) and f(x) is the solution found in part (a) a C1 solution 
of the D.E. ? 
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Supplement (The Inversion Theorem) 

Let f(x) , ~ < x < 00, be a piecewise C1 function, in the sense that fl (x) exists and is 
continuous in every finite interval except at a finite number of points in the interval where fl (x) 
suffers a finite jump. For such a function, the following limits exist at each point Xo: 

f/(x6) = lim 
xlx o 

f(x6) = lim f(x) 
xlx o 

f(x) - f(x/) 

x - Xo and 

and f(x~) = lim f(x) , 
xlx o 

f(x) - f(xo-) 
f/(X~)= lim x _ x 

xlx o ° 
(1) 

The Inversion Theorem. Let f(x), ~ < x < 00, be piecewise c1 and absolutely integrable 

(Le., [ If(x) I dx < (0). Then for any xo, 
-00 

W(x6)+f(x~)l=[ f(e)eiexOd'e== limJR f(e)eieXod'e. (2) 
-00 R-!oo -R 

Proof. The right side of (2) is 

lim JR [[ f(x) e -iex d'x] e +iexo dIe = lim [ f(x) UR e -ie(x-xo) dIe] d'x, (3) 
R-!oo -R -00 R-!oo --00 -R 

where the interchange in the order of integration is permitted, since [ I f(x) I dx < 00 and 
-00 

J R Ie -ie(x-xo) I de = 2R < 00 (cf. Appendix A.2). Now for x f= Xo , 
-R 

J
R . t() iR(x-xo) e-iR(x-xo) 2sinR(x-xo) 

-1." x-xo de _ e - _ 
-R e - i(x-xo} - --x:c:-_-x-o-· 

and the left-hand side is 2R when x = xo· With d'ed'x == i11" dedx, (3) becomes 

[ 1 r sinR(x-xo) 1 JXo sinR(x-xo) ] 
lim - f(x) dx + - f(x) dx . 

11" x-Xo 11" x-x R-! 00 Xo -00 0 

We then only need to show that the limit of the first term is tf(x 6) and the limit of the second 
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term is H(x~. As the proofs are similar, we just prove 

1 r sinR(x-xo) 
lim~ f(x) dx = H(x+o)' 
R 'Jr x-xo L. 

--;00 Xo 
(4) 

By the change of variable (z = x - xo) the integral in (4) becomes 

!. roo f(xo+z) sin(Rz) dz. 
'JrJ O z (5) 

We will prove in the Lemma below that ~ fo sin~Rz) dz = ~ . Multiplying this result by f(xt) , 

1 [f( +) sin(Rz) d - 1 f( +) - Xo z - l'i Xo . 
'Jr 0 Z 4. 

Thus, 

(6) 

We need to show that I in (6) approaches 0 as R --; 00. For any constant A > 1, we have 

(7) 

(8) 

(9) 

Let J and K denote the expressions (8) and (9), respectively. Since z ~ A > 1, we have 
Isin(Rz)jzl ~ 1 in (8), whence 

1 foo 1 foo J < - If(xo+z)ldz = - If(y)ldy --; 0, 
'Jr A 'Jr A+xo 

as A --; 00, because we assumed that [ I f(x) I dx < 00. Thus, we can make J arbitrarily small 
-00 

by choosing A large enough. Now, by the change of variables x = Rz , 
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and hence, for any value of A > 1, we can make K as small as desired by choosing R large 
enough (Why? ; cf. the Lemma below). Finally, since the limits in (1) exist, the Riemann­
Lebesgue Lemma of Section 4.2 implies that (7) tends to 0 as R ~ 00, and thus the proof of (4) is 

complete (cf. also Problem 10 of Section 7.1). Since the result for Xo corresponding to (4) is 

proved in the same way, the desired formula (2) holds. 0 

Lemma. r' sin(x) dx 
JO x 

I· fR sin (x) d _ 'Tr 
- 1m x x - 2"' 

R~oo 0 

Proof. r -Ax 1 Note that for any x > 0, e dA = -. Thus, we have for 0 < f < R o x 

fR Si~(x) dx = fR r e -Axsin(x) dAdx = r f\ -Axsin(x) dxdA 
f f 0 0 f 

(10) 

(11) 

where the interchange of order of integration is allowed, since Ie -Axsin(x) I ~ e -Ax and e -AX is 
integrable in the strip A ~ 0, f ~ X ~ R. Now, 

fR -A [fR C-A)] [ (i-A)x I R ] e xsin(x) dx = 1m e 1 x dx = 1m e i-X 
f f f 

_ [e(i-A)R _ e(i-A)f] _ [(i + A)[e(i-A) f _ e(i-A)RJ] 
- 1m i - X - 1m 1 + A 2 . (12) 

Note that 

Thus, since this limit is zero, we have 

[ Si~(x) dx = lim [ r' [ e -Axsin(x) dx - foo e -Axsin(x) dx dA ] 
f R~oo JO f R 

= r'[e-Axsin(x)dxdA= r'lm[(i+A)e(~-A)f] dA 
JO f JO I+A 

= r'e-Afcos(f)dA+ r'e-AfAsin(f)dA. 
JO I+A2 JO l+A2 

(13) 

Now, 
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Since Ae -Af ~ ;e ' we have, for any constant a > 0, 

~ lim sine t) fa ~ dA + lim sin(f) e-1 [~- arctan(a)] = e-1 [~- arctan(a)]. 
f .... O 01+A f .... O f 

Since a can be arbitrarily large, the final limit in (14) is zero. It remains to show that 

or 

To this end, 

e cos f dA = lim 1 - e cos f dA + 1 - e cos f dA -A f () fa -A f () [ -A f () 

1 + A 2 f .... 0 0 1 + A 2 a 1 + A 2 

~ lim [l-cos(f)] fa 1 dA + [ 1 2 dA = ~-arctan(a), 
f .... 0 0 1 + A 2 a 1 + A 

Since a can be arbitrarily large, the limit is O. 0 

Remark. A formal calculation yields the Lemma quickly, if one is willing to accept the validity of 
switching the order of integration in the following computation: 

roo sin (x) dx = roo roo e -Ax sin (x) dAdx = roo roo e-AX sin(x) dxdA = roo ~ dA = ~. 
JO x JOJ O JOJ O J01+A 

Observe that A2 fa e-Ax sin(x) dx + fa e -AX sin (x) dx = 1 (A > 0) is immediate from Green's 

formula (d. Section 4.1), which gives us the third equality in the above computation. Thus, the 
complexity of the proof of the Lemma is due only to the need to justify the switching of the order 
of integration. Even for those who are familiar with the theory of Lebesgue integration (or 
alternatively, with the material in Appendices 2 and 3), the justification is not immediate, because 
exp(-Ax) is not integrable on the quarter plane 0 ~ A, x < 00. Indeed, using polar coordinates, 

1 fa fa e -AX dx dA = fo11" fa e --!r2sin(20) r dr dO 

111" _ ~11"-f 
= r sin(20) 1 dO = lim ¥og(tan 0) I = 00. 

J 0 f .... 0 f 
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However, e-Axsin(x) is absolutely integrable on the strip 0 ~ x ~ R, 0 ~ A < 00, since 

Then, Fubini's theorem (cf. Appendix 2) validates the interchange of the order of integration in 
the following computation 

lim fR roo e-Ax sin(x) dA dx = lim roofR e-AX sin(x) dx dA 
R .... oo 0 JO R .... oo JO 0 

= I im roo A2 1 - e-RA[Asin~R) + cos(R)] dA = roo 2 1 dA = ~, 
R .... oo JO + 1 A + 1 JO A + 1 

where the limit may be taken under the integral by the Dominated Convergence Theorem (cf. 
Appendix 3). Although longer, the proof given before this remark has the merit of being 
independent of the material in Appendices 2 and 3. Finally, we mention that the Lemma can also 
be proven using complex contOl!r integration (should the reader know about this), which 
ultimately reduces the integral to half the length of a unit semicircle (Le., 7r/2). 0 



CHAPTER 8 

NUMERICAL SOLUTIONS OF PDEs - AN INTRODUCTION 

The majority of practical problems involving PDEs cannot be solved by analytic methods. 
Therefore it is expedient to study numerical methods, which lead to approximate solutions of 
PDEs. Today, with the advances in computer technology, increased speed and storage capacity, 
the implementation of computer programs for approximating the solutions of PDEs are becoming 
more and more accessible. In many introductory texts, the student is confronted with several 
approximation or iteration schemes, and then the student is simply asked to write computer 
programs to implement these schemes. While in some of the exercises we will also encourage the 
student to write computer programs, the primary goal of this chapter is to provide an 
understandable and precise introduction to the numerical solution of PDEs, as opposed to an 
encyclopedic cookbook of algorithms without explanations. 

In Section 8.1 we introduce Landau's big O-notation and we use Taylor's theorem to 
approximate the derivatives by finite differences. In Section 8.2 we will study the explicit 
difference method, using the heat equation as a model. In general, the method of finite differences 
converts PDEs into a system of algebraic equations. Since we do not assume familiarity with the 
rudiments of numerical analysis, we discuss only briefly in Section 8.4 the classical iterative 
methods of Jacobi, Gauss-Seidel etc., for solving such systems. In Section 8.2 we examine the 
nature of the discretization error (the difference between the exact solution and the numerical 
solution), and we will prove a convergence theorem for the explicit difference method (cf. Theorem 
1, Section 8.2). In Section 8.3 we introduce some basic difference equations to study the 
propagation of round-off errors and to handle the problem of determining the mesh size which 
yields the greatest accuracy, in the presence of round-off errors. In Section 8.4 we provide an 
overview of some other numerical methods for PDEs, and we cite some references, where the 
reader can find applications, proofs, and further results. 

503 
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8.1 The 0 Symbol and Approximations of Derivatives 

In the sequel we will find it convenient to adopt the O-notation (read big "oh"), 
introduced by the German mathematician E. Landau (1877 - 1938) in the 1920's. 

Definition. Let f(x) and g(x) be two functions defined on some open interval I. Suppose 
that Xo is in I. Then 

f(x) = O(g(x)), (x -+ Xo), 

means that there is a positive constant K, such that I f(x) I ::; K I g(x) I for all values of 
x in some neighborhood of the point xo. 

We will often write equations such as 

This means that 
f(x) = 1 + x + O(x2), (x -+ 0). 

f(x) - (1 + x) = O(x2), (x -+ 0). 

(1) 

That is, (1) means that there is a positive constant K such that If(x) - (1 + x) I ::; Kx2, for 
I x I < (, for some (> o. Intuitively speaking, (1) says that the function f(x) is close to 
(1 + x) in a sufficiently small neighborhood of the origin. Moreover, f(x) - 1 - x tends to zero 

at least as rapidly as Kx2 does. The following example illustrates the use of this notation. 

Example 1. Verify that sin (x) = x + O(x3), (x -+ 0). 

Solution. Consider the Taylor series expansion of sin(x) about x = 0 : 

. x3 x5 x 7 3 [1 x2] 3 sm(x) = x - '3T + 5T -'IT + ... = x + x - 3T + 5T - ... = x + x g(x) . (2) 

The series g(x) in (2) is alternating, with decreasing terms for I x I ~ 1. Thus, I g(x) I ~!, and 

for all x in [-1,1]. Hence, we have shown that sin(x) - x 

sin (x) = x + O(x\ (x -+ 0). 0 

O(x3), (x -+ 0), or 
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The above example not only shows that sin(x) -+ 0 as x -+ 0, but also that the magnitude 

of the error ISin(x) - xl in the approximation sin (x) :::! x behaves like Ixl3 (or more precisely 

h I x 13 ), for x sufficiently close to zero (cf. Figure 1 and Table 1). 

Figure 1 

x Isin(x) - xl Ix1 3/6 

0.0000 0 0 

0.0015 5.647 ... xl0 -10 5.625 ... x10 -10 

0.0030 4.501. .. x10 -9 4.500 ... x10 -9 

0.0045 1.518 ... x10 -8 1.518 ... x10 -8 

Table 1 

Approximation of derivatives by finite differences 

The difference methods used to approximate the solutions to initial/boundary-value 
problems vary with the type of PDEs and with the types of side conditions prescribed. 
Nevertheless, the central feature of this method is based on the approximation of the derivatives 
by "finite differences", which we describe below. The main mathematical tool employed in 
forming difference approximations to derivatives is Taylor's theorem (named after the English 

mathematician Brook Taylor, 1685-1731). If f(x) is a en function on a nontrivial, closed 
interval I, and x and x + ~x are in I, then Taylor's theorem asserts that 
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f(x+~x) = f(x) + f/(x)# + f"(x)(~!)2 + ... + f(n-l)(x)(t~l~)~ + Rn(~x), (3) 

where 

(4) 

and where c is a number between x and x + ~x. The last equality holds, since I f(n)~y) I is 
bounded as y ranges over I. The term Rn(~x), given by (4), is known as Lagrange's orm of 

the remainder. Thus, if n = 2, then from equation (3) we obtain 

(5) 

In particular, since f" (x) is bounded in a neighborhood of x, then by (4) we have 

f' (x) = f(x+~x lx - f(x) + O(~x), (~x ... 0). (6) 

In the difference calculus, the expression 

~f = f(x+~x) - f(x) (~x > 0) (7) 

is called the forward difference of f(x) with step size ~x. In numerical analysis, ~f/ ~x is 
termed as a first-order approximation to f/(X) as ~x'" O. In addition, the term O(~x) in 
equation (6) is called the truncation error in the approximation of f' (x). 

There are several alternatives to the difference approximation of f' (x). For example, with 
the above notation, we have for a sufficiently differentiable function f(x), the following formulae: 

f' (x) = f(x) - :1!(x-~x) + O(~x), (~x ... 0), (8) 
and 

fl (x) = f(x+~x)2Li/(x-~x) + O((~x)2) (~x ... 0). (9) 

In particular, (9) holds if f is a C3 function (cf. Problem 6). In formulae (8) and (9) 

Vf(x) = f(x) - f(x-~x) , M(x) = f(x+~x) - f(x-~x), (~x > 0) 
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are respectively the backward difference and the central difference of f(x) at x with step size ~x. 

The central difference approximation of f/(X) at x with step size ~x (cf. (9)) is 

A( ) - f(x+~x) - f(x-~x) 
x - 22Sx . (10) 

In geometric terms, J\(x) approximates the slope of the tangent line at T by the slope of the 
chord pq (d. Figure 2). 

y 

Figure 2 

Example 2. Verify that 

f'( ) - f(x+~x) - f(x-~x) + O(~ ) x - 22Sx x, (~x -+ 0), 

where f(x) is a C2 function in some open interval containing the point x. 

Solution. By Taylor's theorem we have, with ~x > 0 sufficiently small, that 

f(x+~x) = f(x) + f' (x)~x + ~(&) = f(x) + f' (x)~x + O((~x)2) (11) 

and similarly 

f(x-~x) = f(x) -f'(x)~x + O((~x)2) . (12) 

Subtracting (12) from (11) yields (cf. Remark below) 

f(x+&) - f(x-&) = 2f/(X)~X + O((~x)2), (~x -+ 0), 
or 

f/(X) = f(x+&) - f(x-&) + O(~ ) 22Sx x, (~x -+ 0). o 
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Remark. In the solution of Example 2, we have used the following general fact. 

If h(AX) = O(g(AX)) and k(Ax) = O(g(Ax)), (Ax -I 0) , (13) 

where g(Ax) is a continuous function of Ax in I:: [-(,(] (( > 0), then 

h(Ax) + k(Ax) = O(g(Ax)), (AX -10). (14) 

Indeed, by (13) and the definition of the O-notation, there are constants If and K such that 

Ih(Ax)1 :5 Hlg(Ax)1 and Ik(Ax)l:5 Klg(Ax)1 (15) 

hold in [-6,0] (0 < 6 $ (). By (15) and the triangle inequality, (14) holds, that is, 

Ih(Ax) + k(Ax) I :5 Ih(Ax)I + Ik(Ax)I :5 (H + K)lg(Ax)1 , forall Ax in [-6,0]. 0 

We next turn to the difference approximations of partial derivatives of a sufficiently 
differentiable function u(x,y). Suppose that, as Ax -I 0, 

Ou (A7)2 fiu (A7)3 fpu 4 
u(x+Ax,y) = u(x,y) + Ax ax(x,y) + 2. fJx2(x,y) + 3. fJx3(x,y) + O((Ax) ) . 

Then, as before, we obtain for Ax > 0 the following finite difference approximations: 

the forward difference approximation 

~(x,y) = u(x+AX'ylx - u(x,y) + O(Ax) , 

the backward difference approximation 

Ou( ) _ u(x,y) - u(x-Ax,y) + O( A ) ax x,y - fix uX , 

and the central difference approximation 

Ou( ) _ u(x+Ax,y) - u(x-Ax,y) + 0(( A )2) ax x,y - 2 fix uX , 

(Ax -10), 

(Ax -10), 

(Ax -10). 

(16) 

(17) 

(18) 

(19) 

Example 3. Suppose that u(x,y) is C4 in a neighborhood of the point (x,y). Obtain a 
second-order difference approximation for uxx(x,y). 

Solution. Replacing Ax by -Ax in (16) yields (as Ax -10) 

u(x-Ax,y) = u(x,y) - Ax ~(x,y) + (~!i ~~(X,y) - (i,)3 ~3(X'Y) + 0((AX)4) . (20) 

If we add (16) to (20) and rearrange the terms, we obtain the desired difference approximation, 
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cr2(x,y) = u(x+~x,y) - 2u (x,~) + u(x-~x,y) + O«~x)2), as ~x ~ O. 0 (21) 
Ox (~x) 

Grids and a.pproximations for partial deriva.tives 

We will often use the following notation. Consider the rectangle W = {(x,t): 0 ~ x ~ L, 

o ~ t ~ T}. Let M and N be two positive integers and define ~x = if and ~t = ~. 
We next subdivide the rectangle W into con~ruent rectangles, whose sides are parallel to the 
coordinate axes and have lengths ~x and ~t (cf. Figure 3). 

t 
T 

(1,J+l) 
'I., 

p 
JAt /" f ., 

(1-l,J) (1,J) (1+1,J) 

,;' 
(1,J-l) 

o tAx x 
L 

Figure 3 

The representative grid point P has coordinates (i~x,j~t), where 0 ~ i ~ M and 0 ~ j ~ N. 
For the sake of simplicity we will also refer to the grid point P as the grid point (i,j). Let 
u = u(x,y) be a function of two independent variables defined on the rectangle W. The value of 
u at (i~x,j~t) will be denoted by 

u· . = u(i~x, j~t). I,J (22) 

If we replace in the formulas (17), (18) and (19) x by i~x and y by j~t, then we obtain, for 
a sufficiently differentiable function u, the following difference approximations : 

[8u] .. = UH1,j - \j + O(~x) ox (I,J) LXx ' 

uu I,J 1- ,) [!I..] u .. - u· 1· 
ox (i,j) = LXx + O(~x), 

[8u] .. = Ui+1,j - Ui- 1,j + O«~ )2) ox (I,J) 2LXx x , 

(~x ~ 0), (23) 

(~~ 0), (24) 

(~x ~ 0), (25) 
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where [~] (i,j):: ux(i~x,j~t) is the value of Ux at the grid point (i,j). 

Example 4. If u(x,y) is e k, for k large enough, obtain the following difference approximations: 

[lJu] _ ui,j+ 1 - \j + O( At) 
Of (i,j) - L\t L.1 , 

(~t -+ 0), (26) 

[ ~2 ] u· l' - 2 u· . + u. l' 2 
tru ., = 1+,] 1,~ 1- ,J + O((~x) ), 
a) (I,J) (~x) 

(~-+ 0), (27) 

[
..2 ] u·· 1 - 2 u· . + u. . 1 2 
(f'"U .. = 1,]+ 1,~ 1,]- + O((~t) ), at2 (I,J) (~t) 

(~t -+ 0), (28) 

and (as ~x, ~t -+ 0) 

[ a2u] _ ui+l,j+l - Ui- l ,j+l - ui+ l ,j-l + Ui- l ,j-l + 0[(1 A 1+1 Atl)2] 
1JiJJf (i,j) - 4L\xL\t L.1X L.1 , 

(29) 

Solution. Observe that formula (26) is similar to (23) and that using the notation in (22), 
formulae (27) and (28) follow from (21). In Problem 4, formula (29) is derived. 0 

Remark. One can also establish the above difference approximations with the aid of Taylor's 
theorem for functions of two variables. For the reader's convenience, we state this theorem. For 
a proof, we refer the reader to any standard calculus text. 0 

Theorem 1 (Taylor's theorem for functions of two variables). Let u(x,y) be a en function in 
some disk D in the xy-plane. Let (x,y) and (x+~x,y+~y) be interior points of D. Then 

where 

u(x+~x,y+~y) = P n-l (~x,~y) + Rn(~x,~y), 

P n-l (~x,~y) = u(x,y) + [~x ux(x,y) + ~y uy(x,y)] 

122 
+ 2r[(~x) uxx(x,y) + 2~x~y uxy(x,y) + (~y) Uyy(x,y)] + ... 

,n-l 1 n-l-k k an-l u 
+ L.k=o k!(n-l-k)! (~x) (~y) axn- l - kai(x,y) 

and (for some ~ in (0,1)) as ~x, ~y -+ 0, 
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Summary 8.1 

1. O-notation: Let f(x), g(x) and h(x) be functions defined on some open interval I containing 
a point xo. We say that f(x) = h(x) + O(g(x)) as x --j Xo , if there is a constant K such that 

I f(x) - h(x) I ~ K I g(x) I for all x in some open subinterval of I containing xo. 

2. Taylor's theorem: Let f(x) be a en function defined on some nontrivial closed interval I, 
and suppose that x and x + ~x are in I. Then 

where 

f(x+~x) = f(x) + f'(x)# + f"(x)(~!i + ... + f(n-1)(X)(t~l~)~ + Rn(~x) , 

R (~x) = f(n)(c)(~ft = O((~x)n) . 
n n. 

The last equality holds, because If(n)(y) I is bounded as y ranges over the closed interval I. 
There is also a multidimensional version of Taylor's theorem (e.g., d. Theorem 1). 

3. Differences: The following expressions are respectively known as the forward, backward and 
central differences of f(x) with step size ~x > 0 : 

~f(x) = f(x+~x) - f(x) , Vf(x) = f(x-~x) - f(x) , M(x) = f(x+~x) - f(x-~x) 

For sufficiently differentiable f(x), we have, as ~x --j 0, 

f'(x) = ~A~x) + O(~x), f'(x) = VA~x) + O(~x) , f'(x) = O§A~) + O((~x)2) . 

The first two of these equations hold if f(x) is e 2 and the third holds if f(x) is e3. 

4. Grids and approximations for partial derivatives: Let u(x,y) be defined for 0 ~ x ~ Land 
o ~ t ~ T. For positive integers M and N, let ~x = L/M and ~t = T /N , and define Ui,j 

= u(i~x,j~y), for integers 0 S i ~ M and 0 ~ j ~ N (Le., Ui,j is the value of u at the grid point 

(i~x,j~t)). If u(x,y) is e k for large enough k, we have the following, as ~x --j 0 and/or ~t --j 0 : 

[au] .. = ui+ 1,j - Ui,j + O( AX) [au] _ ui+ 1,j - Ui- 1,j + 0(( A )2) ox (I,j) ZSx 0 , ox (i,j) - 2ZSx oX , 

[au] _ \j+ 1 - Ui,j + O( At) [au] _ \j+ 1 - \j-1 + 0(( At)2) or (i,j) - ZSt 0 , or (i,j) - 2ZSt 0, 

[ ~? ] u· 1 .-2u. ·+u. 1· 2 [..2.] u .. 1-2u .. +u .. 1 2 au .. = I+,j I,~ 1- ,) + O((~x) ), iQ!. .. = I,j+ I,~ I,j- + O((~t) ), 
f)x2 (I,j) (~x) 8t2 (I,j) (~t) 

[ fi2u] _ ui+1,j+1 - Ui- 1,j+1 - ui+1,j-1 + Ui- 1,j-1 + O[(I~xl+l~tl)2] . 
7JXot (i,j) - 4ZSxZSt 
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Exercises 8.1 

1. Verify each of the following statements. 

(a) sin(x) = 0(1), (x -+ (0), 

(b) cos(x) = 1 + 0(x2), (x -+ 0), 

(c) eX = 1 + x + x2/2! + O(x\ (x -+ 0). 

2. Let I be an open interval containing the point x. Verify each of the following statements. 

(a) f' (x) = [f(x) - LS!(x-~x)J + O(~x), (~x -+ 0), where f is a C2 function on I. 

(b) f"(x) = [f(x+~x) - 2 f (x~ + f(x-~x)l + 0((~x)2), (~x -+ 0), where f is C4 on I. 
(~x) 

3. If u = u(x,y) is C4 in a neighborhood of a point (x,y), show that 

(a) u (x,y) = u(x,y+~y) - 2u (x,~) + u(x,y-~y) + 0((~y)2), as ~y -+ o. 
yy (~y) 

(b) As ~x, ~y -+ 0, 4~x~y.uxy(x,y) 

= u(x+~x,y+~y)-u(x-~x,y+~y)-u(x+~x,y-~y)+u(x-~x,y-~y) + 0(( I~xl + l~yI)4) . 

4. Let u = u(x,t) be a C5 function. Show that, as ~x, ~t -+ 0, 

[ rru] _ ui+1,j+1 - ui- 1,j+1 - ui+1,j-1 + Ui- 1,j-1 + O[(I~ 1+I~tl)2] 
7JXlJf (i,j) - 4LSxLSt x. 

mnt. Use Taylor's theorem for functions of two variables (Theorem 1), to obtain the result 

analogous to 3(b), but write the remainder explicitly in the form A(~x)4 + B(~x)3(~t) + ... + 

E(~t)4. Then apply the mean value (or Taylor's) theorem to the C1 functions A and E to 
obtain A = O(~t) and E = O(~x), thereby justifying the division by ~x~t. 

5. Let f(x) and g(x) be two continuous functions, defined on an open interval I containing the 
point x = O. 

(a) Show that if f(x) = O(x) and g(x) = 0(x2) as x -+ 0, then f(x) + g(x) = O(x), as x -+ O. 

(b) Find some functions f and g as in (a), for which f(x) + g(x) f. 0(x2) as x -+ o. 
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6. (Higher-order approximations). Let f(x) be a C3 function. Use Taylor's theorem to show that 

(a) fl (x) = f(x+~x)2LS/(x-~x) + O((~x)2), (~x -; 0). Compare this result with Example 2. 

(b) f/(X) = -f(x+2~x) + 4~1~+~x) - 3f(x) + O((~x)2), (~x -; 0). 

7. Let f(x) be a C5 function. Show that 

fl (x) = f(x-2~x) - 8f(x-~Xh!x 8f(x+~x) - f(x+2~x) + O((~x)4), (~x -; 0). 

8. (The Richardson extrapolation procedure for higher-order approximations). Let f(x) be C6 . 
2 

(a) Show that f(x+~x) - 2 f (x) + f(x-~x) = f"(x) + (~2) f(4)(x) + O((~x)\ (~x -; 0). 
(~x)2 1 

(b) Now replace in part (a), ~x by s~x, where s is any real number, Sf ±1, o. Show that 

2 2 
f(x+s~x) - ~f (x)2 +f(x-s~x) = f"(x) + s (~~) f(4)(x) + O((~x)4), (~x __ 0). 

s (~x) 

(c) Use (a) and (b) to eliminate the term involving (~x)2, and deduce that (as ~x -; 0) 

f"(x) = 2 ~ 2 {-f(x+s~x)+s4f(x+~x)-(2s4_2)f(x)+s4f(x-~x)-f(x-s~x)} + O((~x)4). 
(~x) s (s -1) 

9. (Forward difference operator and derivatives). Three basic operators of the difference calculus 
are defined as follows. The forward difference operator ~h is defined as 

~hf(x) = f(x+h) - f(x). 

The shift operator, Eh , is defined by Ehf(x) = f(x+h) and the identity, I, is given by 

If(x) = f(x). The higher-order differences are defined by 

~~f(x) = ~h(~~-lf(x)) , n = 1,2, ... , where ~Of(x) = If(x). 

2 2 2 
(a) Verify that ~h = Eh - 2Eh + I = (Eh- I) and 

~~f(x) = 4=0 [k] (-l)kf(x+(n-k)h), where [k] = k!(~~k)! . 
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(b) Verify that f(x+nh) = l:=o [~] ~~f(x). 

(c) If p(x) is a polynomial of degree n, show that ~hP(x) is a polynomial of degree less than 

n, and so conclude that ~h+1p(x) = 0 (Le., the forward difference operator behaves like the 

differentation operator ~,in that it also reduces that degree of a polynomial). 

10. (Noncentral difference quotients). We know that (check) if f(x) is defined in a neighborhood 
of the origin, and if f(x) is differentiable at the origin, then lim ~(~) 2LS!(-~x) exists and 

~x-+O 
equals f'(O). Show that the converse is not true in general. Hint. Consider Ixl. 

Remark. It can be proved (cf. [P.P.B. EggermontJ) that if f(x) is defined and continuous in a 

neighborhood of the origin, and for some constant a:f. ±1, lim f(~xh=aL~!~x) exists, then 
~x-+O 

f' (0) exists and is equal to this limit. Problem 10 shows that the result may fail when a = -1. 

11. Suppose that f(x) is Cn in a neighborhood of the origin. Prove that 

~n)(O) = lim [--Ln ~ (_I)k ( -k)ikl f(~.~x)] ~x-+O (~x) lk=O n.. ~ 

Remark. For other related formulas see [J.B. Wilker] and [G. Birkhoff and Gian-Rota, p.203]. 
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8.2 The Explicit Difference Method and the Heat Equation 

Consider the following heat problem for the temperature u = u(x,t) in a rod of length L: 

D.E. ut = uxx' o ~ x ~ L, 0 ~ t ~ T, 

B.C. u(O,t) = A(t), u(L,t) = B(t), 

I.C. u(x,O) = f(x) . 

(1) 

Our goal in this section is to describe one of the simplest difference techniques, known as the 
explicit difference method for solving an initial/boundary-value problem of the form (1). To this 
end, we first introduce a finite grid on the rectangle 

W = {(x,t): 0 ~ x ~ L, 0 ~ t ~ T}. 

Let M and N be two positive integers and set 

~x = L/M and ~t = T/N. 

If u = u(x,t) is C4 on W, then by Example 4 of Section 8.1, 

and 

[ ~? ] u· 1· - 2 u· . + u· 1· 2 
au .. = 1+ ,j 1,.1 1- ,j + O((~x) ), (~x -+ 0), 
{)x2 (I,j) (~x)2 

(2) 

where 

[Ou] u· ·+1 - u· . at (i,j) = I,j Lit I,j + O(~t), (~t -+ 0), (3) 

Ui,j = u(i~x,j~t), [:~](i,j) = uxx(i~x,j~t), [~](i,j) = Ut(i~x,j~t). 
There are many other choices for the difference approximations of the derivatives Uxx and ut at 

the grid point (i,j). Equations (2) and (3) involve the forward difference approximations to Uxx 
and ut at (i,j), which are commonly used in the explicit difference method. The D.E. yields 

[~] (i,j) = [:2] (i,j) , for i = 1, ... , M-l and j = 1, ... , N-l , (4) 

and using (2) and (3) we have 

u·· 1 - u· . u·+1 . - 2u .. + u. 1· 2 
1,]+ I,) + O(~t) - 1 ,j I,~ 1- ,j + O((~x)), (~x, ~t -+ 0) . (5) 

Lit - (~x) 
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Equation (5) suggests that, upon neglecting the truncation errors O(~t) and O((~x)2), we 
consider an approximation v· . to u· . which satisfies the system of difference equations 

1,.1 1,.1 

v. ·+1 - v· . v·+ 1 . - 2v .. + v· 1· 
1,.1 I,J = 1 ,.I I, .I 1- ,] . 1 MI· 0 N 1 

~t (~x)2 1 = , ... , -, .I = , ... , -. 

Let (6) 

Then (5) can be written in the form (where i = 1, ... , M-l, j = 0, ... , N-l) 

v. ·+1 = AV·+ 1 . + (1-2A)v .. + AV. 1·· 1,.1 1 ,.I 1,.1 1- ,J 
(7) 

The local discretization error at (i,j) is defined to be the difference 

w·· = u .. -v ... 
1,.1 1,.1 1,.1 

(8) 

We say that the method used to produce the approximation v .. converges, if max 1 w· ·1 -10 as 
1,.1 1,.1 

~x -10 (and ~t = A(~x)2 -I 0), where the maximum is taken over all of the grid points (i,j) in 

the rectangle W. We will see below (cf. Theorem 1) that if u is C4, and 0 < A :::; 1/2, then the 

explicit difference method converges. 

Taking into account the B.C. and the I.C. in problem (1), we have 

VO,j = u(O,j~t) = A(j~t), VM,j = u(L,j~t) = B(j~t), j = 0, ... , N 

v· 0 = u(i~x,O) = f(i~x), i = 0, ... , M. 
I, 

(9) and 

We assume that A(O) = f(O) and B(O) = f(L) (Otherwise, problem (1) has no solution. Why 7). 
Then, each of the quantities vO,O and vM,O is consistently defined in (9). 

In summarizing the foregoing discussion, the explicit difference method for solving the 
given problem (1), consists in solving the system of difference equations 
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V. ·+1 = "\v·+1 . + (I-2..\)v .. + ..\v. 1·' I,j I ,j I,j 1- ,j (10) 

i = 1, ... , M-I, j = 0, ... , N-I, subject to the side conditions (9). It is not hard to show that the 

system of equations (10), subject to (9), has a unique solution. That is, if v·. and v .. , both I,j I,j 

satisfy (10), subject to (9), then vI· j. - v .. = 0 (i = 1, ... , M-I, j = 1, ... , N). Indeed, (10) gives , I,j 
an explicit formula for the unknown temperature v .. +1 at the grid point (i,j+ 1) in terms of the I,j 
previous temperatures along the j-th "time row". Thus, if j = 0, then (10) and (9) yield 

Vi,I = ,,\vi+I,O + (I-2..\)vi,0 + ,,\vi-I,O = "\f((i+I)~x) + (I-2"\)f(i~x) + "\f((i-I)~x) , 

and we leave the rest of the argument to the reader (cf. Problem 4). 
We will next illustrate the explicit difference method by some examples, which do not 

require the use of a calculator or a computer. 

Example 1. Consider D.E. ut = Uxx ' o ~ x ~ 5, 0 ~ t ~ 0.5 , 

B.C. u(O,t) = 2t, u(5,t) = 25 + 2t , 

2 I.C. u(x,O) = x . 

Use the explicit difference method with grid spacings ~x = 1 and At = 0.1 to find 
approximations for (a) u(I,O.I) and (b) u(3,0.5), with all calculations to be done by hand. 

Solution. In this problem L = 5, T = 0.5, and so M = L/ ~x = 5 and N = T / At = 0.5/0.1 

= 5. Moreover, since ..\ = ~t/(~x)2 = 0.1, the discretization (10) of the D.E. is 

V. ·+1 = (O.I)v·+ I . + (0.8)v .. + (O.I)v·_I ., I,j I ,j I,j I ,j 

i = 1,2,3,4 and j = 0, 1,2,3,4. The B.C. and I.C. yield, by (9), the side conditions 

Vo j. = 2j~t = (0.2)j, v5 · = 25 + 2j~t = 25 + (0.2)j, j = 0, ... , 5, 
, J 

and 

V. 0 = (i~x)2 = i2, i = 0, ... , 5. 
I, 

(11) 

(12) 

(a) Since u(l, 0.1) = u(Ax,~t) = ul l' we are required to find vII. Thus, if we set i = 1 

and j = 0 in (11), we obtain the desired approximation ' 

vII = (0.I)v2 0 + (0.8)vI 0 + (O.I)vO 0 = 1.2. , , , , 

(b) Since u(3, 0.5) = u(3~x,5~t) = u35' the problem here is to find v35. By repeated , , 
application of (11), using (12), we find that v35 = 10. In Table 1 we provide the values of v .. 

, IJ 
for i = 0, 1, ... , 5 and j = 0, 1, ... , 5 . 
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In the numerical solution of PDEs it is of utmost importance to know how accurate the 
approximations v.· are. In Table 2 we compare the values of v. 5 with u· 5' i = 0, ... , 5, I,J 1, 1, 

where u. 5 was calculated from the exact solution u(x,t) = 2t + x2 of Example 1. 
1, 

B.C. B.C. 

x 0 1 2 3 4 5 
t 

I.C. 0 0 1 4 9 16 25 

0.1 0.2 1.2 4.2 9.2 16.2 25.2 

0.2 0.4 1.4 4.4 9.4 16.4 25.4 

0.3 0.6 1.6 4.6 9.6 16.6 25.6 

0.4 0.8 1.8 4.8 9.8 16.8 25.8 

0.5 1 2 5 10 17 26 

Table 1 

The values of v· . for A = 0.1. I,J 

x 0 1 2 3 4 5 

v· 5 1, 
1 2 5 10 17 26 approximation 

u· 5 1, 
1 2 5 10 17 26 analytic soluti on 

Table 2 

The values of ui,5 and vi,5 for A = 0.1 . 

From Table 2 we see that our approximations v. 5 are in complete agreement with the analytic 
1, 

solutions ui,5' a rare occurrence. In this example, the lack of errors in our approximations is due 
to the simple choice of the B.C. and I.C. (cf. Problem 5 and Theorem 1, below). 0 
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Example 2. Consider D.E. ut = Uxx ' 0 < x < 4, t > 0, 

B.C. u(O,t) = 5, u(4,t) = 5, t > 0, 

I.C. u(x,O) = 0, 0 S; x S; 4. 
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(13) 

Use the explicit difference method, with ~x = 1 and ~t = 0.125, to find vI 8 ' v2 8 and v38 · 
" , 

Note that the problem has no exact continuous solution in the strip 0 ~ x ~ 4 , t ~ 0 (Why not ?). 

Solution. The values v18 ' v2 8 and v38 are in the last row of Table 3, which was constructed 
" , 

by solving (10) and (9), with Vo 0 = 0, v 40 = 0, T = 1 and A = 0.125 (Why?). , , 

B.C. B.C. 

x 0 1 2 3 4 
t 

* I.C 0 0 0 0 0 0 

0.125 5 0.000 ... 0.000 ... 0.000 ... 5 

0.250 5 0.625 ... 0.000 ... 0.625 ... 5 

0.375 5 1.0938 ... 0.1563 ... 1.0938 ... 5 

0.500 5 1.4648 ... 0.3906 ... 1.4648 ... 5 

0.625 5 1. 7725 ... 0.6592 ... 1. 7725 ... 5 

0.750 5 2.0367 ... 0.9375 ... 2.0367 ... 5 

0.875 5 2.2697 ... 1. 2123 ... 2.2697 ... 5 

1.000 5 2.4788 ... 1.4767 ... 2.4788 ... 5 

Table 3 

The values of v· . for A = 0.125. I,J 
* Note that the B.C. and I.C. do not match at the corners. 

Remark. The diffusion of heat into the rod is evident in Table 3. The symmetry in the columns 
x = 1 and x = 3, is due to the symmetry of the problem about x = 2. Although there is no 
exact continuous solution which can be compared with the v .. , there is the formal solution 

I,J 

u(x,t) = 5 - 2~ ~=o 2J+l exp [-(2k+l)27r2t/16] sin [(2k+!)1IX] , 

and one can check that u(I,I) = u(3,1) ~ 2.564936 and u(2,1) ~ 1.572771 (six place accuracy is 
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obtained even when trucating the series at k = 2, due to the rapid exponential square decay of 
the terms as k -I 00. The disagreement with the last row of Table 3 is nearly .1. Better 
agreement is expected by choosing a value Vo 0 = v40 ' say C, between 0 and 5 (Why?). For , , 
C = 2.5, v18 = v3 8 ~ 2.573 and v2 8 ~ 1.601. If C = 2, the results are actually better, 

" , 
namely, vI 8 = v3 8 ~ 2.554 and v2 8 ~ 1.576. 0 

" , 
In the next example, the B.C. arise from imperfect insulation at the ends (d. Section 3.4). 

Separation of variables leads to a Sturm-Liouville problem (cf. Section 4.4), but these sections are 
not needed to apply the explicit difference method. 

Example 3. Consider D.E. ut = uxx' o ~ x ~ 1, t ~ 0, 

B.C. ux(O,t) = u(O,t), ux(1,t) = -u(l,t), 

I.C. u(x,O) = 1 . 

(14) 

(a) Develop an explicit difference method for problem (14), using central difference 
approximations for the B.C .. 

(b) Use ~t = 1/400 and A = 1/4 to find vI 2' that is, approximate u(O.I, 0.005). , 

Solution. (a) We know that the explicit difference approximations v .. satisfy l,j 

v· '+1 = AV'+1 . + (1-2A)V, . + AV. 1" l,j 1 ,j l,j 1- ,j (15) 

i = 1,2, ... , M-l, j = 0, 1, ... , N-l, where M is determined by the formula ~x = L/M, L = 1, 

and A = ~t/(~x)2. The first term on the right-hand side of 

[au] u'+1 . - u'_1 . 2 ox (i,j) = 1 ,j2LSx 1 ,j + O(~x), (~x -I 0), (16) 

is the central difference approximation to Ux at the grid point (i,j), and using it in the B.C. , 

vI . - vI' v - ,J -,J 
O,j - 2LSx ' (17) 

and 

__ [VM+1,j - VM- 1,j] 
VM,j - 2LSx ' (18) 

for j = 0, 1, 2, .... Now, the terms v_I' and vM+ 1 . from (17) and (18) can be eliminated 
,j ,j 

with the aid of (15), as follows. By setting i = 0 and i = M in (15), we obtain 

and 

Vo j'+1 = AV1 . + (1-2A)vO . + AV_l . (19) , ,j ,j ,j 

VM,j+l = AVM+ 1,j + (1-2A)vM,j + AVM_1,j . (20) 

Elimination of v -1,j from (17) and (19) and elimination of vM+ l,j from (18) and (20) yield 
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Vo ·+1 = 2Av1 . + (1 - 2A - 2ALlx)vO J. J J , 
(21) 

and 

VM J·+l = 2AvM_ I . + (1 - 2A - 2ALlx)vM . , 
,J J 

(22) 

for j = 0, 1, 2, .... Hence, the required difference approximation to (14) is given by (15), (21), 
(22) and v. Q = 1, i = 0, ... , M . 

1, 

(b) Since A = 1/4 and Llt = 1/400, Llx = 0.1. We want to find vI 2. By (15), with i = j = 1, , 

(23) 

We will now compute Vo 1 ,vII and v2I · By (21), with j = 0 (vO,O = vI,O = 1) 
" , 

1 1 0.1 
vO,1 = 2" v1,0 + (1 - 2" - T)vO,O = 0.95. (24) 

By (15), with i = 1, j = 0 (vO 0 = VI 0 = v2 0 = 1) , , , 

By (15), with i = 2, j = 0 (VI 0 = v2 0 = v3 0 = 1) , , , 
1 1 1 

v21 =;rv30+(1-2)v20+;rvI0=1. (26) 
" " 

Hence by (24), (25) and (26), we obtain for (23) VI 2 = i(l) + ~(1) + ~0.95) = 0.9875. 0 , 

Remark. The need for a numerical approach for a solution of (14) becomes clear when we consider 
the following formal solution: 

00 -A t 
u(x,t) = 2n=1 c~ e n 9n(x) , 

where the constants 0 < Al < AZ < A3 ... are the positive roots of the equation 

and 

tan(v'X) = i!A ' 
9n(x) = cos(~ x) + _1_ sin(~ x) , 

~ 

- 2Jl 2 Jl 2 
cn = 119nll 0 1·9n(x) dx, with 119nll == 09n(x) dx. 

(27) 

(28) 

(29) 

(30) 

By graphing both sides of (28) as functions of v'X (cf. Figure 4 of Section 3.3), one easily sees that 

(n-1)lI" < ~ < (n-t)lI" for n = 1,2, .... With considerable effort, it can be shown that 
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cn = [ : 
"-3 -+T---,X'-n 

for n even 

for n odd· 

If ° < /31 < /32 < /33 ... denote the positve roots of the equation /3tan(/3) = ~,then A2k-l = 4~ , 
k = 0, 1, 2, ... (cf. Problem 3), and we may write (27) in the form 

~ e -4~t [ Sin(2/3kx)] 
u(x,t) = 4 l.. :2 cos(2/3kx) + 2{3 , 

k=13+4Pk k 

If up(x,t) denotes the sum of the first p terms (p> 1), we have 

lu(x,t)-u (x,t) I $ 2exP(--4~+1 t) r /3;.2 $ 2e-4P~tr [7r(x-1)]-2 dx $ 2e--4prt 2 1 . 
P k=p+1 P 7r (p-1) 

We want to evaluate u(0.1,0.005). Since t = 0.005, exp(-47r2t) = exp(-7r2/50) < 0.821. Thus, 

IU(0.1,0.005)-up(0.1,.005)I $ 27r-2(0.821)P/(p-1) < 0.203 (0.821)P/(p-1) 

For p = 15, the right side is :::J 0.00075. Thus, according to this estimate, for three-place 
accuracy, we need to compute more than 15 zeros of /3tan(fJ) = t , assuming that the these zeros 
are computed with a somewhat greater precision, say by using the Newton-Raphson method (cf. 
Problems 12 and 13). However, since time may be costly, the numerical approach seems more 
attractive. To estimate the accuracy of the numerical solution, one might keep refining the grid 
and computing the approximations for u(0.1,0.005), until one sees sufficiently small changes in 
the approximation. Of course this does not prove that the approximation is sufficiently accurate, 
but in applications the chief goal is rarely the maximization of rigor. 0 

Convergence of the explicit difference method 

One hopes that the discretization errors Wi,j = u(i~x,j~t) - Vi,j approach zero as 

~x :: L/M and ~t:: T /N approach zero. For the problem of a rod with temperature prescribed 

at the ends, this is proven below (cf. Theorem· 1), under the assumptions that a C4 solution u 

exists and ~t/(~x)2 $ ~ is maintained. For the proof of Theorem 1, we need the following 

result. 

Proposition 1. H u(x,t) is a C4 solution of the problem 

D.E. ut = uxx' 0$ x $ L, 0$ t $ T, 

B.C. u(O,t) = A(t), u(L,t) = B(t), (31) 

I.C. u(x,O) = f(x), 

then lu (x,t) I ~ max {IA"(t)l, IB"(t)l, If(4)(x) I}. 
xxxx O<x<L 

(32) 

O~t~T 
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Proof. Let w(x,t) = Utt(x,t). Using the D.E. and the assumption that u is C4, we have wt = 

Uttt = Uxxtt = Uttxx = wxx. Thus, w satisfies the problem 

D.E. wt = wxx' o ~ x ~ L, 0 ~ t ~ T, 

B.C. w(O,t) = A"(t), w(L,t) = B"(t) , 

(4) I.C. w(x,O)= f (x), 

since w = Utt = uxxt = utxx = uxxxx. By the Maximum/Minimum Principle (d. Theorem 3 

Section 3.2, with u1(x,t) = w(x,t) and u2 == 0), we obtain the required estimate (32). 0 

Theorem 1 (A Convergence Theorem for the Explicit Difference Method). Let u(x,t) be a C4 
solution of the problem (31). Let M and N be positive integers, and define ~x = L/M, 

~t = T /N and A = ~. Let v· . be the solution of the system of difference equations 
(~X)L; I,J 

v. ·+1 = AV·+1 . + (1-2A)v . . + AV. 1·' I,J 1 ,J I,J 1- ,J (33) 

i = 1, ... , M-1, j = 0, ... , N-1, meeting the side conditions with A(O) = f(O) and B(O) = f(L): 

Vo J. = A(j~t), j = 0, ... , N, vM J. = B(j~t), j = 0, ... , N, vi 0 = f(i~x), i = 0, ... , M. , , , 

For u .. == u(i~x,j~t), let w· . == u .. - v .. denote the local discretization error. H A ~ 1/2, I,J I,J I,J I,J 
then 

(34) 

where 

K = max {IA"(t)l, IB"(t)l, 114)(x)I}, (35) 
O<x<L 
O$t$T 

i.e., the discretization error tends to 0 as M, N ...; 00 ,if A == TM2 /(L 2N) ~ 1/2 . 

Proof. Using Taylor's theorem with Lagrange's form of the remainder, we obtain 

A [au] (~x)2 [eru] (~x)3 [rfU] • 
UH1,j = Ui,j + ~x ox (i,j) + ~ fJx2 (i,j) + ~ fJx3 (i,j) + R4 ' (36) 

[au] (~)2 [eru] (~x)3 [rfu] -
Ui- 1,j = Ui,j - ~x ox (i,j) + ~ fJx2 (i,j) -~ fJx3 (i,j) + R4 ' (37) 
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and 

(38) 

where 

The caret C), tilde (-) and bar (-) indicate that the respective partial derivatives are evaluated 
at appropriate intermediate values, given by Lagrange's form of the remainder. Note that these 
intermediate values depend on the grid point (i,j) under consideration. However, for notational 
simplicity, in our s~mbols for the remainders, we have no~ incorporated the letters i and j. . 

We add (36) to (37), and solve for (u )( .. ). Sillce u = ut ' we replace (ut )( .. ) III xx I,J xx I,J 
(38) by the resulting expression for (u )( .. )' and obtain xx I,J 

u· ·+1 = AU·+ 1 . + (1-2A)u .. + AU. 1· + E .. , I,J 1 ,J I,J 1- ,J I,J 
where 

i = 1, ... , M, j = 0, ... , N. If we subtract (33) from (39) we obtain 

w· ·+1 = AW·+ 1 . + (1-2A)w .. + AW. 1· + E ... I,J 1 ,J I,J 1- ,J I,J 

Moreover, it follows from the definition of w· ., that w· . satisfies the side conditions I,J I,J 

Wo . = wM . = 0, j = 0, ... , N 
,J ,J and wi 0 = 0, i = 0, ... , M. , 

In order to estimate IE··I, we first use Proposition 1 and (35) to get I,J 

luxxxx(x,t)I ~K, for all O~x~L,O~t~T. 

Since A == t1t/(t1x)2 and Utt = uxxxx ,(40) and (42) yield 

(39) 

(40) 

( 41) 

(42) 

I (D.t)2- (t1t)(t1x)2. - I 1 [- (t1X)2[ • -]] 
lEi) = 2 Utt - 24 (uxxxx +uxxxx) ~ 1t1t t1t I Utt I + 12 I Uxxxx I + I Uxxxx I 

~ ~t1t [t1t. K + (~2)2 . 2K] = ~Kt1t [t1t + (t1~)2] == E * . 

We still need to estimate the absolute value of the discretization error. Let 

w· == max Iw. ·1, j = 0, ... , N. 
J O~i~M I,J 

Then by (41), (43), and the assumption that 0 < A ~~, we have 

(43) 
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* I w"+11 < '\w. + (1-2,\)w. + '\w. + IE. ·1 < w· + E . I,J - J J J I,J - J 
(44) 

Since inequality (44) is true for all i = 0, ... , M, iteration of (44) yields 

* * * 
w'+ l = max Iw. '+1 1 ~ w. + E ~ w'_l + 2E ~ ... ~ Wo + (j+1)E 

J O~i~M I,J J J 

* or since Wo = 0, Wj ~ jE, 0 ~ j ~ N. Since j~t ~ T, 1 ~ j ~ N, we obtain the desired 

result (34), i.e., 

IWi,jl ~ Wj ~ jE* = ii~tK[~t + (~6)2] ~ !KT[~t + (~6)2]. 0 

Remarks. (a) Many authors estimate IWi,jl in terms of bounds on the derivatives of the 

unknown solution u(x,t) of the given initial/boundary value problem. These bounds involve 
information about a presumably unknown solution. 

(b) From (34), we have max Iw. J·I = O[~t + (~x)2], where M and N tend to infinity in 
O<i<M I, 
O~j~N 

such a way that 0 < ,\ = ~t/(~x)2 ~ !. If ,\ = 1/6 is maintained as M, N -+ 00, then for a C6 

solution, the local discretization error has magnitude O((~x)4) as ~x -+ 0 (cf. Problem 7). 

( c) We emphasize here that the estimate (34) of Theorem 1 is a theoretical estimate. That is, in 
practice we cannot assume that the computational procedure used for solving the difference 
equations (32) is exact. The computer can only retain a finite number of digits and consequently 
we must also contend with round-off errors (cf. Section 8.3). It is clear that the round-off error 
present at the j-th step of our numerical solution of the difference equations will influence the 
accuracy at the 0+ 1 )-st step. Roughly speaking, the numerical method used is said to be 
stable if the errors (from whatever source) do not accumulate and destroy the given accuracy by 
the individual local truncation errors. While the notion of stability in the analysis of numerical 
solutions is extremely important, a rigorous treatment of stability is outside the scope of this text. 

(d) If u(x,t) = P"(x)t + P(x), where P(x) is a polynomial of degree less than 4, then the 
right-hand side of (34) is zero (Why?). Thus, in this case, the local discretization error is zero, 

and the numerical solution (without rounding off) is exact (cf. Example 1 ,where P(x) = x2). 0 

In the following examples, we illustrate how the difference approximations are influenced 

by the value of ,\ = t1t/(t1x)2 and the mesh sizes t1x and t1t. 

Example 4. Consider D.E. ut = uxx' o ~ x ~ 1, t ~ 0, 

B.C. u(O,t) = 0, u(l,t) = 1 (45) 

I.C. u(x,O) = x + 1000sin( 1IX) . 
(a) Calculate by hand u(0.5,0.5) with T = 0.5, M = 2 and N = 1 (,\ = 2), using the explicit 
difference method. 

(b) Use the explicit difference method with T = 0.5 and ,\ = 1/6 to approximate u(0.5, 0.5). 
Compare your approximations with the actual solution. 
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Solution. 
2 (a) Here ~x = LIM = 0.5 and ~t = TIN = 0.5 (,\ = ~t/(~) = 2). Since u(0.5, 0.5) 

= ul l' we must find v 1 l' The system of difference equations is given by , , 

v. '+1 = 2v'+1 . - 3v .. + 2v. l' I,j 1 ,j I,j 1- ,j 

with side conditions 

VO,j = 0, V2,j = 1, vi,O = ~ + 1000sin(!m), (i, j = 0,1,2, ... ). 

Thus, VII = 2 - (3)(1000.5) + ° = -2999.5, which is a remarkably poor approximation to , 

u(0.5,0.5) = 7.69188335 ... ,computed from the solution u(x,t) = x + 1000 e-1r\in(mc) of (45).0 

(b) In this case, ~x = 11M and ~t = 0.5/N , where the positive integers M and N are such 

that M2/2N = ,\ = 1/6, as required. Table 4 lists vM/2,N for various M and N. 

M N 
Approximation 
to u(0.5,0.5) Analytic solution 

2 12 8.207346 ... 7.691883 ... 

4 48 7.718356 ... 7.691883 ... 

6 108 7.696947 ... 7.691883 ... 

8 192 7.693468 ... 7.691883 ... 

Table 4 

M2 1 
2N='\=l) 

Note that for M = 8, N = 192, ~x = 0.125 and ~t = 0.0026, our approximation agrees with 
the actual solution up to three places. At a grid point, the percentage error is the difference of the 
numerical and actual solutions, expressed as a percentage of the value of actual solution, e.g., 

v 4 192 - u(0.5, 0.5) 
, u(0.5, 0.5) . 100 % = 0.020 ... %. 0 

Example 5. Use the explicit method with ,\ = 1/2 to approximate u(0.5, 0.5), where u is the 
solution of the problem (45) of the previous example. 

Solution. As in the previous example, L = 1, T = 0.5, ~x = 11M and ~t = 0.5/N. Now we 
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will select the positive integers M and N such that ,\ = 1/2. Table 5 provides five different 
approximations vM/ 2,N to u(0.5, 0.5). 

Approximation 
M N to u(0.5,0.5) Analytic solution 

4 16 4.406250 ... 7.691883 ... 

8 64 6.800603 ... 7.691883 ... 

10 100 7.116564 ... 7.691883 ... 

12 144 7.290535 ... 7.691883 ... 

14 196 7.396216 ... 7.691883 ... 

Table 5 

M2 1 
2N='\=2 

We observe that the approximations are not as accurate with ,\ = 1/2 as the approximations 
with ,\ = 1/6, (cf. Example 4). 0 

The purpose of the next example is to use inequality (34) to provide an estimate of the 
local discretization error in a concrete setting. 

Example 6. Consider o ~ x ~ 1, t ~ 0, 

B.C. u(O,t) = 0, u(l,t) = 1 , 

I.C. u(x,O) = x + 7!"-4sin(1rX) . 

(46) 

Use the explicit method with T = 0.5 , ~x = 1/8 and ~t = 0.5/64 to approximate u(0.5,0.5), 
and use inequality (34) to estimate the local discretization error in this case. 

Solution. We must find the difference approximation v 464 ' since M = L/ ~x = 8 , 
T / ~t = 64. With the help of a suitable computer program, we find that 
v 464 = 0.500064682 ... , while u(0.5, 0.5) = 0.500073832 ... , and so , 

1 u(0.5,0.5) - v 464 1 = 0.0000091.. .. , 

and N = 

( 47) 

Since u(x,O) = f(x) = x + 7!"-4sin( 7l"X), 1 f( 4)(x) 1 = 1 cos( 7l"X) 1 :::; 1. Thus, K = 1 in (34), and 

T[ (~x)2J 1 u(0.5,0.5) - v 4641 = 1 u4 64 - v 4641 = 1 w 4 641 ~ 2" ~t + 6 = 0.0026041 . , , , , ( 48) 

Thus, the local discretization error (47), in this specific calculation, is "much smaller" than the 
theoretical error bound provided by (34). 0 
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Summary 8.2 

1. The explicit difference method for a heat problem: Consider 

o ~ x ~ L, 0 ~ t ~ T, 

B.C. u(O,t) = A(t), u(L,t) = B(t), (81) 

I.C. u(x,O) = f(x) (A(O) = f(O), B(O) = f(L)) . 

The numerical solution of this problem by the explicit difference method is as follows. For 

positive integers M and N, let ~x = LIM, ~t = TIN and A = ~t/(~x)2. 80lve the system 

v· '+1 = AV'+ l . + (1-2A)v, . + AV. 1" 1 ,j 1 ,j l,j 1- ,j 
(82) 

(i = 1, ... M-1; j = 0, ... , N-1), subject to the side conditions 

Vo . = u(O,j~t) = A(j~t), vM · = u(L,j~t) = B(j~t), j = 0, ... , N 
J J 

V· 0 = u(i~x,O) = f(i~x), i = 0, ... , M. 
1, 

(83) and 

Ideally, the local discretization error w .. == u(i~x,j~t) - v .. is small in absolute value. 
l,j l,j 

2. The error estimate (Theorem 1): If (81) has a C4 solution u(x,t), then for 0 < A ~ ~, 

1 u(i~x,j~t) - v. ·1 
l,j 

1 Wi,j 1 ~ ~KT(~t + ~(~x)2) (i = 0, 1, ... , M ; j = 0, 1, ... ,N) (84) 

where K == max {IA"(t)l, IB"(t)l, If(4)(x)I}. 
O::=;x::=;L 
O::=;t::=;T 

(85) 

However, one must be wary of the accumulation of round-off errors in the computation of v· j' • 
1, 
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Exercises 8.2 

1. Consider the problem 

D.E. ut = uxx ' o ~ x ~ 1, t ~ 0, 

B.C. u(O,t) = 4t, u(1,t) = 4~ 

I.C. u(x,O) = 2x(x-l) . 
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(a) (Calculation by hand) Use the explicit difference method with T = 1, .6.x =.5 and .6.t = 1 
(A = 4) to approximate u(0.5,1). Compare your answer with the actual solution. 

(b) (Calculation with computer or calculator) Use the explicit difference method with T = 1, .6.x 
= 0.25, and (i) A = 1/2, (ii) A = 1/6, to approximate u(0.25,1), u(0.5,1) and u(0.75,1). 

2. Consider the problem 

D.E. ut = uxx' o ~ x ~ 5, t ~ 0, 

B.C. u(O,t) = 2t, u(5,t) = 25 + 2t , 

2 I.C. u(x,O) = x . 

(a) (Calculation by hand) Use the explicit difference method with T = 2, .6.x = 1 and .6.t = 2 
to approximate u(I,2), u(2,2), u(3,2) and u(4,2). 

(b) (Calculation with computer or calculator) Use the explicit difference method with T = 1, 
.6.x = 1 and (i) A = 1/2 and (ii) A = 1/6 to approximate u(I,2), u(2,2), u(3,2) and u(4,2). 

3. Consider Example 3 . 

(a) Compute the coefficients cn in formula (30) in terms of An. Verify that cn = 4/(3 + An) 
for n odd, and cn = 0 for n even. 

(b) Let 0 < A1 < A2 < ... be the positive roots of tan,fA = 2,fA/(A-l) and let An = 4a~ 

(where an > 0). Show that tan( an) = -21 , if n is odd, and tan( an) = -2an , if n is even. 
an 

(c) Let 13k = a 2k-1 (k = 1, 2, ... ), where the an were defined in (b). By part (b), 

0< 131 < 132 < ... are the positive roots of /3tan13 =!. Show that (k-l)7r < 13k < (k-!)7r. 

4 e-4~t [ Sin(213kX)] 
(d) Let uix,t) = 4l r?r cos(213kx) + 2/3 . Using the approximate values 131 

k=1 3 + 4 k k 

= 0.653271..., 132 = 3.292310 ... , 133 = 6.361620 ... , 134 = 9.477485 ... , (cf. Problem 13), calculate 

u4(0.1,0.005) and compare it with v1,2 in Example 3(b). 
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4. (A Uniqueness Theorem) Suppose v· . and V .. , i = 0, ... , M, j = 0, ... , N, both satisfy (9) 
I,j I,j 

and (10). Show that v .. = v .. for all i and j. 
I,j I,j . 

5. Consider the problem D.E. ut = Uxx ' 0 ~ x ~ L, t ~ 0, 

B.C. u(O,t) = a1t + ao, u(L,t) = bIt + bo, 
2 

I.C. u(x,O) = c2x + cIx + Co , 

(a) Under what conditions on the constants will this problem have a solution? 

(b) If the conditions on the constants are met, show that the solution must be of the form 

u(x,t) = c(2t + x2) + bx + a. 

(c) Assuming that the problem has a solution, prove that the local discretization error in the 
explicit difference method is zero. Is this error defined if there is no solution? 

6. Consider the problem D.E. ut = Uxx ' 0 ~ x ~ 1, t ~ 0, 

B.C. u(O,t) ~ 0, u(l,t) = 1 , 

I.C. u(x,O) = x + 7r-4sin(nx) . 

Suppose that the explicit method with T = 0.5, ~x = 1/8 and ~t = 1/256 yields the difference 
approximation v 4 128 = 0.500071505... to u(0.5, 0.5). Use formula (34) to estimate the local , 
discretization error in this case. Calculate the actual discretization error, accurate to 8 places. 

7. Let u(x,t) be a C6 solution of the problem 

D.E. ut = Uxx ' 0 ~ x ~ L, 0 ~ t ~ T, 

B.C. u(O,t) = A(t), u(L,t) = B(t) 

I.C. u(x,O) = f(x) . 

Prove that if A = 1/6, then the local discretization error 

O((~x)4) as ~x.., 0 (cf. (34) for the notation). 

Iw. ·1 I,j 
has order of magnitude 

8. (a) Write a general computer program for the explicit difference solution of the problem. 

D.E. ut = kuxx + h(x,t), 

B.C. u(O,t) = 0, u(L,t) = 0 , 

I.C. u(x,O) = f(x) . 

o ~ x ~ L, 0 ~ t ~ T, 
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(b) How did you test your program? 

(c) Discuss some of the stopping procedures that one might use in such a program. 

9. Consider the problem D.E. ut = uxx - 2u , Os x $ 1, t ~ 0, 

B.C. u(O,t) = 0, u(l,t) = 0 , 

I.C. u(x,O) = sin( 1fX) . 
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Write a computer program to approximate, via the explicit difference method, u(0.5,1) until 
there is no change in the third place to the right of the decimal, using ..\ = 1/6. Include a 
stopping procedure in your program, and specify the number of iterations and the values of At 

and Ax in the output. Compare your result with the exact solution u(x,t) = e-(2+i2)tsin(1fX). 

10. (a) Replace the D.E. in Problem 9 by ut = Uxx and write a program as in Problem 9 to 

solve this new problem (same I.C.), but with any fixed ..\::: At/(Ax)2 > 0, using 

known as the DuFort-Frankel method (This method is unconditionally stable, in the sense that 
the constant ..\ > 0 is arbitrary.) How can the Vi -1 be determined? , 
(b) If u(x,t) is any C4 function on the rectangle 0 $ x $ L, 0 $ t $ T, then show that 

(u·+1 . - u· ·+1 - u· ·-1 + u·_1 .)(Ax)-2 - -21(u. ·+1 - u. ·_I)(At)-1 
1 ,j l,j l,j I ,j I,j l,j 

2 2 2 4 2 
= (u - Ut)· . - (At/Ax) (utt )·· + O((Ax) + (At) + (At) /(Ax) ) . xx l,j l,j 

Thus, if Jt::: At/Ax (not..\) is held constant as Ax and At -; 0, we suspect that the v· . in (a) 
l,j 

2 will not "converge" to a solution of ut = Uxx ' but rather to a solution of ut + Jt Utt = Uxx . 

11. Replace the homogeneous D.E. in problem (31) for Theorem 1 by ut = Uxx + q(x,t). If this 

new problem has a C4 solution, then prove that the discretization error w .. ::: v· . - u(iAx,jAt) 
l,j I,J 

for the explicit difference method satisfies I Wi,j I $ ~TK(At + MAX)2) where K is now the 

maximum of I uxxxx I on the whole rectangle 0 $ x $ L , 0 $ t $ T , provided that At/(AX)2 $ ~. 

Hint. Note that in this case (33) becomes, where q .. ::: q(iAx, jAt), 
l,j 

Vi,j+l = ..\vi + 1,j + (1 - 2,,\) Vi,j + ,,\vi- 1,j + qi,j At, i = 1, ... M -1 ; j = 0, ... N-1. 
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12. (The Newton-Raphson Method) Let f(x) be a C2 function on the interval [a,b] (b > a), 
such that f' (x) t= 0 for all x in [a,b]. Let f(r) = 0, for some unknown root r in (a,b). 

(a) Let Xo in (a,b) be an initial incorrect guess for r. If the graph of f(x) is not too curved, 

then explain intuitively (in terms of the tangent line to the graph of f(x) at Xo , why 

Xl == Xo - f(xo) If' (xo) will be a better approximation to r (Le. I x1-r I < I xo-r I ). 

(b) Provethat Ix1-rl ~plxo-rl ,where p==tMlb-al and M== max Ifll(x)11 min If'(x)l. 
a~x~b a~xSb 

Hint. Use Taylor's theorem to obtain I f(xo) + f' (xo)(r-xo) I = ~I fll( c) I (r-xo)2, for some c 

between rand xo. Then note that f(xo) = xof' (xo) - x1f' (xo)· 

(c) Assuming that xn E (a,b), define inductively xn+l = xn -f(xn)/f'(xn), n = 1, 2, .... If a 

and b are chosen sufficiently close (specifically, if p == ~M I b-a I < 1), then show that 

I xn - r I ~ pn I b-a I (Le., xn -; r as n -; 00 , and we also have an estimate of the error). 

Remark. If min(b - r, r - a) > I Xo - r I and p < 1, then it automatically follows that 

xn E (a,b). In other words, the assumption xn E (a,b) is unnecessary, if Xo is chosen to be closer 

to r than either of the endpoints a and b, and if p < 1. 

13. Use the Newton-Raphson method in Problem 12 to find approximations (correct to six 
decimal places, if you have access to a computer) of the first four positive roots 131 , 132 , 133 and 

/34 , of the equation x tan(x) = ~. Take f(x) = 2x tan(x) - 1 and take the initial approximation 

to 13k to be (k-1)1r if k > 1 , and for 131 use 0.5 (d. Problem 3). What goes wrong if one uses 

o for the initial approximation to 131 ? 
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8.3 Difference Equations and Round-off Errors 

If the difference equation obtained from a given PDE is not solved exactly, then, in 
addition to the discretization error, we must contend with round-off errors. This error is 
naturally present in the iterative solution, since the iterations are usually only continued until no 
change takes place up to a certain number of digits. Mesh sizes (Le., t.t or t.x) affect the 
discretization error and the round-off error in different ways. In general, the discretization error 
decreases with decreasing t.t, while the total round-off error tends to increase. For this reason 
one cannot assC'rt that diminishing the mesh size t.t always improves the accuracy. 

In order to gain insight into the question of round-off errors, we will find the "explicit" 
solution (Le., exact solution, without any round-off error) to the (partial) difference equation 

vm,n+1 = AVm+l,n + (1-2A)vm,n + AVm_l,n' (A = (~:)2 ) (1) 

(m = 1, ... ,M-1; n = 1, ... ,N-I), with side conditions 

Vo n = A(nt.t), vM = B(nt.t), v 0 = f(mt.x) (m = O, ... ,M; n = O, ... ,N). (2) , ,n m, 

In this section, we use the subscripts m and n in place of i and j (as in Section 8.2), since 

i = R will arise. For the sake of simplicity, we assume that A(t) = B(t) = 0 , and f(x) is a 
linear combination of sine functions, as in Section 3.1. Our approach to solving (1) will be based 
on the method of "separation of variables". This method reduces (1) to two (ordinary) difference 
equations, which we will need to solve. The derivation of the solutions to these ordinary 
difference equations is analogous to the derivation of solutions to ODEs with constant coefficients 
(see also Section 1.1). For this reason, we omit some proofs. 

The general first-order, linear, homogeneous difference equation with constant coefficients 
can be written in the form 

Yn+1 = aYn' n = 0, 1,2, ... , (3) 

where a is a constant. Since Yn = aYn-1 = a2Yn_2 = ... = anyo' the general solution of (3) is 

n Yn = K a, n = 0,1,2, ... , (4) 

where K is the initial value yO. If we had attempted a trial solution of the form y = rn, 

where r is a nonzero constant, then we would have found that r = a (Why?), and the general 
solution (4) would be obtained by multiplying the trial solution by a constant. Note that (3) is 

analogous to the ODE y'(x) = ay(x), whose general solution y(x) = Keax is analogous to (4). 
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The general second-order, linear, homogeneous difference equation with constant 
coefficients can be written in the form 

(5) 

where aO and al are constants, which, for convenience, will be assumed to be real. As before, 

we attempt a trial solution of the form y n = rn, where r is a nonzero constant. If we substitute 

Yn = rn into (5) we obtain the auxiliary equation 

(6) 

As with the ODE y" + aly' + aoy = 0, there are three cases. 

Case 1. The roots r1 and r2 of the auxiliary equation (6) are real and distinct. For arbitrary 

constants cl and c2 ' the general solution of the difference equation (5) is given by 

(7) 

Case 2. The roots r l and r2 of (6) are equal. Then the general solution of (5) is 

Case 3. The roots r l and r2 of (6) are complex, say r1 = a + ib and r2 = a - ib. Let 

a = RcosO and b = RsinO, where R = ja2 + b2 . (9) 

Then the general solution of (5) is given by 

Yn = Rn(c1 cos(nO) + c2 sin(nO)), n = 0,1,2, .... (10) 
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Example 1. (a) Find the general solution of the difference equation 

n = 0, 1,2, .... (11) 

(b) Find the particular solution Yn of (11), which satisfies the conditions YO = 3 and Y1 = 2. 

2 Solution. (a) The auxiliary equation r - 6r + 8 = 0 has roots r1 = 2 and r2 = 4. Hence, by 

(7), the general solution of (11) is 

(12) 

(b) Using the conditions yo = 3 and Y1 = 2, we obtain from (12) c1 + c2 = 3 and 

h n n 2c1 + 4c2 = 2. T us, c1 = 5 and c2 = -2, and y n = 5·2 - 2·4. 0 

Example 2. Find the general solution of the difference equation 

Yn+2-4Yn+1 + 4Yn = 0, n = 0, 1, 2, .... (13) 

Solution. The auxiliary equation r2 - 4r + 4 = 0 has roots r1 = r2 = 2. Hence, by (8), the 

general solution of (13) is Yn = (c1 + c2·n) 2n. 0 

Example 3. Find the general solution of the difference equation 

Yn+2-2Yn+1 + 4Yn = 0, n = 0,1,2, .... (14) 

Solution. The auxilliary equation r2 - 2r + 4 = 0 has roots 1 ± i/J. In (9), R = 2 and 

0= 7r/3. Thus, by (10), the general solution of (14) is Yn = 2n(c1 cos(n7r/3) + c2 sin(n7r/3). 0 

Example 4. Find the general solution of the difference equation 

Yn+2 -2cosaYn+1 + Yn = 0, n = 0, 1,2, .... (15) 

Solution. The roots of r2 - 2cosa r + 1 = 0 are cosa ± i· sina. If sina f. 0, then the roots are 
complex. By (9), R = 1, cosa = cosO, and the general solution of (15) is 

y n = c1 cos(na) + c2sin(na), if a f. 0, ±7r, ±27r, .... (16) 

If sin(a) = 0, then instead of (16), the general solution of (15) is Yn = c1 + c2·n (Why 7). 0 
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A partial difference equation 

We are now ready to find the explicit solution of the following partial difference equation. 

Vm n+1 = ..\vm+1 n + (1-2"\)vm n + "\vm- 1 n ' , , , , (17) 

(m = 1, ... , M-1; n = 0, ... , N-1), satisfying the side conditions 

VO,n = 0, vM,n = 0, vm,O = sin(ml17r) (n = 0, ... ,N; m = 0, ... , M) , (18) 

where p is a positive integer. This is the system which arises in the solution of the problem 

D.E. u = u t xx o ~ x ~ 1 , 0 ~ t ~ T, 

B.C. u(O,t) = 0 u(l,t) = 0 

I.C. u(x,O) = sin(p7rX) , 

when the explicit difference method is used with ~x = 11M , ~t = ..\(~x)2 = ..\M-2 and 

T = N~t. Of course, the solution of (*) is u(x,t) = e-ilp\in(7rpx), and we wish to see how 
closely the solution of (17) and (18) approximates this solution. We mimic the method of 
separation of variables for PDEs and seek product solutions of (17) of the form 

Vm,n = FmGn' (19) 

where F m is independent of nand Gn is independent of m. Now, (19) and (17) yield 

FmGn+1 = ..\Fm+1Gn + (1-2..\)FmGn + ..\Fm_ 1Gn , 
or 

G n + 1 "\Fm+1 + (1-2"\)Fm + ..\Fm- 1 
--u--- = F = c 

n m 
(20) 

where c is a constant, independent of m and n. Thus, F m and Gn must satisfy 

(21) 

and 

(22) 

Note that (22) is of the form (5), and of the possible forms (7), (8) and (10), only form (10) can 
meet the "B.C." in (18) (Why 1). Thus, the roots of the auxiliary equation are complex, and so 

11-ix(1--c)1 < 1 (Why?). We may set [l-ix(1--c)] = cosa, and (16) yields 
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F m = c1 cos(ma) + c2 sin(ma) = c2sin(m l1: 1i") , (26) 

where we have used (18) to obtain c1 = ° and a = 1f. Since [1 -1(1---<:)] = cosa yields 

c = 1 - 2A(I---<:osa) = 1 - 4Asin2(ta), the solution of (21) is given by (cf. (4)) 

Gn = Kcn = K[I-4Asin2(ta)f = K[I-4Asin2(M)f 

Using (18), sin(ml1:1i") = vm,O = F mGO = Kc2sin(ml1:1i"). Thus, we take KC2 = 1, and 

v m,n = [1 - 4Asin2(M)] n sin(m l1: 1i"), 

(27) 

(28) 

where 0::; m ::; M and 0::; n ::; N. Moreover, we know that (28) is the unique solution of the 
difference equation (17) satisfying the side conditions (18) (cf. Problem 4 of Exercises 8.2). 
The superposition principle for linear homogeneous equations then yields the following result. 

Theorem 1. The unique solution of the problem 

vm n+l = AVm+l n + (1-2A)vm n + AVm_ 1 n' (m = 1, ... , M-l ; n = 0, ... , N-l), , , , , 

is 

vO,n = 0, vM,n = 0, (n = 0, ... , N), 

Lk ml11i" v ° = b sin( ), (m = 0, ... , M), 
m, p=l p 

v = ,k b [1 - 4Asin2(~2 1i" )]n sin(m l1: 1i"). 
m,n LP=l p 2M 

Problem (29) is encountered in applying the explicit difference method to 

O~x~l, O~t~T, 

B.C. u(O,t) = 0, u(l,t) = 0, 

k 
I.C. u(x,O) =' b sin( 7rpx) , 

LP=l p 

with Ax = 11M, At = A(Ax)2 and T = NAt. The solution of (31) is 

(29) 

(30) 

(31) 

(32) 
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We have the following exact formula for the local discretization error at (m~x,n~t): 

By Theorem 1 of Section 8.2, we know that for 0 < >. = ~t/(~x)2 = TM2 IN ~!, 

max Iw I 5 ! KT[ ~t + !(~x)2] 
O<m<M m,n 
0$ n$N 

~ !KT[! (~x)2 +! (~x)2] = ! ~~ = ! KT(~x)2 = H ~t , 
k 

where K:= max lu(4)(x,0)I ~ 11"4 I p4 1b I (Why?). For a more precise estimate, 
0~x9 p=1 p 

Let z:= P1l"~x. Then, 

(z-+O). 

Thus, 

(34) 

[
1 - 4>.sin2 ( t7rp~X)] n = 1 + n1>. [1 _ >.] (p1l"~x)4 _ n>. [20>.2_5>.+1] (p1l"~x)6 + O((~x)8) 

_1I"2p2>.(~x) 2 ! 6" 60 6" 
e 

Using (33), (35) and (37), as ~x -+ 0, 

k 

wm,n = ~n>'[!->'](1I"~x)4 I p4bpe-~p2n~t sin(mft) + O((~x)6) 
p=1 

k 

=~n~t[!->']1I"4(~x)2 I p4bpe-~p2n~tsin(mfr1l") + n~t.O((~x)4) 
p=l 

(38) 

(39) 
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The largest that n~t can be is N~t = T, and It - ,\ I ~ t for 0 ~ ,\ ~~. These inequalities 

show that (39) is is consistent with (34). When ,\ = t , we obtain to[ 20,\2-5'\+ t] = 3210 

Round-off errors 

The exact values v in the formula (30) for the solution of the explicit difference m,n 
problem may not be the values obtained by a computer or calculator. When using such devices, 
errors are introduced when rounding-off occurs (i.e., typically only a finite number of decimal 
places are retained in a computer). Let us therefore assume, for the sake of simplicity, that the 
net round-off errors incurred in the calculation of v +1 in terms of the previously calculated m,n 
v 's is some constant, say r. We expect that, in the absence of cancellations, these round-off m,n 
errors will increase as we increase the number of grid points. Let P denote the aggregate m,n 
propagated error at the (m,n)-th grid point. That is, if v denotes the exact solution of our m,n 

difference equation, then v =: v + P is our "observed value" at the grid point (m,n) m,n m,n m,n 
(by the observed value, we mean the number obtained by our calculator, computer, etc.). 
Assuming that the round-off errors are not self-<:orrecting (e.g., if there is a systematic error, 
such as always rounding down instead of up), it is reasonable to assume that P will roughly m,n 

satisfy the difference equation, with 0 < ,\ ~ t, 

Pm n+l = '\P m+l n + (1-2,\)P m n + '\P m-l n + r, , , , , (42) 

where r is the net round-off error introduced in passing from step n to step n+ 1. Suppose that 
there is no round-off error in the given initial and boundary data. Thus, 

Po = PM = 0 (n = O, ... ,N) and P 0 = 0 (m = O, ... ,M) . ,n ,n m, (43) 

By induction, it easily follows from (42) and (43) that IPmnl ~ nlrl (cf. Problem 5). Of , 
course, P is zero if m = 0 or m = M. Assuming a worst-case scenario for round-off errors, m,n 
we have P = nr , for a given value of r, say determined empirically. The total round--off m,n 
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error, after N stages, is then Nr = Tr/ At. Thus, the round-off error is inversely proportional to 
At (or (tl.x)2). However, as we will see, the leading term in the discretization error is directly 

proportional to At (or (Ax)2) if ,\ f 1/6 (and to (At)2 (or (Ax)4), if ,\ = 1/6). In order to 

obtain an optimal result at some fixed point (x,T) == (m/M,NAt) = (m/M,'\N/M2), one should 
choose At, so that the followin~ net sum of the discretization and round-off errors is as close to 
zero as possible (cf. (39) and (41): 

E(At) = u(mAx,NAt) - v N = u(mAx,NAt) - (v N + rN) = w N(At) - rT/At, (44) m, m, m, 

where 

= [_t[h-1]}~:=1 e-~P2T(1Ip)4bpsin(mMP)At + O((At)2) 

-ft l:=le-7r2p2T(1Ip)6bpSin(ml17r) (At)2 + O((At)3) (,\ = !) . 

Suppose that ,\ /1/6 and that the O((At)2) term is negligible, say because the optimal At is 

known to be much less than 1. Then dropping the O((At)2) term, 

If a and r have the same sign (Le., O:'r > 0), then we can choose At so that E(At) ~ 0, namely 

aAt-rT/At~O yields At~vfT/a=JlrT/al . (46) 

If a and r have opposite signs, then E(At) is never zero, but we can minimize it as follows 

dE ( )-2 (I"'['2St) ~ a + rT At = 0 yields At ~ J-rT/a = JlrT/al . (47) 

Thus, under the above assumptions, in either case, the optimal value for At is given by At ~ 

iJ rTf al . Since At = '\(Ax)2 = ,\ M-2 , we have M ~ ..fXT75t. Thus, the optimal value for 
(the number of subintervals in the x-direction) is approximately given by (for fixed x) 

The optimal value of M when ,\ = 1/6 is the subject of Problem 6. In the following examples 
we test the validity of the estimate (48) in a definite problem, where ,\ = 1/12 and ,\ = 1/4. A 
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systematic round-off error is introduced by instructing the computer to ignore all digits more 

than six places to the right of the decimal (e.g., replace each number a by 10-Q· INT( 0'.106) 
in all computations, where INT(x) is the greatest integer less than or equal to x). 

Example 5. Consider ° ~ x ~ 1 , ° ~ t ~ 0.5 

B.C. u(O,t) = ° , u(l,t) = ° 
I.C. u(x,O) = sin( JlX) . 

Let A = 1/12 , ~x = l/M and ~t = A(~x)2 == 1/(12M2). Note that T == 0.5 = N~t implies 

that N = 6M2 . Let v (0 ~ m ~ M; ° ~ n ~ N) be the exact solution (d. (30) with k = 1, m,n 
p = 1 and b1 = 1) of the associated difference equations. Suppose that we are interested in the 

N 
point x = 0.5 at time t = 0.5. Thus, we consider v tM,N = [1 -! sin2(dM)] . Assume that 

in the iterative computations for the numerical solution of the difference equations, a systematic 

round-off error is introduced by ignoring all digits past the sixth place to the right of the decimal 

in the computed (observed) values v for the v (but A = 1/12 is kept exact, as well as m,n m,n 

the initial values v 0). Use (48) to find the value of M for which V.l M N is closest to m, 2 , 

u(0.5,0.5). Check the result. 

Solution. We use A = 1/12, k = p = 1, and bp = 1, note that a in (45) is given by 

a = - t1r4e -t r , which has the same sign as r ~ _10-7 . Thus, (48) gives the optimal value 

For various values of M, in Table 1 below we have tabulated the observed numerical values 

V.l M N (under the above truncation scheme), the exact solution v.lM N (up to ten places), and 
2 , 2 , 

the accumulated round-off errors V.l M N - v.lM N· The predicted optimal value of M is indeed 
2' 2' 

about the best value (M = 12) for which V.l M N is closest to u(0.5,0.5) = 0.0071918833 .... 
2 , 



542 Chapter 8 Numerical Solutions of PDEs - An Introduction 

1 M N - -
~ = TI vIM N vIM N vIM N - vIM N 

2 , 2 , 2 , 2' 

2 24 . 012576 . 0125791152 ... -.0000031 ... 

4 96 . 008182 . 0076141395 ... -.0000104 ... 

6 216 . 007589 .0076141395 ... -.0000251. .. 

8 384 . 007378 .0074251909 ... -.0000471. .. 

10 600 . 007270 . 0073399752 ... -.0000699 ... 

12 864 . 007193 . 0072942670 ... -.0001012 ... 

14 1176 . 007133 . 0072669021 ... -.0001339 ... 

16 1536 . 007091 . 0072492196 ... -.0001582 ... 

18 1944 . 007045 . 0072371320 ... -.0001921. .. 

20 2400 . 006997 . 0072285034 ... -.0002315 ... 

Table 1 [u(0.5,0.5) = 0.0071918833 ... ] 

Example 6. Consider what happens in Example 5, when ,\ is changed from 1/12 to 1/4. 

Solution. In this case, /l' = ~~ e-tJ? which has the opposite sign of r ~ -10-7. Using (48), the 

optimal value of M at x = 0.5 is approximately given by 

In this case where /l' and r have opposite signs, E(~t) ~ /l'~t - Nr(~t)-1 is never zero. Thus, 

for M < 16, we should observe V1M N approaching the exact value u(0.5,0.5) from below (since 
2 , 

/l' > 0), but not reaching u(0.5,0.5), and for M > 16, we should see V1M N moving back down, 
2 , 

away from u(0.5,0.5). This is what we find in Table 2 below. Note that the minimum value for 

E(~t) ~ /l'~t - rT/~t is E("lrTj/l'1 ) ~ 2.jfT(i = 0.0001080 .... Adding this to v8,512' we 

obtain 0.007190 ... , while u(0.5,0.5) ~ 0.0071918.... Discrepancies arise not only because of the 
inn accurate prediction of the round-off error, but also because of the fact that we have dropped 

the O((~t)2) term in going from (44) to (45). 0 
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1 M N - -
A = 4 V1M N v1M N V1M N - V1M N 

2 , 2 , 2' 2' 

2 8 .003906 .0039062500 ... -.0000002 ... 

4 32 . 006297 . 0063006033 ... -.0000036 ... 

6 72 . 006784 . 0067905358 ... -.0000065 ... 

8 128 . 006952 . 0069651178 ... -.0000131. .. 

10 200 .007026 . 0070464573 ... -.0000204 ... 

12 288 .007062 . 0070907817 ... -.0000287 ... 

14 392 . 007079 . 0071175554 ... -.0000385 ... 

16 512 . 007082 . 0071349516 ... -.0000529 ... 

18 648 . 007082 . 0071468870 ... -.0000648 ... 

20 800 . 007076 . 0071554286 ... -.0000794 ... 

Table 2 [u(0.5,0.5) = 0.0071918833 ... ] 

Remarks. In general, the guess for r could be wrong by an order of magnitude, and hence the 

predicted value of M could be wrong by a factor of lOt ~ 1.78. Thus, we have made 
exceptionally good guesses (but quite by accident) for r in Examples 5 and 6. The reader is 
asked to consider the case A = 1/6 in Problem 6. In general, predicting round-off errors is 
difficult, and a probability density function of the error must be ascertained. In the above 
analysis, where a systematic error is assumed or introduced, one might expect the round-off error 
at the n-th stage to be of the form rn. If the round-off error is normally distributed with mean 

zero and variance 172, then the error at the n-th stage can be expected to be roughly in the 

interval [-uJ2rl, u/lii ], which is not as large as rn (for large n). However, this sort of error is 
worse, in the sense that it could be anywhere in this interval, and hence it is more difficult to 
correct, even though the correction is smaller. 0 
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Summary 8.3 

1. HomogeneoUB ordinary difference equations with constant coefficieants: The general solution 

of the first-order difference equation Yn+l = aYn ' n = 0, 1,2, ... , is Yn = K an. The general 

solution of the second-order difference equation Yn+2 + alYn+l + a2Yn = 0, n = 0, 1,2, ... , 

can be found from the roots r 1 and r2 of the auxiliary equation r2 + aIr + ~ = ° , as follows: 

for r l and r2 real and distinct, 

for r l = R(cosO+ isinO) ,r2 = fl. 

2. An exact solution of the explicit difference scheme for a heat problem (Theorem 1) : 

The unique solution of the problem 

vm n+l = AVm+l n + (1-2A)vm n + AVm_ l n' (m = 1, ... , M-l ; n = 0, ... , N-l), , , , , 

Vo = 0, vM = 0, (n = 0, ... , N), ,n ,n (SI) 

l k . mt?t 1r v ° = b sm( ), (m = 0, ... , M), 
m, p=l p 

is 
(S2) 

Problem (SI) is encountered in applying the explicit difference method (with 6x = 11M, 

6t = A(6x)2 and T = N6t) to the problem 

D.E. ut = Uxx ' ° $ x $ 1, ° $ t $ T, 

B.C. u(O,t) = 0, u(l,t) = 0, 

k 
I.C. u(x,O) = \' bpsin(1rpx). 

lP=l 

(S3) 
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3. The estimate of the local discretization error w N = u(mD.x,nD.t) - v N m, m, 
discretization error, when the explicit difference method (SI) is applied to (S3), is 

I-i[h -In:=1 e-n2p2T(7!p)4 bpsin(mi?)D.t + O((D.t)2 

-1~ l::=1e-1l'2p2T(7!p)6bpSin(ml171) (D.t ) 2 + O( (D.t)3) 

545 

The local 

4. The net error in the presence of a round--off error: The round--off error P at the grid point m,n 

m,n is given by v = v + P ,where v is the exact solution of problem (SI), and m,n m,n m,n m,n 

v is the "observed value" obtained iteratively with a computer. For a round--off error of the m,n 
form P = rn, the total error at the grid point (m,N) is n,m 

E(D.t) = u(mD.x,T) - v N = [u(mD.x,T) - v N] + [v N - v N] = w N(D.t) - rTf D.t m, m, m, m, m, 

Note that w N(D.t) -j 0 as D.t -j 0 (cf. Theorem 1 of Section 8.2), but rT/D.t -j ±oo, as D.t -j O. m, 

Thus (cf. (47)), there is a strictly positive value of D.t (or equivalently, for M = (D.x)-1 

= .j) .. !lit) ), such that E(D.t) is minimal. In the case where A i= 1/6 and the O((D.t)2) term 
in w N(D.t) is negligible, the optimal value of M is m, 

Thus, increasing M beyond this point will actually yield poorer results, under our assumptions. 
The result (S4) is illustrated in Examples 5 and 6. The case where A = 1/6 is covered in 

Problem 6 . For a Gaussian random round--off error, with mean zero and variance a2 at each step, 

the error is likely to be in [-a$n, av'2il], after n steps, but it is hard to predict where it is in 
this interval for the purpose of corrections. 
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Exercises 8.3 

1. Consider the difference equation 

where aO and a1 are real constants. Let r 1 and r2 be the roots of the associated auxiliary 

. 2 0 equatIOn r + aIr + aO = . 

(a) If r1 and r2 are real and distinct, verify that Yn = clr~ + c2r~ ,where c1 and c2 are 

constants, satisfies the difference equation (*). 

(b) If r1 = a + ib and r2 = a - ib, verify that Yn = Rn(c1 cos(nO) + c2 sin(nO)), where 

R = ja2 + b2 , a = RcosO, and b = RsinO, satisfies the difference equation (*). 

2. Find the general solution of each of the following difference equations: 

(b) Yn+2 - 2Yn+l + Yn = 0 (a) Yn+2 - 5Yn+l + 6Yn = 0 

(c) Yn+2 - 2Yn+l + 2Yn = 0 (d) Yn+2 - 2cosOyn+l + Yn = O. 

3. (a) Verify directly that vm,n = rl - 4Asin2(~)rsin(mn7r), where p, m, nand M 

(m :::; M) are positive integers ~nd where A > 0, satisfies the (partial) difference equation 

vm,n+l = AVm+1,n + (1-2A)vm,n + AVm_1,n' Is the assumption A ~ ~ necessary, here? 

(b) Show that in applying the explicit difference method to the problem (31), w = O((~x)2) m,n 

as ~x"" 0, provided ~t/(~x)2 ~ A, for some positive constant A, say 106 (Le., the restriction 

A ~ ~ is unnecessary for such I.C. given by a finite Fourier sine series.) 

4. (a) For any constants A and B , show that lim [1-4Asin2(As)]B/s2 = 
s...,O 

Hint. For I s I small, take a logarithm and apply L'Hospital's rule twice. 

(b) Use (a) to show directly that the local discretization error w (d. (33)) tends to 0, as m,n 

~x"" 0 (or M ..., 00 ), where A = ~t/(~x)2 is fixed. 
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5. Verify that if P satisfies the problem m,n 

Pm n+l = ..\P m+l n + (1-2"\)P m n + ..\P m-l n + r, 1 ~ m ~ M-l , 0 ~ n ~ N-l , , , , 

Po n = PM n = 0, O:S n :S N, , , 

P m,O = 0, O:S m :S M , 

where r is independent of m and n, and ..\ ~ !, then 1 P m n 1 ~ n 1 r I· Is Pm n ~ 0, if r ~ 0 ? , , 

6. Consider the problem D.E. ut = uxx ' 0 ~ x ~ 1 , 0 ~ t ~ 0.5 

B.C. u(O,t) = 0, u(l,t) = 0 

I.C. u(x,O) = sin(7rX) . 

As in Examples 5 and 6, we will analyze the combined effect of discretization and round-<>ff 

errors, but this time when ..\ = 1/6. We take ~x == M-1 for M a positive integer, and 

~t = ..\(~x)-2 = M-2/6. With T = 0.5 , we have N = 0.5/ ~t = 3M2 . 

(a) For what values of m and n is (m~x,n~t) = (0.5,0.5). Must M be even for this? 

(b) What is the exact value of Vol M N for the corresponding explict difference problem? 
2 , 

( c) Show that the local discretization error at m = ! M, n = N is of the form 

1r6 _.l1r2 2 3 
w !M,N (~t) = - 30 e 2 (~t) + O((~t) ). 

(d) Drop the O((~t)3) term in (c) and assume that the round-<>ff error after the n-th step is of 

the form llf. What is the value of M for which the observed value v!M,N is closest to 

u(0.5,0.5)? Consider the cases r> 0 and r < 0 separately. 

(e) Impose r ~ -10-7, by dropping (at each stage n) all digits after the sixth place to the right 
of the decimal in the iteratively computed values for the v . Test your answer in (d). m,n 
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8.4 An Overview of Some Other Numerical Methods for PDEs (Optional) 

We begin this section with a brief description of some finite difference methods for 
parabolic, hyperbolic and elliptic PDEs (e.g., the heat, wave and Laplace's equation, 
respectively). We also consider the method of lines for problems in higher dimensions, and the 
Rayleigh-Ritz approximation for solutions of certain linear boundary value problems. Since the 
the procedures we touch upon, ultimately all lead to the problem of solving systems of algebraic 
equations, we also discuss some iterative methods. Throughout this section we provide references, 
where the reader may find applications, proofs and further developments. 

We will use the notation of Sections 8.1 and 8.2. Thus, given a rectangle W: 0 $ x $ L, 
0$ t $ T, and positive integers M and N, we set ~x = L/M and ~y = TIN. For a function 
u(x,y) on W, we set u· . = u(i~x,j~t), for i = 0, ... ,M and j = 0, ... ,N. It will be convenient 

I,j 
to use the following standard notation for the second (--order) central differences : 

02 u· . == u· + 1 . - 2 u· . + u· l' x I,j I,j I,j 1- ,j 
and 

(i = 1, ... , M-1) 

(1) 

02t u· . == u· '+1 - 2 u· . + u· . 1 I,j I,j I,j I,j-
(j = 1, ... , N-1). 

Of course, these definitions make sense for any (M+1)x(N+1) array (matrix) ofreal numbers. 

Finite difference methods 

We have used the explicit difference method in the previous sections for the problem 

D.E. ut = Uxx 0 $ x $ L , 0 $ t $ T 

B.C. u(O,t) = A(t), u(L,t) = B(t) 

I.C. u(x,O) = f(x) (A(O) = f(O) , B(O) = f(L)) . 

(2) 

It is straightforward to solve the system of difference equations (i = 1, ... ,M-1 ; j = 0, ... ,N-1) 

v· '+1 = AV'+ l . + (1-2A)v . . + Av. l' (A == ~t/(~x)2 ) 
I,j I,j I,j 1- ,j 

(3) 

or equivalently, 
2 

v· '+1 - v·· 1 0 v .. I,j I,j- _ X I,j 

LSt - (~x)2 ' 
(4) 

subject to 

Vo . = A(j~t) , vM . = B(j~t) and Vi 0 = f(i~x) 
,j ,j , 

(i = O, ... ,M ; j = O, ... ,N) . 
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However, there are two weaknesses in this method. First, it is only conditionally stable, in the 
sense that a condition on ,\ is needed (Le., ,\ ~ !). Second, the local discretization error 

w .. == u .. - v· . = O(~t + (~x)2) as ~t and ~x --> 0, instead of O((~t)2 + (~x)2), (cf. 
I,J I,J I,J 

Theorem 1 of Section 8.2). These weaknesses can be overcome, if (4) is replaced by 

2 2 
vi,J'+1 - v .. 1 0 v· '+1 + 0 v·· --'-'-'_L..:-:'--x---,_I:.J.o,JL--=. = X I, J x I,J 

lit 2 (~x)2 
or 

2 2 
v'+1 '+1- (2 + T)V. '+1 + v._. '+1 = -v'+1 . +(2 -T)V .. - v'_1 . I ,J A I,J I I,J I ,J A I,J I ,J 

(5) 

Observe that the right-hand side of (5) was found in the previous stage j, and the v· '+1 appear I,J 
in three different equations (Why?) involving Vi- 2,j+l ' ... , vi+ 2,j+l' Thus, the Vi,j+l are 
not simply given explicitly in terms of the previous values as in (3), but rather one must solve a 
nontrivial system of linear equations. Consequently, this method, which is called the 
Crank-Nicolson method, is an example of an implicit difference method. This method does not 

require ,\ ~ ~ , and its local discretization error is O((~t)2+(~x)2) (cf. [Isaacson and Keller] for 

precise statements and proofs). 

For hyperbolic PDEs, we take as our model the wave problem (cf. Chapter 5) 

D.E. 

B.C. u(O,t) = A(t) , u(L,t) = B(t) 

I.C. u(x,O) = f(x) , ut(x,O) = g(x) . 

In this case, the explicit difference method entails solving the trivial system 

2 
0t v· . I,J 

2 2 2 
a '" 0 v· . x I,J 

while for the implicit method we must contend with the nontrivial system 

2 2212 2 
0t VI' J' = a '" '1(0 VI' '+1 + O. v· '-1) . , x ,J x I,J 

Here both of the methods have local discretization error O((~t)2 + (~x)2), but the explicit 

method requires a2",2 < 1 (the Courant-Friedrichs-Levy condition), while no such condition is 
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necessary for the implicit method (cf. [Isaacson and Keller] or [Mitchell). For these methods, the 

difference approximations to ut in the I.C. are required to be O((~t)2) approximations. 

For elliptic PDEs, we consider the following Dirichlet problem for Poisson's equation. 

D.E. Uxx + Uyy = p(x,y) , 

{ 
u(x,O) = f(x) , u(x,T) = g(x) 

B.C. 
u(O,y) = h(y) , u(L,y) = k(y) . 

Again, using the second differences, we arrive at the system of equations 

1 2 1 2 
~8 v .. +~8 v·· = p .. , 
(~x) x 1,J (~y) Y 1,J 1,J 

where 

(6) 

(7) 

vi,o = f(i~x), vi,N = g(i~x) , VO,j = h(j~y) , VM,j = k(j~y) and Pi,j = p(i~x,j~y) . 

This method again has a local discretization error O((~x)2 +(~y)2). In the special case when 
~x = ~y, (7) reduces to the following five-point formula 

v .. = i(v. l' + v'+ l . + v·· 1 + v .. +.) + (~x)2p . . , 1,J 1- ,J 1 ,J 1,J- 1,J 1 1,J 

(cf. [Forsythe and Wasow]). If the Neumann problem is considered, then the normal derivative is 
usually expressed via a higher-order approximation (cf. [Vemuri and Karplus], and for additional 
techniques, see [Ames]). 

Remarks. (1) If the region is a disk or wedge, then it is often desirable to use polar coordinates. 
For complicated regions, the theory of finite elements is used (cf. [Ciarlet, Kesavan and Ranjan] or IZienkiewicz]) . 
2) The local discretization errors associated with the above finite difference methods, can be 
urther reduced by considering higher-order Taylor series approximations (see also the Richardson 

extrapolation procedure for higher-order approximations in Problem 8 of Section 8.1). These 
approximations should be considered in today's computing environment with symbolic, algebraic 
manipulation systems and/or software, such as Macsyma, Maple, Mathematica and Reduce. 0 

Solutions in several dimensions 

In higher dimensions a variant of the finite difference method is called the method of lines. 
The basic idea of this method is to discretize all but one of the independent variables. This then 
leads to a system of ODEs which can be solved by any of the standard methods, such as 
Runge-Kutta, Hammings, Milne or Adams-Moulton methods (for details, see [Hildebrand, 1956] 
or [Milne, 1953]). For instance, in problem (6), if the y-variable remains continuous and we 
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discretize in the x-variable, then (6) yields the following system of ODEs. 

p(i~x,y) 

(8) 

v/O) = f(i~x), vi(L) = g(i~x) (i = 0, 1, ... ,M) . 

Using any of the above cited methods, (8) reduces to the problem of solving a system of algebraic 
equations. One could also try to solve this system exactly by Laplace transform methods. 

A variational approximation method 

It often happens that the solution u of a boundary value problem for a PDE on a region 

R also minimizes a certain integral I(v) over R (e.g., I(v) == fR (v )2 +(v )2 dxdy , in the x y 
case where the PDE is Laplace's equation), over all suitable competing functions v which satisfy 
the B.C., but not necessarily the D.E.. Then the boundary-value problem is equivalent to the 
minimization problem of finding a suitable function v which makes the integral I(v) the 
smallest. There are usually infinitely many linearly independent competing functions which 
satisfy the B.C. (i.e., the set of competing functions is usually infinite-dimensional). However, 
the minimization problem can often be solved approximately by what is known as a variational 
approximation method. Essentially, such methods consist of first selecting a family of competing 
functions which depend "nicely" on a finite number of new variables, say v(c1,c2, ... ,Cn) 

= v(x,y;cl'c2, .. ·,cn) ,where c1 ' c2 , ... are the new variables. Let 

(9) 

One then finds the minimum of the function F which depends only on the finite number of 
variables. The possible values for cl'".,cn are typically found by solving the system 

(10) 

of algebraic equations and testing which of the solutions, if any, is an absolute minimum. Of 
course, the function in the family associated with an optimal set of values for c1'"'' cn will be 

the best function within the family, as far as the minimization of I is concerned, but an exact 
minimizing function for I may not be in the family in the first place. In order to get a 
reasonably good approximate solution this way, one must choose a large family, or at least a 
family where some of the members are expected to nearly minimize I. Thus, in this approach, it 
is helpful to have either some feeling for the qualitative nature of the solution, or a corresponding 
measure of perseverance. In the special case where the PDE and B.C. are linear and the integral 
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I(v) is quadratic (i.e. I(av) = a2I(v) for all constants a), one can take v(cl, ... ,cn) 

= go + clgl + ... + cngn ' were go is a guess for the solution, which at least meets the (possibly 

inhomogeneous) B.C. and gl' ... , gn are functions which satisfy the homogeneous B.C .. 

Moreover, F(cl'''''cn) will be a quadratic polynomial in cl, ... ,cn ' and (10) will thus be a linear 

system of equations. 
The above discussion makes sense for problems in which the unknown function has any 

finite number of independent variables. For definiteness, consider the one-dimensional problem 

D.E. -~[ K(X)~] + q(x)y = f(x) , 0 ~ x ~ 1 

B.C. y(O) = y(l) = 0 , 

where K(x) is a positive Cl function, and q(x) and f(x) are continuous, with q(x) ~ O. 

It can be proven that there is only one C2 function y(x) which solves this problem. Let 

I(w) :: J~ [K(x)[w'(x)]2+ q(x)[w(x)]2-2f(x)w(x)] dx, 

(11) 

(12) 

where w is in the set, say S, of all C2 functions which are zero at x = 0 and x = 1. It can be 
shown (cf.~ChultZ]) that the solution y(x) of the problem (11) is the unique function for which 
I(y) ~ I(w for all of the functions w in S. In the variational method, known as the 
Rayleigh- 'tz procedure, one selects linearly independent functions Yl (x), Y2(x), ... , Yn(x) in S. 

A suitable family offunctions is then cl Y1 + c2Y2 + ... + cnYn ' where c1 ' ... , cn are arbitrary 

constants. In the general spirit of variational methods, one then seeks to minimize (cf. (9)) 

n n 
F(c1 , ... , c ) = I(cl Y1 + ... + cny ) = \' a··c.c. - \' 2b c , 

n n li ,j=1 IJ 1 J lp=1 P P 
where 

Differentiation of F with respect to each of c1 , ... , cn yields the system of linear equations 

~ a .. c. = b. (i = 1, ... , n) . lj =1 IJ J 1 
(13) 

. . . . 
If (c1 , ... , ck) is a solution of the system (13), then c1Y1(x) + + ckYk(x) is called a 

Rayleigh-Ritz approximation to the solution of the problem (11). 
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Remarks. (1) The Rayleigh Ritz procedure can be extended to higher dimensions. For example, 

one can, replace - h [K(X)~] by the negative of the Laplacian (-~w) on a bounded region or 

compact manifold with boundary (cf. Chapter 9), and the lead term in I(w) in (12) is then 

replaced by the norm-square of the gradient (Le., IIVwl12 ) . 

(2) A generalization of the Rayleigh-Ritz method, known as the Galerkin method, is applicable 
to more general boundary value problems. For an excellent treatment of variational methods, 
suitable for engineering and science students, consult [Schultz] (cf. also [Birkhoff and Lynch)). 0 

Computational linear algebra and iterative methods 

We have seen above that the numerical solution of PDEs eventually becomes a problem of 
solving systems of algebraic equations. If the resulting system is linear, then it can be written as 

n 
\' a .. x· 
L. j = 1 IJ J 

bi (i = 1, ... , n) , or in matrix notation, Ax = b. (14) 

There are two types of methods for solving such systems: direct methods (which yield a solution 
without an initial guess) and iterative methods (in which a sequence of approximate solutions 
with increasing accuracy are produced from an initial guess). If n is small, say n < 1000, or if 
A has a band structure (Le., a .. = 0, if I i-j I > k for some k considerably smaller than n), 

I,J 
the direct methods of Gaussian elimination, band elimination, or matrix factorization techniques 
can be effectively employed. The main problem with the direct methods is that they require 
enormous amounts of computer memory. Thus, if the system is large, say n > 20,000 (cf. 
[Varga] or rD. M. Young]), then we must use some iterative methods which require much less 
memory. However, since the iterative methods involve more arithmetic operations, they are 
somewhat slower. Also, if the algebraic system is not linear, then the direct methods do not apply 
and again iterative methods must be considered. For large linear systems, a combination of direct 
and iterative methods (e.g., conjugate gradient methods) are often more efficient than either type 
by itself (cf. [Birkhoff and Lynch)). 

Not every linear system has a solution (e.g., x + y = 1 , 2x + 2y = 1). If the linear 
system (14) has a unique solution for every possible sequence b1, ... ,bn then the the matrix 

A = [aij] is called nonsingular or invertible. In the case where A is invertible, there is a unique 

matrix C = [cijl, such that for all sequences (b1 , ... , bn) , 

n 
\' al·J· x. = b., if and only if 
L. j =1 J 1 

(i = 1, ... ,n). (15) 

Note that once the inverse matrix is found, the solution of the problem on the left in (15) is 

immediately given by the equations on the right. It is common to write the matrix C as A-I. 

Direct methods can be used to find the matrix A-I (if it exists) according to various algorithms 
which are best covered in a linear algebra course. However, in solving linear systems (14), one 

almost never computes A-I, but rather the system is put into a simple "triangular" form, such as 
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(16) 

in which each equation is easily solved by using the solution of the previous equation. If A is 
nonsingular, this form is found using algorithms which are standard in a linear algebra course. 
Here we will describe some iterative methods which are usually not covered in such courses. 

It is good if one can easily determine that a matrix A is invertible, for then we at least 
know that the system (14) will have a solution. However, in general this may be at least as 

difficult as finding A-I, unless A has a special form. For example, in systems of difference 
equations for PDEs, it frequently happens that the nonzero entries of the matrix A for the 
system are near the diagonal formed by the entries all' a22 ' ... , ann (Le., A has a band 

structure). This happens because each of the difference equations only involves the values at grid 
points which are close to one another. The matrix A is called diagonally dominant, if 

n 

\' ia .. i < ial"i, i=I, ... ,n, L Ij ,I 
j=l, j:li 

or equivalently, 

in which case A can be shown to be invertible. 
For example, consider the heat problem 

D.E. O~x~L,t~O 

B.C. u(O,t) = 0, u(L,t) = 0 

I.C. u(x,O) = f(x) . 

Using the backward difference approximation to the D.E., (18) becomes 

(1+2A)v .. - AV'+1 . - AV. l' = v· . 1 
I,j I ,j 1- ,j I,j-

(1 ~ i ~ M-l; 1 ~ j ~ N) 

vO· = vM' = 0 ,j ,J (j = O, ... ,N) 

v· 0 = f(i~x) 
I, 

(i = O, ... ,M) , 

(17) 

(18) 

(19) 

where A == ~t/{~x)2. If Vi,j-l (i = O, ... ,M) have been determined, then according to (19) , the 

Vi,j are found by solving the following system 
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(1 + 2..\)vl . - ..\v2 . + 0·v3 . + 0·v4 . + ... + 0·vM_ 1 . = vI ·-1 ,j ,j ,j ,j ,j,J 

-"\v1 . + (1 + 2..\)v2 . - ..\v3 . + O·v 4· + ... + 0·vM_ 1 . = V2,j·_l ,j ,j ,j ,j ,j 

. . 
0·v1 . + 0·v2 . + ... + 0.vM_2 . + (-"\)vM- 1 . + (1+2"\)vM_ 1 . = V M- 1,j·-l . ,j,J ,j ,j ,j 

The following matrix A for this system is clearly diagonally dominant (and hence nonsingular) : 

(1+2..\) 

-..\ 

o 

o 

-..\ o 
(1+2..\) -,\ 

-,\ 

o 

(1+2,,\) -..\ o 

o -..\ 

o 
o 
o 

-..\ 

(1+2..\) 

In iterative methods one seeks to generate an infinite sequence of vectors 

(0) _ (0) (0) (0) (1) _ (1) (1) (1) (2) _ (2) (2) (2) x - (xl ,x2 , ... , xn ), x - (xl ,x2 , ... , xn ), x - (xl ,x2 , ... , xn ), ... 

which converges to the true solution vector x = (x1,x2' ... , xn) of Ax = b, in the sense that 

IIx(k) - xl12 == t (x~kL xi -j 0, as k -j 00 (20) 
i =1 I I 

(Le., the length or norm of the difference tends to 0). The basic steps in an iterative procedure 
are outlined as follows : 

(a) Write the matrix A as a the difference of two matrices, say A = M - N (called a 
splitting of A), where M is chosen to be nonsingular matrix whose inverse is easily computed 

(e.g., if M is a diagonal matrix with nonzero diagonal entries, then M-1 is obtained by 
replacing each diagonal entry by its reciprocal). 

(b) Select any initial vector x( 0). 

( c) For k = 0, 1, 2, ... , define inductively 

Mx(k+1) = Nx(k) + b or equivalently, x(k+1) = Tx(k) + M-1b, (21) 

where T = M-1N (matrix product) is known as the iteration matrix. 
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Theorem 1 (A Convergence Result). Suppose that the iteration matrix T ha.<! the property, 
that 

for some fixed r < 1 , liT y II ~ rllyll , for every vector y (22) 

(Le., T contracts the lengths of all nonzero vectors). Then the sequence x(O), x(l), x(2), ... 

converges to the unique solution x of Ax = b. In particular, A is nonsingular. 

Proof. First we establish the uniqueness of the solution. Suppose that Ay = band Az = b. 

Then A(y-z) = b - b = O. Thus, 0 = N-1(M - N)(y-z) = (T - I)(y-z) or T(y-z) = y-z . 
However, by property (22), IIT(y-z)II ~ rll(y-z)1I , which cannot be true unless y = z (Why?). 
For linear systems of n equations in n unknowns (n < (0), the uniqueness of solutions will also 
ensure the existence of solutions, as is proved in linear algebra courses. (This is false if n = 00.) 

While a modification (using the Bolzano-Weierstrass Theorem of Appendix AA) of the following 
argument yields this existence fact, for Sim&licity, we will assume the existence of the solution x, 

and prove that the sequence x(O), x(l), x 2), ... , defined in step (c), converges to x. Note that 

if Ax = b, then x - Tx = x - M-1Nx = M-1(M - N)x = M-1 Ax = M-1b. Thus, x = Tx + 

M-1b, and we have 

Ilx-x(k+1)11 = IITx + M-1b-Tx(k) - M-1bll = IIT(x-x(k))11 ~ rllx-x(k)1I 

~ r21Ix_x(k-1)1I ~ ... ~ rk+ 11Ix_x(0)1I. 

Since rk -; 0 ,as k -; 00 , this shows that Ilx - x(k) II -; 0 ,as k -; 00 , as desired. 0 

Remark. It can happen that the system Ax = b is soluble, but pro~erty ~22) does not hold. For 

example, consider the system ~x1 - x2 = 1, ~x2 = 0 with M = l6 ~ J N = [~ ~] . Then 

T = M-1N = 2N, and IITYII = 211yll for y = (0,1), but nevertheless x = (2,0) is the solution. 
For this reason, there are properties less restrictive than (22), which are commonly used to obtain 
convergence. For those who have had linear algebra, one such property is that each of the 
(possibly complex) eigenvalues of T have modulus less than one (Le., the spectral radius of T is 
less than 1). The above T has this property, since its eigenvalues are all O. 0 

We now state three very useful iterative schemes, which are distinguished by the way that 
the splitting A = M - N is made. Suppose that A is a nonsingular nxn matrix with all 
diagonal entries aii i- o. We can uniquely write A as a sum 

A = D - E - F, e.g. [a11 a12 j = [all 0 j_ [0 -a12 j_ [_0 0 j when n = 2 , 
a21 a22 0 a22 0 0 a21 0 

where D is a nonsingular diagonal matrix with the same diagonal entries as A, and E and Fare 
matrices with entries which are zero above the diagonal and zero below the diagonal, respectively. 
We have some standard choices 
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M=D 

M=D-E 

1 M = - (D- wE) w 

and N=E+F 

and N=F 

and N = ~(wF + (I-w)D) . 
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(23) 

(24) 

(25) 

Then (23) yields the point Jacobi iteration, (24) yields the point Gauss-Seidel iteration and (25) 
the point successive overrelaxation (SOR) iteration with parameter w (d. [Berman and 
Plemmons], [Ortega and Rheinboldtj, [Vargaj or [D. M. Young]). 

Remarks. (1) It is a consequence of the Perron-Frobenius theory of nonnegative matrices that in 

the splitting A = M - N, if the entries of the matrices M-I and N are nonnegative, then the 

spectral radius of M-IN is less than 1 if and only if A is nonsingular and the entries of A-I 
are nonnegative. 
(2) For large systems of linear equations the coefficient matrix is partitioned into square blocks 
and this leads to the very useful theory of block iterative methods (cf. [Varga]). 
(3) The computer implementation of these iterative methods is straightforward. For example, 
with the above notation and assumptions, the point Gauss-Seidel iteration is given by 

i-I n 
x{k+I) = __ 1 [ \' a .. x(k) + \' a .. x(k) - b. ], (i = 1, ... , n) , 

1 a. . L 1J J L 1J J 1 
11 . 1 . '+1 J= J=1 

where x~k+ 1) is the i-th component of x(k+ 1), and the first sum is defined to be zero when 

i = 1. In practice, the iterations should be stopped at some time, say when Ilx(k+I) - x(k)" < f. 

Under the assumptions in Theorem 1, this will eventually happen for any given positive (> O. 0 

Nonlinear equations 

The finite difference methods, be they explicit (cf. Section 8.2) or implicit (cf. (5) above), 
are also applicable to nonlinear PDEs. Thus, for example, if the PDE is of the form 

(0 ~ x ~ L, 0 ~ t ~ T), (26) 

where f is a suitable function of 5 variables, then an explicit difference scheme for (26) is 

v"+1 = v .. +~t'f(i~x,j~t,v .. ,p=I (v.+I·-v. I.),-----.L20 2v .. ), (27) 
I,J I,J I,J L:LlX 1 ,J 1-,J (~x) x I,J 

(i = I, ... ,M-I; j = O, ... ,N-I), where 0 2v.. denotes the second-order central difference 
x I,J 

(cf. (1)). Note that (27) reduces to (3) when f:= uxx' While this method is easy to use, its main 
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disadvantage is, as was noted in the beginning of this section, that it is only conditionally stable; 

e.g., for stability it is required that A == Ilt/ Ilx2 ~ ~ when f == uxx' 

The stability limitation can be overcome by using an implicit difference method (e.g., a 
Crank-Nicolson type method; cf. (5)). However in this case, the algebraic problem of determining 
the v· '+1 leads, in general, to the problem of solving a nonlinear system of equations. If the I,J 
nonlinear system has a solution, then we may attempt to use an iterative method (cf. [Isaacson 
and Keller]) to approximate the solution. One such method is a several variable analogue of the 
Newton-Raphson method (cf. Problem 12 of Section 8.2). The Newton-Raphson method and its 
variations playa central role in the study of iterative methods for solving systems of nonlinear 
equations (cf. [Ortega and Rheinboldt]). In its simplest form, this method may be described as 
follows. Using vector notation, we can write the nonlinear system as F(x) = 0, where 

Now, if we let J(x) be the Jacobian matrix of F, i.e., J(x) is the matrix whose (i,j)-th entry 
is {)f/ Oxj , then the n-<iimensional Newton-Raphson iterative scheme becomes 

(28) 

where x(O) is some initial guess. Since usually it is inefficient to compute inverses of matrices, 

we may wish to carry out the iteration in (28) as follows. Suppose that x(k) has been calculated. 
Define y(k+1) = x(k+1) - x(k). Then (28) becomes 

(29) 

which is a linear system of equations. We solve (29) for y(k+1) using, say, Gaussian elimination 

(or perhaps an iterative method described in (21)), and then we determine x(k+1) from the 

equation x(k+1) = /k+1) + x(k). For the error analysis, proofs of theorems on convergence and 
for many other techniques, we refer the interested reader to lOrtega and RheinboldtJ. 



CHAPTER 9 

PDEs IN HIGHER DIMENSIONS 

In the previous chapters, we have considered one-<limensional heat flow (ut = kuxx) and 

wave propagation (utt = a2uxJ, and tw~imensional steady-state temperatures, electrostatics 

and fluid flow (uxx + Uyy = 0). Since we live in a world with three spatial dimensions, it is also 

important to examine the corresponding results in higher dimensions, where many of the most 
relevant initial/boundary-value problems are posed. Since most of the techniques and central 
ideas in the study and application of PDEs are already manifest in the treatment of the 
lower-dimensional situations, the extension of what we have learned to the higher-dimensional 
case is not as conceptually difficult as one might think. In particular, the technique of separation 
of variables, the superposition principle (for homogeneous, linear equations), and certain aspects of 
Fourier series and transforms, all carryover to higher dimensions. 

Many of the difficulties are only technical in nature, due to the variety of coordinate 
systems. For example, there is basically only one standard coordinate system on a line, but (in 
addition to Cartesian or rectangular coordinates) in the plane we have polar coordinates, and in 
space we have cylindrical and spherical coordinates. The choice of the system depends on the 
symmetry (if any) of the region under consideration. When the variables are separated, some of 
ODEs which result can be be difficult to solve. Indeed, some of the solutions cannot be expressed 
in terms of elementary functions (e.g., sines, cosines, exponentials, etc.), and new special 
functions, such as Bessel functions, need to be introduced. It is unfortunate that in many 
treatments, the main ideas behind the solution process is obscured by a focusing on the special 
functions instead of on the product solutions (of the PDE) which result when the solutions of the 
ODEs are multiplied together. The time-independent part of a product solution is usually an 
eigenfunction of the Laplace operator ~ for the region under consideration. The special 
functions serve primarily to construct the eigenfunctions which satisfy the B.C.. Once each 
initial condition is expressed as a linear combination of eigenfunctions (Le., written as an 
eigenfunction expansion), then it is usually simple to find the solution of the initial 
boundary-value problem. Eigenfunction expansions (d. Section 4.4) constitute the natural 
generalization of Fourier series for functions defined on smooth (possibly curved) multidimensional 
spaces known as manifolds, even where separation of variables not feasible, say due to a lack of 
symmetry. 

In Section 9.1, we consider the standard higher-dimensional heat, wave and Laplace's 
equations in terms of rectangular coordinates, and we use multiple Fourier series and Fourier 
transforms to solve initial/boundary-value problems for these PDEs. In Section 9.2, we introduce 
the unifying concepts of eigenfunctions and eigenvalues of the Laplace operator, working primarily 
on rectangles. We also prove a uniform convergence theorem for eigenfunction expansions 
(multiple Fourier series) of suitable functions on a rectangle. Section 9.3 deals with the standard 
PDEs written in terms of spherical coordinates. The Laplace operator on a sphere is defined in a 
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geometrically natural way, and its eigenfunctions (known as spherical harmonics) are introduced. 

In Section 9.4, we prove that the eigenfunction expansion of a C2 function f on a sphere (the 
Laplace series of f) converges uniformly to f. Among other problems, we also study heat flow in 
a solid ball, and the wave problem for a vibrating balloon. In Sectiorl 9.5, we consider a number 
of special functions, such as Bessel functions and their use in solving heat problems in cylinders 
and in expressing the vibrational modes of a circular drum. We also solve SchrOdinger's equation 
for the quantum-mechanical description of the energy states of the electron in a hydrogen atom. 
In Section 9.6, we introduce the notion of a smooth k-dimensional manifold in n-dimensional 
space, and define the Laplace operator on such an object. In this last section, results are stated 
(but not always proved) concerning the nature of the eigenfunctions and their use in constructing 
solutions and Green's functions for the standard PDE problems on manifolds. 
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9.1 Higher-Dimensional PDEs - Rectangular Coordinates 

Here we reintroduce the higher--dimensional heat, wave, and Laplace's equations which are 
most relevant for applications. In this section, we confine ourselves to boundary-value problems 
on rectangular plates or solids, and hence we use rectangular coordinates. Since the techniques 
(separation of variables, the superposition principle, and Fourier series) are now quite familiar, we 
will be able to cover a lot of territory. 

The heat equation for rectangular plates and solids 

We found in Section 6.1 that for two-dimensional heat flow in a homogeneous medium, the 
only possible second--order linear PDE which the temperature u(x,y,t) can obey is 

(1) 

where k is a positive constant (the heat diffusivity) and where we have assumed that there are no 
heat sources. The simplest initial/boundary-value problem for (1), arises in the case of a 
rectangular plate with edges maintained at temperature 0, i.e., 

D.E. ut = k(uxx + Uyy) ° ~ x ~ L, ° ~ Y ~ M, t ~ ° 
[ 

u(x,O,t) = 0, u(x,M,t) = ° 
B.C. 

u(O,y,t) = 0, u(L, Y ,t) = ° 
I.C. u(x,y,O) = f(x,y) , 

(2) 

where f(x,y) is a continuous function which is zero on the boundary of the plate. Proceeding 
with separation of variables, we substitute the product u(x,y,t) = X(x)Y(y)T(t) into (1), and 
separate t from x and y to obtain 

T' X" Y" 
KT=-y+--v=b, (3) 

for some constant b. Thus, we must have 

X" Y" 
-y = b---v = c or [

X" -cX = ° 
Y" + (c-b)Y = ° (4) 

for some constant c. By the B.C. u(O,y,t) = ° and u(L,y,t) = 0, we can avoid the zero solution, 

only if c = cn :: -(ll1r/L)2 and X(x) is a constant multiple of sin(ll1rx/L), n = 1, 2, 3, .... 

Similarly, from the B.C. u(x,O,t) = ° and u(x,M,t) = ° and the equation Y" +(c-b)Y = 0, we 

deduce that c-b = (m1r/M)2 and that Y(y) must be a constant multiple of sin(m7l)'/M), 
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m =1,2,3, .... The possible values of -b, denoted by A ,are then given by n,m 

A m == (m7r/M)2 - c = 7r2[(n/L)2 + (m/M)2], m,n = 1,2,3, ... . (5) n, n 

From (3), we have T' = kbT, and thus the family of product solutions of the D.E. and B.C. of 
(2) consists of the constant multiples of 

-A kt 
( t) - n,m. (n 7rx) . (m i?) - 1 2 3 un m x,y, ...,.. e sm --r- sm , m,n - , , , .... , (6) 

In view of the linear, homogeneous D.E. and B.C. of (2), we may apply the superposition principle 
to obtain a more general solution of the D.E. and B.C. : 

u(x,y,t) = (7) 

where the integers nand m run independently from 1 to some finite N. When t = 0, we have 

N 

u(x,y,O) = 1: bn m sin(T)sin(m t?) . (8) , 
n,m = 1 

If the initial temperature f(x,y) in (2) is of this form, then (7) is a solution of (2). Of course, not 
every given f(x,y) will be exactly of this form. However, one might expect that a reasonably nice 
f(x,y) could be approximated by a sum of the form (8), say within some positive experimental 
error. There is a Maximum Principle (stated and proved in the same way as the Maximum 
Principle in Section 3.2) which implies that two solutions of the D.E. and B.C. cannot differ by 
more than their maximum difference at t = o. Hence, the error in the initial approximation will 
not grow as t increases. Moreover, uniqueness of the solution of (2) is ensured by the Maximum 
Principle. The sum (8) is known as a (finite) double Fourier sine series. More precisely, we have: 

The double Fourier sine series of a function f(x,y) on the rectangle (0 ~ x ~ L, 0 ~ y ~ M) is 
the expression 

00 

(9) 

where 
M L 

bn,m = & f 0 f 0 f(x,y)sin(T)sin(mi?) dxdy, m,n = 1, 2, 3, ... , (10) 

provided these integrals exist. 
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In Section 9.2, we will discuss double Fourier series and some of their convergence 
properties. If the double Fourier sine series of the initial temperature exists, then the formal 
solution of (2) is given by (7), with N replaced by 00, where b is given by (10). It is clear n,m 

that this formal solution is an exact COO solution, if all but a finite number of the b are zero. n,m 
It is much more difficult to show that if the function f(x,y) is continuous on the closed rectangle 
and is zero on the edges, then the formal solution defines an actual solution of (1) for t > 0, which 

extends continuously to f(x,y) as t -. 0+. Recall that this type of result was proved in the 
on~imensional case (cf. Theorem 1 of Section 7.5), by expressing the solution as a convolution of 
a suitably extended initial temperature f~nction with the fundamental solution of the heat 

equation. In the case of problem (2), let fo o(x,y) be the unique extension of f(x,y) (to the , 
whole xy-plane) which is odd and periodic in x (of period 2L), and odd and periodic in y (of 
period 2M). Then, the unique continuous solution of problem (2) can be written in the form 

u(x,y,t) 1 [ [ e-[(x-x)2 + (y-y)2J1(4kt) f (--) d-d-4ill 0 0 x,y x y , 
--00 --00 ' 

t > 0, (11) 

where u(x,y,O) == f(x,y), when t = O. Solution (11) is obtained through the application of the 
method of images (cf. Section 7.5), whereby one suitably extends (depending on the B.C.) the 
initial temperature f(x,y) to a temperature F(x,y), defined on the whole plane. Then 

( t) = 1 [ [ e-[(x-x)2 + (y-y?]/(4kt) F(--) d-d-u x,y, 4ill x,y x y 
--00 --00 

(t > 0), (12) 

is the solution of the initial-value problem for the heat equation on the whole plane. The solution 
(12) is found formally by applying two-dimensional Fourier transform methods which we discuss 
in Section 9.2. (Note that the square root of 47rkt does not appear in (12), since the 
two-dimensional source solution of the heat equation turns out to be the product of the two 
one-dimensional source solutions in the x and y directions.) Just as in the on~imensional case 

(cf. Theorem 1 of Section 7.4), using Leibniz's rule one can prove directly that (12) is a COO 
solution of the heat equation, for t > 0, provided that F(x,y) is continuous and bounded (or 
absolutely integrable). In that case, as before, one also can show that (12) continuously extends 

to the initial temperature F(x,y), as t -. 0+ (F(x,y) = f(x,y) for 0 ~ x ~ L, 0 ~ y ~ M). 

In choosing the extension F(x,y), we use the odd extension across any edge where the solution 
is required to be zero by the B.C. (as in (2)), and we use the even extension across any edge 
which is insulated (Le., if the partial derivative [in the direction normal to the edge] of the 
temperature is 0 in a B.C. ; cf. Example 2 below). 
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Example 1. Solve the problem 

D.E. ut = 2(uxx + Uyy) 0 ~ x ~ 3, 0 ~ Y ~ 5, t ~ 0 

[ 
u(x,O,t) = 0, u(x,5,t) = 0 

B.C. 
u(O,y,t) = 0, u(3,y,t) = 0 

I.C. u(x,y,O) = cos[1r(x+y)]- cos[1r(x-y)] + sin(21rX)sin(~) . 

(13) 

Solution. We can use (7), provided that the I.C. can be put in the form (8). Using the formula 
cos(a+b) = cos(a)cos(b) - sin(a) sin(b), we obtain the desired form 

u(x,y,O) = -2sin(~)sin(5?) + sin(~)sin(~) . 

Since this is of the form (8), with L = 3, M = 5, we may use (7), with k = 2 to obtain 

u(x,y,t) = -2e-41r\in(1rX)sin(1rY) + e-218~t/25sin(21rX)sin(~) . 

Although it would be inconvenient, one could also write the solution in the form (11), with 

fo,o(x,y) = cos(1r(x+y)) - cos(1r(x-y)) + sin(21rX)sin(3?), which has the required oddness and 

periodicity properties. 0 

One can similarly handle other types of boundary conditions, where some edges are 
insulated and others are maintained at 0, as the next example illustrates. 

Example 2. Solve 

D.E. ut = k(uxx + Uyy)' 0 ~ x ~ L, 0 ~ y ~ M, t ~ ° 
[

U(X,O,t) = 0, u/x,M,t) = 0 
B.C. 

ux(O,y,t) = O,ux(L,y,t)=0 

I.C. u(x,y,O) = cos(2r)sin(~) . 

How might one treat the generall.C. of the form u(x,y,O) = f(x,y) ? 

(14) 

Solution. Here, the edge y = 0 (0 ~ x ~ L) is maintained at zero, while the other three edges are 
insulated. As usual, we seek the product solutions of the D.E. which satisfy the B.C., and then 
consider the I.C.. Separation of variables leads to equations (4) for X and Y. The B.C. 

ux(O,y,t) = ° and ux(L,y,t) = ° imply that X(x) is a constant mUltiple of cos(nr), n = 0,1, 

2, .... The B.C. u(x,O,t) = ° and uy(x,M,t) = ° imply that Y(y) is a constant multiple of 

sin [(m+ ~)1rY] , m = 0,1,2, ... (d. Example 2 of Section 3.3). The family of product solutions, 
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which satisfy the D.E. and B.C. of (10), consists of the constant multiples of 

un,m(x,y,t) = exp [-[(n/L)2 +((m+ t )/M)2]1l'2kt] cos(T)sin Um+ ~)1l}'], (15) 

n, m = 0, 1, 2, .... In the case of a more general initial temperature f(x,y), one would attempt to 
write f(x,y) as a linear combination of the functions u (x,y,O), and then the same linear n,m 
combination of the u (x,y,t) would give the solution for t > 0. For the problem at hand, n,m 
observe that the I.C. is simply u(x,y,O) = u2 1 (x,y,O). Thus, , 

• 
u(x,y,t) = u2,1 (x,y,t) = eXP [-[(2/L)2 + (3/2M)2]1l'2kt] cOs(~)sin(3;lt) . 

If the I.C. were u(x,y,O) = f(x,y), where f(x,y) is continuous on the closed rectangle and is zero 
on the edge y = 0, but is not necessarily a finite linear combination of the u (x,y,O) in (15), n,m 
then it can be shown that the following is a solution of the D.E. and B.C., when t > ° : 

00 

u(x,y,t) = L cm n un m(x,y,t) , , , (16) 

n,m = 1 
where 

M L 
cn,m = Ik f ° f ° f(x,y)cos(T)sin((m+ ~)1l}') dxdy. (17) 

This solution continuously extends to f(x,y) as t --i 0+, but the B.C. involving partial derivatives 
will not hold, unless f(x,y) satisfies these B.C .. Equivalently, we have the integral formula 

u(x,y,t) = 41l'tt [ [ e-[(x-x)2 + (y-y)2]/(4kt) F(x,y) dxdy, 
-00 -00 

(18) 

where F(x,y) is the unique extension (to the entire xy-plane) of f(x,y), which is odd and 
periodic (of period 2L) in x, and is periodic in y (of period 4M), even about y = M and odd 
about y = ° (cf. Example 2 of Section 5.3, where such an extension was used). o. 

It is straightforward to extend the above considerations to the case of three-dimensional heat 
flow. Rather than dealing with generalities, we consider an example. 
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Example 3. A solid cube of edge length 1, and with heat diffusivity constant k, is initially at the 
constant boiling temperature 100· C and is suddenly (at t = 0) placed in ice water at 0· C. 
Find the temperature at the center of the cube as a function of t, and show that this temperature 

2 
is ~ 640011"-3 e -311" kt, for t sufficiently large. Estimate the smallest value for t such that the 
actual temperature at the center is within 10 % of this approximation (i.e., between 

576011" -3e -311"2kt and 704011" -3e -3~kt ). 

Solution. Let the cube be given by ° ~ x , y, z ~ 1. In view of the B.C. u(O,y,z) = 0, 
u(I,y,z) = 0, u(x,O,z) = 0, ... , separation of variables leads to the following family of product 
solutions of the thr~imensional heat equation ut = k(u + u + u ) for these B.C. : xx yy zz 

2 2 2 2 
u (x,y,z,t) = e-(m + n + p )11" ktsin(nmc)sin(mJrY)sin(p7rZ) . 

n,m,p 

When x, y or z are ° or 1, all of these solutions are 0. Thus, no superposition 

00 

u(x,y,z,t) Bn m pUn m p(x,y,z,t) 
" " n,m,p = 1 

of these solutions can possibly be 100 on the faces of the cube when t = 0. Hence, we proceed 
formally. Assume that strictly inside the cube we have 

00 

100 Bn m p un m p(x,y,z,O). 
" " 

(19) 

n,m,p = 1 

Note that the functions u (x,y,z,O) are orthogonal on the cube, in the sense that n,m,p 

J J J un m p(x,y,z,O)uN M p(x,y,z,O) dxdydz = 1 
1 1 1 [0 if n f. N or m f. M or p f. P 

° ° ° " , , -8 if n = Nand m = M and p = P . 

It then formally follows from this orthogonality and (19) that 

111 
Bn m p = 8 J J J 100 sin(nmc)sin(mJrY)sin(p7rZ) dxdydz 

" ° ° ° 
if n, m and p are odd 

oth e rwi se 

Thus, formally we have 



Section 9.1 Higher-Dimensional PDEs - Rectangular Coordinates 567 

00 2 2 2 2 
u(x,y,z,t) = 64007r-3 I n~p e-(m + n + p )7r ktsin(n7rX)sin(m1rY)sin(p7rZ) . (20) 

n,m,p odd 

Although we have derived this formula formally, it is possible to show that for t > 0, (20) defines 

a COO solution of the heat equation and that u(x,y,z,O+) = 100, for (x,y,z) strictly inside the 

cube. Evaluating the solution at the center of the cube, we have 

00 (2 2 2) 2 (n+m+p-3)/2 
U(l 1 1 t) = 6400 7r-3 \' _1_ e- m + n + p 7r kt(_I) 

2)2'2, L nmp 
n,m,p odd 

= 6400 7r-3 ~ (-I)q[ I n~p e-(m2 + n2 + p2)7r2kt 1 (21) 

q = 0 n+m+p = 2q+3 
n,m,p odd 

The sum over q is alternating, but it is not true that the expression in brackets, say A(q,t), 
always decreases as q increases (e.g., A(O,O) = 1 and A(I,O) = 1). (The reader may wish to 
decide whether A(q,O) decreases with q for q ~ 1.) Thus, we cannot deduce that the error of a 
partial sum is not greater than the next term. However, shortly we will find a positive to' such 

that, for t > to' A(q,t) always decreases with q, and thus the very first term, e-3i!kt, will differ 

2 
from the entire sum (21) by no more than the magnitude of the second term, e -1l7r kt, provided 

t > to. This second term is less than 10% of the first term for t > loge(1O)/(87r2k) ~ .02916/k. 

Hence, in approximating (21) by using only the first term, the error committed will be less than 
10% for t > .0292/k, if the value of to' which we now will determine, is less than (.0292)/k. To 

find to' note that each triplet (n,m,p), with n+m+p = 2q+3, gives rise to three triplets (i.e., 

(n+2,m,p), (n,m+2,p), (n,m,p+2)) each having the sum 2(q+l) + 3. However, in the process, 

the factor (n2 + m2 + p2) in the exponent is increased by at least 6 (e.g., 

((n+2)2 > n2 + 2n + 4 ~ n2 + 6). Thus, taking all triplets into account, we deduce that 

A(q+l,t) < 3e--6i!ktA(q,t). Hence, the A(q,t) must strictly decrease with q provided 

3e--6i!kt < 1 or t > loge(3)/(67r2k) ~ (.0186)/k == to. Thus, since to < (.0292)/k, the 

temperature at the center will be within 10% of 64007r-3e -3i!kt, provided t > (.0292) /k. One 
can check that when t = (.0292)/k, this approximate temperature is ~ 87' C, regardless of k. 0 

Remark. The function (20) can be expressed in terms of an integral formula, as follows. We 
decompose space into cubes, with integers as coordinates of the vertices of the cubes. Let 
F(x,y,z) be the function which is 1 inside the cube 0 < x,y,z < 1, and which is 0 on the faces 
of this cube, and which is -1 strictly inside the adjacent cubes which share a common face with 
the original cube. Repeat this pattern, so that F(x,y,z) is defined throughout space, with 
F(x,y,z} being 1 or -1 within each cube and 0 (the average) on the common faces. By 
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applying Fourier transform techniques, we obtain the alternate solution 
3 

u(x,y,z,t) = (41l"kt)2 [ [ [ e-[(x-x)2 + (y_y)2 + (z-z)2]/(4kt) F(x,y,z)dxdydz . (22) 
-00 -00 -00 

This form of the solution appears to be somewhat more difficult to evaluate. However, if we set 

x = y = z = 1/2, and restrict the domain of integration to the finite box B, -1 < X, y, z < 2, 
(containing 27 unit cubes, with the original one at the center), one can obtain a very accurate 
approximation to u(t,t,t,t) for small t > 0 (Le., when the approximation in Example 3 is bad). 
For small t, this new approximation will be good, because the integrand of (22) is extremely small 
outside of B, for x = y = z = 1/2 and t sufficiently small and positive. The integral over B 
can be evaluated numerically, or with a good table of normal distributions. 0 

Laplace's equation on a rectangular solid 

Perhaps the simplest type of problem for Laplace's equation on a rectangular solid is 

D.E. Uxx + Uyy + uzz = 0 0 < x < L, 0 < Y < M , 0 < z < P 

{
U(X,y,O) = f(x,y), u(x,y,P) = g(x,y) 

B.C. 
u(x,y,z) = 0 on the faces x = 0, x = L, y = 0 and y = M , 

(23) 

where f and g are given continuous functions, on the rectangle 0 ~ x ~ L, 0 ~ y ~ M, which are 

zero on the boundary of this rectangle. We seek a (C2) solution of the D.E. inside the rectangular 
solid which extends continuously to the boundary of the solid in such a way that the B.C are 
met. The familiar approach is to use separation of variables to find those product solutions 
X(x)Y(y)Z(z) which meet the homogeneous B.C., and then, by the superposition principle, take a 
linear combination of these product solutions in an effort to meet the B.C. u(x,y,O) = f(x,y) and 
u(x,y,P) = g(x,y). Substitution of the product X(x)Y(y)Z(z) into the D.E. yields 
X" Y" Z') A + Y + T = O. There is no way that any of t~ese terms can cancel with the sum of the 

remaining two terms, unless the term is constant (Why?). From past experience, we know that 
in order that X(x) meet the B.C. X(O) = X(L) = 0, we must have that X(x) is a constant 

multiple of sin(!!.p) , n = 1, 2, 3,... ,and similarly Y(y) is a constant multiple of sin(m i?), 
m = 1, 2, 3,.... For each pair (n,m), the equation for Z is Z" - 1l"2[(n/L)2 + (m/M)2]Z = O. 
In view of the fact that the (possibly) inhomogeneous B.C. are prescribed on the faces z = 0 and 

z = P, a very convenient way of expressing the general solution of this equation for Z is 

Z (z) = 1 [a sinh[(P-z)~ + b sinh(zVX:-:-)], 
n,m sinh(PVX:-:-) n,m n,m n,m n,m 

n,m 
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where ~ = 1'( j(n/L)2 + (m/M)2. Thus, a more general solution of the homogeneous D.E. n,m 
and B.C. is 

N 

u(x,y,z) = l Z (z)sin(~)sin(m tV?) . n,m L 
(24) 

n,m = 1 

Note that on the faces z = ° and z = P, we have 

N N 

u(x,y,O) = l a sin(n [x)sin(m M}) and 
n,m u(x,y,P) = l b sin(~)sin(m i?) . n,m L 

n,m = 1 n,m= 1 

Thus, in the event that f(x,y) and g(x,y) are respectively given by these finite double Fourier 
sine series, a solution of problem (23) is given by (24). When f(x,y) or g(x,y) are not finite 
double Fourier sine series, we have a formal solution which, with much more effort, can be shown 
to be valid strictly within this rectangular solid and to extend continuously to the prescribed 
values on the faces. There is a Maximum/Minimum Principle for the Dirichlet problem (23) (or 

more generally for a Dirichlet problem on any bounded open set in !Rn, n = 1, 2, 3, ... ) which can 
be proved just as Theorem 1 in Section 6.4 was proved. Thus, a reasonable approximation of 
boundary data leads to a reasonable solution in the interior. 

Example 4. Find the value of the constant c such that the following Neumann problem has a 
solution, and find such a solution. Is the solution unique? 

D.E. u + u + u = ° 0 < x, y, z < 1'( xx yy zz 

[ 
ux(O,y,z) = ux(1'(,y,z) = 0, uy(x,O,z) = uy(x,1'(,z) = ° 

B.C. 2 2 
uz(x,y,O) = 0, uz(x,y,1'() = c + 4sin (x)cos (y) . 

(25) 

Solution. One quickly verifies that the product solutions of the D.E. which satisfy the 
homogeneous B.C. are of the form 

un m(x,y,z) = an m cosh[jn2+m2 z]cos(nx)cos(my), n,m = 0,1,2, .... , , 

We apply the superposition principle to form the more general solution 

N 

u(x,y,z) = l a m cosh[jn2+m2 z]cos(nx)cos(my) n, (26) 
n,m = 0 

for which 
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N 

uz(x,y,7r) = L an,m jn2+m2 sinh[jn2+m2 7r]cos(nx)cos(my) . (27) 

n,m=O 

Observe that this last expression is a finite double cosine series which has a zero constant term 

(Le., ~ = 0). The inhomogeneous B.C. in (25) can be put in the form of a finite double 
cosine series : 

uz(x,y,7r) = (c + 1) - cos(2x) + cos(2y) - cos(2x)cos(2y) . (28) 

If c = -1, then we can match the coefficients of (27) and (28) to obtain a solution 

u(x,y,z) = cosh{2z)[ cos (2y) - cos{2x)] _ cosh{zy'S)cos{2x)cos{2y) . 
2sinh(27r) y'S sinh(7ry'S) 

We may add any' constant to this solution to obtain another solution. In order to understand why 
we must choose c = -1, recall that u(x,y,z) can be interpreted as a steady-state temperature 
function, which can exist only when the net flux of heat energy through the faces is O. Thus, the 

integral of c + 4sin2(x)cos2(y) over the face z = 7r must be zero, and so c = -1. 0 

The wave equation on a rectangle 

Let u(x,y,t) be the transverse displacement (in the z-direction) of a homogeneous membrane 
which is attached to the boundary of the rectangle 0 ~ x ~ L, 0 ~ y ~ M. Using the same 
argument as in Section 6.1, it is possible to deduce that the only linear second-order PDE which 

governs the displacement, is the two-dimensional wave equation Utt = a2(u + u ), where a xx yy 
is the constant speed at which disturbances spread in the membrane. The appropriate 
initial/boundary-value problem for u(x,y,t) is 

2 
D.E. Utt = a (uxx + Uyy) 0 ~ x ~ L, 0 ~ y ~ M, --00 < t < 00 

{ 
u(x,O,t) = 0, u(x,M,t) = 0 

B.C. 
u(O,y,t) = 0, u(L, y ,t) = 0 

I.C. u(x,y,O) = f(x,y), ut(x,y,O) = g(x,y) . 

(29) 

The procedure for separation of variables is similar to the case of the two-dimensional heat 

problem (2), except that, in place of T' - bkT = 0, we have Til - ba2T = o. As before, the 
permissible values of -b are the A of (5), and thus, we obtain the set of product solutions n,m 
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un,m(x,y,t) = [an,mcos(at.,l;\,m) + bn,mSin(at.,lXn,m)] sin(T)sin(mijY) , (30) 

where 

(31) 

If the initial displacement and velocity are finite double Fourier sine series 

N N 

f(x,y) = l A sin(~)sin(mMX) , n,m L 
g(x,y) = l B sin(~)sin(m M?) , n,m L 

n,m = 1 n,m = 1 

then the solution of problem (29) is 

N B 
u(x,y,t) = l un,m(x,y,t), where an,m = An,m and bn,m = -a-n-,,-m-

n,m = 1 .jXn , m 
(32) 

The function u (x,y,t), defined by (30), is known as the (n,m)-th harmonic of the n,m 
rectangular drum. The frequency of this harmonic is the number of oscillations per unit time that 
it executes, namely 

1 

/J = ~~ = -2a [(n/L)2 + (m/M)2]1 . n,m <:71" n,m (33) 

Example 5. Show that if (L/M)2 is not rational, then no two of the harmonics (30) can have the 
same frequency. For the square drum, show that there are infinitely many pairs of harmonics 
which have the same frequency. 

Solution. Suppose that /J = /J and (n,m) * (p,q). Then n * p and m * q (Why?). n,m p,q 

Thus, q2 - m2 :f. 0, and so 

2 n2 2 L 2 
(niL) + (m/M)2 = (p/L)2 + (q/M)2 implies that 2 P2 = :-:2 

q - m M 

Since the left side of this last equation is rational, L 21M2 must be rational, and this contradicts 
the assumption. For the square, note that even if n * m, we have /J = /J • Thus, for a m,n n,m 
square, the (m,n)-th harmonic and the (n,m)-th harmonic have the same frequency. 0 
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Summary 9.1 

1. Two-dimensional heat equation: The solution of the initial/boundary-value problem 

where 

is given by 

where 

° ~ x ~ L, ° ~ y ~ M, t ~ ° 
[ 

u(x,O,t) = 0, u(x,M,t) = ° 
B.C. 

u(O,y,t) = 0, u(L, Y ,t) = ° 
I.C. u(x,y,O) = f(x,y) , 

N 

f(x,y) = I bn m sin(T)sin(mi?), , 
n,m= 1 

N -,,\ kt 
u(x,y,t) = I bn m e n,m sin(T)sin(mMJ), , 

n,m= 1 

,,\ = 1J"2[(n/L)2 + (m/M)2], n ,m = 1, 2, 3, .... n,m 

(81) 

(82) 

2. Integral representation: In the above problem (81), if f(x,y) is continuous (but not 
necessarily of the form (82)), on the closed rectangle, and is zero on the edges, then the unique 
continuous solution of (81) is 

u(x,y,t) = 4;kt [ [ e-[(x-x)2 + (y-y)2lf(4kt) foo(x,y) dxdy, t > 0, 
-00 -00 ' 

-
(with u(x,y,O) == f(x,y)), where fo o(x,y) is the unique extension of f(x,y) (to the whole plane) , 
which is odd and periodic in x (of period 2L) and odd and periodic in y (of period 2M). 

3. Double Fourier sine series: The double Fourier sine series of a function f(x,y) on the rectangle 
(0 ~ x ~ L, ° ~ y ~ M) is the expression 

00 

I bn m sin(T)sin(m i?), , 
n,m= 1 

where 
M L 

bn m = tn f f f(x,y)sin(T)sin(mi?) dxdy, n, m = 1, 2, 3, ... , 
, ° ° 

provided these integrals exist. 



Section 9.1 Higher-Dimensional PDEs - Rectangular Coordinates 

4. Laplace's equation: The solution of the problem 

where 
N 

D.E. Uxx + Uyy + uzz = ° ° < x < L, ° < y < M , 0 < z < P 

[ 
u(x,y,O) = f(x,y) , u(x,y,P) = g(x,y) 

B.C. 
u(x,y,z)=0 on the faces x=O,x=L,y=Oandy=M, 

N 
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f(x,y) = L a sin(~)sin(mi?) and g(x,y) = n,m L L bn,m sin(T)sin(m MY) , 
n,m = 1 n,m = 1 

is given by 
N 

u(x,y,z) = L Zn,m(z)sin(T)sin(mi?), 

n,m = 1 
where 

Z (z) = 1 [a sinh[(P-z)~ + b sinh(z~)], 
n,m sinh(P~) n,m n,m n,m n,m 

n,m 

and ~ = 7r/lr-(n-/L---;')2"--+-(m-/-M")2 . 
n,m 

5. Tw<r-dimensional wave equation: The solution of the problem 

2 
D.E. Utt = a (uxx + Uyy) ° ~ x ~ L, ° ~ Y ~ M, -00 < t < 00 

[ 
u(x,O,t) = 0, u(x,M,t) = ° 

B.C. 
u(O,y,t) = 0, u(L, Y ,t) = ° 

I.C. u(x,y,O) = f(x,y), ut(x,y,O) = g(x,y) , 

where 
N N 

f(x,y) = L An,m sin(T)sin(m i?) , and g(x,y) = L B sin(~)sin(m i?) , n,m L 

n,m = 1 n,m = 1 
N 

L 
is 

u(x,y,t) = un m(x,y,t), with , 
n,m = 1 

B 
A d b n,m 

a = an nm=--'---
n,m n,m 'a 'X--

v n m , 

where the (n,m)-th harmonic, un (x,y,t), is ,m 

un m(x,y,t) = [an mcos(at~) + bn sin(at~)] sin(~)sin(mi?) , , , n,m ,m n,m L 

and ~m = 7rj(n/L)2+(m/M)2. The frequency of u is 2a .;;::::::, n, m = 1,2,3 .... n. n,m 7r n,m 
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Exercises 9.1 

1. Solve the problem 
D.E. ut = 6(uxx + Uyy) , ° ~ x ~ 2, ° ~ Y ~ 3, t ~ ° 

[
U(X,O,t) = 0, u(x,3,t) = ° 

B.C. 
u(O,y,t) = 0, u(2,y,t) = ° 

I.C. u(x,y,O) = 4sin(37rX/2)sin( ny) - 2sin( 7rX)sin(2ny/3) . 

2. Solve the problem 
D.E. ut = uxx + Uyy , ° ~ x ~ 1, ° ~ Y ~ 1, t ~ ° 

[
U(X,O,t) = 0, u(x,l,t) =0 

B.C. 
ux(O,y,t) = 0, ux (1 ,y,t) = ° 

I.C. u(x,y,O) = 2sin2(27rX)sin( ny) . 

3. Solve the problem 
D.E. ° ~ x ~ 1, ° ~ Y ~ 1, t ~ ° 

B.C. y [
U(X,O,t) = 0, u (x,l,t) = ° 
ux(O,y,t) = 0, u(l,y,t) = ° 

I.C. u(x,y,O) = sin(7r(3x+y)/2) -sin(37rX/2)cos(ny/2). 

4. A rectangular plate ° ~ x ~ L, ° ~ y ~ M with heat diffusivity constant k is insulated on the 
edges y = ° and y = M, and is maintained at temperature zero on the edges x = ° and x = L. 

(a) Write down the appropriate initial/boundary-value problem for two-dimensional heat flow 
in this plate, for a given continuous initial temperature distribution u(x,y,O) = f(x,y). 

(b) Using a double Fourier series, formally solve the problem found in part (a). 

(c) Obtain an integral representation of the formal solution in the form (12), by using the 
method of images (Le., by using a suitable extension of the initial temperature to the whole 
xy-plane; cf. Section 7.5). 

5. Let f(x,t), g(y,t), and h(z,t) solve the respective heat equations ft = kfxx ' gt = kgyy and 

ht = kh . Show that u(x,y,z,t):: f(x,t)g(y,t)h(z,t) solves ut = k(u + u + u ). Will the 
u xx " u 

same construction work in the case of the wave equation? Why or why not? 
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6. (a) Use the technique of Problem 5 to show that one solution of the problem 

D.E. ut = k(uxx + Uyy + uzz), -00 < X, y, z < 00, t > ° 
I.C. u(x,y,z,O+) = F(x)G(y)H(z) 

is 
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u(x,y,z,t) = 1 3 2 [ [ [ e-[(x-i)2 + (y-y)2 + (z-z)2]/(4kt)F(X)G(y)H(Z) didydz, 
( 4 7I"k t) 7 --00 --00 --00 

if F(x), G(y) and H(z) are continuous and bounded. 

(b) If we replace F(x)G(y)H(z) in (a) by a finite linear combination of functions of this form 
(e.g., a finite triple Fourier series), will the given solution still be valid? Explain. 

(c) Why is the solution in part (a) not unique? Hint. See Example 1 of Section 7.4 . 

7. Consider the cube in Example 3. 

(a) If the cube is insulated on one of its faces, then what is the temperature at (t,t,t) for large t. 

(b) What if the cube is insulated on all but one face? 

(c) If the cube is to be insulated on two faces, should they be chosen adjacent, or chosen 
opposite, if the goal is to minimize the temperature drop at the center for large t ? 

8. Solve 

9. Solve 

D.E. Uxx + Uyy + uzz = 0, ° < x < 37r, ° < y < 271", ° < z < 1 

[ 
u(x,y,O) = sin(x)sin(y) u(x,y,l) = ° 

B.C. 
u(x,y,z) = ° on the faces x = 0, y = 0, x = 371", Y = 271". 

D.E. u + u + u = 0, ° < x, y, z < 71" xx yy zz 

[ 
u (O,y,z) = u (7I",y,z) = 0, u (x,O,z) = u (x,7I",z) = ° 

BC x x Y Y . . 2 
uz(x,y,O) = cos(x)sin (y), uz(x,y, 71") = 0 

10. (a) Consider the rectangular solid 0 ~ x ~ L, 0 ~ y ~ M, ° ~ z ~ P. Suppose that real 
numbers are assigned to each of the eight vertices (corners) of the solid. Show that there is a 
unique harmonic function of the form u(x,y,z) = axyz + bxy + cyz + dxz + ex + fy + gz + h 
which has the given values at the eight vertices. Hint. Apply the two-dimensional result (cf. 
Example 1 of Section 6.2) to obtain harmonic functions f(x,y) and g(x,y) on the two faces 
z = ° and z = P, with the correct values at the corners. Let 
u(x,y,z) = [(P-z)f(x,y) + zg(x,y)l!P. 

(b) Suppose that we are given a continuous function on each of the twelve edges (not faces) of a 
rectangular solid in part la), such that the functions agree whenever 3 edges meet at a corner. 
Show that there is a harmonic function u (i.e., u + u + u = 0) defined inside the solid, xx yy zz 
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which extends continuously to the boundary such that the extension is a harmonic function inside 
each face and is equal to the given continuous functions on the edges. You may assume that the 
Dirichlet problem can be solved on each face (cf. Section 6.2). Hint. First, use part (a) to reduce 
the problem to the case where the given functions on the edges are 0 at the eight vertices. Then 
solve the Dirichlet problem on each pair of opposite faces and form a (convex) linear combination, 
as in part(a). Add the results for the three pairs of opposite faces and divide by two (Why?). 

11. Explain why the result of Problem 10 allows us to convert a Dirichlet problem for a 
rectangular solid to a related problem, where the given function on the boundary of the solid is 
zero on the edges. Explain why such a reduction is necessary, if we are to solve the problem 
through the use of double Fourier sine series on the faces, as was done with (23). 

12. By assuming a solution of the form u(x,y,z) = Ax2 + By2 + Cz2 + Dx + Ey + Fz, solve the 
Neumann problem on a solid cube, where the normal derivative is a given constant on each face: 

D.E. Uxx + Uyy + uzz = 0 (0 ~ x, y, z ~ 1) 

[ 
u (O,y,z) = aO ' u (x,O,z) = bO ' u (x,y,O) = Co 

B.C. x Y z 
ux(l,y,z) = a1 ' uy(x,l,z) = b1 ' uz(x,y,l) = c1 . 

Why is there no solution of this problem unless aO + bO + Co = a1 + b1 + c1 ? Would Fourier 

series or separation of variables be of any value in solving this problem? Why or why not? 

13. Find a formal solution of the problem 

2 D.E. Utt = a (uxx + Uyy) 0 ~ x, y ~ 1 

[
U(X,O,t) = 0, u(x,l,t) = 0 

B.C. 
u(O,y,t) = 0, u(l,y,t) = 0 

I.C. u(x,y,O) = 0, ut(x,y,O) = x(x-l)y(y-l) . 

14. The speed a of wave propagation in a rectangular drum is 600 feet/sec .. The lowest two 
frequencies of the drum are 300 and 400 cycles per second. What are the length and the width 
of the drum? 
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9.2 The Eigenfunction Viewpoint 

Here we introduce the concepts of eigenfunctions and eigenvalues of the Laplace operator. 
These concepts provide a unified viewpoint from which boundary-value problems for the heat and 
wave equations on arbitrary domains in any dimension can be understood. Moreover, these 
notions are independent of the type of coordinate system which is being used, and thus they 
provide a guiding principle when we study PDEs in spherical and cylindrical coordinates in 
subsequent sections. We also prove a convergence theorem for Fourier series in higher dimensions, 
and discuss higher--<limensional Fourier transforms. 

Eigenfunctions and eigenvalues of ~ 

Observe that while the functions 

f (x,y) = sin(~)sin(mi?) n,m L 

are not harmonic since they do not satisfy Laplace's equation, the Laplacian of f is n,m 

Thus, when the Laplace operator ~ = ~ + fi2 2 operates on the function 
Ox {)y 

constant multiple of this function, namely -A f n,mn,m 

f , the result is a n,m 

In general, functions g(x,y) which have the property that ~g + Ag = 0 for some constant A, 
are known as eigenfunctions of ~, provided g(x,y) is not identically zero. The constant A 
is called the eigenvalue associated with the eigenfunction g(x,y). 

Remark. "Eigen" is the German word for "self", and presumably the name comes from the fact 
that ~ sends such a function to itself, aside from a constant factor. Hence, (1) demonstrates 
that f (x,y) is an eigenfunction of ~ with eigenvalue A . Those who are familiar with the n,m n,m 
notion of eigenvalue from linear algebra should observe that -A is the eigenvalue of ~ n,m 
associated with f in the linear algebra sense (~f = -A f ). However, the above n,m n,m n,m n,m 
definition is more convenient for the present setting, since it is easier to refer to the nonnegative 
quantities A (as opposed to -A m) as being the eigenvalues. n,m n, 

Example 1. Show that if g(x,y) is any C2 eigenfunction of ~, with eigenvalue A ~ 0 , then 

(a) v(x,y,t) = be-Aktg(x,y) is a solution of the heat equation vt = k~v, and 

(b) u(x,y,t) = [bIcos(av'X t) + b2sin(av'X t)]g(x,y) solves the wave equation Utt = a2~u, 
where b, bI , and b2 are arbitrary constants. 
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Solution. Note that b..v = b..(be-Aktg) = be-Aktb..g = _be-AktAg = -AV, and similarly b..u = 
-AU. Thus, vt = _Abke-Aktg = -kAY = kb..v and Utt = _(a.[X)2u = -a2Au = a2b..u. 0 

This example shows that eigenfunctions of b.. can be used to construct solutions of the 
heat and wave equations. Indeed, all of the product solutions of these PDEs are of the form as in 
Example 1. Of course, solutions of Laplace's equation b..u = 0 are eigenfunctions with eigenvalue 
A = 0, and the solutions constructed in Example 1 are then steady-state solutions. In a problem 
with time-independent B.C., the solutions constructed in Example 1 will satisfy these B.C., 
provided the eigenfunction g(x,y) meets these B.C .. Note that all of these observations hold in 
any number of spatial dimensions. In particular, for dimension 1, the Laplace operator reduces to 

d2 ,whose eigenfunctions are of the form c1sin(bx) + c2cos(bx) (with eigenvalue b2) or 
dx2 

c1ebx + c2e-bx (with eigenvalue _b2). The B.C. which we dealt with in Chapters 3 and 5 led 

us to eigenfunctions and eigenvalues of a particular form depending on the B.C. (e.g., sin(;?), 

when u(O,t) = 0 and u(L,t) = 0). For heat and wave problems with homogeneous D.E. and 
B.C., our past strategy could be phrased in terms of eigenfunctions, in the following steps. 

1. Using separation of variables, find those eigenfunctions, say gn(x,y) with eigenvalues An 

(n = 1,2,3, ... ), which satisfy the B.C .. Then, as in Example 1, multiply gn(x,y) by the 

appropriate function of time to obtain a function un(x,y,t) which satisfies the D.E. and B.C .. 

2. Apply the superposition principle to form the more general solution l cnun(x,y,t) of the 

D.E. and B.C .. 

3. Approximate each function in the I.C. (e.g., initial temperature, or position and velocity) 
by a linear combination of eigenfunctions, say by computing Fourier coefficients. 

4. By substituting the sum l cnun(x,y,t) of product solutions into each I.C., determine 

the arbitrary constants in the time-dependent parts of the un(x,y,t) by equating coefficients 

with the coefficients found in step 3. 

Assuming that the eigenfunctions gn(x,y) in step 1 have been determined, the only potential 

difficulty remaining is Step 3. In broad terms, Fourier series (single, double or multiple) is the 
study of adequately representing functions in terms of linear combinations of eigenfunctions 
satisfying given linear, homogeneous B.C.. Indeed, Fourier series are often referred to as 
eigenfunction expansions. Although, there are theorems which prove the existence of 
eigenfunctions and the validity of eigenfunction expansions of reasonably nice functions, one major 
barrier to the approach is that it is difficult to find the eigenfunctions, when the region of a 
boundary-value problem is not of a standard shape, such as a rectangular box, a disk, a ball, a 
cylinder, etc. We will determine the eigenfunctions for boundary-value problems in the cases of 
balls and cylinders in Sections 9.3 - 9.5. 
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Remark. Fourier transforms may also be regarded as providing eigenfunction expansions when a 

continuous superposition (Le., an integral) of eigenfunctions eiex (with eigenvalues e2) is needed 
to represent certain functions on i~finite domains. For example, if f(x) is a rapidly decreasing 

function with Fourier transform f(e), then the Inversion Theorem (cf. Section 7.3) states that 
f(x) is given by 

f(x) = _1 [ f( e) eiex de , 
/E-oo 

which is a continuous superposition of the eigenfunctions eiex of~. 0 

(2) 

If one can obtain an eigenfunction expansion for the function in the I.C. for a heat problem 
with homogeneous B.C., then the solution of the problem is at hand. One just needs to mUltiply 
each eigenfunction in the expansion by the correct time-<iependent factor in Example l(a). For 
instance, if (2) is the "eigenfunction expansion" for an initial temperature f(x), then the 
associated hypothetical solution of the heat equation ut = kuxx is (noting that the eigenvalue 

for eiex is e2) 

= ~[ [[ eie(w-x) e-e2kt de] f(w) dw = _1_[ e-(w-x)2/(4kt) f(w) dw, 
-00 -00 .y'41iXt -00 

which is the solution found in Section 7.4. The same technique (but with multiple Fourier 
transforms) provides the higher~imensional version of this solution, namely (12) in Section 9.1. 
We could also use this technique to find the higher~imensional analogs of D'Alembert's formula 
for the wave equation on the plane or space, but there are easier ways (covered in Section 9.3) of 
obtaining these formulas. 

Example 2. Find an eigenfunction of ~ which is zero on the boundary of a square, but which is 
not a product of the form f(x)h(y). 

Solution. Note that if gl (x,y) and g2(x,y) are two eigenfunctions of ~ with the same 

eigenvalue A, then any linear combination c1g1 + c2g2 is also an eigenfunction with eigenvalue 

A. Indeed, using the linearity of ~,we have ~(c1 gl + c2g2) = c1 ~gl + c2~g2 
= -A(c1g1 + c2g2). Also observe that if gl and g2 are zero on the boundary of the square, 

then c1g1 + c2g2 also satisfies this boundary condition. In particular, consider the square 0 $ x, 

y $ 71" and let gl (x,y) = sin(nx)sin(my) and let g2(x,y) = sin(rnx)sin(ny) for unequal positive 

integers nand m. These are two eigenfunctions of ~ with common eigenvalue (n2 + m2). 

Thus, any linear combination of them will also be an eigenfunction with eigenvalue (n2 + m2). 
In particular let a be any constant in [0,271") and consider the linear combination 
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g(x,y) = cosa sin(nx)sin(my) + sina sin(rnx)sin(ny) . (3) 

Of course, when a = 0, 1r/2, 1r or 31r/2, this reduces to a product of the form f(x)h(y). However, 
for every other value of a in [0,2'Jr), g(x,y) cannot be put in this form (Why?). For 
definiteness, consider the case when n = 1, m = 2, and a = 31r/4. In this case, g(x,y) 

= [-sin(x)sin(2y) + sin(2x)sin(y)l/.J2 = .J2sin(x)sin(y)[--cos(y) + cos(x)l, which is zero not only 
on the boundary of the square, but also on the diagonal y = x, and nowhere else. A function of 
the form f(x)h(y) cannot vanish on this diagonal, unless it is identically 0 on the square 
(Why?). 0 

Nodal curves, symmetry breaking and eigenspaces 

The curves on which an eigenfunction g(x,y) is zero, are known as nodal curves. If A is the 

eigenvalue (Le., ~g + Ag = 0), then we form an associated solution, say cos(atv'X)g(x,y), of the 

wave equation Utt = a2 ~u, as in Example 1. Note that as the membrane vibrates in this mode, 

the points on the nodal curves remain fixed (Le., they do not move up and down as the membrane 

vibrates). If the ratio L 2 /M2 of the squares of the dimensions of a rectangular drum is 
irrational, then, by Example 5 of Section 9.1, no two harmonics have the same frequency (or 
equivalently, no two independent eigenfunctions have the same eigenvalue). In this case, the 
nodal curves of any eigenfunction consist of equally spaced horizontal and/or vertical line 

segments. If the ratio L 2 /M2 is rational (e.g., as with a square), then the nodal curves of various 
linear combinations of eigenfunctions with the same eigenvalue (e.g., (3)) can assume a wide 
variety of forms. For the linear combination (3) with n = 1 and m = 2, the nodal curves for 

various a are shown in Figure 1. The associated modes of vibration u(x,y,t) = cos(atJ5)g(x,y) 

are also graphed at a fixed time t = 1r/(a.j5). 

a=O a= 1r/8 a=1r/4 a=31r/8 a=1r/2 

1r Y 

x x x x 
L---------;1r=" 1r 1r 1r 

x 
1r 

Figure 1 
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When n = 1 and m = 3, more complicated patterns arise, as is shown in Figure 2. 

a=O a=7l'/16 
y 7l'Y 7l'Y 7l'Y 7l'Y 

o 
x x x x x 

a=77l'/16 a=7l'/2 a=57l'/8 a=37l'/4 a=77l'/8 

7l'y Y 7l'Y 7l'Y 7l'Y 

x x x x x 

Figure 2 

If a real physical square drum is vibrated at a frequency associated with several different modes, 
then it usually will settle into just one of the many possible modes, due to slight deviations from 
squareness, slight imperfections in the membrane, or some unknown cause. This is an example of 
the important notion of "spontaneous symmetry breaking". Even though a symmetry is 
theoretically precise, it is almost always broken in practice. Usually, if a domain has some 
symmetry, then one can conclude that many of the eigenvalues will have more than one 



582 Chapter 9 PDEs in Higher Dimensions 

eigenfunction, because under a symmetry operation which flips or rotates the domain without 
changing it, an eigenfunction is possibly converted to another eigenfunction with the same 
eigenvalue. For example, when the square is flipped about the diagonal y = x, the eigenfunction 
sin(nx)sin(my) is converted into sin(ny)sin(my), since flipping interchanges x and y. Since disks 
and balls have even higher degrees 0( symmetry, we expect to have even larger families of 
eigenfunctions (say vanishing on the boundary) which share a common eigenvalue of~. Each 
such family is known as the eigenspace associated with the eigenvalue. As we will see in Section 
9.5, the dimensions of the eigenspaces of the SchrMinger operator ~ + 1/ P (in 

three-dimensional space, where p = (x2 +l +z2) t are largely responsible for the periodicity 
occurring in the periodic table of elements. Thus, the eigenspace concept is very important, and 
we will have much more to say about it in subsequent sections. 

Multiple Fourier series and transforms 

Here we give a concise treatment of double Fourier series of functions f(x,y) on a rectangle 
R, given by -L ~ x ~ L, -M ~ y ~ M. Our discussion easily extends to the n-dimensional case. 
For two integrable complex-valued functions f(x,y) and g(x,y) on R, we define the inner product 

M L 
<f,g> = J J f(x,y)g(x,y) dxdy . 

-M -L 
(4) 

For (x,y) in R, define 

En m(x,y) = ei7r(nx/L + my/M) = ein7rX/ L eim1rJ'/M . 
, (5) 

It is easy to check that, for any integers n, m, p, q, we have 

[
0 if n f p or 

<E ,E > = 
n,m p,q 4LM if n = p and 

m f q 
(6) 

m=q 

i.e., the functions E form an orthogonal family of functions of norm-square 4LM. n,m 

Definition. The (complex) double Fourier series of a function f(x,y) defined on the rectangle 
R (0 ~ x ~ L, 0 ~ y ~ M) is the expression 

00 00 

FS f(x,y) = c ei7r(nx/L + my/M) 
n,m ' 

(7) 
n,m =--w n,m =--w 

where 

c = J..n. <i,E > = J..n.JM JL f(x,y)e-i7r(mx/L + ny/M) dx dy, (8) 
n,m 'iD1V! n,m 'iD1V! -M -L 

and E (x,y) is defined by (5), provided that all of these integrals exist. n,m 
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Note that formula (8) for c could be obtained formally by taking the inner product of n,m 
both sides of (7) with En m and applying the orthogonality result (6). In the sum (7) the , 
integers nand m run independently over all integers. The astute reader may wonder if the series 
(7) will converge and whether the same result is obtained regardless of the order in which the 
terms are added. Although the order of addition does not matter in finite sums, it can make a 
difference in infinite sums. For example, 7r{4 = 1 - 1/3 + 1/5 - 1/7 ... , but rewriting this sum in 
the form (1 + 1/5) - 1/3 + (1/9 + 1/13 - 1/7 + (1/17 + 1/21) - 1/11 + ... , we get a value 
larger than 13/15 which is greater than 7r/4. However, if the sum of the absolute values (or 
magnitudes, if the terms are complex numbers) of the terms of an infinite series is finite (Le. the 
series is absolutely convergent), then the order in which the terms are added will not matter. The 
trouble with the series 1 - 1/3 + 1/5 - ... is that it is not absolutely convergent (Le., 1 + 1/3 

+ 1/5 + ... = (0). The Fourier series (7) is absolutely convergent, if the sum \ I c I of the £ n,m 
magnitudes of all of the coefficients is finite. In this case, the order in which the terms of the 
Fourier series are added will be immaterial. Thus, in the following theorem, we first give criteria 

for the function f(x,y), which guarantee that \ I c I < 00. £ n,m 

Theorem 1 (Convergence Theorem for Double Fourier Series). Let f(x,y) be aCk function 
(k ~ 3) on the rectangle -L ~ x ~ L, -M ~ y ~ M. Let K be the largest of the maxima of 

I rtJ/8xk I and I rtf/ ayk I on this rectangle. Assume that for each j = 0, 1, ... , k-1, we have 

and (9) 

Then, for any positive integer N, 

\ I I < 27r K ({1/7r)k max{Lk,Mk), 
£ cn,m (k-2) Nk- 2 

or I n I > N 

(10) 

Iml >N 

where the cn m are the Fourier coefficients .J.r <i,E >. In particular, \ I c I < 00. 
, 'iL1V! n,m £ n,m 

Also, for the N-th partial sum of the double Fourier series of f, obtained by summing m and n 
from -N to N, we have 

I
N I k k k f(x,y) _ \ c ei7r(nx/L + my/M) ~ 27r K ({1/7r) max~L ,M ) , 
£ n,m (k-2)Nk-

n,m= -N 

(11) 

(Le., these partial sums converge uniformly to the function f(x,y) on the rectangle). 

Proof. Integrating by parts repeatedly with respect to x and using the equations (9) to eliminate 
the endpoint evaluations, we have 
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1 JM JL c = ~ f(x,y) E (x,y) dx dy = ... 
n,m 'iLlY! -M -L n,m 

(12) 

1 [L] k JM J L [ rtf ] = 4m nm -M -L axk En,m(x,y) dx dy, n ~ O. 

A similar result holds, if we integrate by parts with respect to y. Thus, by the definition of K, 

ICn,ml ~ K[ 1~111' t and ICn,ml ~ K[ 1~111' t, n, m ~ O. (13) 

We may replace the numerators Land M in (13) by the larger (Le., by max(L,M)), and then 
choose the stronger of the two resulting inequalities (i.e., the one with the larger denominator) to 
conclude that 

k k 
I c I < K [ max ( L,M) ] < K [E] max (L k Mk) [n2 + m2]-k/2 

n,m - 11' max(lml, I nl) - 11" , 
(14) 

since [(n2 + m2)/2]1/2 ~ max( Iml, Inl). Using a two-dimensional integral comparison, we have 

L [n2 + m2]-k/2 < J J [u 2 + v2]-k/2 du dv 

I n I > N u2 + v2 > N2 
or Iml > N 

J
211' Joo k 2 k = 0 N r- r dr dB = 211'N - /(k-2) . 

Combining (14) and (15), we obtain the result (10). 
Once we prove that FS f(x,y) = f(x,y), the left side of (11) becomes 

or I n I > N 

Iml > N 

c ei7r(nx/L + my/M) 
n,m < L ICn m l , , 

or I n I > N 
Iml >N 

(15) 

and so (11) would then follow from (10). Thus, it remains to prove that FS f(x,y) = f(x,y). 

Note that since we have assumed that f(x,y) is Ck (k ~ 3) with the endpoint conditions (9) 
holding, we certainly know that for each fixed y in [-M,M], f(x,y) (as a function of x) amply 
satisfies the conditions of any of the convergence theorems of Section 4.2. Thus we know that 

() ~ ( ) in ?!'X/L () 1 JL f( ) -in ?!'X/ L f x,y = l gn y e ,where gn y = 2L X,y e dx , 
Inl = 0 -L 

(16) 
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According to Leibniz's rule, gn(y) is certainly C2 and, using (9), we have gn(-M) = gn(M) and 

g~(-M) = g~(M). Thus, gn(y) is also equal to its Fourier series, as a function of y, i.e., 

00 

gn(y) = l Cn m eim'ry/M, where , 
Iml =0 

C 1 JM ( ) -im'ry/M d n m = 2M gn y e y = cn m . 
'-M ' 

Hence, substituting this expression for gn (y) into (16), 

00 00 

f(x,y) = l [ l cn,m eim'ry /M ] eill7rx/L 

Inl = 0 Iml = 0 

FS f(x,y) , 

where we have implicitly used the fact that \' I c I < 00 (i.e., in the last equality, we needed to l n,m 
know that FS f(x,y) is independent of any reordering of terms). 0 

Remarks. Through the use of Euler's formula 

the complex Fourier series can be written in terms of the four possible products 

Moreover, if the function f(x,y) (defined on the rectangle -L ~ x ~ L, -M ~ y ~ M) is 
real-valued, then all of the imaginary terms cancel in the complex Fourier series, leaving only a 
series involving the terms (17) with real coefficients. If the function f(x,y) is odd in x and odd 

in y, then only the terms sin(T)sin(m MY) will be involved. Thus, if one desires to represent a 

function defined on the rectangle 0 ~ x ~ L, 0 ~ y ~ M by a double sine series, one can extend the 
function oddly in x and oddly in y, to the larger rectangle -L ~ x ~ L, -M ~ Y ~ M, and 
compute the complex Fourier series of this extension. This is entirely equivalent to computing the 
double Fourier sine series of the unextended function, using formula (10) of Section 9.1. In 
general, by using different types of extensions, all of the various double Fourier series are seen to 
be special cases of the complex Fourier series for suitably extended functions. All of the above 
treatment of double Fourier series can be easily modified to handle the case of triple Fourier series 
(or multiple Fourier series in any finite dimension). 0 
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Double Fourier transforms 

Suppose that f(x,y) is a function defined for all (x,y), and suppose that f(x,y) is 

absolutely integrable (Le., tJ: I f(x,y) I dx dy < (0). Then the double Fourier transform 

of f(x,y) is the function 

(18) 

, 

Formally, f( ~,1]) can also be obtained by taking the Fourier transform first in the variable x and 
then taking the Fourier transform of the result with respect to y, Le., 

In other words, 

, " 

f(~,1]) = [f(~,y)] (1]). 

The inverse double Fourier transform of an absolutely integrable function g(~, 1]) is the 
function 

(19) 

(20) 

Clearly, g(x,y) = [g(x,1])]" (y). By formally applying twice the Inversion Theorem (cf. Section 
7.3) for one-dimensional Fourier transforms, we can obtain formally the Inversion Theorem for 
double Fourier transforms, namely 

(21) 

One can also obtain formally the (double) Conv9lution Theo~em Jrom a two-fold application of 

the single variable Convolution Theorem ( [hg] (~) = /Fir f (~)g(~) ), as follows. For "nice", 
suitably decaying functions f(x,y) and h(x,y), we have 

[f*h](x,y) == [ [ f(x-w,y-z)h(w,z) dw dz . 
--00 --00 

(22) 
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Then 

= _1 [ [ [_1 [ [[ f(x-w,y-z)h(w,z) dw ] e-i(x dx ] dZ] e-iTfY dy 
/2i --00 --00 ..fFi --00 --00 

where we have formally used Fubini's theorem (cf. Appendix A.3), the single-variable 
Convolution Theorem, and (19). 

Note that all of these formal manipulations certainly hold in the case where all functions in 
sight are rapidly decreasing. In using Fourier transform methods to find hypothetical solutions of 
PDEs, there is no advantage in establishing the most general circumstances under which the 
Inversion and Convolution Theorems hold, since such solutions must be checked independently. 
Also, the above definitions and results readily extend to the case of Fourier transforms in an 
arbitrary finite dimension n. 
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Summary 9.2 

1. Eigenfunctions and eigenvalues: Functions g(x,y) such that ~g + Ag = 0, for some 
constant A, are known as eigenfunctions of ~, provided that g(x,y) is not identically zero. The 
constant A is called the eigenvalue associated with the eigenfunction g(x,y). 

2. Multiple Fourier series: The (complex) double Fourier series of a function f(x,y) defined on 
the rectangle R, -L ~ x ~ L, -M ~ y ~ M , is the expression 

00 00 

FS f(x,y) = ei1r(nx/L + my/M) 
cnm ' , 

n,m =-00 n,m =-00 

where 

= 1 <fE > = 1 JM JL f( ) -ill'(mx/L + ny/M) d d cn m LfLM ' n m LfLM x,y e x y, 
, , -M -L 

provided all of the integrals exist, where E (x,y) = eill'(nx/L + my/M). Theorem 1 gives 
n,m 

criteria under which the series FS f(x,y) converges uniformly to f(x,y) on R. 

3. Double Fourier transforms: Suppose that f(x,y) is a function defined for all (x,y), and 

suppose that f(x,y) is absolutely integrable (Le., U-001f(X,y) I dx dy < 00). Then the double 

Fourier transform of f(x,y) is the function 

The inverse double Fourier transform of an absolutely integrable function g( e, 77) is the function 

g(x,y) = 2~ [ [ g(e,77) ei(ex + T/Y) de d77· 
-00 -00 

By formally applying twice the Inversion Theorem for one-dimensional Fourier transforms, we 
can obtain formally the Inversion Theorem for double Fourier transforms, namely 

f(x,y) = [f(e,77)r(x,y) = 2~ [ [ f(e,77) e-i(ex + T/Y) de d77· 
-00 -00 

One can also obtain formally the following (double) Convolution Theorem from a two-fold 
application of the single variable Convolution Theorem. 

If [f*h](x,y) == [ [ f(x-w,y-z)h(w,z) dw dz , then [f*h] '(e,77) 
-00 -00 

, , 

211' f({,77) h(e,77). 
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Exercises 9.2 

1. ( a) Find all of the eigenfunctions f( x,y) of A = fil / fJx2 + fill a-i on the rectangle R, 
o ~ x ~ 3, 0 ~ y ~ 2 , which satisfy the boundary conditions fx(O,y) = fx(3,y) = 0 (0 ~ y ~ 2) and 

fy(x,O) = fy(x,2) = 0 (0 ~ x ~ 3). 

(b) For each of the eigenfunctions found in part (a), construct a corresponding solution of the 
heat equation ut = kAu on R. State an initial/boundary-value problem whose solution is a 

linear combination of these constructed solutions. 

(c) Do part (b) again, but now in relation to the wave equation Utt = a2Au on R. 

2. (a) What is the relationship between the frequencies of the harmonics of a rectangular drum 
and the eigenvalues for the eigenfunctions of the Laplace operator, which are zero on the boundary 
of the rectangle. 

(b) Let Al and A2 be the smallest two distinct eigenvalues for the eigenfunctions in part (a). 

Show that the length and width of the drum are determined by Al and A2. Prove that 

! < Al / A2 ~ g, with the upper bound g only being achieved for the square drum. 

Remark. In general, it is unknown whether the precise shape of a drum (not necessarily 
rectangular) can be determined, even if one knows all of the eigenvalues (or all the frequencies). 
For further reading on this subject, we recommend the article: Marc Kac, Can one hear the shape 
of a drum ? American Mathematical Monthly 73 (1966) pp. 1-23. 

3. Give an example of a rectangular drum which is not a square drum, but which has two linearly 
independent (Le., one is not a constant times the other) eigenfunctions with the same eigenvalue. 
Hint. See Example 5 of Section 9.1. There are infinitely many possible examples. 

4. Consider a two-dimensional heat flow in the unit square 0 ~ x, y ~ 1 with insulated edges. 
Explain why the maximum of the temperature u(x,y,t) with u(x,y,O) = COS(31rX)COS(1r)') will 
approach zero faster (as t -I (0) than the maximum of the temperature v(x,y,t) with v(x,y,O) 
= cos(21rx)cos(21r)'). In general, how does the size of the eigenvalue of an initial eigenfunction 
temperature distribution affect the relative rate of decline of the maximum temperature? 

5. Use Theorem 1 to state and prove a uniform convergence theorem for the double Fourier sine 
series of a suitable function g(x,y) defined on the rectangle 0 ~ x ~ L, 0 ~ y ~ M. In particular, 

explain why one must assume gxx(O+'Y) = 0 (0 ~ y ~ M) in order to use Theorem 1. 

6. State and prove the analog of the convergence theorem in this section, in the case of triple 
complex Fourier series. 
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7. By means of formal application of the properties of double Fourier transforms derive the 
hypothetical solution (12) of Section 9.1 for the heat problem 

D.E. ut = k(uxx + Uyy) -w < x,y < 00, t > 0 

I.e. u(x,y,O) = F(x,y) , 

for a given absolutely integrable, continuous function F(x,y). 

8. (a) State a Maximum Principle for the heat equation on a rectangular solid. 

(b) Why is it important to have such a result if the initial and/or boundary temperatures are 
only approximately known. 

(c) Mimic the proof of the Maximum Principle for the one-dimensional heat equation in Section 
3.2, in order to establish the Maximum Principle that you stated in part (a). Does essentially the 
same proof work for a heat flow in a rectangular solid? 

9. By means of formal calculations, verify Parseval's equality for double Fourier Transforms: 

[ [ f(x,y)g(x,y) dx dy = [ [ f(~,7])~(~,7]) d~ d7]. 
--00 --00 --00 --00 

Hint. You may apply Parseval's equality to each variable separately. Alternatively, write f(x,y) 

and in terms of f(~,7]) using the Inversion Theorem, and then interchange the order of 
integration. 

10. (a) State and prove Bessel's inequality for double Fourier series on a rectangle. 

(b) State and prove Parseval's equality for functions f(x,y) as in Theorem 1. 

Hint. For part (a), mimick the proof of Bessel's inequality in the single variable case (d. Section 
4.2), and for part (b) use the ideas in Problems 5 and 7 of Exercises 4.2. 
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9.3 PDEs in Spherical Coordinates 

In Section 6.2, we have seen that Laplace's equation Uxx + Uyy = 0 in dimension 2 

retains its form under a rotational change of coordinates. The same is true for Laplace's equation 
in space, since any rotation of space is the composition of rotations about the x, y and z axes, 
and each of these rotations preserves the form by the two-dimensional result. Thus, we expect 
that by viewing Laplace's equation ~u == Uxx + Uyy + uzz = 0 (or the three--<iimensional heat 

equation ut = k~u or the wave equation Utt = a2 ~u) in terms of spherical coordinates, we can 

exploit this rotational symmetry. Also, many natural or synthetic objects have approximately 
spherical shapes (e.g., the earth, the sun, bubbles, eyeballs, tumors, tennis balls, balloons, drops, 
oranges, certain cells and viruses, atoms, etc.), and the use of spherical coordinates for 
boundary-value problems for these objects is indispensable. 

The Laplace operator in spherical coordinates - A geometric construction 

In Figure 1 below, P is some arbitrary point (other than the origin 0), p (rho) is the 
distance of P to the origin, tp is the angle (0 ~ tp $ 7r) from the positive z-axis to the segment 
OP, and 0 is the angle (0 ~ 0 < 27r) from the positive x-axis and the projection OP I of OP 
onto the xy-plane. 

z 

x 

Figure 1 

The spherical coordinates of Pare (p,tp,O). Observe that when P is on the xy-plane the 
spherical coordinates of Pare (r,7r/2,0). Thus, spherical coordinates are a natural extension of 
polar coordinates. In many books in applied fields, 0 is taken to be the angle from the z-axis 
(Le., tp and 0 are switched in Figure 1). It is good to be aware of this source of confusion. 
Indeed, many books use (r,O) for polar coordinates and later define 0 to be the angle from the 
z-axis, when spherical coordinates are introduced! The transformation equations connecting 
spherical with cartesian coordinates are 
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x = P sinip cosO 
2 2 2 I 

P = (x + y + z )1 

ip = arccos [ 2 z 2 
+ Z2)~] (x2+y2+z2 * 0) Y = P sinip sinO 

(x + y 
(1) 

u~ 1 
arccos [ 2 x y2)~ ] 

(x2+y2 * 0) z = P cOSip , Y > 0 
(x + 

[ -x arccos 2 21 ]+11", y<o. 
(x + y)1 

Consider a solid region of the form PI ~ P ~ P2 , ipl ~ ip ~ ip2' 01 ~ 0 ~ O2, We call this a 

spherical solid. The volume of this solid is given by 

J
02 Jip2 JP2 2 1 3 3 P sinip dp dip dO = 3" (P2 - PI )[COS(ipl) - COS(ip2)] (02 - 01) • 

01 ipl PI 

In particular, we get 47rp} /3 for the sphere 0 ~ P ~ P2 , 0 ~ 0 ~ 211", 0 ~ ip ~ 11". This integral is 

the result of summing up all of the infinitesimal volumes, dV = (dp)(psinipdO)(pdip) 

= p2sinip dpdipdO, of the small, nearly rectangular, spherical solids shown in Figure 1. The 

quantity p2sinip dp dip dO is known as the spherical volume element and it must be included 
when computing triple integrals of functions in spherical coordinates (just as rdrdO must be 
included when computing double integrals in polar coordinates). We now prove the formula which 
allows the computation of the Laplacian of a function in terms of spherical coordinates. While one 
can prove the following result by applying the chain rule, our proof provides some geometric 
insight which we will need in the next subsection. 

Proposition 1 (The Laplacian in spherical coordinates). Let u(x,y,z) be a C2 function 
defined in a region of xyz-space. If u is expressed in terms of spherical coordinates, say 
u(x,y,z) = U(p,ip,O), then for psinip * 0, 

-2 [ 2 1. 1 1 
Uxx + Uyy + Uzz = P (p Up) P + ~ (smip U ip) ip + ~ U OOJ 

sm ip 

-1 -2 [ 1] = U pp + 2p Up + P U ipip + cot ip U ip + -. -2- U 00 
sm ip 

(2) 
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Proof. The Laplacian of a function f at any point P can be computed by forming the sum of 
the second derivatives at P of the function along three straight lines, parametrized by arclength 
and intersecting orthogonally at P. The variable P I?arametrizes the radial line through P with 
respect to arclength, and indeed the first term in (2) is the second derivative of U along this 
line. For the other two lines, we choose the tangent lines to the the curves of constant latitude 
and longitude (parametrized by ° and cp, respectively). Let (p(t),O(t),cp(t)) be the spherical 
coordinates of the point at distance t {say, in the downward direction) along the straight line 
which is tangent to the curve of longitude through the point (Po, 00' CPo), CPo f. 0 or 7r. We have 

p(t)2 = t2 + P02, O(t):: °0 , and sin(cp(t)-cpo) = t/p(t). The second derivative of U along this 

line is then 

Now 2pp' = 2t and 2p,2 + 2pp" = 2. Thus, at t = 0, we have p' = 0 and p" = l/po. Also, 

cos(cp - CPo) cp' = p-l - tp-2 p' and -sin(cp - CPo)cp,2 + cos(cp - CPo)cp" = _2p-2p' + 2p-3p,2 

- tp-2p". Thus, at t = 0, we get cp' = p~1 and cp" = o. Hence, (3) becomes 

-1 -2 
Po Up + Po U cpcp . (4) 

It remains to show that the second derivative of U along the straight line tangent to the curve of 
constant latitude through (Po, 00' CPo) is 

-1 -2 ( -2 -2( ) Po Up + Po cot CPO) U cp + Po sin CPo U 00 . (5) 

For this line, we still have p(t)2 = P02 + t2 and sin(O(t) - 00) = t/[p(t)sin(cpo)] and (using 

(1)) cos(CP(t)) = Pocos(CPo)/p(t). Thus, at t = 0, again p' = 0, p" = Po-I, 0' = [posin(Oo)]-I, and 

(j" = 0, as before. To compute cp' (0) and cp"(O), we first note that -sin( cp)cp' 
= Pocos(CPo)[_p-2p'] and -eos(cp)cp,2 + -sin(cp) cp" = Pocos(CPo)[2p-3p,2 - p-2p"]. Thus, at t = 

0, we have cp' = 0 and cp" = p~2cot( CPo). Putting these values into (3), we obtain (5), and 

adding (4) and (5) to U pp , we obtain equation (2). 0 

Example 1. The function u(x,y,z) = xyz is clearly harmonic (Le., ~u = 0), but rewrite u(x,y,z) 
as a function U(p,cp,O) in spherical coordinates and verify that the right side of (2) is o. 

Solution. Using (1), u(x,y,z) = U(p,cp,O) = p3sin2cp coscp cosO sinO = ip3sin2cp coscp sin20. Thus, 
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= 6psin2 rpcosrpsin2 0 + p [(2sinrpcos2'P - sin3 'P) 'P + cot'P(2sinrpcos2'P - sin3 'P)] ~sin20 - 2pcosrpsin20 

= 6psin2 rpcosrpsin20 + p [(2sin'P - 3sin3 'P) 'P + cot'P(2sinrpcos2'P - sin3 'P)] ~sin20 - 2pcosrpsin20. 

= 6psin2 rpcos rpsin20 + p [2COS'P - 9sin2rpcos'P + (2cos3'P - cosrpsin2'P)] ~sin20 - 2pcosrpsin20 

= 6psin2 rpcosrpsin2 0 + p [-2COS'P - 9sin2 rpcoS'P + (2 - 3sin2 'P)cos'P] ~sin20 

= 6psin2rpcosrpsin20- 6psin2rpcosrpsin20 = O. 0 

The Laplace operator ~s on the unit sphere 

In the proof of Proposition 1, we saw that the Laplacian in spherical coordinates splits into 
three parts which correspond to the second derivatives of U along lines which are tangent to the 
coordinate curves parametrized by p, 'P, and 0: 

This provides a geometrical interpretation of the otherwise geometrically obscure terms in (2). If 
we have a function f( 'P,O) that is originally defined just on the unit sphere which is parametrized 
by 'P and 0, then we can extend this function to all of space outside of the origin, by defining 

f(p,'P,O) == f( 'P,O) (i.e., extend the function constantly along the normal rays to the sphere). The 

definition of the Laplace operator ~s' for C2 functions f( 'P,O) on the sphere p = 1, is 

~i( 'P,O) = ~f(p,'P,O) I = si~{," [sin'P f 1 + ~ fOO . 
p = 1 y 'P' 'P sm 'P 

(7) 

According to (6) with U = f, the Laplacian ~/ at a point P on the sphere is the sum of the 

second derivatives of f along a pair of tangent lines intersecting orthogonally at P. If the lines 
are rotated, the sum of the second derivatives is invariant. Thus, despite appearances, the 
expression (7) will have a well-defined limit, even as 'P approaches 0 or 11' (i.e., tb.e Laplacian 

of a C2 function on a sphere is continuous, since the Laplacian can be computed geometrically in 
the same way at each point). In other words, the apparent singularity of ~/ in (7) at 'P = 0 

and 'P = 11' is always removable if f is a C2 function on the sphere (cf. Example 2 below). The 
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somewhat complicated form (~ of the Laplacian is due to the fact that the circles of latitude have 
lengths 21rSincp which depen on cpo In other words, the asymmetry in formula (7) for ~s is 

necessary to counteract the asymmetry in the coordinates ( cp, 0) which depend on a selection of 
north and south poles. 0 

Example 2. For (x,y,z) on the unit sphere x2 + i + z2 = 1 (or p = 1), let u(x,y,z) = xyz. 
Write this function in terms of the coordinates (cp,O) on the sphere, say u(x,y,Z) = f( cp,O). 
Compute ~/, and show that ~/ + 12f = o. 

Solution. From Example 1, we know that for (x,y,z) unrestricted, u(x,y,z) = U(p,cp,O) 
= ~p3sin2cp coscp sin20. Since p = 1 on the unit sphere, f( cp,O) = ~in2cp coscp sin20. In order to 

compute ~/, note that (7) implies that we can simply set p = 1, and compute the Laplacian (in 

space) of F(p,cp,O) = f( cp,O). The computation is exactly as in Example 1, except that p = 1 and 

the part Up + 2p -1U P = 6pcoscp sin2cp sin20 no longer appears, because F does not depend on p. 

Thus, the computation in Example 1 leads to the result ~/ = --6sin2cp coscp sin20 = -12f. 0 

Definition. A C2 function f( cp, 0) ~ 0 defined on the unit sphere, such that ~sf + "\f = 0 for 

some constant ..\, is known as a spherical harmonic. 

In other words, the spherical harmonics are the eigenfunctions of the Laplace operator ~s on the 

unit sphere, and the associated constants ..\ are the eigenvalues of ~s. In Example 2, we found 

that tcoscp sin2cp sin20 is a spherical harmonic with eigenvalue 12. 

Example 3. Let f = f( cp,O) be a C2 function defined on the sphere, which satisfies ~/ + ..\f = O. 

If ..\ < 0, then show that f:: 0, and if ..\ = 0, show that f must be constant. In other words, 
show that the eigenvalues of ~s are nonnegative, and the only eigenfunctions (spherical 

harmonics) with eigenvalue 0 are nonzero constant functions. 

Solution. By assumption, "\f2 = -f~l If we integrate both sides over the sphere, we obtain 

..\ J: 1r J: f( cp,0)2 sincp dcp dO = - J: 1r J: f( cp,O) [ [sincp fJcp + si!cp fOO] dcp dO 

= - J: 1r J: f( cp,O) ~ [ sincp fcp] dcp dO - J: si!cp [ J: 1r 
f fOO dO ] dcp 
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= - f sin'P fin 1'P=1r + J21r J1r (f,)2 sin'P d'P dO - J1r si~ [(f fO) I 0=21r - J21r (fO)2 dO] d'P 
'Y '1'=0 0 0 'Y 0 'I' 0=0 0 

= J1r t1r [(f'P)2 + -.\- (fO)2] sin'P dO d'P ~ 0, 
o 0 sm 'I' 

where we have integrated by parts with respect to both 'I' and 0, and we have used the facts that 
f fO is a periodic function of 0 and sin'P ~ 0 on [O,1rj. In order to justify switching the order of 

integration, we have used the fact that ~i( '1',0) must extend continuously to 'I' = 0 and 'I' = 1r, 

since ~i is a continuous function on the sphere for the C2 function f. The quantity 

(f'P)2 + sin -2'1' (fO)2 is the square of the length of the gradient Vf == f'P e'P + (sin'P)-lfO eO ' 

where e'P and eO are the unit vectors in the increasing 'I' and 0 directions. In other words, 

writing dA = sinrp d'P dO, and denoting the integral over the sphere by J S ' we have shown 

" J Sf2 dA = - Jsf ~i dA = J s IIVfll 2 dA ~ O. (8) 

Thus, if " is negative, then f == 0 (Why?). Moreover, if ,,= 0, then IIVfll = 0, in which case f 
must be constant (Why?). 0 

Remark. In Section 9.4, we will find all of the spherical harmonics. There are infinitely many 
spherical harmonics, and each of them is a polynomial in cos '1', sin'P, cosO and/or sinO. Moreover, 
we show that not only are the eigenvalues of ~s nonnegative, but also they must be of the form 

" = n(n+ 1) for some n = 0, 1, 2, 3, .... (Note that ,,= 12 = 3(3+1), for the spherical harmonic 

in Example 2.) These eigenvalues should be compared with the eigenvalues n2 (n = 0, 1, 2, ... ) 

for the Laplace operator l? / arr, on the unit circle, where the eigenfunctions are sin(nO) and 
cos(nO). The eigenvalues n(n+1) of ~s arise in the quantum mechanics of the atom. Indeed, in 

quantum mechanics, the operator -h2~s (where h = h/(21r) and h ~ 6.6 x 10-27 erg·sec is 

Planck's constant) is known as the square of the orbital angular momentum, and it operates on 

the SchrOdinger wave function. The eigenvalues of h2~s are usually denoted by h2£.(£.+1), 

£. = 0, 1, 2, ... , and they are interpreted as the possible discrete measurements of the square of the 
length of the orbital angular momentum vector for an electron in an atom. We consider the 
quantum mechanics of the electron in a hydrogen atom in more detail in Section 9.5. 0 
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Eigenfunctions of the Laplace operator in space 

We have seen in Section 9.2 that the eigenfunctions of the Laplace operator can be used to 
easily form solutions of the heat and wave equations. Here we seek eigenfunctions F (such that 
~F + cF = 0 for some constant c) which are of the form F(p,'P,8) = R(p)f( 8,'1'). According to 
equations (2) and (7), we have 

= p-2[f(8,'P) (p2R/(p))' + R(P)[si~'P (sin'Pf'P)'P + ~f881l 
sm 'I' ~ 

= p-2[f(8,'P) (p2R,(p))' + R(p) ~/] . 

Thus, the eigenfunction equation ~F + cF = 0 becomes 

p-2[(p2R'(p))'f('P,8) + R(p)~/('P,8)] + cR(p)f('P,8) = 0 

or 

(p2R,(p))' 2 
+ cp 

R(p) 

Each side of this equation must be a constant, say A. Thus, we arrive at the two equations 

and 
(p2R,(p))' + (cp2 - A)R(p) = 0 

~i( '1', 8) + Af( '1',8) = 0 . 

(9) 

(10) 

(11 ) 

In particular, this shows that the angular part, f('P,8), of the function F = R(p)f('P,8) must be an 
eigenfunction (with some eigenvalue A) of the Laplace operator ~s on the unit sphere (Le., 

f( '1', 8) must be a spherical harmonic). In summary, we have the following theorem. 

Theorem 1. F(p,'P,8) = R(p)f( '1',8) is an eigenfunction of the Laplace operator ~ (on space) 
with eigenvalue c (Le., ~F + cF = 0) if and only if f( '1',8) is a spherical harmonic with 
eigenvalue A (Le., ~sf + Af = 0), and R(p) is a solution of the equation (lO). 

Remark. The eigenfunction equation ~F + cF = 0 is known as the Helmholtz equation. 
[German physiologist and physicist Hermann Ludwig Ferdinand von Helmholtz (1821-1894) made 
fundamental advances in electrical theory, optics and mathematics. He was the first to measure 
the speed of nerve impulses.] 0 
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Recall that l/p defines a harmonic function for p > o. Thus,l/p must be a solution of 
(10), when c = 0 and ~ = o. Thus, it is natural to try a solution of the form R(p) = g(p)/p, 
when c is arbitrary. Then, we have (p2R,(p))' = (pg'(p) - g(p))' = pg"(p). Thus, (10) 
becomes pg"(p) + (cp - ~/ p)g(p) = 0, and we have 

R(p) = g(p)/ p , if g"(p) + (c - ~p -2)g(p) = 0 . (12) 

For now, we consider two cases, namely ~ = 0 and c = o. When c = 0, the form of the 

equation g" - ~p -2g = 0 suggests that we try a solution of the form g(p) = pm. Then we obtain 

[m(m-1) - ~]pm-2 = o. We will eventually find that the eigenvalues ~ for ~s are of the form 

(n+1)n for n = 0, 1,2, .... Thus, when c = 0, we take m = n+1 and -n, and 

Rn(p) = a~pn + bnP-(n+1) for c = 0 and ~n = n(n+1), n = 0,1, ... . (13) 

When ~ = 0 and c = ±1, we obtain, from (12), that the functions 

RO(p) = (aoeP + boe-P)/p ~ = 0, c =-1 

R! (p) = [aOcos(p) + bOsin(p)]/ p = ~ sin(p + 8) ~ = 0, c = 1 , 

(14) 

satisfy (10), where aO ' bo ,A and 8 are arbitrary constants. For C"1 0, say c = ±b2 for 

b> 0, we have two solutions R!(bp) and RO(bp) of (10). Indeed, it is a general fact that if 

R(p)f(rp,O) is an eigenfunction of ~ with eigenvalue ±1, then R(bp)f(rp, O) will be an 

eigenfunction with eigenvalue ±b2 (cf. Problem 4). The formula for the general solution of (10), 

in the general case (~ = n(n+1), n = 0, 1,2, ... , c = ±b2 "1 0), is 

(15) 

We derive this formula in Section 9.4 (cf. Theorem 5). 

Example.( (Radial heat and wave equations in space). Find all solutions (valid for p > 0), of the 
three-dimensional heat and wave equations, which are of the form R(p)T(t), and which are 
bounded as t and p approach +00. 

2 Solution. Substituting R(p)T(t) into the heat and wave equations ut = k~u and Utt = a ~u 
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respectively, and separating variables, we obtain 

T' 
IT = ~R/R =-c and 

Til 
~=~R/R=-c. 
a T 

599 

Thus, R(p) must be an eigenfunction of ~ with eigenvalue c. By Theorem 1, R(p) must be one 

of the functions R~(bp) with c = ±b2 * 0, or a steady-state solution Ap-l + B when c = O. 

In view of the boundedness condition, we obtain (with arbitrary constants A, "I and 0) 

2 
c = b2 > 0, for the heat equation: -1 ( -b kt (16) u = Ap sin bp+o) e 

and 

[ AF' e-b(p+at) c = _b2 < 0 (17) 
for the wave equation: 

u = Ap-lsin (bp+o)sin(bat+"I) c = +b2 > 0, (18) 

and for both equations, there is the steady-state solution when c = O. The solutions (16) [or 

(18)], which are COO only when 0 = 0, can be used to solve heat [or wave] problems where the 
temperature [or wave amplitude] is assumed to be independent of cp and 0, say in a homogeneous 
ball whose spherical boundary is insulated or maintained at a constant temperature [or whose 
amplitude has vanishing normal derivative or is constant on the boundary] and whose initial 
temperature distribution [or initial amplitude and velocity distributions] depend(s) only on p (cf. 
Example 5 below and Problems 8 - 10). Initial data which depend on cp or ° will be handled 
through the use of spherical harmonics with A = n(n+l) and n > 0 (cf. Example 6 and 
Problems 17 - 20 of Section 9.4). It is interesting to note that at each time t, solution (17) is 

proportional to the famous Yukawa potential p -Ie -bp for the short range nuclear force, as 

opposed to the coulomb or gravitational potential p -1. 0 

Remark. From the considerations leading to (12), we see that if we assume solutions of the form 

U(p,t) = g(p,t)/p, then the heat equation Ut = kp-2(p2Up)p becomes gt = kgpp , while the 

wave equation Utt = a2p-2(p2Up)p becomes gtt = a2gpp' Thus, if it is known that the solution 

of a certain heat or wave problem has no angular dependence, then such problems reduce to the 
on~imensional cases considered in Chapters 3 and 5, as is illustrated in Example 5 below. 
However, if a problem has angular dependence in the B.C. or I.C., then this technique fails, and a 
more general approach involving spherical harmonics may be needed. 

Example 5 (Temperature in a ball). Consider a solid, homogeneous ball of diameter 1, and with 
heat diffusivity constant k. The spherical surface of the ball is maintained at temperature 0 for 
t > 0, and it has a constant initial temperature distribution U(p,O) = 100· C. Find a formal 
series solution for the temperature U(p,cp,O,t). 

Solution. Since there is no angular dependence in the boundary condition or in the initial 
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temperature, the formal solution U(p,t) does not involve It' and 0 and it formally solves 

-2( 2 ) D.E. Ut = kp p Up P 

B.C. U(~,t) = 0 

I.C. U(p,O) = 100 . 

Writing U(p,t) = g(p,t)/p, according to the above remark, this problem is equivalent to 

D.E. gt = kgpp 0 ~ p ~ 1/2, t ~ 0 

B.C. g(O,t) = 0 , g(~,t) = 0 

I.C. g(p,O) = lOOp. 

This new problem is a familiar one-dimensional problem. We expand g(p,O) = lOOp as a Fourier 

sine series on [O,~J and insert the time-dependent exponential factors to formally obtain 

00 

U(p,t) = g(p,t)/p = l~pO [ 1: (_1)n+1 ~e-4n2~ktsin(2n7l"p) ] . 

n=l 

Observe that for large t, the first term will be dominant and 

U(p,t) ~ l~pO e-4~ktsin(27rp) , as t -+ 00. 

In particular, the temperature at the center of the ball is ~ 200 e -4~kt (Why?). Recall that the 
corresponding temperature at the center of the unit cube (cf. Example 3 of Section 9.1) is 

-3 -371"2kt -3~kt _? 2 640071" e ~ 206.4 e . Since -47rkt < -371" kt, the sphere's center eventually cools 
more rapidly than the cubes's center. This is to be expected since a sphere of diameter 1 can be 

placed inside a unit cube. However, if the radius of the sphere is chosen to be (471"/3)-1/3, so that 
the volume is the same as the volume of the unit cube, then one can check that the sphere's center 
eventually cools more slowly than the cube's center (cf. Problem 7). 0 

Example 6 (D'Alembert's formula in space). By means of formal computations, find the analog 
of D'Alembert's formula for the solution of the following wave problem in space. 

--00 < x, y, z, t < 00 

(19) 

I.C. u(x,y,z,O) = f(x,y,z), ut(x,y,z,O) = g(x,y,z) . 
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Solution. We proceed formally, by applying Fourier transform methods. Taking the 
three-dimensional Fourier transform of both sides of the D.E., we obtain 

and so 

A 2 2 2 2 A 

Utt(~,71,(,t) = -a (~ + 71 + ( ) U(~,71,(,t) , 

~(~,71,(,t) = ~(~'71,(,0)cos(at[~2+712+(2]!) + ~t(~'71'('O) sin(at [~2+ 1}2+(2]!) 

a[ ~2+712 +(2]t 
,. A ... " 

Using U(~,71,(,O) = f(~,71,() and Ut(~,71,(,O) = g(~,71,(), and formally applying the Inversion 

Theorem for Fourier transforms of functions on space (Le., applying the onHimensional 
Inversion Theorem three times, once for each spatial variable), we have 

u(x,y,z,t) = (271'f~ [ [ [ [f(~'71'() cos(at[~2+712+(2]!)] ei(~x+71Y+(z) d~ d71 d( 
--00 --00 --00 

(20) 

+ (271')~ [ [ [ [g(~, 71, () sin( at[ {2 + 1}2 +(~]!)] ei( ~x+71Y+(z) d~ d71 d( . 

--00 --00 --00 a [ ~2 + 71 2 + ( 2 F 
Recall that D'Alembert's formula for the one-dimensional wave problem (cf. Section 5.2) did not 
involve the Fourier transforms of the initial data f(x) and g(x), and thus we wish to rid the 
formal solution (20) of Fourier transforms. Note that the first integral of (20) is just the time 
derivative of the second integral, but with f replaced by g. Hence, we will simplify the second 
integral, and take the time derivative of the result to obtain the first integral. We have 

g(x,y,z) = (271')~ [ [ [ g(~'71'() e-i(~x+77Y+(z) d~ d71 d( . (21) 
--00 --00 --00 

Now, it would be desirable to write the sine term in (20) in exponential form, and at the same 

time, eliminate the denominator. Let w == [~2+712+(2]t. The function sin(atw)j(aw) in (20) is 

a spherically symmetric eigenfunction of ~ == rf2j8~2 + rf2j8712 + rf2j8(2 with eigenvalue (at)2, 
according to (14) and (15), with n = 0, 8 = 0 and b = I at I, and Theorem 1. For any fixed 

point (x,y,z) with (x2+y2+z2)t = latl, we have that exp[-i(x~ + Y71 + z()] is another 

eigenfunction of ~ with eigenvalue (at )2, which is not spherically symmetric (Why?). 

However, by integrating over the sphere p = I at I in (x,y,z)-space (i.e., averaging over a sphere 
of directions), we obtain a spherically symmetric eigenfunction (cf. the first integral in (22) below) 

with eigenvalue (at)2. Moreover, since any two spherically-symmetric nonsingular 
eigenfunctions with same eigenvalue have a constant ratio (by Theorem 1 and (14)), we must have 
(for some C(t) independent of (~,71,(), but possibly depending on t) 

sin(atw) = C(t) J e-i(x~+Y71+z() dA 
aw p=latl 

- C(t) J:7I' J: exp[-i I at I (~ sin~ cos71 + 71 sin~ sin71 + (cos~)] (at)2 sin~ d~ d71. 

(22) 
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Then taking the limit of bot,h sides of (22) as w -+ 0+, we must have t = C(t) (at)247r, or 
-1 

C(t) = (47ra2t) . Substituting this for C(t) into (22), we obtain 

sin( atw) = t f e -i(x~+y'l7+z() dA . 
aw 47r(at)2 P= 1 at 1 

(23) 

Thus, the second integral, say I(x,y,z,t), in (20) becomes 

I(x,y,z,t) = (27r)--![OO i i g(~,'17'()[ t J- e-i(X~+Y'l7+Z()dA]ei(~X+11Y+(z) d~d17d( 
-oo.L-J-oo 47r(at)2 p=latl 

= t 1 2J- [(27r)-! [ i i g(~,'I7'() exp[i[~(X-X) + 'I7(y-y) + ((z-i)]] d~ d'17 d(] dA 
47r(at) p= 1 at 1 -oo-L .. J-oo 

= t 1 2 f g(x-x,y-y,z-i) dA == t Mg(x,y,z; 1 at I) , 
47r(at) p=latl 

(24) 

where we have formally interchanged the order of integration and applied the Inversion Theorem 
(Le., (21)). The function Mg(x,y,z;latl), defined by the last equation, is the mean (average) of 

the function g over a sphere, centered at (x,y,z), of radius 1 at I. Initial disturbances at points 
on this sphere will reach the center (x,y,z) in time t. Thus, I(x,y,z,t) is a superposition of all 
of the initial velocity sources at points which are of distance 1 at 1 from (x,y,z). One might think 

that since the surface area of the sphere of radius 1 at 1 is 47ra2t2, there should be a factor of t2 
multiplying Mg(x,y,z; 1 at I), but observe· from Example 4 that the amplitude of a 

spherically-symmetric wave originating at a point decreases inversely with the distance from the 
source. Thus, only one factor of t remains. As we mentioned, the first integral of (20) is simply 
the derivative of the second with g replaced with f. Thus, when t > 0, the formal solution of 
problem (19) is given by D'Alembert's formula in space: 

u(x,y,z,t) = ~ [tMlx,y,z;latl)] + tMg(x,y,z;latl). (25) 

If f is C2 and g is C1, it can be verified (cf. Problem 13) that (25) is indeed a C2 solution of the 
problem (19). 0 

Remark. There is a very important property that the solution (25) has, but which the 
one-dimensional D'Alembert's solution, 

1 Jx+at 
~[f(x+at) + f(x-at)] + 2a g(r)dr , 

x-at 
(26) 

does not. Observe that (25) only depends on the value of g on a spherical shell of points whose 
distance from (x,y,z) is exactly at. However, (26) depends on the values of g at all points 
whose distance from x is less than or equal to 1 at 1 (i.e., points in the interval of dependence 
discussed in Section 5.2). In the one-dimensional case a velocity disturbance which is sent from a 
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point P and received at a point P' has an effect which lasts beyond the time of arrival, whereas 
in dimension 3, the effect is felt only upon the instant of arrival and there is no aftereffect 
(reverberation). Thus, sharp signals can be sent in dimension 3, but reverberation can happen in 
dimension 1. Actually the confusion due to reverberation in dimension 1 is not too serious 
because, once the transient part of the signal has passed, its lasting effect is constant (Le., for 
fixed x, the integral in (26) is eventually constant, if g vanishes outside of a small interval), and 
this means that effective communication via wires is possible. However, in dimension 2, there is 
also reverberation, and the reverberation is not eventually constant. Indeed, the analog of 
D'Alembert's solution in dimension 2 is (cf. Problem 14) 

u(x,y,t) = _1_ a [f f f(x-x,y-y) dx dy 1 + _1_ f f g(x-x,y-y) dx dy, r = j x2+y2 . (27) 
27ra Of J 2 2 - 2 27ra J 2 2 - 2 

r~latl at -(r) r~latl at -(r) 

The fact that the denominator depends on t implies that the reverberation is not eventually 
constant in dimension 2, and thus the sharp transmission of signals (say electrical or acoustic) is 
impossible in this case. The statement that signals are transmitted on well-defined expanding 
shell-like wavefronts, is known as Huygens' Principle. Thus, Huygens' Principle holds for the 
wave equation in dimension 3, but it fails in dimension 2 (as well as in every even dimension, cf. 
[Courant and Hilbert, p. 690]). It should also be noted that formula (23), which was the key to 
the derivation of (25), is false in dimension 2 (Why?). 0 
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SUIIUnary 9.3 

1. The Laplace operator in spherical coordinates: For u(x,y,z) = U(p,cp,O), as in Proposition 1, 

2. The Laplace operator ~s on the unit sphere: For a C2 function f( cp,O) on the unit sphere, 

~i( cp,O) = ~f(p,cp,O) I = si~cp [sincp f~cp + ~ fOO ' 
p = 1 sm cp 

where f(p,cp,O) = f( cp, 0) is the extension of f which is constant in the radial direction. 

3. Ei&enfunctions of the Laplace operator in space: According to Theorem 1, F(p,cp,O) 
= R(p )f( cp, 0) is an eigenfunction of the Laplace operator ~ (on space) with eigenvalue c 
(Le., ~F + cF = 0) if and only if f( cp,O) is a spherical harmonic with eigenvalue A 
(Le., ~/ + Af = 0), and R(p) is a solution of the equation 

(iR/(p))1 + (cp2 - A)R(p) = O. 

As will be proven (cf. Theorem 11 of Section 9.4), the eigenvalues A are of the form n(n+I), 
n = 0, 1, 2, ... , and for each such n there are 2n+ 1 linearly independent spherical harmonics 
described in Section 9.4. Moreover, in Theorem 5 of Section 9.4 we prove that, if A = n(n+I) 

and c = ± b2 f. 0, then the general solution of (*) is R~(bp), where 

± n [1 {) ] n ± Rn(p) == p pop [RO(p)] , and 
RO(p) == (aOeP + bOe-P)/p 

R~(p) == (aOcos(p) + bOsin(p))/p 

and where aO and bO are arbitrary constants. When c = 0, the general solution of (*) with 

A = n(n+I) is apn + bp-(n+1). 

4. Applications: In Example 4, we found the product solutions for radial heat flow and wave 
propagation in space, and radial heat flow in a ball was covered in Example 5. D'Alembert's 
formula (25) for arbitrary wave propagation in space was derived in Example 6. This formula 
shows that Huygens' Principle holds in dimension 3. 
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Exercises 9.3 

1. Express the following functions u(x,y,z) in terms of spherical coordinates and verify that they 
are harmonic (i.e., ~u = 0) by computing the Laplacian in spherical coordinates using (2) in 
Proposition 1. 

(a) u(x,y,z) = (x2 + y2 + z2)--i 

(c) u(x,y,z) = x2 + y2 - 2z2 

2 2 2 3 
(b) u(x,y,z) = x(x + y + z r~ 

3 2 (d) u(x,y,z) = z - 3zx . 

2. Suppose that (x,y,z) is restricted to the unit sphere x2 + y2 + z2 = 1 (or p = 1). Then 
write the functions in Problem 1 in terms of the coordinates cp and 0 on the unit sphere. In each 
case, verify that the resulting function f(cp,O) is a spherical harmonic (i.e., ~i + ..\f = 0 for 

some constant A ~ 0). Is A of the form n(n+1) , n = 0, 1,2, ... ? 

3. Compute ~s(sincp). Is sincp C2 on the unit sphere? Is it C1 ? Is it continuous? 

4. (a) Show that if f(x,y,z) is an eigenfunction of ~ with eigenvalue c [i.e., 
fxx + fyy + fzz + d = 0, with f f 0]' then the function g(x,y,x) = f(bx,by,bz) (b f 0) is an 

eigenfunction of ~ with eigenvalue b2c. 

(b) Use part (a) and Theorem 1 to deduce that if R(p)S(cp,O) is an eigenfunction of ~, with 

eigenvalue ±1 and if ~sS + AS = 0, then r(p):: R(bp) satisfies equation (10) with c = ±b2. 

(c) Show directly that if R(p) satisfies (10) with c = ±1, then r(p) satisfies (10) with c = ±b2. 

5. (a) Use the same idea as in Example 3 to prove that the nonconstant C2 eigenfunctions f( 0) of 

d2/d02 (i.e., fll + ..\f = 0) on a unit circle must have nonnegative eigenvalues. 

(b) Show that the eigenvalues of d2/d02 in part (a) must be of the form n2 , n = 0, 1,2, .... 

6. It is known that on any smooth surface T without boundary (e.g., a sphere or doughnut 

surface), the Laplace operator on the surface is the unique operator ~ such that, for all C2 

functions f and g on T, f T f ~g dA = f T Vf· Vg dA, where dA is the area element on T and 

Vf denotes the gradient of f on T (d. Problem 11 of Exercises 9.6 for a proof of this formula 
based on the Divergence Theorem). Show that the nonconstant eigenfunctions for ~ on T have 
positive eigenvalues. 
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1 
7. In Example 5, suppose that the radius of the ball is changed to (47r/3)3, so that the volume is 
1. Under the conditions in Example 5, show that the center of a unit cube will then cool more 
rapidly (for large t) than the sphere's center in this case. 

8. Expressing u(x,y,z,t) as U(p,t), solve the heat equation ut = k~u on the ball p $ 1 with 

initial temperature distribution U(p,O) = p -lsin3( 7rp) and B.C. U(I,t) = 0. 

9. (a) Writing U(p,t) = g(p,t)/ p, transform the following heat problem for the insulated unit ball 
to a onHimensional heat problem for the unknown function g(p,t). 

-2( 2 ) D.E. Ut = kp P Up P 

B.C. U p(l,t) = ° 
I.C. U(p,O) = f(p) . 

0< p < 1, t > ° 

(b) In the new problem (found in part (a)) for g(p,t), find the Sturm-Liouville problem 
(ct. Section 4.4) which is satisfied by the radial part R(p) of the product solutions R(p)T(t) of 
the D.E. and B.C. of the p-roblem for g(p,t). What equation determines the eigenvalues and what 
are the eigenfunctions? (Be sure to consider A $ 0.) Assuming that pf(p) can be approximated 
by a sum of eigenfunctions, how can we obtain a solution of the original problem in (a) ? 

10. Redo Problem 9 in the case of the wave problem 

2 -2( 2 ) D.E. U tt = a p p Up P ° < P < 1, --00 < t < 00 

B.C. U p(l,t) = ° 
I.C. U(p,O) = f(p) , Ut(p,O) = 0. 

11. (a) Suppose that the B.C. is dropped in part (a) of Problem 9, so that a radially-symmetric 
heat flow problem, on all of space, results. Use the integral solution of the onHimensional heat 
equation for the semi-infinite rod to solve the related problem for g(p,t). 

(b) Solve the following radially symmetric wave problem on all of space 

2 -2( 2 ) D.E. Utt = a p p Up P o<p<oo,--oo<t<oo 

I.C. U(p,O) = f(p) , Ut(p,O) = h(p). 

by transforming the problem to a one-<limensional wave problem to which D'Alembert's formula 
may be applied. Check that your answer agrees with the the result obtained by directly using 
D'Alembert's formula in space (25). 
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12. (a) For any complex number c show that U(p) == eCP / p (p > 0) is an eigenfunction of ~ 
with eigenvalue -c2 (Le., ~U - c2U = 0) . 

kc2t+cp (b) Deduce that V(p,t) == e /p solves the heat equation vt = k~v. 

(c) Set c = a(l+i) for some real a, and consider the real part of V(p,t) in part (b). By 
replacing t by t + b for some b, find a solution U(p,t) of the heat equation ut = k~u for 

p> Po , such that U(Po,t) = cos(wt) and U(p,t) -+ 0 as p -+ 00. 

(d) By deleting the condition that U(p,t) -+ 0 as p -+ 00 and forming a superposition, find (if 

possible) a solution U(p,t) of ut = kLlu, such that U(Po,t) = cos(wt), where u is C2 on the 

ball, for p ~ Po , even at p = O. For a fixed w> 0, does a solution exist for any Po? 

13. Verify directly that (25) does indeed solve the three-dimensional wave problem (19), when 

f(x,y,z) is C3 and g(x,y,z) is C2. Hint. Use spherical coordinates centered about (x,y,z). 

14. By formal calculations (or use the hypotheses of Problem 13), obtain the solution (27) of the 
two-dimensional wave problem, by using the three-dimensional solution (25) in the case where f 
and g do not depend on z. This technique for obtaining solutions of lower-dimensional 
problems from solutions of higher-dimensional problems is known as the method of descent. 
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9.4 Spherical Harmonics, Laplace Series and Applications 

In this section we will find all of the spherical harmonics (i.e., eigenfunctions of ~s) and 

prove that anr C2 function on the sphere can be written as a uniformly convergent series (the 
Laplace series) of spherical harmonics. This Laplace series for functions on a sphere is analogous 
to the Fourier series for functions on a circle. It is used in boundary-value problems involving 
spherical coordinates when angular dependence of solutions is evident, as we will illustrate in 
examples. 

Example 1. Show that if U(p,I{),O) = R(p)f(I{),O) is a solution of Laplace's equation ~U = 0 in 
space, then f( I{), 0) must be a spherical harmonic. Use this observation to find several spherical 
harmonics by writing some obvious solutions of Laplace's equation Uxx + Uyy + uzz = 0 (say x, 

y, z; xy, xz, yz, x2 - y2, y2 - z2, z2 - x2), in terms of spherical coordinates. What are the 
eigenvalues of the spherical harmonics obtained in this way? 

Solution. If U(p,I{),O) = R(p)f(I{),O) solves Laplace's equation ~U = 0, then U is an 
eigenfunction of ~ with eigenvalue c = 0 (Le., ~U + O·U = 0). Thus, f(I{),O) must be a 
spherical harmonic, by Theorem 1 of Section 9.3. Using equations (1) of Section 9.3, we have 

x = psinl{) cosO, y = psinl{) sinO and z = pcosl{). (1) 

Thus, the functions sinl{) cosO, sinl{) sinO, cosl{) are all spherical harmonics. As a check, we 
compute ~s of sinl{) cosO. Using formula (7) of Section 9.3, we obtain 

~s[sinl{) cos~ = sInl{) [(Sin I{) cosl{) COSO)I{)] + ~ [-Sinl{) COSO] 
sm I{) 

= sIn I{) (1 - 2sin21{))cosO - si~1{) cosO = -2(sinl{) cosO) . 

Thus, sinl{) cosO is indeed an eigenfunction of ~s and the eigenvalue is 2. One can also check 

that sinl{) sinO and cosI{) also have eigenvalue 2, but we actually can deduce this from spherical 
symmetry. Indeed, a rotation of space about the line x = y = z by 120· carries the point 
(x,y,z) to (y,z,x), and hence the function x becomes the function y, y becomes z, and z 
becomes x. Since the operators ~ and ~s are rotationally invariant, we deduce from the 

symmetry that each of these functions has the same eigenvalue, namely 2. There are infinitely 
many other eigenfunctions with eigenvalue 2, but, as we will eventually show, they are all 
obtained by forming linear combinations c1sinl{) cosO + c2sinl{) sinO + C3COSI{). For a given 

eigenvalue A, the set of all solutions f( I{),O) of ~i + Af = 0 is known as the eigenspace of ~s 

associated with A. Thus, the set of linear combinations above is the eigenspace of ~s associated 

with the eigenvalue 2, and this eigenspace is three-dimensional. We also know from Theorem 1 

of Section 9.3, that the quadratic harmonic functions 2xy, 2yz, 2zx, x2 - y2 and y2 - z2, when 
restricted to the sphere p = 1, are all eigenfunctions of ~s. In terms of I{) and 0, these 

harmonics are (using (1)), respectively, 
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2sin2rp cosO sin 0, 2sinrp cosrp sinO, 2sinrp cosrp cos 0, 

sin2 rp (cos2 0 - sin20) and sin2rp sin20 - cos2rp . 

(2) 

These spherical harmonics are all carried by rotations into one another (e.g., note that 2xy is 

carried into x2 - y2 by a rotation of 45' about the z-axis, and x, y, z may be permuted 
cyclically by rotations about the line x = y = z, as above). Thus, they all have the same 
eigenvalue. This eigenvalue could be found by computing ~s of any these functions. Instead, 

there is an easier way to find it. Note that 2xy = p22sin2rp cosO sinO, which is of the form 

R(p)f(rp,O), where R(p) = p2, and this is a special case of (13) in Section 9.3 with n = 2 and A 
= 2(2+ 1) = 6. Thus, the eigenvalue for any of the spherical harmonics (2) obtained from 
harmonic polynomials of degree 2 (with no lower degree terms) is 6. We will also show that the 
five functions (2) generate (via linear combinations) the entire five-dimensional eigenspace of ~s 

for the eigenvalue 6. (Note that x2 - z2 = (x2 - y2) + (y2 - z2), and so this does not restrict to 
a sixth independent eigenfunction of ~s') 0 

Definitions. An n-th degree polynomial u(x,y,z) is called homogeneous if all of its terms have 

degree n (e.g., x3 - 3xy2 + xyz). Moreover, a function u(x,y,z) is called harmonic if 

u(x,y,z) satisfies Laplace's equation ~u == uxx + Uyy + uzz = 0 (e.g., x3 - 3xy2 + xyz is 

also harmonic). 

In the same way as in Example 1, one can prove the following extension of Example 1. 

Theorem 1. Each n-th degree, homogeneous, harmonic polynomial u(x,y,z) can be written in 

the form U (p, rp, 0) = pnf( rp, 0), where f( rp, 0) is an eigenfunction of ~s (i.e., a spherical 

harmonic) with eigenvalue n(n+1). 

The proof of the following deeper result will be carried out in the subsection on Laplace series. 

Theorem 1'. For every (C2) spherical harmonic f( rp, 0), there is an integer n ~ 0, such that 

pnf( rp,O) is a harmonic polynomial when expressed in terms of x, y, z. The eigenvalue for 
f( rp, 0) is n( n + 1), and there are 2n + 1 linearly independent spherical harmonics which have 
eigenvalue n(n+1) (i.e., the eigenspace of ~s corresponding to this eigenvalue has dimension 

2n+1). 
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For small values of n, one might easily find the 2n+ 1 independent homogeneous 
harmonic polynomials just by trial and error. One can always find several of these polynomials 

just by considering the real and imaginary parts of (x + iy)n, (y + iz)n and (z + ix)n (Why?). 
However, we need to develop a systematic way of finding all of them. There are actually many 
different approaches. The most common approach is to search for harmonic polynomials of the 

form pnL( rp)M( 0), when they are written in terms of spherical coordinates. One substitutes this 
form into (9) of Section 9.3, with c = 0, and obtains 

n(n+l) = -1 [si~rp [sinrp L'(rp)]'M(O) + +. L(rp)MII(O)] . (3) 
L( rp)M( 0) sin (rp) 

Separation of variables leads to the conclusion that Mil 1M is a constant. This constant must be 

be of the form _m2 for integers m = 0, ±1, ±2, ... , for otherwise M(O) cannot be periodic of 
period 211" (Why is this needed ?). Thus, M( 0) is of the form c1 cos(md) + c2sin(mO), but it is 

customary to use the complex notation 

M (0) = eimO 
m m = 0, ±1, ±2, .... (4) 

For each m, (3) yields, with M(O) = Mm(O), the following ODE for L(rp): 

sinrp [sinrpL'(rp)]' + [n(n+l) sin2rp-m2]L(rp) = o. (5) 

When m = 0 this is known as Legendre's differential equation, and for m f 0 it is known as the 
associated Legendre equation. The usual method of solving this equation is first to make the 
substitution w = cosrp and define h(w) = h(cosrp) = L(rp). Using the chain rule 

~ = ~ ~ = - sinrp ~ ,and sin2rp = 1 - w2, we immediately obtain 

(6) 

When m = 0 (Legendre's differential equation), this ODE can be solved by assuming that a 

solution is in the form of a power series l akwk. We will produce the desired nonsingular 

solutions in a more natural way (d. Example 3). The power series approach shows that the only 
solutions which are well-behaved as w = cosrp nears ± 1 (Le., as we approach the north and 
south poles of the sphere) are constant multiples of a polynomial of degree n in w, known as the 
n-th Legendre polynomial P n(w). Any second independent solution of the homogeneous 

second-order ODE (6) is singular at w = ± 1, as is easily shown by examining the Wronskian (d. 
Problem 8). The first five Legendre polynomials are 
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1 2 1 3 p O(w) = 1, PI (w) = w, P 2(w) = 2(3w - 1), P 3(w) = 2(5w - 3w), 
(7) 

P 4(w) = ~(35w4 - 30w2 + 3), P5(w) = ~(63w5 - 70w3 + 15w) . 

Should any higher Legendre polynomials be needed, the general formula is (cf. Example 2 below) : 

P (w) = l L [n/2] (2n-2k)!(-I)k wn- 2k , 
n 2n k=O k!(n-k)!(n-2k)! 

where [n/2] = n/2 , if n is even, and [n/2] = n/2 - 1/2, if n is odd. 

Remark. Alternatively, there is a beautifully symmetric formula 

(8) 

P n(w) = L:=0[k!(~~k)!]2[W21r-k[W11t = L:=0(-I)n-k[k!(~~k)!Sin(n-k)(ip/2)COSk(ip/2)]2. 
o 

Example 2. Find a harmonic polynomial of degree 3 in x, y and z, such that its restriction to the 
sphere p = 1, is a spherical harmonic f( cp,O) which is independent of 0. 

Solution. We will first find the appropriate spherical harmonic, and then construct the 

polynomial. The product spherical harmonics are of the form L( cp)eimO, where L( cp) is a 
solution of the associated Legendre equation (5). Since we desire a spherical harmonic which is 
independent of 0, we take m = 0 and deduce that L(cp) = P n(coscp). On the sphere, Z = coscp. 

Thus, as we wish to obtain a polynomial of degree 3, we take n = 3, and a suitable harmonic 

polynomial is 2p3p 3( cos cp ) = p3(5cos3 cp - 3cQ1;'fJ) = 5z3 - 3zp2 = 5z3 - 3z(x2 + y2 + z2). 0 

Example 3. Consider the familiar harmonic potential u(x,y,z) = [x2 + y2 + z2r-t = p -1, and let 
uc(x,y,z) == u(x,y,z - c) be its translate along the z-axis. In terms of spherical coordinates, Uc is 

given by U c(p,ip,O) = [p2 - 2cpcoscp + c2]-t. By expanding U c into a power series in the 

variable c, show that 

(9) 

where P n(COSip) is given by (8). Deduce that P n(coscp) does indeed solve Legendre's differential 

equation (Le., equation (5) with m = 0). 

Solution. Note that x2 + y2 + (z-{;)2 = p2 _ 2cz + c2 = p2 2cpcosip + c2 

= p2(1_ 2cos(ip)c/p + (c/p)2). Thus, letting e = c/p and w = cOSip, we obtain 
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1 1 1 

Uc(p,cp,fJ) = [p2 - 2cpcoscp + c21' = p-l[1 - 2ecoscp + e21' = p-l[1 - 2e(w - e/2))' . 

Using the binomial expansion [1 - 2b1-i- = t ~ br (convergent for Ibl <!) with b 
r=O 2 (r!) 

= e(w - e/2), we then obtain (for I e(w - e/2) I <!, say lei <! or Icl < p13) 

Uc(p,cp,fJ) = p-l r r(2r)~ [e(w - e/2)l r 
r=O 2 (r!) 

= P -1 r ~ [er r (_I)s _r! - wr-s( e/2)s] 
r=O 2r(r!) s=O s!(r-s)! 

= p-l r r (2r )!(_I)s _r_! _ wr-s er+ s 
r=O s=O 2r+s(r!)2 s!(r-s)! 

= r r (-l)s(2r)! wr-sp-(I+r+s)cr+s, 
r=O s=O 2r+ sr!(r-s)!s! 

for Icl < p13. Since we want a series in terms of cn, we make the change of indices n = r+s, 
k = s. Since k = s 5 r = n - s = n - k, we have 2k 5 n, in which case k ranges from 0 to 
[n/2). Thus, we have 

U (p,cp,O) = r [1- \,[n /21 (-I)k(2n-2k)! (Coscp)n-2k] p-(n+1) cn , for Icl < p13, 
c n=O 2n ~=O k!(n-k)! (n-2k)! 

which is the desired relation (9). In order to deduce that P n (cos( cp)) is a solution of the 

Legendre's differential equation, we need only to show that P n(cos(cp))p-(n+l) is harmonic. 

However, since (9) is the Taylor series of the function f(c) = Uc(p,cp,O), we must have that 

n! P n(cos(cp))p-(n+l) = ~n)(O) 

= dn n [x2 + i + (z--<:)21-i-1 = (_I)n ff1 n [x2 + y2 + z2)-i- , (10) 
dc c=O oz 

which is a partial derivative of a harmonic function and hence is harmonic itself (Why?). 0 

We know that if L(cp) is a solution of the associated Legendre equation (5) of order m, then 

eimOL( cp) is a spherical harmonic. So far, we have constructed the spherical harmonics when 
m = 0, namely P n(coscp). These spherical harmonics depend only on cp (not on 0), and are 

called zonal spherical harmonics. Appropriate solutions P n m(w) of (5), for an arbitrary integer , 
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m, are given by 

P (w) = (l_w2)m/2 dm [p (w)] 
n,m dwm n 

or 

and (11) 

P n m(w) = P n _m(w) , , , for m < 0. 

Note that P n,m( w) = 0, if I m I > n, since P n (w) is a polynomial of degree n. One way of 

checking that P (w) satisfies equation (6) is by induction on Iml, using the fact that n,m 
P n(w) solves the equation when m = 0. This does not explain how (11) was found in the first 

place. A derivation is provided in the last subsection (cf. Theorem 6). 

Theorem 2. For any integer n ~ 0, the following 2n + 1 functions are eigenfunctions of ~s 

(i.e., spherical harmonics) with common eigenvalue n(n+ 1) : 

S (ip,O)=eimOp (COSip)=eimOsinlml(ip)p(lml)(cosip), m=-n, ... ,n. (12) 
n~ n~ n 

By taking the real and imaginary parts, we have the real-valued spherical harmonics 

p n(COSip), cos(mO) sinmip p~m)(COSip), sin(mO) sinm(ip) p~m)(COSip), m = 1, ... , n. (12') 

Each of the functions (12'), when multiplied by pn becomes a harmonic polynomial of degree 
n when expressed in terms of x, y and z. 

Before giving the proof, in Figure 1 we provide the reader with a graphical representation 
of some of the spherical harmonics. The very first picture is the unit sphere. In the other 
pictures of Figure 1, to represent a given spherical harmonic, say S( ip,O) , we have pushed each 
point (ip,O) on the unit sphere away from the origin by a distance of (}. S( ip,O), where (} is a 
positive constant (usually.5 or less, so that the deformation of the sphere is not too severe). (If 
S( ip, 0) < 0, then the point (ip, 0) is pushed toward the origin.) Note that the zonal spherical 
harmonics P n( cos ip) are represented by surfaces of revolution about the z-axis, while the other 

spherical harmonics are not, because of the factors of sin(mO), although these other surfaces still 
have an m-fold discrete rotational symmetry about the z-axis. Two views of P 3( cos( ip)) and 

P5(cos(ip)) are given, since these surfaces are not invariant under reflection in the xy-plane. 

Note that if m+n is even, the surface P (cos ip)sin(mO) is invariant under reflection in the n,m 
xy-plane, since P (cos ip) is an even function about ip = 7r/2 in that case (Why?). When m m,n 
is even, there is symmetry through the z-axis. If n is even and m is odd, the surface is 
symmetric through the origin (Why?). These observations allow us to "see" parts of the surfaces 
which do not show. 
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Figure 1 
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Proof of Theorem 2. Each function in (12) is a product of the function Mm(O) (cf. (4)) and a 

solution of (5), and hence is a solution of I::!.i = -n(n+1)f (cf. (3)). It easily follows that the real 

and imaginary parts are solutions of this linear homogeneous equation as well. Since pn solves 
(10) of Section 9.3 with A = n(n+1) and c = 0, we know from Theorem 1 of Section 9.3 that 

when any of the functions in (12') is multiplied by l, we obtain a harmonic function on space. 
It remains to show that these harmonic functions are polynomials of degree n, when expressed in 
terms of x, y and z. Let r = (x2+y2)t = psintp. Observe that cos(mO)pmsinm(tp) = rmcos(mO) 

= Re[(x+iy)m], and sin(mO)pmsinm(tp) = ... = Im[(x+iy)m], which are polynomials. Moreover, 

l-m p~m)(costp) has a leading term of the form Azn- m (since z = pcostp), while the next 

term is of the form Bzn- m- 2p2, and so forth. It is important to realize that the powers of w in 

p~m)(w) are all even or all odd (Why?), so that only even powers of p will occur. Since p2 = 

x2 + y2 + z2 , these even powers of p are all polynomials (unlike p itself), and hence 

pn-mp~m)(costp) is in fact a polynomial. Thus, each of the harmonic functions obtained by 

multiplying the functions (12') by pn is indeed a polynomial. 0 

Remark. Problem 12 shows that every real harmonic polynomial of degree n is a linear 
combination of the harmonic polynomials obtained by mUltiplying the spherical harmonics (12') 

by pn. None of these functions is a linear combination of the others, since they are orthogonal as 
functions of 0 (and hence, linearly independent). More generally, we have the following result. 0 

Theorem 3 (Ortholj0nallty of spherical harmonics). For all integers n, n' ~ 0 and -n ~ m ~ n 
and -n' ~ m' ~ n , using the notation in (12), 

2 [ 0 , if m '" m' or n '" n' 

J 'ff J' Sn m( ~,II) Sn' m'(~'O) sin~ d~ dO ~ fn+mj: 4 . o 0" . 'ff If m = m' and n = n'. n-m . 2n+1' 

(13) 

Proof. For continuous complex-valued functions f( '1',0) and g( tp, 0) on the unit sphere, we define 

J2'ffJ'ff 
<f,g> = 0 0 f( '1', O)~ sintp dtpdO , (14) 

If f and g are C2, then integration by parts with respect to 'I' and 0, as in Example 3 of 
Section 9.1, yields 
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J27r J7r 1 
= (fcp gCP + ~ fO gO) sincp dcp dO , 

o 0 sm cp 
(15) 

where we have used the periodicity of go f in 0 and the fact that sin(O) = sin( 7r) = 0, to 

eliminate the endpoint differences. Taking the complex conjugate of (14) or (15) has the same 

effect as interchanging f and g. Thus, we have d,Llsg> = <g'~i> or 

Green's Formula on the unit sphere: <f'~sg> = <g,Lli> = <~sf,g> . (16) 

Using the fact that ~sSn m = -n(n+l)Sn m' we then have , , 

Hence, if n f n', then we have <Sn m ,Sn' m'> = 0 (Le., (13) holds, if n f n'). If n = n' , , 
and m f m', then we just use the orthogonality of eimO and eim ' 0 on the ~interval [0,27rj. In 
Problem 10, we assist the reader in verifying the result (13), when n = n' and m = m'. 0 

Laplace series for functions on the sphere 

Definition. The Laplace series of a function f( cp, 0) defined on the sphere is the expression 

00 n 
LS f( cp,O) = l l cn mSn m( cp,O) , (17) 

n=O m=-n ' , 

and P and S m are defined by (11) and (12') respectively, ifthe integrals (18) exist. n,m n, 

Remark. As with Fourier series on a circle or double Fourier series on a rectangle, the Laplace 
series of a function on a sphere is an eigenfunction expansion where the operator is the Laplace 
operator on the given domain of the function. The formula for the coefficients is obtained 
formally from the orthogonality relation (13). 0 
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Theorem 4 (Uniform convergence of Laplace series). Let f( '(J, IJ) be a C2 function on the 
unit sphere. Then the Laplace series of f converges uniformly to f, in the sense that 

If('{J,IJ) _IN In Cn m Sn m('{J,IJ) I ~ M{2 , 
n =0 m=-n" /2N+T 

where M is the maximum of the continuous function I ~i( '(J, IJ) lover the sphere. 

617 

(19) 

Proof. Let O"N denote the double sum in (19), and let p be any point on the sphere. It can be 

proven (cf. Problem 13) that even though it appears that the value of O"N(P) might depend on 

the choice of the north pole (Le., the choice of spherical coordinates), in fact it does not. Thus, to 
check the convergence of O"O(p) , 0"1 (p), 0"2(P),... at any point on the sphere, we may choose 

spherical coordinates with p at the north pole. Assuming that this choice has been made, we 
need only to check that (19) is valid at the pole '(J = o. At the point p, we then have 

N n imlJ N 
O"N(P) = I I cnmPnm(l)e = I CnO 

n=O m=-n" n=O ' 

J211" J1I" N 
= b I (2n+l)Pn(cos'{J)f('{J,IJ) sin'{Jd'{JdlJ 

11" 0 0 n=O 

Jl 1 
= 2[P O(w) + 3P 1 (w) + ... + (2N+l)PN(w)] F(w) dw, 

-1 

1 J211" -1 where F(w) = F(cos'{J) = 2i 0 f('{J,IJ) dlJ is the average of f on the latitude '(J = cos (w). In 

I I 

Problem 9, we show that PO(w) + 3P1(w) + ... + (2n+1)PN(w) = P N (w) + PN+ 1 (w). Thus, 

where we have used the facts P n(l) = 1 and P n(-I) = (_I)n (d. Problem 9). 

F(I) = f(p), we have (by (20) and the Cauchy-Schwarz inequality ( I <f,g> I 5 IIfllllgll ) 

(20) 

Since 
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= ~IIF'II [2(2N+l)-1 + 2(2N+3)-ll~ $ IIF'II (2N+l)~ , (21) 

2 1 
where IIF'II = J F'(w)2 dw, and IIP NI1 2 = 2(2N+l)-1 by Problem 10. We next estimate 

-1 

IIF'II in terms of M == max I L\i( cp,O) I . Since ~ = -sincp, we obtain, by Leibniz's rule 

d J27r J27r Jcp -27rSincpF'(w) = sincp~ 0 f(cp,O) dO= 0 0 (sincp fcp(cp,0)) cp dcpdO 

J cp J27r [ 1 1] = Sill (sincp f) + -.-2- fOO sincp dO dcp , o 0 cp cp cp sm cp 

where we have used J
27r 
o fOO dO = 0, by the periodicity of fo' Thus, 

Jcp 
sincpIF'(w)1 $ M 0 sincpdcp= M (l-coscp). 

For 0 $ cp $ 7r/2, we have sincp ~ sin2cp = (1 - cos2cp) ~ 1 - coscp. Thus, we have IF' (w) I $ M 

for 0 $ w $ 1. Similarly, replacing Jcp by -J7r in the above, we have IF' (w) I $ M, for 
o cp 

-1 $ w $ O. Consequently, Jl F'(w)2dw $ 2M2, and IIF'II $ y'2M, and (21) yields (19). 0 
-1 

Proof of Theorem 1'. Suppose that there is a real-valued C2 eigenfunction f of L\s which has 

eigenvalue A. If this eigenvalue is not of the form n(n+l), then -(A - n(n+l)).(f,Sn ) = ,m 

<L\sf,S > - <f,L\sS > = 0, and so <f,S > = O. Thus, LS f( cp,O) == 0, and since f is C2, n,m n,m n,m 
by Theorem 4, we then have f( cp,O) = LS f( cp,O) == o. If A is of the form n(n+l), then f is in the 
eigenspace for the eigenvalue n(n+l), and we still have f(cp,O) = LS f(cp,O) which is a linear 
combination of the S ,m = -n, ... ,n. Since f is real-valued, the imaginary parts of this n,m 
linear combination must mutually cancel, meaning that f is a linear combination of the real 

eigenfunctions 

P (coscp) , cos(mO)Pn m(coscp), sin(mO)P (cos cp) , n , n,m m= 1, ... ,n. (22) 
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Hence, any C2 eigenfunction of ~s must have its eigenvalue of the form n(n+l), and any 

function in the eigenspace for n(n+l) must be a linear combination of the functions (22) (Le., 
the dimension of this eigenspace is 2n+l). We know already from Theorem 2 that the tunctions 
(22) are restrictions (to the unit sphere) of harmonic polynomials of degree n. 0 

Example! and applications 

Example 4 (SteadY-fltate temperature in a ball). Solve the following Dirichlet problem for a ball. 

D.E. Uxx + Uyy + uzz = 0 p < 2 

B.c. u(x,y,z) = x2 + 2y2 + 3z2 P = 2 . (23) 

Solution. We first write x2 + 2y2 + 3z2 in terms of spherical coordinates with p = 2 : 

x2 + 2y2 + 3z2 = 4sin2rpcos20 + Ssin2cpsin20 + 12cos2cp == f(cp,O) . (24) 

We will express f( cp,O) as a linear combination of spherical harmonics. Then, we need only to 

insert a factor of (p/2)n in front of each term with eigenvalue n(n+l), and the result will solve 
the problem (Why?). One could compute the Laplace series of f( cp,O) by evaluating the integrals 
(IS) for the Laplace coefficients. Since (in (24)) the maximum degree of the polynomial factors in 
sincp and coscp is two, we know that cn m = 0 for n ~ 3, but this still leaves 9 integrals to , 
compute. Instead, we try to write f( cp,O) in the form of a Laplace series, using the half-angle 

formulas (e.g., sin20 = t[l - cos(20)]). First we write f(cp, 0) as a Fourier series in 0, with 
coefficients which are functions of cp: 

where we have written the first term as a polynomial in w = coscp, since we want to express this 

term as a sum of Legendre polynomials. Since P2(w) = ~(3w2 - 1) and PO(w) = 1, we have 

6w2 + 6 = (4P2(w) + 2) + 6 = 4P2(w) + SPO(w). We also want to express the factor -2sin2cp 

as a linear combination of associated Legendre functions l an P n,2(w) = sin2cp l an P~(cosO). 

Thus, we want l anP~(w) = -2, and clearly an = 0 except for n = 2, in which case a2P2(w) 

= a2·3 = -2 implies ~ = -2/3. Thus, we have the following Laplace series for f(cp,O) : 

Since the term in brackets is a spherical harmonic with n = 2, we multiply this term by (p/2)2, 
and we arrive at the solution 
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U(p,tp,O) = 8 + [(6cos2tp - 2) - 2sin2tp cos(20)] p2/4 or 

321222122 22 u(x,y,z) = 8 + 2 z - 2(x + y + z ) - 2 (x - y ) = 8 - x + z . (25) 

As a check, note that u(x,y,z) = 8 - x2 + z2 is clearly harmonic, and when x2 + i + z2 = 4, 

we have u(x,y,z) = 2(x2 + y2 + z2) - x2 + z2 = x2 + 2y2 + 3z2, and so (25) is a solution of the 
problem. Actually, there is a maximum/minimum principle (with proof strictly analogous to the 
proof of the two-dimensional version in Section 6.4) for harmonic functions on bounded regions in 
space. As a consequence, solutions of Dirichlet problems for bounded regions are unique (e.g., (25) 
is the unique solution of (23)). D. 

Remark. The same approach that was used in Example 4 can be used to solve the Dirichlet 
problem in any ball, where the function on the boundary sphere is an n-th degree polynomial, say 
p(x,y,z). Indeed, the solution will be a harmonic polynomial h(x,y,z) of degree ~ n. We have 
p(x,y,z) = h(x,y,z) at all points (x,y,z) on the sphere, but usually not elsewhere. 0 

Example 5 (A vibrating balloon). Let v(tp,O,t) be the displacement in the radial (positive p) 
direction of the point (PO,tp,O) of a vibrating spherical balloon of equilibrium radius Po' 
Assuming homogeneity, one can prove that the only linear, second-order equation for (undamped) 

v is of the form Vtt = a2 ~s v - w2v, for some constants a and w. Find a formal solution of 

2 2 D.E. Vtt = a ~sv-w v o ~ tp, 0/2 ~ 11', --00 < t < 00 

I.C. v(tp,O) = f(tp,O), vt(tp,O) = g(tp,O) . 
(26) 

Solution. Separation of variables, with v = T(t)F( tp,O), yields 

- T 2 s 1 [" ] ~ F 
a2 T + w = ---v- = -A. 

Thus, F( tp,O) must be some spherical harmonic with eigenvalue A, necessarily of the form 
221 .221 

An = n(n+l), and T(t) = c1cos[(w + a An)2t] + c2sm[(w + a An)2t]. Hence, formally 

v(tp,O,t) = 1.:=0 1.:=_n [an,mcos[(w2+a2An)~t] + bn,mSin[(w2+a2An)~t]] Sn,m(tp,O), 

where 
-2 -2 

anm = IISnmll <f,Snm> and bn = (w2+a2A )-~ liS II <g,Snm> , , , ,m n n,m , 
and 

An = n(n+l), Sn (tp,O) = eimOp (costp), liS 11-2 = fn-m~i(2n+l). 
,m n,m n,m n+m. 411' 

If the initial displacement and velocity distributions f and g are C2, then (according to 
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Theorem 4), we can approximate these functions to within any positive experimental error by a 

partial sum of their Laplace series, thereby obtaining a COO solution of the D.E. which meets the 
I.C. within experimental error. We leave the proof of uniqueness and continuous dependence of 
solutions on initial data to the interested reader. 0 

Example 6 (A heat problem on a ball). Describe all of the eigenfunctions of the Laplace operator, 

which are C2 throughout the interior of the ball P < Po and which vanish on the boundary 

sphere P = Po. Use these eigenfunctions to formally solve the heat problem 

2 2 2 2 
x + y + z ~ Po, t ~ 0 

B.C. U(Po,'P,O,t) = 0 o ~ 'P, 0/2 ~ 7r (27) 

I.C. U(p,'P,O,O) = f(p,'P,O) o ~ p ~ Po. 

Solution. By Theorem 1, we know that if R(p )f( 'P, 0) is an eigenfunction of ~,then f( 'P, 0) is a 
spherical harmonic, say with eigenvalue n(n+1), and R(p) solves the radial equation 

(p2R,(p))' + (cp2 - n(n+1))R(p) = o. (28) 

For c = 0, the function R(p) must be a multiple of pn, since the other independent solution 

p-n-1 is singular at p = o. However, l does not vanish at p = Po' and thus we must take 

c f o. When c = _b2, we have (cf. Theorem 5 in the next subsection) the general solution 

R~(bp), where R~(p) = pn(p-1 ~)n[Ro(p)], and RO(p) = (aeP + be-P)/p (cf. (14) of Section 

9.3). The only form for R~(bp) which is nonsingular at the origin is A·sinh(bp)/p, but this 

cannot be 0 when p = Po' unless A = o. When c = +b2, we have (cf. Theorem 5) the general 

solution R~(bp), where R~(p) = l(p-1 ~)n[R!(p)l and R!(p) = A·sin(p+6)/p. Hence if 

R!(p) is nonsingular at p = 0 (Le., C = 0), then R!(p) is a constant multiple of 

(29) 
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which is a power series with an infinite radius of convergence. When the operator P -1 ~ is 

applied termwise to a convergent series of the form Co + C2p2 + C4p4 + ... (involving just even 

powers of p, as in (29)), the first term disappears and the exponents in the other terms drop by 
2, yielding another series of this form. Applying this fact repeatedly to the series (29), it follows 

that some nonsingular solutions of (28) with c = +b2 are constant multiples of 

Moreover, the factor of pn ensures that the first n-1 derivatives of jn(p) are zero at p = o. If 

the operator pn [p -1~] n is applied to a series of the form c-1P -1 + copO + c1P1 + ... with 

c-1 f. 0 (such as the series for cos(p)/p or e±p/p), then the result is always singular (Why?). 

Hence, constant multiples of jn(p) are the only nonsingular solutions of (28). Because of the 

B.C., we need to select those values for b, say b (q = 1,2,3, ... ), such that j (b Po) = o. n,q n n,q 
Let (3 denote the q-th positive real number for which j ((3 ) = 0 (i.e., the q-th place n,q n n,q 
where the graph of jn((3) crosses the positive ,8-axis, or the q-th positive zero of jn). Then 

bn,q = (3n,q/ Po' since (31) 

For n = 0, we have (30 = qlr. When n ~ 1, there are also infinitely many b (cf. (32) below ,q n,q 
and Example 8 of Section 4.4). However, for n ~ 1, the (3n,q are more difficult to determine. 

For example, j1 (p) = ~(sin(p)/ p) = p -2[p cosp - sinp], and the (31,q are the positive solutions of 

the equation p = tanp, which can found numerically to any degree of accuracy, say with the 
Newton-Raphson method (cf. Problem 12 of Section 8.2). However, there are tables which 
provide some of the b for values of nand q which are not too large, and there are formulas n,q 
which yield approximate values of b for any n and large q. The functions j (p) are known n,q n 
as the spherical Bessel functions and these are related to the Bessel functions J ,)p) (which we 

will define in Section 9.4), via 

(32) 
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We have graphed jn(p) for n = 0, 1, and 2, in Figure 1 below. 

1.0 

P 
10 15 

Figure 2 

The eigenfunctions of ~,which are zero on the sphere P = Po , are constant multiples of the 

members of the family (where n = 0, 1,2, ... ; q = 1,2, ... ; and m = -n, -n+1, ... , n) : 

Since the eigenvalue for E is b2 ,the product solutions of the D.E. which meet the B.C. n,q,m n,q 

are obtained by mUltiplying the E by the time-<iependent factors exp( _b2 kt): n,q,m. n,q 

2 
Un q m(p,rp,O,t) = exp(-bn qkt)En q m(p,rp,O) . , , " , (34) 

We aim for a formal solution of (27) by taking an infinite superposition: 

00 00 2 n 
U(p,rp,O,t) = lq=1 In=o exp(-bn,lt) lm=-n Cn,q,m En,q,m(p,rp,O) . (35) 

Setting t = 0, and equating the result with f( rp,O) in the I.C., leads to the requirement 

? 
f(p,rp,O) = 

00 00 n 

lq=1 In=o lm=-n Cn,q,m En,q,m(p,rp,O) . (36) 

In the event that all but a finite number of terms in (36) are zero, then (35) is the exact solution 
of problem (27). For applications one would like to know how (or if) a sufficiently nice function 
f(p,rp,O), vanishing for p = PO' can be approximated to within some positive error by such a finite 

sum. If so, then a maximum principle which can be proved for solutions of the heat equation on a 
ball can be used to demonstrate that the solution that results from the approximation is close to 
the exact solution (if such exists). In Problem 15, one demonstrates the orthogonality of the 
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E relative to <f,g> on the ball (Le., integral of f g over the ball). The expression for the n,q,m 
coefficients c q m which results from the usual formal application of orthogonality is n, , 

(37) 
where 

JPo . 2 2 
<En q m,En q m> = <Sn m,Sn m> [In(bn q p)) P dp 

, , , , "0' 

= 41r(n+m)! [1 3 ["(R ))2] 
(2n+ 1) ( n -m)! "2 Po In iJn,q . (38) 

Here we have used (13) to obtain liS 112 , and we have used the result of Problem 4 in Section n,m 
9.5 to compute the integral over p. As a consequence of Theorem 3 in Section 9.6 about the 
uniform convergence of eigenfunction expansions, the series (36) converges uniformly to f(p, '1', 0), 

if f(p,'I',O) is C2 on the ball p ~ Po and zero on the sphere p = Po' As we have seen, general 

estimates, for the number of terms which are needed to approximate f to within a certain error, 
are usually very conservative. Moreover, an integral comparison test typically requires at least a 
rough knowledge of the behavior of the coefficients c m' which may not be easy to ascertain. n,q, 
Thus, in practice, one just truncates the series at a certain convenient number of terms, and 
checks the truncated series against the function f(p,({J,O), hoping that no more coefficients need to 
be computed. 0 

The generation of eigenfunctions via the Cauchy-Riemann Dperator 

We next derive formulas for all of the product eigenfunctions R(p)S( '1',0) of the Laplace 
operator ~ on space. In particular, formula (11) for the nonsingular associated Legendre 

functions and formula (15) of Section 9.3 for the functions R~(p) is derived. The remarkable 

operator which generates all of the desired solutions is defined as follows. 

Definition. The Cauchy-Riemann operator Ox + iOy is the first-order differential operator 

which assigns, to each C1 complex-valued function u(x,y,z) + iv(x,y,z), the function 

(39) 

Remark. In the case of functions f = u + iv which only depend on (x,y), we see from (39) that 
the condition (ox + iOy)f = 0 is the same as the pair of Cauchy-Riemann equations which 

ensure that f is a complex-analytic function of x + iy. The Cauchy-Riemann operator can be 
regarded as the square-root of the Laplace operator in dimension two, in the sense that 

(ox + iOy)(8x + iay) = Ox 2 + 0y 2. Such square roots for the Laplace operator exist in any 

dimension, and are constructed using matrix algebras. The physicist Paul Dirac (1902-1984), who 
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shared the 1933 Nobel prize in physics with SchrOdinger, discovered that the more precise wave 
equation for the electron is not Schrodinger' s equation, but the Dirac equation which involves the 

square root of the wave operator 0t2 - O} - 0/ - 0/, namely the Dirac operator 

I'OOt + I'1 0x + 1'2° + I'30z' whose coefficients I'll are certain 4x4 matrices, found in many 
books on quantum leld theory (e.g., [Bjorken and Drell]). 0 

Proposition 1 (The Cauchy-Riemann operator in polar coordinates). Let g(x,y) be a COO 

function on the punctured pianeIR2 - (0,0), and let g(x,y) = G(r,O) in terms of polar 
coordinates. Then 

( 40) 

Moreover, if GO = 0 (Le., G only depends on r), then 

(ox + iOy)m[gJ = eimO rm [f£r]m [GJ, m = 0,1,2, .... ( 41) 

Proof. On the right side of (40), replace Gr by the equivalent expression gxxr + gyYr = 

gxcos O + glinO, and replace GO by gxxo + gyy 0 = -gxr sinO + gl cosO. Then algebraic 
simplification of the result yields (gx + igy), proving (40). We know, from (40), that (41) holds 

when m = 1. By induction, it suffices to show that if (41) holds for m = k, then (41) holds for 
m = k+1. However, 

(ax + W/+l[G[ ~ eiU(a, + i ~au)[ eikU ,k[ Hlr t[GI] 

= ei(k+1)0 [ krk- 1[ f£rt[GJ + rk~ [ [f£rt[GJ] + ki2rk- 1 [ f£rt[GJ] 

=ei(k+1)Ork+1 [ld] [ld ]k[GJ 
rOr rOr ' 

which proves the result for m = k + 1, as desired. 0 

Proposition 2. If F(p) is a COO function depending only on p = (x2+y2+z2)1/2, then 
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Proof. Fix z, and consider the function g(r) = F(jr2+z2) with r =~. For P = J;I+;l , 
we have r-1org = r-1F /(p)Pr = r-1F /(p) !p-12r = p-1 ~ F, and repeating this calculation 

m times, we have (r-1or)m[g] = (p-1 ~)m[F]. Thus, applying (41) to the function g(r), for 

each fixed z, we obtain (42). 0 

Theorem 5. For n = 0 and c = ±1, let RO ±(p) be the nonzero solutions of 

p2R"(p) + 2pR/(p) + (cp2 -n(n+1))R(p) = o. (43) 

(cf. (14) in Section 9.3). Then, for any n = 0,1,2, ... , 

(44) 

and (44) is an eigenfunction of ~ with eigenvalue ± 1. Moreover, 

n = 0, 1,2, ... ( 45) 

solves (43), for c = ±1, and R~(bp) solves (43) for c = ±b2. 

Proof. Equation (44) is immediate from (42). By Theorem 1 of Section 9.3, we know that 

~[R~(p)] + ±R~(p) = O. Since the order of differentiation, with respect to x, y , and z, does not 

matter (Le., the operators ax' 0y' and Oz commute), we have 

~[(ox + iOy)n [R~(P)]] = (ax + iOy)n ~[R~(p)] = ±(ox + iOy)n(R~(p)] , 

which shows that (44) is an eigenfunction of ~ with eigenvalue ±1 (The fact that (44) is not 
identically zero follows from the power series considerations in Example 6). By Theorem 1 of 

Section 9.3, we know that ein8sinn'P is a spherical harmonic (which has eigenvalue n(n+1), since 

it is proportional to S ('1',8) = ein8sinn'P Pn(n)(cos'P)). Then, also by Theorem 1 of Section 9.3, n,n 

we know that R~(p) solves (43) with c = ±1, and R~(bp) solves (43) with c = ±b2 (cf. 
Problem 4 of Exercises 9.3). 0 
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Theorem 6. Let uc(x,y,z):: [x2+y2+(z-C)2]-1/2 = [p2-2CpcoSrp + C2]-1/2 :: Uc(p,rp,O) be the 

shift of the standard harmonic potential 1/ P by c units in the z direction (cf. Example 3). 
Then, for m = 0, 1,2, ... , 

(a +W)muc='oo (_I)meimOsinmrpp(m)(cosrp)p-n-lcn-m. (46) 
x y Ln=O n 

Moreover, sinmrp P ~ m)( cosrp) solves the associated Legendre equation (5), and for n ~ m, 

Proof. Let Tc be the translation operator which assigns to each function f(x,y,z) the new 

function f(x,y,z-c) (Le., Tc[~(x,y,z) = f(x,y,z-c)). This operator commutes with the operators 

ax' ay, and az, in the sense that 0x(Tc[~) = Tc[ax~' and similarly for ay and az (Le., we get 
the same result whether we translate first and differentiate second or vice-versa). Thus, 

(ax + Wy)m [uc] = (ax + iay)m [Tc[u]] = Tc[( ax + Wy)m[u]] . (48) 

By (42), we have 

(ax + Wy)m (p -1) = eimO sinmrp pm (p-l ap)m [p -1] = ... 

= (_I)m 1.3.5 ..... (2m+l)p-m-leimO sinmrp. ( 49) 

We apply Tc to this function in order to evaluate (46). We have Tc(p) = (p2 - 2cpcosrp + c2)t, 

and Tc(sinrp) = Tc(r/ p) = r/Tc(p) = p sinrp/Tc(p), since r = Jx2+i is invariant under Tc. 
Thus, (49) yields 

(ax + W )m[uc] = (_I)m 1·3·5· ... ·(2m+l) eimO sinmrp [ 2 pm 2 m+.l.]. (50) 
y (p - 2cpcosrp + c) 2 

The expression in brackets can essentially be obtained from [i - 2cpw + c2]--t, by repeated 
differentiation with respect to w = cosrp, as follows: 

Thus, from (50), (51), and (9), we obtain 
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(ax + Wy)m[uc] = (_I)m c-m ::m [ [p2 -2pcw + c2]-1/2] sinmrpeimO 

= (_I)m c-mdm [t p (w)p-n-l cn] sinmrpeimO 
dwm n=O n 

= t [ (_I)m eimO sinmrp p~m)(cosrp)p -n-l] cn- m . 
n=m 

(52) 

The differentiation under the summation can be justified without any appeal to uniform 

convergence theorems for derivatives. Indeed, for p > 0, f( c) :: dm [[p2 -2pcw + c2]-1/2 ] 
dwm 

has a valid power series expansion in c, and the Taylor coefficients of f( c) may be computed just 

as well by differentiating [p2 -2pcw + c2]-1/2 with respect to c first, and then with respect to 
w (m times), as the order of differentiation does not matter. The result (47) follows immediately 

from the fact that the expression multiplying cn- m in (52) must be 

Since the left side of (47) is harmonic, we know that the function S (rp, 0) on the right side is a n,m 

spherical harmonic, and hence sinmrp p~m)(cosrp) solves the associated Legendre equation (5). 0 
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Summary 9.4 

1. Spherical harmonics: According to Theorem 1, each n-th degree, homogeneous, harmonic 

polynomial u(x,y,z) can be written in the form U(p,ip,O)= pnf(ip,O), where f(ip,O) is an 
eigenfunction of .6.s (i.e., a spherical harmonic) with eigenvalue n(n+l). Conversely, by 

Theorem 1', for every (C2) spherical harmonic f( ip,O), there is an integer n ~ 0, such that 

If( ip,O) is a harmonic polynomial when expressed in terms of x, y, z. The eigenvalue for f( ip,O) 
is n(n+l), and there are 2n+l linearly independent spherical harmonics which have eigenvalue 
n(n+l) (i.e., the eigenspace of .6.s corresponding to this eigenvalue has dimension 2n+l). 

These independent spherical harmonics are given by the real-valued functions 

Pn(COSip), Pn m(COSip)cos(mO), P (cosip)sin(mO) , m = 1, ... , n , , n,m 

where P n(COSip) and P n m(COSip) are described in 2 below. Alternatively, allowing complex , 
coefficients, the spherical harmonics with eigenvalue n(n+l) are all linear combinations of 

m = -n, ... , n. 

2. Legendre's equations: When separation of variables is used to find product solutions 

f(ip,O) = L(ip)M(O) of the equation .6./ = -n(n+l)f, the ODEs which result are M"(O) + m2M(O) 

= 0 and 

sinip[sinipL'(ip)]' + [n(n+l)sin2ip-m2]L(ip) = 0, 

which is known as Legendre's differential equation when m = 0, and as Legendre's associated 
equation for nonzero integers m. In terms of w = cosip, the n-th Legendre polynomial is the 
solution of (*) given by 

P (w) = 1...-)'[ n/2] (2n-2k)! (_I)k wn- 2k . 

n 2n ~=O k! (n-k) !(n-2k)! 

The first five Legendre polynomials are 

1 2 1 3 
P O(w) = 1, PI (w) = w, P 2(w) = 2(3w -1), P 3(w) = 2(5w - 3w), 

1 4 2 1 5 3 P 4(w) = g(35w - 30w + 3), P5(w) = g(63w - 70w + 15w) . 

For any integer m, the only solutions of (*) which are c1 on the sphere are constant multiples of 

P (COSip) = P (w) == (l_w2)m/2 dm m[p (w)) = sinmip p(m)(COSip), for m> 0, 
n,m n,m dw n 

and 
P n m(w) == P n _m(w) , , , for m < O. 
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3. Orthogonality: For continuous complex-valued functions f(cp,O) and g(cp, 0) on S, we define 

f 211"f11" 
<f,g> = 0 0 f( cp,O)~ sincp drpdO , 

If f and g are C2, then integration by parts with respect to cp and 0, yields 

Green's Formula on the unit sphere : <f'~sg> = <g,L\f> = <~i,g> , 

which is used in proving the following orthogonality relation for the spherical harmonics: 

2 [ 0 , if m f. m' or n f. n' 

f 11"f11" Sn,m(cp,O) Sn',m'(cp,O) sincpdcpdO= fn+m~i 411" . _, 
o 0 n-m . 2n + 1 ,If m - m and n = n'. 

4. Laplace series for functions on the sphere: The Laplace series of a function f( cp, 0) defined on 
the sphere is the expression 

where 

~ 2 1 f211"f11" _. ° -2 c = n+m. ~ f(cp,O)e 1m p (coscp) sincp drpdO = liS II d,S >, 
n,m n m. '* 11" 0 0 n,m n,m n,m 

and Sand P are defined in 1 and 2 above, provided the integrals exist. If f is C2, n,m n,m 
the uniform convergence of the Laplace series LS f to f is ensured by Theorem 5. 

5. The Cauchy-Riemann operator: The Cauchy-Riemann operator () + iO is the first-order x y 

differential operator which assigns, to each C1 complex-valued function u(x,y,z) + iv(x,y,z), the 
function 

(() + iO )( u + iv) = (u - v ) + i( u + v ) . x y x y y x 

This operator generates all the spherical harmonics via the formula (where 0 ~ m ~ n) 

~ (J:l +.J:l)m "n-m[ 1] imO. m p(m)( ) -n-l S (0) -n-l [ri=IDJT Vx IVy Oz P = e sm cp n coscp P = n,m cp, P , 

which shows that the functions sinmcp p(m)( coscp) must solve the associated Legendre equation 

(cf. Theorem 6). Moreover, this operator is also used to obtain the functions R~(p) from the 

functions R~(p) (cf. Theorem 5). 
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Exercises 9.4 

1. Choose one of the functions f( cp,O) in (2) and verify by direct computation that it is an 
eigenfunction of ~s with eigenvalue 6. 

2. Describe a rotation or sequence of rotations in space which 

(a) carries x2 - i to 2xy (b) carries 2xy to 2zx 

3. For n = 0, 1, 2, 3, check that 

2 2 (d) carries 2xy to y - z . 

(a) the Legendre polynomials P n(w) (cf. (7)) satisfy Legendre's differential equation (6), with 

m = 0, and 

(b) the functions P n ( cos cp) satisfy (5). 

4. (a) Find a harmonic polynomials of degree 4 in x, y and z, such that when it is restricted to 
the sphere p = 1, the resulting spherical harmonics is independent of ° (cf. Example 2). 

(b) If a spherical harmonic is independent of cp, must it be constant? Explain. 

5. For n = 2 and m = 1 and 2, check that P (coscp) in (11) satisfies the associated Legendre n,m 
equation (5). 

6. (a) Express each of the spherical harmonics (2) ar~sing from quadratic r:olynOmials as a linear 

combination of the spherical harmonics S2 m( cp,O) = e1mOsin I m I (cp) P ~ 1m) (coscp) (-2 ~ m ~ 2). , 

(b) Write the real and imaginary parts of P2S2 m(cp,O) (-2 ~ m ~ 2) as harmonic quadratic , 
polynomials in x, y and z. 

7. Find seven harmonic polynomials p(x,y,z) of degree 3, none of which is a linear combination 
of the others. Can anyone find eight? Why not? 

8. Show that any solution of the associated Legendre equation (5) which is C2 on [0,11') must be 
a constant multiple of the solution P (coscp). n,m 
Hint. Consider the Wronskian W( 0) == y 1 (O)y 2' (0) - Y I' (O)y 2( 0) of two solutions, and use the 

fact (cf. Problem 18 of Chapter 1) that W(8) = Cexp(-J coscp/sincp dcp) = C/sincp. Thus, at 

least one of two independent solutions is not C1 at the poles cp = ° or 11' (Why?). 
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9. A function G(w,c) is a generating function for a sequence of functions fO(w), fl (w), f2(w), ... , 

if G(w,c) = f fn(w)cn for I cl < (, where ( is some positive constant. 
n=O 

(a) Using Example 3, show that L(w,c) = (1 - 2cw + c2)--i- is a generating function for the 
sequence P O(w), PI (w), P 2(w), ... of Legendre polynomials. 

(b) By observing that L(I,C)=(I-c)-1=1+c+c2 + ... (for Icl <I),deducethat 

P n(l) = 1. Similarly deduce that P n(-I) = (_I)n. 

(c) Use the formula L(w,c) = (1 - 2cw + c2)--i- to show that 2c2Lc + cL = c2Lw - Lw' By 

writing both sides as power series and equating coefficients of like powers of c, deduce that for 
I I 

n ~ 1, we have (2n+l)P n(w) = P n+I (w) - P n-l (w). Use this to obtain the fact (used in the 
I I 

proof of Theorem 4) that PO(w) + 3PI(w) + ... + (2n+I)Pn(w) = Pn+ 1 (w) + Pn (w). 

(d) By reviewing the proof of Theorem 6, find a generating function for the sequence of associated 
Legendre functions Po m(w), PI m(w), P2 m(w), ... ,for a fixed positive integer m. , , , 

10. (a) Use the orthogonality result (13) in Theorem 3, when m = m l = 0 and n j n/, to show 
1 

that J P (w)P I(W) dw = 0 (Le., the Legendre polynomials are orthogonal on [-1,1]). 
-1 n n 

(b) Use the result of part (a) and Problem 9(a) to deduce that 

1 00 1 
J dw 2 = L J Pn(w)2 dwc2n. (*) 
-1 1 - 2wc + c n=O-I 

(c) By evaluating the integral in part (b) and expanding the result in terms of a power series in 
1 

c, deduce that LI P n(w)2 dw = 2;+1' by comparing the coefficients in (*). Why does this 

result give us the orthogonality relation (13) in the case m = m l = 0 and n = n l ? 

1 1 
(d) Show that Ll P n,m(w)2dw = LI pim)(w) [(1-w2)m pim)(w)] dw = ... (via integration 

by parts m-times) ... = J~I P n(w)Qn(w) dw, where Q(w) = (_I)m ::m[(1-w2)m pim)(w)] is 

a polynomial of degree n with highest power term f~~~~: anwn, where anwn is the highest 

power term in P n(w). 
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(e) Explain why any polynomial of degree k can be written as a linear combination of Legendre 
polynomials of degree $ k. Use this fact and part (d) to conclude that 

fn+m~! Qn(w) = n-m!p n(w) + cn_IP n-I(w) + ... + cIPI(w) + cOPO(w), for constants cO''''' cn- I · 

I I 2 fn+m~i 2 (f) Use parts (a), (c), (d) and (e) to conclude that -t n,m(w) dw = n-m. 2n+I' 0 $ m $ n, 

and that the relation (13) holds. 

11. (a) Find a solution u(x,y,z) of Laplace's equation ~u = 0 in the ball p < 1, such that on 

the boundary sphere p = 1, we have u(x,y,z) = x + y2 + z3. 

(b) Find a solution of ~u = 0 outside of the ball, which still satisfies the boundary condition in 
part (a), and which tends to zero as p ... 00. 

12. Let f(ip, 0) be an eigenfunction of ~s with eigenvalue n(n+I). 

. Or21l' • 
(a) Let fm(ip,O):: elm Jo f(ip,w)e-lmwdw. Show that if f(ip,O) is smooth enough to permit 

differentiation under the integral, then fm(ip,O) also satisfies ~sfm = -n(n+I)fm. 

2 
(b) Show that IVfml2 ~ sin-2ip I~fml = (sin-2ip) m2 Ifml2 ~ m2 Ifm l2 . 

(c)Use(a),(b)andI f ~f dA=-f IVf 12dA,toprovethatf ::O,iflml >n. 
Sm sm S m m 

(d) Deduce from (c) and Problem 8, that f must be a linear combination of the standard 

spherical harmonics S (11',0) :: eimO sin I m I II' P ( I m 1)( cos 11') , m = -n, ... , n. n,m n 

(e) Deduce from (d) that any harmonic polynomial in (x,y,z), of degree n, must be a linear 

combination of the harmonic polynomials obtained from (12') via multiplication by pn. 

13. Let Hn denote the set of all homogeneous harmonic polynomials in x, y, z of degree n, 

restricted to the sphere p = 1 (together with the zero function). Let F be a continuous function 
on the sphere. In the following parts, we demonstrate that there is a (unique) h in H such that n 

IIF-hIl 2 :: <F-h,F-h> :: J (F-h){F=li) dA is smaller than IIF-kIl 2 for any other k in H . 
S n 

Note that h is thus characterized in a way that is independent of any choice of spherical 

coordinate system. We will show that h = h :: ~n c S ,where n m=-n n,m n,m 

cn m :: IISn mll-2<F,Sn m>' whence even though the terms in this sum may depend on the choice , , , 
of spherical coordinates, the entire sum does not. 
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(a) Let k be in Hn' We know from Problem 12(e) that k = ~~=-n amSn,m for some 

constants a_n, ... , an (Why 7). Show that <hn -k,F-hn> = O. 

(b) Show that IIF-kI1 2 = «F-hn) + (hn -k),(F-hn) + (hn -k» = IIF-hnIl2 + IIhn _kIl 2, where 

one uses part (a) for the last equality. 

(c) Conclude that IIF-kll 2> IIF-hnIl2, unless k = hn (Le., h = hn). 

( d) Show that (c) implies that uN in the proof of Theorem 4 is indeed independent of the 

choice of north pole for the spherical coordinate system, as claimed. Hint. uN = ~~=O hn. 

14. Let uN be the double sum in (19) in Theorem 4. Use (19) to show that Ilf - O'NII2 --; 0 as 

N --; 00, and use this to prove Parseval's equality IIfl12 = t 2!~ 1 l:n f~+~~$ I cn m 12 . 
n=O m=-n ' 

Hint. Show that Ilf - O'NI12 = IIfl12 - 2<f'O'N> + IIO'NI12 = IIfl12 -IIO'NII2. 

15. (a) Let f(p,ip,O) and g(p,ip,O) be C2 functions on the ball p ~ Po such that f and g are 

zero on the boundary .. Let <f,g> denote the integral of fg (or Ig, if f and g are allowed to be 

complex) over the ball, with respect to the volume element p2sinip dp dip dO. Prove Green's 
formula <~f,g> = <f,~g>. Hint. The computation is quite easy if you write (cf. Proposition 1 

of Section 9.3) ~u = p-2(p2Up)p+ p-2~sU, and use the known result (cf. (16)) 

<~l,G> = <F'~sG> on a sphere. 

(b) Let E be the eigenfunctions defined by (33). Deduce from part (a) that n,q,m 
<E ,E I I I> = 0 if n f n/, q f q' or m f m'. Hint. We know that this result holds if n,q,m n ,q ,m 
n f n ' or m f m' (Why 7). Hence, assume that n = n ' and m = m' and q f q' , and use 
13 f 13 I (cf. (31)). Thus, we avoid the possibility that!3 =13 I I for n f n I and q f q I. n,q n,q n,q n ,q 

(c) Conclude from part (b) that JPo jn(!3 p/Po)j (13 IP/PO) p2 dp = 0, if q f q/. How might o n,q n n,q 

this result be proved directly 7 Would a direct proof be easier 7 

16. (a) Compute the spherical Bessel functions jl (p) and j2(P) and show that they satisfy the 

radial equation (28). 

(b) Show that for small p, jl(P) ~ p/3 and j2(P) ~ p2/15 . 
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17. Solve D.E. ut = k~u p ~ 1 , t ~ ° 
B.C. U(l,'P,O,t) = ° 
I.C. U(p,'P,O,O) = V 21lp) + j1 (/11 3P)cos'P + j2(/12 IP)sin2'P8in(20) , , , 

where /1n,q areas in (31). 

18. Suppose that the B.C. in (27) of Example 6 is replaced by U /Po,'P,O,t) = ° (i.e., the ball is 

insulated). Let 'n,q denote the q-th positive number where the derivative j~(p) is zero. 

Express the formal solution of this new problem by using the numbers, . n,q 

19. Change the D.E. in (27) of Example 6 to the wave equation Utt = a2 ~u and adjoin the I.C. 

Ut(p,'P,O,O) = 0. What is the formal solution of this new problem? 

20. (a) Argue that the heat equation for the temperature u = U('P,O,t), in a thin, homogeneous 
metalfic unit sphere which is insulated on the inner and outer surfaces, is of the form ut = k~su. 

(b) Solve this equation formally in the case where the initial temperature is U('P,O,O) = f('P,O). 

(c) Find an exact solution when f( 'P,O) = 2 cos 'P sin2'P cos20. 

(d) Prove that for any solution v of vt = k~sv, we have ~ Is v2 dA = -2k Is IVvl2 dA, and 

conclude that the solution found in (c) is unique. 

(e) State and prove a maximum principle for solutions of ut = k~su. 

21. (a) Show that the Laplace series for the C3 function sin3'P has an infinite number of terms, 

whereas the Laplace series for sin3'P cos(30) has only one term. 

(b) Use Theorem 4 to estimate the number of terms of the Laplace series for sin3'P that suffice 

to approximate sin3'P to within an error of .01. (The industrious reader may wish to compute 
the coefficients of the Laplace series to see if the convergence is really this slow.) 

( c) Why can we not apply Theorem 4 to the function sin 'P ? 

22. Show that every homogeneous polynomial p(x,y,z) (not necessarily harmonic) of degree N 

can be written in the form p(x,y,z) = hN(x,y,z) + ihN_2(x,y,z) + p4hN-4(x,y,z) + ... , where hk 

is a harmonic polynomial of degree k. Is this representation unique? Why? Hint. Consider the 
Laplace series of p(x,y,z) on the unit sphere and apply Theorem 2. 
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9.5 Special Functions and Applications 

The solutions of the ODEs which are encountered after separation of variables in various 
coordinate systems are of such fundamental importance, that they are given names and are the 
objects of much scrutiny. Such solutions fall under the category of special functions. The 
Legendre functions P (cosrp) and spherical Bessel functions j (p) of Section 9.4 are examples n,m n 
of special functions. Here we will study some of the special functions (e.g., Bessel functions) 
which are indispensable in applications to boundary-value problems for cylinders and disks, and 
we consider the Laguerre polynomials and Hermite functions in connection with the quantum 
mechanics of the hydrogen atom and the harmonic oscillator. 

Radial special functions 

We have seen (cf. Example 1 of Section 9.2) that solutions u of the eigenfunction equation 

~u + cu = 0 immediately lead to solutions e -cktu of the heat equation ut = k~u, and to 

solutions e:l:i~atu of the wave equation Utt = a2~u. Moreover, equations of the more general 

form 
~u + [f(llxl!) + c]u = 0 , (1) 

(where f is a given function of the distance Ilxll = jxi + ... + x~ of the point x = (xl'x2, ... ,xn) 

to the origin in IRn) arise in certain heat [or wave] problems where there is a temperature [or 
displacement] dependent source term. But most often such equations occur in quantum 
mechanics, which we will consider later in this section. Assuming a product solution of (1) of the 
form R(r)H(O) in dimension 2 [using polar coordinates (r,O)], and R(p)S(rp,O) in dimension 3 
[using spherical coordinates (p,rp,O)], we obtain the respective separated equations: 

H"( 0) + m2H( 0) = 0, (2) 

~sS(rp,O) + n(n+l)S(rp,O) = 0, p2R"(p) + 2pR'(p) + [ci - n(n+l) + p2f(p)]R(p) = O. (3) 

We refer to the equations for R(r) and R(p) as radial equations. In the case where f(p) == 0, we 

saw already in Theorem 5 of Section 9.4 that the general solution of (3) for any nonzero c = ±b2 
is given by 
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When c = 0 and f(r) = 0, the general solution of the radial equation in (2) is Klog r + C when 

m = 0, and c1rm + c2r-m for m = ±1, ±2, ... ; while the general solution of (3) is 

-n-l n £ c1p + c2p , or n = 0, 1,2, .... Note that the solutions (4) of (3) can be expressed as simple 

combinations of elementary functions (i.e., xk, sin(x), cos(x), eX, log(x)). However, this is not the 
case for solutions of (2), with f(r) = 0 and c f. 0, which we consider next. 

Bessel functions 

When c = 1 and f(r) = 0 in (2), we obtain Bessel's equation of order m : 

(5) 

[Friedrich Wilhelm Bessel (1784-1846) was a German astronomer who first determined the 
distance of a star (other than the sun) from the earth. He was the first to routinely use Bessel 
functions.]. For each m = 0, 1, 2, ... , it can be shown that one solution of (5), known as the 
Bessel function of the first kind of order m, can be written in a power series 

(6) 

which converges for all r (even if r is complex), but it is known that Jm(r) cannot be expressed 

algebraically in terms of elementary functions. This is one reason why we considered the 
eigenvalue equation ~u + cu = 0 first in spherical coordinates instead of polar or cylindrical 
coordinates. As can be seen from the graphs (cf. Figure 1 below and Figure 2 of Section 9.4), the 
functions J m (r) are similar to the (elementary) spherical Bessel functions jn (p) which solve the 

'Ispherical Bessel equation II (3) with c = 1 and f = O. Just as the jn(p) can be used to solve 

heat and wave problems in a solid ball, the Jm(r) can be used to solve such problems in a disk or 

a cylinder. Indeed, Bessel functions are also known as cylindrical functions. 

r 

Figure 1 
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Example 1 (The vibrating circular drum). Determine the transverse amplitude of a vibrating 
circular drum head of radius ro > 0, by formally solving the problem 

2 D.E. Utt = a (uxx + uyy) 2 2 2 
x + Y ~ ro , -00 < t < 00 

B.C. U(ro,O,t) = ° 
I.C. U(r,O,O) = f(r,O), Ut(r,O,O) = g(r,O) . 

Solution. The product solutions T(t)R(r)H( 0) of the D.E. and B.C. are of the form 

[A·cos(bat) + B,sin(bat)] Rm(br) [C·cos(mO) + D·sin(mO)] , 

(7) 

(8) 

where Rm(r) solves (2) with c = b2, and Rm(ro) = 0. For any two nonsingular solutions Yl(r) 

and Y2(r) of (2), the Wronskian W = YlY~ - Y~Y2 is Cexp(-J llr dr) = Clr , which shows that 

at most one of two independent solutions of (2) can be c1 at r = 0. Thus, Rm(r) must be a 

constant multiple of Jm(br). By (6), for small r, Jm(r) ~ [2m m!]-lrm, whence near the origin, 

Jm(r)cos(mO) and Jm(r)sin(mO) resemble Re[(x+iy)m] and Im[(x+iy)m] , and the solutions 

(8) can be shown to be COO everywhere. Let j be the q-th positive value for r such that m,q 
Jm(r) = 0. (As is suggested by the above graphs, it can be shown that Jm has infinitely many 

positive zeros (cf. Example 8 of Section 4.4). Then, the values for b, such that (8) meets the 
B.C. of (7), are of the form j Iro. For a formal solution, we consider m,q 

where, for negative integers m, Jm(r) == (-I)mJ_m(r). To meet the initial conditions, we need 

(10) 

and 

(11) 

The (m,q)-th term in these series is an eigenfunction of the Laplace operator ~ = 0 2 + 0 2 x y 

= r-IOr(rOr) + r-2ol with eigenvalue (jm,q/ro)2 (Why?). It is clear that terms with 
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different values of m are orthogonal on the disk r ~ roo Moreover, two terms with the same m, 

but different q, will have different eigenvalues, and hence will be orthogonal by virtue of Green's 
formula (cf. Problem 3(a)). Consequently, a formal application of orthogonality yields 

-1 I211" Iro _. ° 
am,q = nm,q 0 0 f(r,O) Jm(jm,qr/ro) e 1m r dr dO (12) 

and 

(13) 

where 

Iro. 2 2. 2 
n :: 211" J (J r Iro) r dr = 1I"f 0 J I (J ), m,q 0 m m,q m m,q (14) 

(cf. Problem 3(b) for the last equality). As a consequence of Theorem 3 (Uniform Convergence of 
Eigenfunction Expansions) in Section 9.6, the series (10) and (11) will converge uniformly, 

provided f and g are C2 on the disk r ~ ro and are 0 on the boundary circle r = roo Thus, in 

this case one can truncate the formal series solution (9) at sufficiently large values for q and m 
obtaining an exact solution of the D.E. and B.C. which meets the I.C. to within any given positive 
experimental error. 0 

Remark 1. In the case where the function f in (7) only depends on r, we have a = 0 in m,q 
(10), if m f 0 (Why?), and the series (10) is the Fourier-Bessel series (of order 0) 

00. -1 Ir 0 • 
FBS f(r) :: L aO JO(JO r/ro) , where aO = nO f(r) JO(Jo r/ro) r dr , q=O ,q ,q ,q ,q 0 ,q 

(15) 

and nO is given by (14). If f(r) defines a C2 function on the disk r ~ ro' then FBS f(r) ,q 
converges uniformly to f(r), as a special case of Theorem 3 of Section 9.6. 0 

Remark 2. The real and imaginary parts of the terms in the formal solution (9) are the 
fundamental modes of the drum. Some of these fundamental modes at a fixed time are illustrated 
in Figure 2 below. For convenience, we have chosen ro = 1. As time varies, one should imagine 

each of these surfaces oscillating between itself and its negative. From (9) we see that the 
frequency of oscillation for a mode, with given m and q, is aj 1(211"fo). Thus, the frequencies m,q 
are determined by the zeros of the Bessel functions. Many of these zeros have been computed 
numerically to many places and there is a table of some of the zeros in Appendix A.6. Using this 
table, we find that jo 1 < j1 1 < j2 1 < jo 2 < j1 2 < j22 < jo 3 < j1 3 < j23 < jo 4 < j1 4 , , , , , , , , , , , 
< j2 4· Thus, one can deduce the ordering according to frequency in Figure 2. For the modes , 
shown in Figure 2, all of the frequencies in one column are lower than all the frequencies in the 
next column to the right, but this would not hold if we had added one more row. Indeed, 
j31 > jo 2· Moreover, the modes shown donot have the twelve lowest possible frequencies. 0 , , 
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Figure 2 

Remark 3. A second solution of Bessel's equation (5), which is linearly independent of Jm(r), is 

the Bessel function of the second kind, denoted by Y m(r) (Hankel introduced this function in 

1869). As noted in Example 1, these solutions must be singular at r = o. Indeed, for small r, 

YO(r) ~ ~ log(r) and Ym(r) ~ - ~ (r/2)-m/(m-1)1, m> O. Such solutions are used in the 

problem of vibrating annular drum head or for heat flow in an annulus. Recall that the Dirichlet 
and Neumann problems for steady-state temperatures (cf. Section 6.3) in an annulus required the 

use of the singular solutions log(r) and r-m of the radial equation (2), in the case c = 0 which 
is appropriate for Laplace's equation. The precise formula for Y m(r) and the asymptotic 

behavior of Jm(r) and Y m(r) for large r are summarized in Appendix A.6. 0 
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As the next example illustrates, there are applications of the equation (2) in the case where 

c = _b2 < O. In this case, the solutions are obtained from the solutions R(br) of (2) with 

c = b2 > 0, by replacing b by ib. Such solutions are known as modified Bessel functions. For 

example, replacing r in Jm(r) by ir, and mUltiplying by (_i)m to ensure reality, we obtain 

the following modified Bessel function which solves (5) with [r2_m2] replaced by _[r2+m2]. 

Im(r) == (-i)mJm(ir) = (r/2)m 4=0 d(~{tl~ . (16) 

The graphs of 10 ' 11 and 12 are shown in Figure 3 below. 

r 
4 

Figure 3 

Example 2 (SteadY-iltate temperature distribution in a cylinder). Consider the problem of 
determining the steady-state temperature distribution of a homogeneous solid cylinder which is 
insulated on the top and bottom faces with a prescribed temperature on the lateral surface: 

D.E. u + u + u = 0 xx yy zz 
2 2 2 

x + Y ~ r 0' 0 ~ z ~ Zo 

(17) 

Discuss the behavior of the solution as Zo -i 0 +, in relation to the Dirichlet problem for the disk. 
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Solution. Separation of variables for the product solution U(r,O,z) = R(r)H( O)Z(z), leads to 

r2R"(r) + rR' (r) + (_p2r2 - m2)R(r) = 0, H" + m2H = 0 and Z" + p2Z = O. (18) 

Note that, by the B.C., we must have p = Pn = n7r/zo (n = 0, 1, 2, ... ), and Z(z) 

= ancos(n7rZ/zo). Since H(O) must be periodic in (), we conclude that H(O) = cmeimO , m = 0, 

±1, ±2, .... In the case n = 0, we obtain the nonsingular solution rm for R(r). In the case 

n ~ 1, note that since Jm(br) is a solution of the equation r2R"(r) + rR'(r) + (b2r2 - m2)R(r) 

= 0 (d. Problem 1), we will obtain a solution for R(r) in (18), if we choose b = iPn. Thus, we 

take Rm,n(r) = (-i)mJm(iPnr) = Im(Pnr) (d. (16)). For a formal solution, we consider 

The B.C. U(ro,(},z) = f(O,z/zo) is satisfied if 

(20) 

This is a double Fourier series for f( (},z/zo) on the "rectangle" 0 ~ ° ~ 27r, 0 ~ Z ~ Zo ' if 

cm 0 = _1_ I7r IZo f( (},z/zo)eimO dzd() = 1:. I7r II f( (},() eimO d( dO ((:: z/zo) 
, 7rZo -7r 0 7r -7r 0 

and 

for m = 0, ±1, ±2, ... and n = 1,2, .... As a consequence of Theorem 1 of Section 9.2, if f((},z) 

is C3 with fz(O,O) = 0 and fiO,I) = 0, then the series (20) will converge uniformly to f(O,z). 
By truncating the formal solution (19) at a sufficiently large value for m and n, we obtain a 

solution of the problem (17), within experimental error. As Zo --; 0+, we should obtain the 

1 
solution for the Dirichlet problem on the disk with boundary function f( 0) :: Io f( O,() d( (Le., the 

double sum in (19) should approach 0). In fact, it is known that for large r, I (r) ~ l/.{Fii 
m 

(regardless of m; d. [Whittaker and Watson, p. 373]). Thus, Im(n7rf/zo)/lm(n7rfo/zo) 

r:;j exp[-n7r(ro-r)/zoJJr 0 7 r. Hence, at least for 0 < t < r < ro- t, the second sum is of the order 
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exp(-7rf/ZO)' which tends rapidly to zero as + Zo --l 0 . For 0 $ r $ f, we have 

Im(n7rf/zo)/Im(n7rfo/zo) $ Im(nu/zo)/Im(n7rfo/zo) ~ exp[-n7r(ro-f)/zolFoll which also tends 

rapidly to zero as Zo --l 0+. 0 

For problems involving heat flow in a sector of a disk, with central angle a, it is necessary 
to find solutions of Bessel's equation (5) in the case where m = n7r/a (n = 1,2,3, ... ). Note that 
m will not necessarily be an integer unless 7r/ a is an integer. Thus, it is necessary in such 
problems to consider solutions of Bessel's equation when the order m is not an integer. In the 
definition (6), there appears the quantity (m+k)!, which makes sense only when m is an 
integer. Thus, when m is not an in integer, in (6) one replaces (m+k)! by r(m+k+1), where 
r is the gamma function which is defined by 

r(s) = fo e-x xs- 1 dx, for real s > 0 . (21) 

Using repeated integration by parts (cf. Problem 6), one can easily show that, for a positive 
integer n, we have r(n+ 1) = n!. Thus, the gamma function can be used to extend the factorial 
function to all positive real numbers. In particular, 

1 -x -1 2 --1 [ [ 
2 

r [ 2"] = 0 e x / dx = 0 e Y y 2y dy = .fi . 

Moreover, integrating by parts, we find r(s+1) = sr(s), from which we obtain 

r [ 1] _ 1· 3·5· .... (2n-l) l-
n + 2" - n y7r, 

2 
n = 1,2,3, .... (22) 

Example 3. Show that the spherical Bessel function jn (cf. (29) and (30) of Section 9.4) is 

related to I n+! by the formula 

(23) 

Solution. First we show that R(p) is a solution of the three-dimensional radial equation (3), if 

and only if .[r R(r) solves Bessel's equation (5) with m = (n+!) : 
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r2(.[r R(r))" + r(.[r R(r))' + (r2 - (nH)2).[r R(r) 

= .[r [ r2R" + rR' - i R + rR' + i R + [r2 - (n+t)2] R ] 

.[r [ r2R" + 2rR' + [r2 - n(n+l)] R] . 

Thus, .[r jn(r) is a solution of Bessel's equation of order (n+t). Bessel's equation cannot have 

two independent solutions which are C1 at r = 0, since the Wronskian is Cr -1. Thus, the ratio 

.[r j (r)/J +J.(r) is constant. For small r> 0, we have (using (22) and (6)) n n 2 

where we have obtained the leading term for jn(r) from the definition 

. ()=(_1)nn[l8 ]n,oo (~ li7 2m _(_1)nn[l8 ]n-l,oo f-1)m2m 2m-2 
In r - r r IJi l m+! r - r r IJi l 2m+ 1 ) ! r 

m=O m=1 

_ n n [1 8 ]n-2,00 (-I~m2m(2m-2) 2m-4 _ _ rn 
- (-1) r r IJi lm=2 2m+l) ! r - ... - 1.3.5 ..... (2n+1) + .... 0 

SchrOdinger's equation and quantum mechanics 

Much of the behavior of very small objects, such as an electron in an atom, cannot be 
adequately described in terms of the classical mechanics of Newton, whereby an object, subject to 
a given force, moves along a trajectory which is determined by its initial position and velocity. 
Indeed, nature has placed a fundamental restriction on how well one can simultaneously measure 
an object's position and velocity - a restriction which no measuring instrument can overcome, 
regardless of how technologically advanced it is. More precisely, in any direction (say i), for a 
particle P of mass M, the error 8x in the measurement of piS x-£oordinate and the error 8v 1 

in the measurement of the i-£omponent of piS velocity, must satisfy the (Heisenberg) uncertainty 
relation 

8x8V1 ~ ~h/M , where h = Ji and h:::: 6.626 x 10-27 g cm2 s-l. (24) 

For an object with a mass of a few grams, the product of the errors is quite small. However, for 

an electron of mass :::: 9.108 x 10-28 g, the product 8x8v 1 of errors must be larger than 

.5 cm2 s -1, regardless of advances in technology. Indeed, the notion that a particle can have a 
well-defined position and velocity is in dispute. Some people, who have thought deeply about 
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such things, have come to the conclusion that a particle has no position or velocity which is 
independent of an act of observation. Because one cannot reliably use position and velocity as the 
description of the state of a small particle, a different characterization of the state of a particle 
must be adopted. Quantum mechanics provides a surprisingly accurate description of small-scale 
~henomena, where Newtonian mechanics demonstrably fails. According to quantum mechanics 
(in its simplest form), a quantum state of a particle at fixed time is a complex-valued function 

t/J(x,y,z), defined on 1R3, which is known as a (SchrOdinger) wave function. The state t/J is said to 

be normalizable, if the integral of the square of the modulus of t/J over 1R3, namely 

1It/J1I2:: fIR3 1 t/J(x,y,z) 12 dxdydz, is finite and nonzero (the zero function is not a permissible 

state). Since two states are regarded as equivalent, if one is a constant multiple of the other, one 

can always multiply a normalizable wavefunction by a constant, in order to achieve 1It/J1I2 = 1, in 
which case t/J is said to be normalized. For a normalized state t/J, the probability that the 

particle will be in any given region A in space is fA 1t/J12 dxdydz, a number in [0,1] (e.g., if 

A = 1R3, the integral is 1, meaning that the particle is certainly somewhere in 1R3). Thus, the 
wave function contains some information about the location of the particle, but only in a 

probabilistic sense. Indeed, 1 t/J(x,y,z) 12 is said to give the density of the probability cloud of 
possible positions for the particle. The state t/J also provides some information about the velocit~ 
of the particle. In fact, the density of the probability cloud for the possible velocities (v1,v2,va) 

A 2 A 

of the particle is the square modulus 1 'l/J(Mvdh,Mv2/h,Mva/h) 1 ,where t/J is the Fourier 

transform of t/J. The uncertainty relation (24) is a consequence of this fact (cf. Problem 13). 
Consider a particle of mass M which is subject to a force F(x,y,z) of the form 

-VV(x,y,z) for some function V(x,y,z), known as a potential for F. A quantum state with a 
definite energy E (classically, kinetic plus potential energy), satisfies the PDE 

h 2 
2M tl.t/J + V(x,y,z)t/J = Et/J, (25) 

which is known as the (time-independent) SchrOdinger equation. Note that equation (25) says 
2 

that t/J is an eigenfunction of the operator k tl. + V, and the energy E is the associated 

eigenvalue. Depending on the potential, it may happen that the eigenvalues of this operator are 
not arbitrary, but instead form a sequence of discrete values in some specified range. In other 
words, the possible energies of a particle, bound by a potential, may be limited to a certain 
discrete set of values. Spectral analysis reveals that atoms emit and absorb light of fairly definite 
wavelengths (or energies), and this is a consequence of the fact that the possible energies of the 
quantum states of electrons in atoms are discrete, in accordance with quantum mechanics, but in 
opposition to classical mechanics which incorrectly predicts a continuous range of energies. 

Of particular importance is the case in which the potential V only depends on the distance p 
to the origin, say V = V(p). In this case, SchrOdinger's equation can be put in the form 

tl.t/J + [f(p) + c]t/J = 0 , where f(p) = -2Mh-2V(p) and c = 2Mh-2E . (26) 
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The two most important forms for V are V(p) = !kp2 (the harmonic oscillator potential; cf. 
Problem 9), and V(p) = ~2p-l, the Coulomb potential (due to a proton of charge e) for the 
electric force on an electron in a hydrogen atom, which we consider in the following example. 

Example 4 (Electron states in the hydrogen atom). Using SchrOdinger1s equation, show that the 
possible negative energies E of the normalizable electron states 'I/J in a hydrogen atom, 

consisting of an electron of mass me = 9.108xlO-28 g and a proton of mass Mp I:j 1836me, are of 

e4 
the form E = En = - 2~n2' n = 1,2, ... , where I" = meMp/(Mp + me) I:j me is the "reduced 

mass 11 ,and e is the charge of the electron. Determine the states 'I/J having these energies, and 

show that there are n2 independent states having energy En' ignoring spin. 

Solution. Since the origin is customarily placed at the center of proton instead of the center of 
mass of the electron/proton system, one uses the 1", instead of me' for the mass in SchrOdinger1s 

equation, but it does not make much difference, since Mp > > me' The electrostatic potential 

energy between the electron and the proton is V(p) = ~2/p. Thus, we obtain from (25), 

2 2 
~~'I/J+ ~ 'I/J+ E'I/J= O. (27) 

Assuming a product solution 'I/J = R(p)S( cp,O) of (27), the radial equation which results from 
separation of variables (according to (26) and (3)) is 

p2R"(p) + 2pR'(p) + [21"Eo.-2p2 - t(t+l) + p22I"o.-2e2p-l]R(p) = 0 
or 

p2R"(p) + 2pR'(p) - [b2p2 + t(t+l) - kp]R(p) = 0, b = o.-1f=2IjE, k = 2p,e2/o.2 , (28) 

and S(cp,O) = St m(cp,O) = eimO sinlml(cp) pf1ml)(coscp), t = 0,1,2, ... , -t ~ m ~ t. The use , 
of the symbol t, instead of n, is conventional in quantum mechanics, since n is reserved for 

labeling the energy levels En' For large p, the term b2p2 dominates the terms t(t+l) and 

kp. Thus for large p, we expect the general solution of (28) to resemble the solution 

(c1 ebp + c2e -bp) / p , when the terms t( t+1) and kp are absent. In order that 'I/J be 

normalizable in this approximation, we must have c1 = 0, and we expect R(p) to decay as ~ -bp 

(as p -+ (0). For small p, the terms bp2 and kp in (28) are negligible, and in this case the 

general solution should behave as d1P-t-l + d2/. To ensure continuity at the origin, we must 

have d1 = O. Thus, in view of the suspected behavior of the solution of (28) for large and small 

p, it is natural to seek a solution of (28) of the form R(p) = L(p)/e-bP . Substituting this form 
into (28), we obtain the following ODE for L(p) 
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pL" + 2(t + 1 - bp)L' + [k - 2b(l+t)]L = 0 . (29) 

It can be shown [Schiff, 1968] that any solution of (29), which is not a polynomial in p, must 

grow as e2bp, in which case R(p) = /-L(p)e -bp Rl /-ebp will not yield a normalizable function 

'I/J. Let P v(p) be a polynomial of degree v, say with leading term pV. If we put P(p) into (29), 

then the left side of (29) has a highest power term [-2bv + k - 2b(t+l)1pv. Thus, letting 
n = (v+t+l) (a positive integer), we cannot obtain a polynomial solution P v(p) of degree v, 

unless [k - 2bn]pv = 0, or 

k -1 2Pfllh2 - e4 
b = bn = 2n or h .;=2jiE = n or E = En = 2fi2h2 ' (30) 

Hence, we have obtained the necessary form for the negative energies for the electron. However, if 
E is of the form (30), then one can successively determine the coefficients of the lower degree 
terms of P v(p) in order that (29) be satisfied. Thus, for each n and t, with 0 $ t $ n - 1 

there is a polynomial solution of (29) of degree v = n - 1 - t, which we denote by P n(P) (cf. n,-I:-
(33) below, for an explicit formula for P n(P)). Recall from Section 9.4 that, for each t, there n,-I:-
are 2t + 1 possible values for m, corresponding to the spherical harmonics St m(cp,O). Thus, , 
we have a family of normalizable electron wave functions with fixed energy En (n = 0, 1,2, ... ) : 

(t = 0, 1, ... , n-l ; m = -t, ... , t). (31) 

For a given n, the number of these wave functions is 1 + 3 + 5 + ... + [2(n-l) + 11 = n2. 
With some work, it can be shown that there are no other linearly independent normalizable wave 
functions with energy En (How?). 0 

Remark 1. In (31), the number n is known as the total quantum number of the state, while t is 
the orbital angular momentum and m is the magnetic quantum number. For each of the wave 

functions, it turns out that there are two independent "spin" states. Thus, there are actually 2n2 

independent states in the n-th energy shell. The sequence 2, 8, 18, ... , 2n2,... is manifested in 
the periodic table of elements. Indeed, elements with the same number of electrons in the 
outermost (highest) energy shell, have similar chemical properties. Actually, for atoms with Z 

protons in the nucleus, one must use the potential -Ze2 / p, and consequently En acquires a 

factor of Z2, and in general, e2 must be replaced by Ze2 in all of our computations. A more 
detailed analysis [Schiff, 1968] shows that mutual interactions of electrons in atoms, along with 

the spin of the electrons and certain other effects, actually split the 2n2 states into a number of 
different energies clustered about En' 0 
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Remark 2. For any integers p, q ~ 0, the generalized Laguerre polynomial L~(x) is the q-th 
degree polynomial solution of Laguerre's ODE xL" + (p + 1 - x)L' + qL = 0, given by 

p = \,q s~t (e+g)! s 
Lq(x) [,s=o s. (p+sj!(q-s)!x . (32) 

By setting x = kp/n, and F(x) = P n,t(p), one finds (from the definition of P n,t(p), (29) and 
(30)) that xF" + ([2t+l] + 1 - x)F' + (n-t-l)F = 0, which is Laguerre's ODE with p = 2t+l 
and q = n-t-l. Thus, in view of the fact that there is at most one independent polynomial 
solution of this ODE (Why?), we have 

n-t-l 
( ) _ 2t+l ( /) _ \' (_I)s (n+t)! (~)s 

P n,t p - Cn,tLn-t-l np k - Cn,t [, Sf'" (2t+l+s)! (n-t-l-s)! K ' (33) 
s=o 

for some constant C n. 0 
n,.\:. 
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Surmnary 9.5 

1. Radial special functions: When the method of separation of variables is applied to the 
equation ~u + [f(llxl!) + c]u = 0, in terms of polar coordinates in dimension 2 and in terms of 
spherical coordinates in dimension 3, we obtain the following respective equations: 

H"(8) + m2H(8) = 0, r2R"(r) + rR'(r) + [cr2 - m2 + r2f(r)]R(r) = 0, (Sl) 

~sS(tp,8) + n(n+l)S(tp,8) = 0, p2R"(p) + 2pR'(p) + [cp2 - n(n+l) + p2f(p)]R(p) = O. (S2) 

The equations for R(r) and R(p) are known as radial equations. When f(p) = 0 and 

c = ±b2 f. 0, the general solution of the equation (S2), is 

± 
Rn(bp), where 

as was shown in Section 9.3. However, the solutions of (Sl) (with f(r):: 0) cannot be expressed in 
terms of elementary functions, and we describe them next. 

2. Bessel functions: When f(r) == 0 and c = 1, (SI) is Bessel's equation of order m : 

When m is a nonnegative integer, any solution of Bessel's equation which is 
be a constant multiple of the Bessel function Jm(r), defined by 

m \,00 f-r2 /4t 
Jm(r) = (r/2) Lk=O!(m+k!' 

(S4) 

c1 for all r must 

(S5) 

When m is an arbitrary positive real number, Jm(r) is defined by formula (S5), provided 

(m+k)! is replaced by r(m+k+l), where r is the gamma function defined by 

r(s) = fo e-x xs- 1 dx, for real s> 0 . 

The solutions R!(p) in (S3) are known a spherical Bessel functions, and they can be related to 

Bessel functions of half-integer order. For example, the spherical analog of Jm(r) is 

jn(p):: (_I)n [~~ r [p-lsinp] = ';t7r!p In+t(p) . 

There are other solutions of Bessel's equation which are singular at r = O. The definitions and 
properties of these Bessel functions of the second kind are given in Appendix A.6 . 
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3. Applications of Bessel functions in solving PDEs: We used Bessel functions to solve the wave 
problem for a vibrating circular drum (Example 1), and we found that the modified Bessel 
function Im(r) appears in the solution of a steady-state temperature problem for a solid cylinder 

which is insulated on the top and bottom faces (Example 2). In general, Bessel functions arise in 
problems involving cylindrical regions or in problems with symmetry about an axis. 

4. SchrOdinger's equation and quantum mechanics: Heisenberg's uncertainty relation states that 
the product of the errors in measurement of a particle's position and velocity in any fixed 
direction cannot be smaller than ih/M,where M is the mass of the particle. According to 
quantum mechanics, a quantum state of a particle, at a fixed time, is a complex-valued function 

,¢(x,y,z), defined on 1R31 which is known as a (SchrOdinger) wave function. The state is said to be 

normalized if 1I'I/J1I2 == 3 1 'I/J(x,y,zI 2 dxdydz = 1, and for such a state, the probability that the 
IR 

particle will be found in a region A in 1R3 is J A 1 ,¢(x,y,z) 12 dxdydz. A particle with energy E 

and which is subject to a force with potential V(x,y,z), is described by a state 'I/J that is a 
solution of SchrOdinger's (time-independent) equation, 

h 2 
2M D.'I/J + V(x,y,z)'I/J = E'I/J, (S6) 

In Example 4, SchrOdinger's equation is used to determine the possible energies and normalizable 

states for an electron bound by the Coulomb potential ep -1 of a proton in a hydrogen atom. 

The corresponding problem for the harmonic oscillator potential iki is addressed in Problem 9. 

Exercises 9.5 

1. Show that if F(r) solves Bessel's differential equation r2F"(r) + rF'(r) + [r2-m2]F(r) = 0 

(b f. 0), then R(r) == F(br) solves r2R"(r) + rR' (r) + [b2r2 - m2]R(r) = O. Can this be done, 
by using the idea in Problem 4(b) of Exercises 9.3 ? 

2. (a) Use integration by parts to establish (by means of formal calculations) Green's formula 

for the disk r ~ ro . 

(b) Formulate and verify Green's formula for functions f(p,rp,O) and g(p,rp,O) defined on the 
sotid ball p ~ Po' 

mnt. A special case is covered in Problem 15 of Section 9.4 (cf. also Example 3 of Section 9.3). 
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3. (a) Use Green's formula for a disk (cf. Problem 2 (a)) to prove that for any m = 0, 1,2, ... , 

(rr - b2) J:O Jm(br) JmUJr) r dr = ro[bJ~(bro)Jm(.8ro) - ,8Jm(bro)J~(.8ro)] . (*) 

(b) Suppose that Jm(,Bro) = 0. Differentiate both sides of (*) with respect to b and then set 

b = ,8, in order to deduce that J:o Jm(,Br)2 r dr = r~J~(,Bro)2 /2. 

(c) Assuming that the formula in part (a) is still valid when b and ,8 are complex numbers, 
prove that Jm(z) cannot be zero for any z which is not real. runt. If Jm(z) = 0, then show 

that Jm(z) = 0, by examining the power series definition for Jm. In part (a), take ro = 1, b = z 

and ,8 = Z (ro = 1), and note that the case where z is purely imaginary is treated differently. 

4. (a) Use Green's formula for a ball (cf. Problem 2(b)) to prove that for n = 0, 1,2, ... , 

(rr - b2) J~o jn(bp) jn(,8p) p2 dp = p~ [bj~(bPo)jn(,8po) - ,8jn(bPo)j~(,8po)] , (**) 

where jn(p) == (_I)n [~~r [p -lsin(p)]. 

(b) Assume that jn(,Bro) = 0. Differentiate both sides of (**) with respect to b, and then set 

b = ,8, in order to deduce that J:o jn (,8p)2 p2 dp = p~ j~ (,8Po)2 /2 (cf. Problem 3(b)). 

5. (a) Find a formal solution of the problem 

D.E. ut = k(uxx + Uyy) 

B.C. U(ro,O,t) = ° , 
I.C. U(r,O,O) = f(r,O) . 

2 2 2 
x + Y < ro ' t ~ ° 

(b) Find a formal solution, in the case when the B.C. is replaced by Ur(ro,O) = ° (i.e., the rim of 

the disk is insulated). 

6. Show that r(n+l) = n! for n = 1,2,3, .... 

7. Find the eigenfunctions of tl on a wedge (0 5 r 5 ro, ° 5 ° 5 a) which are zero on the 

boundary ° = 0, ° = a, r = roo What kinds of heat and wave problems could be solved with these 

eigenfunctions? Give some examples. 
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8. Suppose that the B.C. in Example 2 are replaced by U(ro,O,z) = 0 (0 ~ z ~ zo), U(r,O,O) = 0, 

U(r,O,zo) = f(r,O) (0 ~ r ~ ro). Find the formal solution in this case. 

9. Here we determine possible energies E and the associated normalizable wave functions 
(quantum states) of a particle of mass m subject to a a spring force F = -VV = -kr, with 

potential V(p) = !kp2 = !k(x2+y2+z2) (Le., the harmonic oscillator potential). 

2 
(a) Show that the product solutions of SchrMinger's equation - ~ 6:¢ + !kp2'I/J = E'I/J are of 

the form X(x)Y(y)Z(z), where 

and el, e2, e3 are constants such that el + e2 + e3 = E. 

(b) Show that if we write X(x) = F(ax), then the equation for X is transformed into the ODE 

iF"(ax) + Hax)2F(ax) = AlF(ax), by taking 0'= [km/h2]t and Al = h-1.[ri1fK el. Deduce 

from Problem 16 of Exercises 7.2, that when Al = n+i for some integer n ~ 0, we have a rapidly 

J..a2x2 
decreasing solution Xn(x) = Hn(ax)e-2 , where Hn is the n-th degree Hermite polynomial. 

(c) Conclude from (b) that when E is of the form [N + !] hJl<7iii (for an integer N ~ 0), we 

have a the following normalizable wave function satisfying SchrMinger's equation in part (a) 

2 2 -ill' p 
'l/Jn,m,p(x,y,z) = Hn( ax)Hm( ay)Hp( az)e , provided n + m + p = N . 

(d) With some work it can be shown that the only energies E for which there are normalizable 
solutions of SchrMinger's equation are of the form in (c), and any normalizable wave function for 
the N-th ener~ is a linear combination of the independent wave functions in (c). Show that 
there are (N+1)(N+2)/2 wave functions of the form in (c). 

(e) Can the particle ever have energy zero? What is the minimum energy? 

10. Suppose that the quantum state of a particle of mass M is given by a normalized, rapidly 
decreasing wave function 'I/J(x,y,z). The mean x-eoordinate of the possible position measurements 

of the particle is x = JIR3 x, ,¢(x,y,z) ,2 dxdydz = <x'I/J,'I/J> (Le., the x-eoordinate of the center of 

gravity of its probability cloud, whose density is ,,¢(x,y,z) ,2). The standard deviation (Le., the 

typical error) of the measurements of x is 8x = [«x-X)2'I/J,'I/J>]i = II (x-X) 'l/JII· The density of 
the probability cloud of possible velocities (vl,v2,v3) is (according to quantum mechanics) 

3 • 
w(vl,v2,v3) = (h/M)2" 'I/J(Mvl/h, MV2/h, MV3/h), where 'I/J is the Fourier transform of 'I/J. 
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Moreover, the mean measurement of the i-eomponent of the particle's velocity is VI:: <VIW,W>, 

and the standard deviation is evl :: [«VI-vl)2w,w>]t = lI(vCvI)wll. 

. . 
(a) Use (ox'¢) (e) = ie'¢(e) and Parseval's equality (cf. Section 7.3) to show that 

II(VCVI)wll = (h/M)II-iO ,¢-(M/h)vl,¢)11 , where ° ::~. . x x ~ 

(b) Use the Cauchy-Schwarz inequality I <f,g> I 5 IIfll IIgll , to deduce that 

II (x-X)'¢II II (-iOx'¢ - (M/h)vl,¢11 > I < (x-x) ,¢,-iOx'¢ - (M/h)vl,¢> I 
> Im[«x-x),¢,-iox'¢- (M/h)vl,¢>]· 

(c) Show that the last expression in (b) is Im[<x,¢,-iOx'¢>] . 

(d) Show that Im[<x,¢,-iOx'¢>] = - ti[<x,¢,-iOx'¢> - <-iOx,¢,x'¢>] = t<ox(x,¢)-xox'¢''¢> 

= t<,¢,,¢>. 

(e) Deduce from the above, that the uncertainty relation ex eVI ~ th/M holds. 

(f) Assume that x = y = z = 0 and vI = v2 = v3 = O. Show that if ex = Cy = fJz and ex eVI 
= Cy eV2 = fJz eV3 = th/M (Le., the uncertainty is minimal), then '¢ must be the ground state 

(state of lowest energy) of a particle in a harmonic oscillator potential (cf. Problem 9). How is the 
spring constant k related to ex for this state? 
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9.6 Solving PDEs on Manifolds 

In this section we define the Laplacian of functions on fairly general k-dimensional subsets 

of IRn known as smooth k-manifolds with or without boundary. This is done in the same way as 

the Laplacian ~s was defined for the unit sphere (an example of a 2-manifold) in 1R3, by 

extending f to be constant in the normal direction and taking the usual Laplacian of the 
extended function. We then examine the general properties of eigenfunctions and eigenvalues for 
the Laplace operator on a "compact" k-manifold. A uniform convergence theorem for 
eigenfunction expansions for sufficiently differentiable functions on manifolds is stated, and 
references for the proof are given. These eigenfunction expansions are used to solve the heat, 
wave, and Poisson-Laplace equations on a manifold. We also show how to write the solutions in 
terms of integral formulas, by direct construction of Green's functions from the eigenfunctions and 
eigenvalues of the Laplace operator. We emphasize that much of the material previously covered 
on the heat, wave and Laplace equations is a collection of special cases of the general viewpoint of 
this section, which thus solidifies what we have learned already. The notion of manifolds has 
become a fundamental part of the description of the universe in modern theoretical physics, from 
the space-time continuum of general relativity and cosmology to the continuous symmetry groups 
which act on the wave functions of elementary particles. For this reason also, we believe it is good 
to expose the reader to manifolds. For a more thorough introduction to manifolds and related 
notions, we recommend [Abraham, Marsden and Ratiu]. 

The definition of a k-manifold in In and its Laplace operator 

Let fl' f2 and f3 be COO functions defined on some open set B in 1R3. To each point 

P = (x,y,z) in B, there is assigned a point F(P) == (fl (P),f2(P),f3(P)), also in 1R3. If the set of 

points F(P), as P varies throughout B, is an open set C, then we say that F is a smooth 
mapping from B onto C. If there is also a smooth mapping G of C onto B, such that 
G(F(P) = P for all points P in B, then F is called a diffeomorphism from B onto C (Le., 
for open sets Band C, a diffeomorphism is a smooth mapping from B onto C which has a 
smooth inverse mapping from C onto B). Similarly, one can define the notion of a 

diffeomorphism from one open set of IRn to another open subset of IRn, for any n = 1, 2, 3, 4, .... 

Let k and n be integers with 1 ~ k ~ n. The standard k-dimensional subspace in IRn is the 
+- n-k -; 

set, denoted by IR~, of points in IRn of the form (xl'~, ... ,xk' 0, ... ,0 ), where xl' x2' ... ,xk are 

arbitrary real numbers (e.g., IR~ is the xy-plane in 1R3, and IR~ is the x-axis in 1R3). The 

standard, closed, k-dimensional half-space in In is the subset Hk of all points in IRk which 
n n 

have a nonnegative first coordinate (Le., xl ~ 0) (e.g., H~ is the half-plane x ~ 0, z = ° in IR\ 
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Definition. A (smooth) k-manifold in IRn is subset M of IRn which has the following 

property. For each point P in M, there is an open set B in IRn and a diffeomorphism F 
from B to an open set C containing P, say P = F(P I) for some P I in B, such that 

(cf. Figure 1) the intersection of B with H~ is mapped by F onto the entire intersection of 

C with M. If P I is on the edge of H~ , then the corresponding point P on M is called a 

boundary point of M. The set of all boundary points of M is called the boundary of M, and it 
is denoted by aM. 

Figure 1 

Example 1. Verify explicitly that the quarter sphere Q defined by p = 1, z ~ 0, x > 0 is a 

2-~anifold in 1R3, whose boundary is the half equator E defined by p = 1, z ~ 0, x > O. 

Solution. Let F be the mapping which assigns to each point (x,y,z) in the open rectangular 
solid B, -7r/2 < x < 7r/2, -7r/2 < y < 7r/2, t < z < 2, the point F(x,y,z) 
:: (zcos(x)cos(y),zcos(x)sin(y),zsin(x)). This is a diffeomorphism from B onto the portion, say 
C, of the spherical shell, defined by t < P < 2, which lies in the half-space x > O. Indeed, the 
inverse G of F is defined for any point (x,y,z) in C, by (cf. Problem 1) 

G(x,y,z) = (sin-1(r/p), sin-1(y/r), p), where r = (x2 + i)t and p = (r2 + z2)t. 

The intersection B n H~ is carried by K onto the quarter sphere Q. Moreover, the edge x = 0 

of H~ n R is mapped onto E, which is then QQ. 0 
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Remark. The above example is simple in the sense that F(B) contained all of Q. It is often 
necessary to use several diffeomorphisms F l' F 2' ... , defined on open sets B1, B2, ... , in order to 

ensure that each point of the prospective manifold is contained in some F(BJ For example, to 

show that the hemisphere p = 1, z ~ 0 is a 2-manifold with the equator as its boundary, we 
would need more than one diffeomorphism, because the entire circular equator cannot be the 

image of a portion of the edge line of H~ under a single diffeomorphism (Why?). One would 

also need two diffeomorphisms to exhibit the sphere p = 1 as a 2-manifold without boundary. 0 

Fortunately, with a little experience, it is usually quite easy to recognize a manifold when 

you see one, and only rarely does anyone bother to prove that a given subset of IRn is a manifold. 

Roughly speaking a k-manifold M in IRn is a "smooth" k-<iimensional subset of IRn which, in a 
sufficiently small open n-<iimensional ball about any of its points, say P, resembles either a 
possibly curved) k-<iimensional disk (if P is not part of the boundary oM), or a k-<iimensional 
half-<iisk with the (k-1)-<iimensional "flat" part containing P (if P is part of oM). Some 

2-manifolds in 1R3 are illustrated in Figure 2 below. Of course one should imagine these surfaces 
to be smooth, without the angles or corners which are a consequence of computer generation. 
Only the first of these surfaces has a boundary which consists of two circles. 

Figure 2 

There are some fairly simple objects which are not (smooth) k-manifolds. For example, two 
planes in space which intersect in a line do not constitute a manifold, since this object does not 
locally resemble a single disk or half-<iisk in a neighborhood of any point on the line of 
intersection. The surface of a cube is not a smooth manifold, because corners cannot result from 

applying a diffeomorphism to a disk in H~. For the same reason, a cone is not a smooth 

manifold, nor is a closed rectangular solid. The question, as to whether a physical object or 
system has a mathematical corner or not, is rather meaningless or at least irrelevant (e.g., 
consider the atoms near a "corner"). It seems reasonable to assert that most domains which arise 
in "real" applications can be approximated within experimental error by smooth k-manifolds. 
Considering the large number of variables that can enter into the description of even a fairly 
simple mechanical, electrical, or economic system, it does not suffice to restrict one's attention to 
the case k < 3 or even k < 1000. 

Let -f be a function defined on a k-manifold M with boundary oM (possibly empty) in 

IRn It can be proven (cf. [Lang, p. 96]) that f can be extended to a function f on some open set 

A of IRn containing M, in such a way that f is constant on each line segment which intersects 
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M orthogonally at a single point, and which lies in A. We say that f is C2 on M, if r is C2 on 

A. Since r is then a C2 function on the open set A in IRn, it makes sense to apply the Laplace 

operator ~n == ;. / {)xi + ... +;. / {)x~ in IRn to the function r. 

Definition of ~M' We define the Laplace operator ~M on C2 functions f on M by 

~Mf(P) == ~nr(P), for all points P in M, where r is the above defined extension (of f) which 

is constant in the directions normal to M. Equivalently, ~Mf(P) is the sum of the second 

derivatives at P of r along k lines which are tangent to M and intersect orthogonally at P. 

Remark. This is exactly how the Laplace operator ~s (on the unit sphere) was defined in (7) of 

Section 9.3. While the above definition gives an immediate geometrical interpretation to ~M' 

there are other equivalent definitions which express ~Mf in terms of the s~alled "metric 

coefficients" of M relative to a coordinate system. Since we will not be solving the equations 
~Mu + AU = 0 explicitly on any manifolds not previously considered, we will not discuss metric 

coefficients or the formula for ~M in terms of them. Instead, we will concentrate on general 

properties of the eigenfunctions and eigenvalues without finding them explicitly, which is a 
formidable task, even for simple manifolds. 0 

Eigenfunctions and eigenvalues for ~M on k-manifolds M 

In solving boundary-value problems for PDEs (such as the heat equation ut = ~Mu) on 

k-manifolds M in IRn, it is desirable to find the eigenfunctions of ~M which meet the boundary 

conditions. Of course, in the case of manifolds without boundary (e.g., a spherical surface) there 
is no boundary and hence no boundary condition. In order that we may apply the superposition 
principle, the boundary conditions need to be homogeneous and linear. We restrict ourselves to a 

standard type, which we describe as follows. Let f be a C2 function on a k-manifold (i.e., f 

extends to a C2 function r described above). The outward normal derivative of f at a point p 
on aM is the directional derivative 

a f(p) == W·n v p (1) 

of r in the direction of the unique unit vector np (based at p) which is normal to aM, tangent 

to M, and pointing away from the interior MO (of M) which consists of all points in M but 
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not in aM. We introduce a fairly general homogeneous boundary condition as follows. Let N be 

the (possibly empty) intersection of aM with some open subset of IRn, and let D be the set of 
points in aM which are not in N (i.e., D = aM - N). Let u be a function which is continuous 

on M, and c1 on MO uN. Then it is meaningful to impose the boundary condition 

B.C. [ 
u == 0 

au == 0 v 

on D 

on N. 
(2) 

In the special case where N is empty, (2) is a Dirichlet condition, and when D is empty (2) is a 

Neumann condition. We say that a k-manifold in IRn is compact, if it is a closed subset of IRn 
and is contained in a sufficiently large n-dimensional ball (cf. Appendix AA). Henceforth, all 
manifolds are assumed to be compact, and connected, in the sense that any two points in M can 
be joined by a continuous curve which lies in M. The following key result is essentially stated in 
[Chavel, 1984], but a complete proof (in a form which is comprehensible to undergraduates) does 
not appear to be located in a single place, but rather it is a consequence of results which are 
scattered over the literature. For a readable introduction to the literature, we recommend the 
article by Jozef Dodziuk, "Eigenvalues of the Laplacian and the heat equation" , Amer. Math. 
Monthly, vol. 88, (1981),686-695. 

Theorem 1 (The Dirichlet/Neumann eigenvalue problem). Let M be a compact, k-manifold 

in IRn , with boundary aM = DuN (possibly empty). For each real value of A, the problem 

D.E. ~Mu + AU = 0 on M 

B.C. [
u == 0 

au == 0 v 

on D 

on N, 

has at most a finite number of linearly independent solutions (i.e., the eigenspace for a 

(3) 

given eigenvalue A is finite dimensional). The solutions are COO on M, in the sense that 

they extend to COO functions on an open subset (of IRn) which contains M. The values of A 
for which this problem has a nonzero solution form a sequence 0 ~ AO ~ Al ~ A2 ~ ... , in which 

each eigenvalue is repeated a number of times equal to the dimension of its eigenspace. 

Remark. For large q, the behavior of the eigenvalues Aq is given by Weyl's formula 

(4) 
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where ~ is the k-dimensional IIvolume ll of the IIsolid ll unit ball in IRk (Le., w3 = 41r/3, w2 = 1r, 

wI = 2 and in general ~ = 1rk/2/r(l+tk), where r is the gamma function (cf. (21) and (22) 

of Section 9.5), and Vol(M) is the k-dimensional volume of the the k-manifold M (e.g., the 
surface area, when k = 2). The precise meaning of the symbol II N II is that the ratio of the left 
and right sides of (4) approaches 1 as q -+ 00. [Hermann Weyl (1885-1955) was a German 
mathematical physicist who made profound contributions to relativity, quantum mechanics, and 
pure mathematics.j For a proof of Weyl's formula, see [Chavel, Chapters VI and VIIj. 0 

Example 2. Show the validity of Weyl's formula directly, in the simple case when M is the 
I-manifold consisting of the interval [O,L]. Consider all possible B.C. (2). 

Solution. When M is an interval [O,Lj, and the B.C. are given by u(O) = 0 and u(L) = 0, we 

have the eigenfunctions sin(T) of ~ == Vol(M) = L, AO = (1r/L)2 and in general 

Aq = [(q+l)1r/Lj2. Note that 

41r2 (WI Vol(M))-2 q2/k = 41r2[2Lj-2q2 = (q1r/L)2 N [(q+l)1r/Lj2 = Aq . 

Similarly, for the B.C. u'(O) = 0, u'(L) = 0, we have AO = 0 and Aq = (q1r/L)2. While for 

u'(O) = 0, u(L) = 0, we have Aq = [(q+t)1r/L]2. Thus, Weyl's formula (4) is valid in all of these 

cases. 0 

One can define the integral of a continuous function on a compact k-manifold M in IRn in 

the following way. When k = n, the interior of M is open subset of IRn and the boundary is a 
smooth (n-l)-manifold. The integral is defined in the usual way, by introducing a rectangular 
subdivision, {orming Riemann sum approximations, and letting the norm of the mesh go to zero. 

When k < n, we use the following construction. For each f > 0, let M f be the set in IRn 

consisting of all of the points in IRn that can be connected to M by a segment, of length ~ f, 
which meets M orthogonally. For small enough f, each point of Mf is connected to M by a 

unique shortest segment (of length less than f). Let f be a continuous function on M and 
extend f to a function f f defined on M f' by taking f f to be constant on these shortest 

segments. Let If be the integral of ff over Mf , which is a IInice ll n-dimensional closed, 

bounded set. Now, If depends on f, and I im I = 0, since I is nearly proportional to the 
f-+ 0 f f 

volumes Wn- k( f) == fn-k1r(n-k)/2/r(1+tk) of the normal (n-k)-dimensional disks of radius f. 

We define 

f f(P) dM(P) == lim I /w _k(f) . 
M f-+O f n 

(5) 
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Although (5) defines the entire expression on the left, one regards the symbol "dM(P)" as the 
"volume element" for M (e.g. dM( cp,O) = sincp dcpdO for the unit sphere). 

Definition. For two continuous complex-valued functions f and g on a compact k-manifold 

M in IRn, we define the inner product 

<f,g> = J M f(P)g(PJ dM(P) . (6) 

Theorem 2 (Green's formula on a compact k-manifold). Let f and g be C2 functions on 

a compact k-manifold in IRn. Then 

<~Mf,g> - <f'~Mg> = J 8M g(Q)8J(Q) - f(Q)8,fl(Q) d8M(Q) , (7) 

where the right side is defined to be zero if 8M is empty. 

Remark. We omit the proof, which typicall~ is carried out in with much technical machinery (d. 
[Abraham, Marsden and Ratiu; Chapter 7J), but which (in the final analysis) reduces to the 
fundamental theorem of calculus, as in the one-dimensional case. For a relatively simple proof, 

one might first establish the Gauss Divergence Theorem for n-manifolds in IRn , which can be done 
in essentially the same way as in advanced calculus books. Then, for k < n, one can apply this 
result to the solid Me above, to obtain the Gauss Divergence Theorem on M. Green's formula 

on M then follows easily from the Gauss Divergence Theorem on M (d. Problem 10). 0 

Observe that if f and g satisfy the B.C. (2), then the right side of (7) vanishes, and it 
follows that two real-valued solutions ui and uj of the eigenvalue problem, with different 

eigenvalues, say \ and Aj , must be orthogonal (Le., <ui'ul = 0). Even within a single 

eigenspace of dimension d, one can find d functions which are mutually orthogonal and of unit 

length. Consequently, there is a sequence, uo' u1' u2, ... , of COO real-valued eigenfunctions for the 

problem (3) such that 

~MuO = -AOUO' ~Mul = -AI u1' ~Mu3 = -A3U3, ... , 
where (8) 

[
0 for i :f. j 

<u.,u.> = 
1 J 1 for i = j 

i, j = 0, 1, 2, .... 

Although we have taken the u to be real-valued, in some situations it convenient to consider 

complex-valued eigenfunctions (e.g., the spherical harmonics S (cp,O) in Section 9.4). All of n,m 
our considerations can be trivially modified in order to treat this case. 
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Definition. Let f be a function on M, such that for all functions uq (q = 0,1,2, ... ) in (8), 

the integrals <f,uq> exist. Then the eigenfunction expansion of f (for P E M) is the 

expression 

E f(P) == r c u (P), where cn = Ilunll-2<f,uq> = <f,uq> . (9) 
q=O q q 

Remark. In essence, all Fourier series (ignoring the issue of corners), as well as the Laplace series 
on a sphere and the full Fourier-Bessel series on a disk, are special cases of (9). Although the 
following result is rarely stated in the form given here, it follows from simple modifications of 
known results in [Palais]. 0 

Theorem 3 (Uniform convergence of eigenfunction expansions). Let M be a compact 

k-manifold, and let f be a Cm function, where m> k/2, which satisfies the B.C. (2). Let 

uo' u1' u2'''' be the sequence of eigenfunctions given by (8). Then E f converges uniformly 
to f on M, in the sense that 

I im max ISN(P) -f(P)1 = 0, 
N...,oo PEM 

where SN(P) is the N-th partial sum of E f(P). 

The standard initial boundary-value problems on manifolds 

(10) 

In Theorems 4 and 5, we provide the solutions of the standard heat and wave problems on a 
compact k-manifold M, when the functions in the initial conditions are finite linear combinations 
of the eigenfunctions uo ' u1 ' u2 ' ... , in (8), which (by definition) satisfy the B.C. in these 

problems. In other words, we assume that the initial data has been approximated within 
experimental error by such sums, which is reasonable in view of Theorem 3. Essentially, 
Theorems 4 and 5 include, as special cases, all previous results for heat and wave problems, on 
bounded domains (e.g., finite intervals, disks, spheres, balls, and rectangular regions, ignoring 
"corner technicalities"), in which the D.E. and B.C. (Dirichlet and/or Neumann) were 
homogeneous, and the function(s) in I.C. was (were) assumed to be finite linear combinations of 
the spatial parts of product solutions. The proofs consist simply of substituting the given solution 
into the D.E., B.C. and I.C., to verify that these equations are satisfied. (Remember that ~MUq 

= -AqUq for all q = 0, 1,2, .... ). In practice, the difficult part of the solution process is finding 

explicit expressions or approximations for the uq and Aq , and adequately expressing the initial 

functions in terms of the uq' Theorems 4 and 5 show that the rest of the solution process is easy. 
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Theorem 4 (The homogeneous heat problem). For a compact k-manifold M, the solution of 

D.E. ut = K, ~Mu on M for t ~ 0 

is 

[
u := 0 

B.C. 
a/Ju := 0 on N 

on D 

Q 
I.C. u(P ,0) = f(P):= l c u (P) 

q=O q q 

Q -A K,t 

u(P,t) = l ceq u (P) . 
q=O q q 

(11) 

(12) 

Theorem 5 (The homogeneous wave problem). For a compact k-manifold M, the solution of 

2 
D.E. Utt = a ~Mu on M for -00 < t < 00 

is 

[ 
u := 0 

B.C. 
a/Ju:= 0 on N 

on D 

Q 
I.C. u(P,O) = f(P) := l a u (P) , 

q=O q q 

(13) 

u(P,t) = lQ [aqcos(/A:.q at) + (a/A:.q )-1 b sin(/A:. at)]u (P) , (14) 
q=O q q q 

where it is understood that the second term in the brackets is bqt if Aq = O. 

The next two theorems show that eigenfunction expansions also yield solutions of the 
inhomogeneous heat and wave equations which arise when there are heat sources or forced 
vibrations, respectively. Again, the proofs consist of directly substituting the given solutions into 
the D.E., B.C., and I.C. to verify that they are satisfied. In each case, the given solution can be 

Q 
derived, by assuming that the solution is of the form u(P,t) = l f3 (t)u (P) , substituting 

q=O q q 
this form into the D.E. to obtain an ODE for each f3q(t) (q = 0, 1, 2, ... , Q), and solving these 

ODEs subject to the initial condition(s) implied by the I.C.. Alternatively, one can use 
Duhamel's principle, by which solutions are constructed by forming a continuous superposition 
(Le., an integral) of solutions of related family of initial-value problems (cf. Sections 3.4 and 5.3). 
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Theorem 6 (The heat problem with a source). For a compact k-manifold M, the solution of 

D.E. ut(P,t) = x;~Mu(P,t) + rp(P,t) on M with t ~ ° 
B.C. [

u :: ° 
au:: ° IJ 

on D 

on N 

I.C. u(P ,0) = 0, 

Q 
with heat source rp(P,t) = l G' (t)uq(P) , 

q=O q 

is u(P,t) = l e q e q G' (s) ds u (P) . Q [[ -A x;t It A KS ] 1 
q=O 0 q q 

(15) 

(16) 

Theorem 7 (The wave problem with a source). For a compact k-manifold M, the solution of 

2 D.E. Utt(P,t) = a ~Mu(P,t) + rp(P,t) 

[ 
u :: 0 

B.C. 
alJu:: 0 on N 

on D 
(17) 

I.C. u(P,O) = 0, ut(P,O) = 0 , 

with source 
Q 

rp(P,t) = l G'q(t)Uq(P) , 
q=O 

Q [[ It sin[a/,C (t-s)] ] 1 
is u(P,t) = lq=o 0 ad:. G'q(s) ds uq(P) , 

q 
(We use the convention in Theorem 5, when Aq = 0.) 

(18) 

Green's functions 

The solutions in the above theorems can be formally rewritten in terms of integrals by 
convolving the 9iven functions in the I.C. or inhomogeneous term in the D.E. with a certain 
kernel or Green s function for the problem, which is constructed from the eigenfunctions. We 
illustrate this construction in the next examples. 
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Example 3 (The kernel for the homogeneous heat problem). Formally, find integral formulas for 
the solutions of the heat problem (11). 

Solution. In the solution (12) of problem (11), we write cq = <f,uq> (cf. (8) and (9)) in terms 

of an integral, and we interchange the sum and integrals in the following computation 

Q -,\ Kt Q I -,\ Kt 
u(P,t) = l ceq u (P) = l f(P')u (PI) dM(P / ) e q uq(P) 

q=O q q q=O M q 
(19) 

= I f(P/) [lQ e-'\qK\ (P)u (PI)] dM(P / ) . 
M q=O q q 

The given form for f implies that f is orthogonal to the uq with q > Q. Thus, Q in (19) 

may be replaced by any larger finite value. It is tempting to simply replace Q by 00, but there is 
no guarantee that this sum will even converge. Indeed, the sum does not converge when t = 0 
and P = pl. It can be proven (cf. [Chavel, Chapters VI and VII)) that for t > 0, the sum does 

converge to a COO function on the set IR+ xMxM of triples (t,P;P / ), t > o. We denote this sum 
by 

00 -,\ Kt 
H(t,P;P / ) = l e q uq(P)Uq(P/) , 

q=O 
for (t,P;P / ) in IR+ xMxM . (20) 

Moreover, one can show that when the initial temperature f is continuous on M and not 
necessarily a finite linear combination of eigenfunctions, we have the following solution of the D.E. 
and B.C. for t > 0 (cf. [Chavel, Chapters VI and VII)), 

u(P,t) 

and 

IM H(t,P;P / ) f(P/) dM(P / ) 

lim+ u(P,t) 
t-+ 0 

f(P) . 

t > 0 (21) 

(22) 

Remark. The function H(t,P;P / ) is known as the heat kernel or fundamental solution of the 
heat equation on M (for the given B.C.). The interpretation of H(t,P;P / ) is that it represents 
the temperature at P, at time t, due to an initial heat source concentrated at P I at t = O. In 
the remark after the next example, we will show that H( t,P;P I) arises also in the integral formula 
for the solution of the problem (15) for the inhomogeneous heat equation (cf. (30)). 0 

Example 4 (The Green's function for the heat problem with a source). Express the solution (16) 
of problem (15) in terms of an integral formula. 

Solution. The solution (16) can be written in the form 
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Q -A Kt It A K.S 
u(P,t) = l e q ll!q(s) e q ds uq(P) 

q=O 0 

I It [Q -A K(t-S) ] , 
= l e q u (P)uq(P') 'P(P',s) ds dM(P'), 

M 0 q=O q 
(23) 

We take Q = 00, and formally define 

00 _A K(t-t') 
G(t,Pit ' ,P') = ((t-t') l e q uq(P)uq(P') , (24) 

q=O 
where 

((s) = -{
I for s > 0 

o for s < 0 . 
(25) 

The solution (23) of problem (15) can then be written as 

u(P,t) = IM fa G(t,Pit',P')'P(P',t') dt' dM(P'). 0 (26) 

Remark. The function G on IR+ xMxlR+ xM is known as the Green's function for the problem 
(15). If we apply the heat operator at - K~M to the equation (26), and formally differentiate 

under the integral, we obtain the following equation involving the source term 'P(P,t) in (15) : 

The expression in parentheses cannot be an ordinary function, but instead it is a "generalized 
function" or a "distribution" which is known as the Dirac delta at (t,P) (cf. (33) of Section 7.4), 
which may be loosely defined as the generalized function 8(t,Pit' ,PI) which has the property that 

'P(P,t) = IM fa 8(t,Pi t ' ,P') 'P(P' ,t') dt' dM(P') . (28) 

Thus, 
(at - K~M)[G( t,Pit' ,P')] = 8( t,Pit' ,P') . (29) 

While we will not go into the theory of distributions, by which precise sense can be made of the 
relation (29), it can be said that ultimately (29) states that the integral operator I['P], defined by 
the right side of (26), is the inverse of the differential operator at - K~M on the set of 

sufficiently smooth functions which satisfy the B.C. and I.C. of (15). Intuitively, one can think of 
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G(t,P;t',P') as the temperature at (P,t) due to a concentrated point source at (P',t'). 
Recallinl? the interpretation for H( t,P;P' ) in the remark following Example 3, we should have 
H(t,P;P ) = G(t,P;O,P'), and checking the above definitions, this is the case. More generally, 

G(t p·t' P') = H(t-t' P'P') , , , '" (30) 

which says that the temperature at P at time t, due to a source at P' at time t', is the same 
as that for an "initial source II , if time is measured from the starting time t'. Thus, (30) can be 
regarded as a reformulation of Duhamel's principle. 0 

For small values of t and for P and P' in the interior MO :: M - aM, we expect that 

H(t,P,P') will be close the heat kernel for IRk. In other words, for t small, 

-k/2 2 
H(t,P;P') N [41l'~tl exp[-d(P,P') /4~t), P, P' in MO , (31) 

where the distance d(P,P'), between P and P' in MO, is small. Essentially, (31) is true 
because, at P, the contribution due to a nearby source, at P', at a small time t later, should be 

ver~ much like the effect in IRk, since locally MO looks like IRk. If we set P' = P in relation 
(20) and integrate H(t,P;P) with respect to P over M, then using orthogonality (cf. (8)), 

f 00 -~>.. t f 2 
H(t,P,P) dM(P) = 1: e q uq(P) dM(P) 

M q=O M 

00 -~>.. t 00 -~>.. t 
= 1: e q <u ,u > = 1: e q 

q=O q q q=O 
(32) 

On the other hand, integrating (31) over M (with P = P'), we obtain 

f M H(t,P ,P) dM(P) N [41l'~tl-k/2 Vol(M) . (33) 

By comparing (32) and (33), we arrive at 

00 -~>.. t k/2 1: e. q N [41l'~tl- Vol(M) . 
q=O 

(34) 

In other words, the volume of M can be determined from the eigenvalues of ~M' Actually, we 

already know this from Weyl's formula (4). Indeed, it is not too hard to show that (4) and (34) 
are equivalent, in the sense that one can be derived directly from the other (use the Karamata 
Tauberian Theorem in [Feller, p. 466)). There is a subtle correction to (34) due to the curvature 
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or general shape of M. Indeed, in the case of a compact 2-manifold without boundary (Le., oM 
is empty), such as a possibly deformed sphere, with a number (say h) of holes (e.g., a doughnut 
surface has one hole), we have the more accurate estimate (cf. [Chavel, p. 155]) 

l e q N ~ + j (I-h) or h = 1 + 3 1 i m + ¥ -l e q . (35) 
00 -"').. t Vol (M) [ Vol(M) 00 -).. t 1 
q=O t~O q=O 

Thus, the number of holes can be determined from the eigenvalues. Since the eigenvalues can be 
thought of as the negative squares of the frequencies of fundamental modes of vibration, one mi~ht 
say that both the surface area and the number of holes of a vibrating surface can be "heard" ld. 
Problem 2 of Section 9.2), assuming that one can hear arbitrarily high frequencies. 0 

Example 5 (Green's function for a wave problem). Find the Green's function for the wave problem 
(17), and use it to find an integral formula for the solution of the initial-value problem (13). 

Solution. As with the heat problem in Example 4, we write the solution (18) as 

u(P,t) = I It [lQ sin[~ (t-t')] u (P)u (PI)] 'P(P I ,t / ) dM(P / ) . 
M 0 q =0 a.fJ::. q q 

q 

(36) 

Thus, formally taking Q = 00, we have a Green's function (cf. (25) for the definition of f) 

G(t p·t l PI) , , , 
00 sin[av'X: (t-t / )] 

= f(t-t/) l 9 u (P)u (PI) , 
q=O a.fJ::. q q 

q 

(37) 

which (in a distributional sense) satisfies the equation, 

(Ott - a2 ~M) G(t,P;t l ,PI) = 6(t,P;t / ,P / ) , (38) 

and hence G(t,P;t/,P / ) may be regarded as the amplitude at P at time t, due to a certain 
source disturbance concentrated at P I at time t I. Formally allowing Q = 00, the solution (16) 
for the initial-value problem (13) with homogeneous D.E. can be written in the form 

I [ 00 1 [00 sin( a.fJ::. t) l cos(av'X: t) u (P)u (PI) f(P/) + l 9 
M q=O q q q q=O a.fJ::. 

q 

= 1M -Ot/G(t,P;O,P / ) f(P/) + G(t,P;O,P / ) g(P / ) dM(P / ) 

= 1M [G(t,P;O,P / ) Ut/(P/,O) -Gt/(t,P;O,P / ) u(P/,O)] dM(P / ). (39) 
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Thus, the solution of the initial-value problem (13) can be elegantly written in terms of the 
Green's function, and indeed the Green's function (37) is essentially the kernel of the wave 
problem where the initial position u(P,O) is zero and the initial velocity profile is arbitrary. 
Hence, the Green's function G(t,P;t I,P I) can be interpreted as the displacement at P at time t 
due to a concentrated velocity source at P I at time t I. 0 

Example 6 (A Poisson kernel). Formally find an integral solution for the Poisson problem 

D.E. ~Mu(P) = h(P) on M 

B.C. [
u == 0 

f) u == 0 
1/ 

on D 

on N 

Solution. Taking the inner product of both sides of the D.E. with uq, we obtain 

<h,uq> = <~MU,Uq> = <u'~MUq> = -<U,AqUq> = -Aq <u,uq> . 

Thus, in order that there be a solution, it is necessary that 

<h,uq> = 0, if Aq = 0 . 

(40) 

( 41) 

Actually, Aq can be zero only in the case where q = 0 and Uo == constant i= 0, which will occur 

only when D in the B.C. is empty (i.e., either the B.C. are purely Neumann conditions, or f)M 
is empty; cf. Problem 11). In any case, we obtain the following formal solution, assuming that 
(41) is met: 

u(P) = L <u,uq>Uq(P) = L -Aq- 1<h,uq> uq(P) 

Aqi=O Aqi=O 

= fM G(P,P/) h(P / ) dM(P / ) , (42) 

where the Poisson kernel G(P,P I) is given by 

G(P,P/) == L _A~1 uq(P)uq(P /). 0 

Aqi=O 

(43) 

Example 7 (SteadY-fitate heat problem). By means of formal manipulations and Green's formula 
(7), find a hypothetical solution of the steady-state heat problem 

D.E. ~Mu = 0 on M 

[U = f on D 
B.C. 

f) u == g on N 
1/ 

(44) 
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Solution. We consider first the case AO f o. According to (42), we formally have 

h(P) = ~M fM G(P,P') h(P') dM(P') = fM ~MG(P,P') h(P') dM(P') . (45) 

We apply (45) in the case where h(P) is a solution (presumed to exist) u of the problem (44): 

u(P) = fM ~MG(P,P')u(P') - G(P,P')~Mu(P') dM(P') 

= f a G(P,Q)u(Q) - G(p,Q)a u(Q) daM(Q) , (46) aM v v 

or in view of the B.C., 

u(P) = f aM avG(p,Q) f(Q) - G(P,Q) g(Q) daM(Q) . (47) 

Thus, in the case where AO f 0 (Le., D nonempty), (47) provides us with an integral formula for 

a hYRothetical solution of (44). In particular, if D = aM and aM is nonempty, we see that 
aIJG(p ,Q) serves as a hypothetical Poisson kernel for the Dirichlet problem for M. With 

considerable effort (d. (Cordes, p. 82]), it can be proved that G(P,P') is a COO function on 
MxM, except along the 'diagonal", where P = P'. Moreover, u defined by (47) is harmonic in 

the interior MO (Le., ~Mu = 0 on MO), and if the given boundary function f is continuous, 

then u extends continuously to f on the boundary. We now consider the case where D is 
empty. If aM is also empty, then there is no boundary condition to be satisfied and any 
constant function will solve the problem (44). Assuming that M is connected, the constant 
functions are the only solutions of (44) (cf. Problem 14). If D is empty and aM is not empty, 
then (44) is a pure Neumann problem on M, and there is a compatibility condition which must 
hold in order that a solution exist. Indeed, using Green's formula, we have the compatibility 
condition (d. Sections 6.1-6.3) : 

0= f .1 ~Mu - u~M1 dM = f 1a u - ua 1 daM = f a u daM = f g daM, (48) 
M OM IJ IJ aM IJ aM 

Le., physically, the net prescribed temperature flux on the boundary must be 0, in order that a 
steady--state temperature distribution exist. Now, suppose that u is a solution of (44). Then, by 

subtracting the average u:: Vol(M)-1 f M u dM from u, we obtain a function u - u which 

satisfies condition (48) (Le.,<u - u,uO> = 0). Consequently, (47) applies with f:: u - U, and 

u(P) - u = f -G(P ,Q) g( Q) daM( Q) . 
aM 

(49) 

Of course, adding a constant to any solution of a pure Neumann problem, yields another solution, 
whence we have the the following formal general solution of the pure Neumann problem 

u(P) = f -G(P ,Q) g(Q) daM(Q) + c , (50) 
aM 

where c is an arbitrary constant, provided the compatibility condition (48) is met. 0 
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Summary 9.6 

1. Manifolds: Although a rigorous definition of manifold was provided, intuitively a k-manifold 

in IRn (k ~ n) is a smooth k-dimensional subset, say M, of IRn which may have a smooth 
(k-l)-dimensional boundary aM. 

2. The Laplace operator ~M: A function defined on a k-manifold M in IRn is C2, if it can be 

extended constantly in the normal directions (to M) to a C2 function r on defined on an open 

subset A (of IRn) which essentially "thickens" M to an n-dimensional object. The Laplace 

operator ~M' for C2 functions f on M, is then defined by ~Mf(P) = ~r(p), for all points Pin 

M, where ~ = a2 + ... +02 is the Laplace operator for IRn. We then can consider the standard 
Xl xn 

heat equation (ut = k~Mu) and wave equation (utt = a2~Mu) on M, subject to initial 

conditions and certain standard boundary conditions, say 

[ 
u == 0 on D 

B.C. (SI) 
a u == 0 on N v 

where 0vu denotes the outward normal derivative of u at points in aM, N is the intersection of 

OM with an open subset of IRn, and D == aM - N is the set of points in aM but not in N. 

3. Eigenfunctions and eigenvalues of ~M: Of primary importance in the solution of the heat and 

wave problems on a k-manifold M in IRn, is the determination of the eigenfunctions of ~M 
which satisfy the B.C. (SI). We restrict ourselves to compact M (Le. M is a closed and bounded 

subset of IRn). In this case, there is a sequence uO' ul ' u2 ' ... of real-valued eigenfunctions of 

~M ' meeting the B.C. (SI), and associated eigenvalues 0 ~ AO ~ Al ~ A2 ~ ... , with 

where (S2) 

i, j = 0, 1, 2, .... 

Here <f,g> == f M Ig dM denotes the inner product of functions on M. Here, each eigenvalue is 

repeated a number of times equal to the dimension of its eigenspace. The fact that eigenfunctions 
with different eigenvalues are orthogonal is a direct consequence of 

Green's Formula: <~Mf,g> - <f'~Mg> = f g(Q)ovf(Q) - f(Q)o~(Q) doM(Q) . 
aM 
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4. Eigenfunction expansions: Let f be a function on M, such that for all functions uq (q = 0, 

1,2, ... ) in (S2), the integrals <f,uq> exist. Then 

E f(P) == f cq u (P), where cn = Ilun ll- 2<f,uq> = <f,uq> . 
q=O q 

(S3) 

If f is Cm where m > k/2 (where k is the dimension of M) and if f satisfies the B.C. (Sl), 
then E f converges uniformly to f (cf. Theorem 3). 

5. Heat and wave problems on manifolds: Solutions of the initial-value problems for the heat and 
wave equations on a compact k-manifold M with B.C. (Sl) are given in Theorems 4 and 5, in the 
practical case when the initial functions are finite eigenfunction expansions, say within 
experimental error. Solutions to the inhomogeneous heat and wave equations with the B.C. (Sl), 
are provided by Theorems 6 and 7, when the source terms have finite eigenfunctions with 
time-dependent coefficients. 

6. Green's functions: The solutions of the inhomogeneous heat, wave and Poisson equations with 
the B.C. (Sl) can expressed in terms of integral formulas where the inhomogeneous term is 
convolved with a Green's function for the given problem. In each case, the Green's function was 
constructed from the eigenfunctions uq and eigenvalues Aq in (S2). For details, see Examples 3 

through 7. 

7. Weyl's formula: The behavior of the eigenvalues Aq for large q is influenced by the 

dimension k and the k-dimensional volume [ Vol(M) j, of a compact, connected k-manifold. 
This is evident from 

Weyl's formula: Aq N 411'2[~ Vol(M)j-2/k q2/k ,as q --+ 00 , (S4) 

,00 -KA t 
or equivalently, L e q N [47rKtj-k/2Vol(M), as t --+ 0+. 

q=O 
(S5) 

Refinements of the formula (S5) show that certain geometric (or "topological") properties of a 

k-manifold in IRn are also determined by the behavior of the eigenvalues A for large q. For 
q 

example, the number h of holes of a compact surface (2-manifold) without boundary is 
determined by 

00 -A t l e q N V4~M) + ~ (l-h) or 
q=O 

[ 
00 At] 

h = 1 + 3 lim+ V4~M) - l e- q . 
t--+O q=O 
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Exercises 9.6 

1. Show that the mapping F in Example 1 is a diffeomorphism between the sets Band C , by 
showing that every point P in C is F(P / ) for some point p' in B, and that G(F(P / )) = P'. 

2. (a) Let f(x,y) be a COO function, defined for all (x,y) in the xy-plane. Find a 

diffeomorphism from 1R3 onto 1R3 such that the xy-plane is carried onto the graph of f(x,y). 

(b) How can the diffeomorphism in (a) be used to show that the graph of f(x,y) above the region 

x - y ~ 0 is a 2-manifold in 1R3 with boundary consisting of points of the form (x,x,f(x,x)). 
Hint. You may have to modify the diffeomorphism in (a) by a rotation of space. 

3. Prove that the circle x2 + y2 = 1 is a I-manifold without boundary in 1R2. 

4. Prove that the square I x I + I y I = 1 is not a (smooth) I-manifold in 1R2. 
Hint. Demonstrate that a line segment cannot be mapped to a "corner" by a diffeomorphism. 

5. Check the validity of the Weyl's formula (4) in the case of 

(a) a circle of radius r (b) a sphere of radius p (c) an LxM rectangle. 

Hint. It is crucial to recall that each eigenvalue is repeated a number of times equal to the 
dimension of the associated eigenspace. 

6. Verify by direct substitution, that the claimed solutions in Theorems 4 and 5 do in fact solve 
the D.E., B.C., and I.C .. 

7. Do Problem 6 for Theorems 6 and 7. 

8. For a compact manifold M with boundary aM, convert the following problem to a problem 
with homogeneous B.C .. 

on M, for t > 0 

B.C. u(Q,t) = f(Q,t) for all Q on aM for t > 0 

I.C. u(P,O) = 0 for all P in M. 

How might the resulting "related homogeneous problem" be formally solved? 

Hint. To get a particular function satisfying the B.C., solve the Dirichlet problem with the given 
B.C. at each time t > O. 



Section 9.6 Solving PDEs on Manifolds 673 

9. Suppose that the B.C. in Problem 8 is changed to 0vu(Q,t) = f(Q,t). What difficulty is there 

with finding a function which satisfies the B.C. by solving the Neumann problem at each time t? 
How might this difficulty be overcome through first solving the Poisson D.E. /j.w = c(t), at each 

time t, for c(t):: VOI(M)-IIOM f(Q,t) d8M(Q) ? 

Hint. Use I /j.MW(P) dM(P) = I ovW(Q) doM(Q), as a special case of Green's formula, and 
M 8M 

consider the related problem for v = u - w . 

10. A vector field on a compact k-manifold M in IRn assigns to each point P in M a vector 

V(P) which is tangent to M. Let V be the extension of V to an open subset A of M in IRn, 
which is obtained by translating V along the normal lines to M. We define the divergence 

(denoted div(V)) of V at P to be the divergence of V at P, namely V· V :: OV 1/ Ox1 + ... 

+ OVn/Oxn (at P), where Vi is the i-th component of V. The Gauss divergence theorem for 

the compact k-manifold M states that for any C1 vector field V on M, 

I div(V) dM = I V(Q)·n(Q) d8M(Q) , 
M 8M 

where n( Q) is the outward pointing normal to 8M at Q in 8M, and the right side is defined 
to be zero, if 8M is empty. 

(a) Show that for a C2 function f on M, we have /j.Mf = div(Vf) where Vf is the vector field 

on M defined by Vf:: VI = (f , ... ,f ), where f is the extension of f which is constant on 
Xl xn 

normal lines to M. 

(b) For C2 functions f and g on M, show that div(f Vg) = f/j.Mg + Vf·Vg, and deduce that 

f/j.Mg - g/j.Mf = div(fVg - gVf). 

(c) From parts (a) and (b) and the Gauss divergence theorem, deduce Green's formula (7). 

(/j.f,g) - (f,/j.g) = IOM g(Q)8vf(Q) -f(Q)8~(Q) dOM(Q) . 

11. Let M be a compact k-manifold with or without boundary. 

(a) Use Problem 10 to show that IMv/j.MW dM = - IM Vv·Vw dM + I8M v8vw d8M, for any 

c1 function v and any C2 function w. 
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(b) Use part (a) to show that the eigenvalues An of ~M with the standard B.C. (u = 0 on 

Dc oM, and 0vu = 0 on N ( oM (cf. Theorem 1)) are nonnegative, and that AO = 0 only in 

the case N = OM (Le., the B.C. is purely Neumann or oM is empty). 

(c) Conclude from part (b) that the Poisson problem in Example 6 is at least formally solvable 
for all "nice" functions h, in the case when D is not empty (Le., condition (41) is then vacuous). 

12. Show that the usual proof (cf. end of Section 3.2) of the Maximum Principle for the heat 

equation, still works in the case when the spatial domain is a compact k-manifold M in IRn. 

13. Assuming that there is a C2 function v on the compact manifold M with boundary OM, 
such that ~Mv:: 1 (or more generally, ~Mv > 0), prove the Maximum Principle for harmonic 

functions u on MO (Le., ~Mu = 0 on the interior MO of M) which extend continuously to 

OM (cf. Theorem 1 of Section 6.4). (Note that the existence of such a function v in the case 
where OM is not empty is made plausible by part (c) of Problem 11.) Hint. Consider the 
Laplacian at a maximum of u + (V , for sufficiently smal! (> O. 

14. Assume that M is a compact k-manifold without boundary. Use Green's formula to show 

that there is no C2 function v on M such that ~Mv ~ 0, unless v is constant. 

15. Let M be a compact k-manifold with or without boundary. 

(a) Use part (a) of Problem 11 to show that for any C2 solution of the heat problem (11) in 

Theorem 4, we must have ~ JM u(p,t)2 dM(P) ~ -211: JM IIVull 2 dM. 

(b) Use this fact in part (a) to prove the uniqueness of C2 solutions of the heat problem (11). 

16. Let u be a solution of the wave equation ut = a2~Mu on the compact manifold M in IRn. 

Consider the energy integral H(t) = !JM ut2 + a211Vull2 dM (cf. (12) Section 5.1). 

(a) Show that H'(t) = a2JM Ut~MU + VUt·Vu dM = a2JM div(utVu) dM 

= a2J utVu.n dOM (cf. Part (b) of Problem 10). 
oM 
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(b) Use part (a) to prove a uniqueness theorem for the wave problem 

D.E. Utt = a2 ~Mu on M with -00 < t < 00 

{
u::oonD 

B.C. 
8yu:: ° on N 

I.C. u(P,O) = f(P) , ut(P,O) = g(P) for all P in M. 
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17. Prove that there is at most one COO function H(t,PjP') (for t > 0), such that the problem 

D.E. ut = ~Mu on M (a compact manifold) 

{
u::oonD 

B.C. 
8yu:: ° on N 

I.C. u(P,O) = f(P) 

(cf. (15)) has the solution u(P,t) = JM H(t,PjP') f(P') dM(P'), for every initial COO 

temperature f(P) (i.e., the heat kernel is unique). 
runt. Let f(P) = un(P) , n = 0, 1,2, ... , and use uniqueness of solutions (cf. Problem 15), in 

order to find the eigenfunction expansion of H(t,PjP') as a function of P' for fixed t and P. 

18. If f(x) is defined on [-7r,7r] and has a COO periodic extension 1'(x), the solution of 

D.E. ut = Uxx -7r < X < 7r, t > ° 
B.C. u(-7r,t) = u(7r,t) ,ux(-7r,t) = ux(7r,t) 

I.C. u(x,O) = f(x) 

is given by u(x,t) = _1 [. e-(x-y)2/(4t) 1'(y) dy (cf. Section 7.5) . 
.[4it-oo 

(a) Show (at least formally) that u(x,t) = 17r [IOO _1 e-(x--z-2m7r)2 /(4t)] f(z) dz . 
-7r m=-oo.[4it 

(b) Deduce from (a) and Problem 17 that (cf. Problem 20 of Section 7.2) 

l oo e-m2t eim(x--z) = _1 l oo e-(x--z-2m7r)2/(4t) . 
m=-oo .[4it m=-oo 
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19. Use Problems 11-13 of Exercises 6.4, Example 1 of Section 9.5 and (42) to formally show 

l ~ \00 -f} -2 J I (f} )-2 J (rf} )J (r' f} )eim( 8--0' ) = llog 11 _,H' ei (~~/) I ' 
7r ~=1 lm=-oo m,k m m,k m m,k m m,k 7r rell) _ r' 1 0 

for rei 0 f r/eiO/ , r < 1 and r < 1. 

20. For r = (x,y,z) and r' = (x' ,y' ,Z/) , here we show that the Green's function for 

D.E. ~u = h, p2 = x2 + y2 + z2 ~ 1 

B.C. u(x,y,z) = 0 p = 1 , 

can be written in the following form, where p' == Ilr' II : 

1-1 
G( ') 1 [ 1 

r,r = - 41r IIr _ r' II P ] 
IIr - p,-2 r'll . 

p,-l _ p-l 
(a) Show that 2 - -2' and that G(r,r/) = 0 when p = 1. 

IIr - p'- r' II IIr' - p rll 

Hint. Verify that p/211r - pl-2r, 112 = p2p/2 - 2r·r ' + 1. 

(b) If h in (*) is a C2 function on space which vanishes outside of some ball, show that 

u(r) = f G(r,r/)h(r/) dx/dy/dz ' solves the problem (*). You may use part (a) and take the 
p' 9 

limit as p -+ 1 under the integral to formally check the B.C .. 

Hint. Observe that if p' < 1, then the second term of G(r,r/) in (**) is a harmonic function of 
r in the ball p < 1, whereas the first term has a singularity at r = r/. Thus, only the first term 
of G(r,r/) contributes to ~u(r). To evaluate ~u(r), use spherical coordinates in 
x/y/z/-space, but with r as the origin. The computation is similar to the one carried out in 
Problem 9 of Section 6.4. 

21. Express the Green's function in Problem 20 in terms of the spherical Bessel functions and 
spherical harmonics, as was done in Problem 19 in the case of the tw()-{fimensional unit disk. 
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A.1 The Classification Theorem 

Here we prove that, by a change of variables, any second-order linear PDE (for an 
unknown function of two variables) with constant coefficients (Le., of the form (1) below) can be 
transformed into one of the four standard types, namely the generalized wave, Poisson or heat 
equation or the standard degenerate equation, depending on whether the original PDE is 
hyperbolic, elliptic, parabolic or degenerate, respectively (cf. Section 1.3). Thus, the 
Classification Theorem reduces the study of (1) to the study of the four standard types, in that, 
by reversing the change of variables (2), any solution of the appropriate standard PDE can be 
transformed back to a solution of the original PDE (1). We pay particular attention to deriving 
the quantities which distinguish between the parabolic and the degenerate cases, namely 2cd - be 
and 2ae - bd, as these quantities are not commonly discussed in the literature. 

The idea behind the proof of the Classification Theorem comes from analytic geometry, 
where one uses rotations and translations of coordinates in order to put the quadratic equation 

ax2 + bxy + cy2 + dx +ey = f 

into the standard form of the of the equation of a hyperbola (or a pair of lines intersecting at a 
point), an ellipse (or a point or the empty set), a parabola, or a pair of (possibly coincident) 
paraliel lines. A crucial step in the proof is that, under rotations of coordinates, the discriminant 

b2 - 4ac is invariant (Le., unchanged). 

Theorem 1 (The Classification Theorem). Consider the second-order, linear PDE 

where the unknown function U = U(~,T) is C2, and a, b,c,d,e and k are given real constants 
and F(~, T) is a given continuous function. Then there is a change of variables of the form 

Ix = a~ + (3T 

t = -(3~ + aT 

u(x,t) = p -lexp( ')'~ + OT)U(~, T) , 

where a, (3, ,)" 0 and p (p:f. 0) are real constants with a2 + ~ = 1, such \hat (1) is 
transformed into exactly one of the following forms (where A and J( are real constants 
and A> 0) : 

(2) 

A-I 
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(i) -A2uxx + Utt + /(u = f(x,t) , (3) 

if b2 - 4ac > 0 (the hyperbolic case); 

(ii) A2uxx + Utt + /(u = f(x,t) , (4) 

if b2 - 4ac < 0 (the elliptic case); 

(iii) A2uxx + ut + /(u = f(x,t) , (5) 

if b2 - 4ac = 0, and 2cd f. be or 2ae f. bd, (the para.bolic case); 

(iv) Uxx + /(u = f(x,t) , (6) 

if b2 - 4ac = 0, and 2cd = be and 2ae = bd, (the degenera.te case), 

where f(x,t)=exp[")'e+bTjF(e,T), e=ax-/3t and T=/3X+at. 

Proof. Our strategy is to write the left side of (1) in terms of uxx' uxt ' Utt ' ux' ut and u, and 
choose the constants a, /3, 'Y, band p, such that the left side becomes (after multiplication by 
exp[ 'Ye + bTl) one of the desired forms. From this argument, it will be apparent that only one of 
the forms (3) - (6) can be achieved for the given equation (1). We write 

Then 

and 

Similarly, 

and 

Moreover, 

U(e,T) = pellu(x,t) , where 11 == -( 'Ye + bT). 

U e = p [e lllleu + ellll(uxxe + utt e)] = pell[ aux - /3ut - 'YU] , 

U ee = pellllf[ aux - /3ut - 'YU] 

+ pelll a(uxxxe + uxtt e) - /3(utxxe + Uttt e) - 'Y(uxxe + utt e)] 

= peP [ a2uxx - 2a/3uxt + p2utt - 2a'YUx + 2/3'YUt + lu] . 

UT = pell[f3ux + aut - bU] 

U TT = peP [p2uxx + 2a/3uxt + a2utt - 2/3bux -2abut +b2u] . 

U eT = pell[ af3uxx + (a2 - p2)uxt - a/3utt - (ab + /3'Y)ux + (/3b - 'Ya)ut + b'YU] . 
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Substituting the above expressions into (1), we obtain 

where 
pe77 [Auxx + BUxt + CUtt + Dux + EUt + KU] = F(e,r) , 

A = a0:2 + bo:,8 + c,a2, 

B = 2(c-a) 0:,8 + b(0:2 - ,a2), 

C = a,a2 - bo:,8 + co:2, 

D = -a20:')'- b( ')',8 + 00:) - c2,80 + do: + e,8 , 

E = a2,8,), + b(,8o - 0:')') - c20:0 - d,8 + eo: , 

K = a')'2 + bO')' + co2 - d,),- eo + k . 

A-3 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Using the assumption 0:2 + ,a2 = 1, a calculation shows that B2 - 4AC = (b2 - 4ac)( 0:2 + ,a2) 

= (b2 - 4ac) (Le., the discriminant is invariant). We can choose 0: and ,8, such that B = O. 

Indeed, since 0:2 + ,a2 = 1, there is an angle 0 such that 0: = cos 0 and ,8 = sin O. Then, 

0:2 - ,a2 = cos(20) and 20:,8 = sin(20), and we need only to choose 0, such that the unit vector 
(cos(20),sin(20)) is orthogonal to the vector (b,a--c), in order that B = O. Then, we have -4AC 

= B2 - 4AC = b2 - 4ac. We consider the cases, when b2 - 4ac is positive, negative or zero. 

Case 1 (-4AC = b2 - 4ac > 0). Here A and C must be nonzero and of opposite sign. We 

choose p = C-1. Then, dividing (7) by e77, we achieve the form (3) (where A2 = -A/C > 0 and 
f( = K/C), provided that we can show that it is possible to choose ')' and 0 such that D = 0 and 
E = 0, or in other words (cf. (11) and (12)), 

(2ao: + b,8h + (2c,8 + bo:)o = do: + e,8 , 

(2a,8 - bo:) ')' + (b,8 - 2co:)0 = d,8 - eo: . 
(14) 

We can solve this system for ')' and 0, if the determinant of the coefficient matrix is nonzero. 

However, using the fact that 0:2 + ,a2 = 1, we have 

1

2ao: + b,8 2c,8 + bo: 1 2 
= b -4ac. 

. 2a,8 - bo: b,8 - 2co: 
(15) 

Thus, in the case at hand, we can (uniquely) choose the constants ')' and 0, so that D = E = 0 : 

lidO: + e,8 2c,8 + bo: 1_ be - 2cd 
')'= 2 - 2 

b - 4ac d,8 - eo: b,8 -2co: b - 4ac 

1 1 2ao: + b,8 do: + e,8l_ bd - 2ae 
0= 2 - ---'2"'---

b - 4ac 2a,8 - bo: d,8 - eo: b - 4ac . 

(16) and 
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C8.'le 2 (--4AC = b2 - 4ac < 0). Here A and C are of the same sign. Since b2 - 4ac f. 0, we 

may select the constants I and 8 as in (16), so that D = E = O. We set p = C-1, and divide 

(7) bye"', thereby achieving the form (4). 

C8.'le 3 (--4AC = b2 - 4ac = 0). In this case, we must have A = 0 or C = O. Note that A and 
C cannot both be zero. Indeed, according to equations (8) and (10), we have 0 = A + C 

= (a + c)( a2 + rll Then a = -c yields 0 = b2 - 4ac = b2 + 4a2 = b2 + 2a2 + 2c2 or 
a = b = c = 0, which contradicts the assumption that equation (1) is of order 2. Observe that in 
formulas (8)-(10), if we replace a by (3 and (3 by -a, then B changes to -B, A changes to 
C, and C changes to A. Thus, in the present case, if necessary, we can alter the values of a and 

(3, so that A f. 0 and C = 0, while B = 0 still. Since b2 - 4ac = 0, we are no longer 
guaranteed that the equations (14) can be solved simultaneously for I and 8, so as to obtain 
D = 0 and E = O. However, in the first equation of (14), if 

(2aa + b(3) f. 0 or (2c(3 + ba) f 0 , (17) 

then we can at least choose values for I and 8, such that this first equation holds (Le., D = 0). 
In order to deduce that (17) holds, we note that if 2aa + b(3 = 0 and 2c(3 + ba = 0, then we 
arrive at the contradiction that A = O. Indeed, by (8), 

2A = 2aa2 + 2ba(3 + 2cp2 = a(2aa + b(3) + (3(2c(3 + ba). 

Hence, we can find I and 8 such that D = O. Since the determinant (15) vanishes in the case 
at hand, there is a simultaneous solution (f,8) of the system (14) if and only if the numerators in 
(16) both vanish, i.e., 

be = 2cd and bd = 2ae . (18) 

Thus, it possible to choose I and 8 such that D = E = 0 if and only if equations (18) both hold. 

In that case, we achieve the form (6) by setting p = A-I and dividing (7) bye"'. In the event 
that one or both of the equations (18) fails to hold, we can still choose I and 8, so that D = O. 
We can also ensure that A and E have the same sign. Indeed, observe that if we replace a by 
-a and (3 by -(3, then (12) shows that E changes to -E, while A is invariant according to 

(8) [also note that B, C and D remain OJ. Then, we choose p = E-1 in order to obtain the 

form (5) with A2 = AlE. 0 

Remark. If the coefficients of the PDE (1) are allowed to be functions of ~ and T, then the type 

of the equation may vary. For example, the PDE U ~~ - ~U TT = 0 has discriminant b2 - 4ac 

= 4~. Thus, this PDE is hyperbolic for ~ > 0, elliptic for ~ < 0, and parabolic for ~ = o. 0 
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A.2 Fubini's Theorem 

In the text, we have frequently referred to Leibniz's rule to justify differentiating under an 
integral, and occasionally we have used Fubini's theorem (after the Italian mathematician Guido 
Fubini (1879-1943), who proved the result around 1910) to interchange the order of integration in 
multiple integrals. Since Fubini's theorem seems conceptually simpler than Leibniz's rule, we 
cover Fubini's theorem first. In order to show that some care is needed when interchanging the 
order of integration, we consider a few examples. 

Example 1. Let 

2 2 

i 
x2 - Y22 if (x,y) '" (0,0) 

f(x,y) = (x +0 Y ) 

if (x,y) = (0,0) . 

(1) 

We show that 
1 1 1 1 

fo fo f(x,y) dy dx '" fo fo f(x,y) dx dy . (2) 

The left side of (2) is 

JJ2 ! Y{:: dx ~ J> : 1 dx = arctan(l) ~ i 
However, the right side of (2) is 

1 x = 1 

J [x2-: 2] dy 
o y x=o 

Jl -1 1r 

= 0 y2 + 1 dy = -arctan(l) = - 4"' 

Actually, from the fact that f(y,x) = - f(x,y), we can deduce that the two sides of (2) have 
opposite signs, and so it would have been sufficient to demonstrate that one side is nonzero. 0 

Example 2. Let f(x,y) = (2xy - x2i)e-xy. This function is COO throughout the xy-plane, and 
yet we will show that 

f~ fo f(x,y) dy dx '" fo f~ f(x,y) dx dy . (3) 

For x > 0, we have 

r R y-R 
JfI f(x,y) dy = lim f (2xy _x2y2)e-xYdY = lim [xy2e-XY] I - = o. 
o R-Ioo 0 R-Ioo Y = 0 
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Since f(O,y) = 0, we also get the same result when x = o. Thus, the left side of (3) is o. 
However, the right side of (3) is 

r II (2xy _ x2y2)e -xy dx dy = r [x2ye -xY] x = 1 dy 
JO 0 JO x = 0 

= r ye -y dy = lim [-e -y - ye -y] y = R = 1. 0 

JO R-too y= ° 
Although these examples show that in general the order of integration can make a 

difference, the following version of Fubini's theorem gives criteria under which the order of 
integration can be switched without altering the result. This is not the most general version of 
Fubini's theorem, but it suffices for all of our applications. 0 

Fubini's Theorem. Let -00 ~ a < b ~ 00 and -00 ~ C < d ~ 00. Let f(x,y) be a function which 
is continuous on the region a < x < b, c < y < d, except possibly on a set which is the union 
of a finite number of lines. Suppose that 

d b b rd I I If(x,y) I dx dy < 00 or I L If(x,yl dy dx < 00. 

c a a c 
(4) 

Then, 

~ I: f(x,y) dx dy = 
b d I I f(x,y) dy dx . 
a c 

(5) 

Remarks. If i(x,y) ~ 0, then (5) holds, even if (4) does not hold. Indeed, if f(x,y) ~ ° and (4) 
does not hold, then both sides of (5) are +00, since If(x,y) I = f(x,y). Of course, since (5) fails in 
Examples 1 and 2, in spite of the (act that both sides of (5) are finite, it must be the case that 
condition (4) is violated by the functions f(x,y) in those examples, since the continuity condition 
of Fubini's theorem is met by these functions. We leave the verification that (4) is violated in 
these examples to the interested reader. With some additional hypotheses, we will give a proof of 
Fubini's theorem based in part on Leibniz's rule at the end of Appendix A.3. For now, we offer 
the following intuitive explanation. Both sides of (5) ought to represent the net volume between 
the graph of the function and the xy-plane, where the volume counts negatively when the graph is 
below the xy-plane. The two sides merely represent two ways of summing up the volume 

elements f(x,y) dxdy. If the total volume, say V+ above the xy-plane is finite and the total 

volume below the xy-plane, say V-, is finite (Le., if either one of the integrals (4) is finite.), 

then the two methods of computing the net volume should give the same result, namely V+ - V­

(Le., (5) should hold). However, if V+ and V- are both infinite, then V+ - V- is 00 - 00 

which is indeterminate (e.g. I im (x + 1) = 00 and I im (x -1) = 00, but 
X-too x-too 

I im [(x + 1) - (x - 1)] = 2 while I im [(x - 1) - (x + 1)] = -2). Indeed, one method of 
~oo ~oo 

summing up the volume may draw from V+ more, as it proceeds, than it draws from V-, while 

another method may draw more from V- than it does from V+. This occurs in Example 1. 0 
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A.3 Leibniz's Rule 

Before stating and proving Leibniz's rule, we give some examples which show that taking a 
derivative under an integral does not always yield the correct result. 

Example 1. For each positive value of x, we have 

I(x) :: roo sin(xy) dy:: lim JR sin(xy) dy =;. 
JO y R-+oo 0 Y 

(1) 

Indeed, the change of variables from y to z = xy shows that I(x) is independent of the positive 
value chosen for x, and the result (1) when x = 1 is shown in the Supplement at the end of 
Chapter 7. Thus, we have 

d roo sin(xy) dy = I'(x) = 0 . axJ O y 
(2) 

However, if we differentiate under the integral before integrating, we obtain 

roo ~ [ sin(xy) ] dy = roo cos(xy) dy = lim sin(xR) 
JO y JO R-+oo x 

(3) 

which does not exist. Since 0 exists, (2) and (3) are unequal, i.e., 

d roo sin(xy) dy f roo (j [sin(xy)] dy (x> 0) . 
axJ O y JO ox y 

Thus, we do not get the same result, when differentiating under the integral. Indeed, we do not 
get anything. 0 

! x - y 

Example 2. Let f(x,y) = I x ~ y I 
if x f y 

if x = y 

(Le., f(x,y) = 1, if x > y j f(x,y) = -1, if x < y j and f(x,y) = 0, if x = y). The graph of 
f(x,y) over the region x> y is a horizontal half-plane. Thus, fx(x,y) = 0 for x > y. Similarly, 

fx(x,y) = 0, for x < y. When y = x, fx does not exist. Recall that a definite integral of a 

function (of a single variable) which is redefined or undefined at a finite number of points is 
unaffected by this change. In particular, for any fixed x, the function f (x,y) of the variable y x 
is zero except at a single point (namely, at x) where it is undefined, and consequently its integral 

Jl a 
with respect to y over any interval is zero. Hence, 0 ox f(x,y) dy = 0 . 

On the other hand, 



A-8 Appendix 

t f(x,y) dy = r -1 dy + tIdY = -x + (1 - x) = 1 - 2x. 
o 0 x 

Thus, 

d II II a dx 0 f(x,y) dy = -2 f 0 = 0 ox f(x,y) dy . 

Hence, we cannot differentiate under the integral without changing the result. 0 

Example 3. Let f(O,O) = 0 and f(x,y) = 2 x 2' for (x,y) f (0,0). We have 
x + y 

II II I1/ X 
f(x,y) dy = 2 x 2 dy = 1 2 dz = arctan(!') 

o Ox + y 0 1 + z x 
Thus, 

d II () 1 (-2) -1 dx f x,y dy = -2 -x = 2 . 
o l+x l+x 

However, 
1 

Io ~ f(x,y) dy II 2 2 IY = 1 Y - x Y 
= 2 2 dy = 2 2 

Ox + y x + Y y=O 

1 d II = 2 f dx f(x,y) dy. 0 
x + 1 x 0 

Although the above examples show that differentiation under an integral is unjustified in 
general, Leibniz's rule gives criteria under which this operation is permissible. Our proof depends 
on the following elementary version of the Dominated Convergence Theorem for Riemann 
integrals which gives a criterion under which one can take a limit under an integral. The proof 
was inspired by [Lewin, 1986, 1988]. 

Dominated Convergence Theorem. Let f(x) and fn(x) (n = 1, 2, 3, ... ) be piecewise 

continuous functions which are defined on some nonempty interval I (which may be open or 
closed, finite or infinite) of real numbers. Suppose that for each x, f(x) = lim fn(x). 

n-+oo 
Assume that there is a piecewise continuous function g(x) ~ 0 , such that Ifn(x) I $ g(x), and 

the integral of g(x) over I, denoted by L g(x) dx, is finite (We say that the sequence of 

functions fn (x) is dominated by the integrable function g( x). ) Then, 

lim I fn(x) dx = I lim fn(x) dx = I f(x) dx. 
n-+oo I I n-+oo I 

(4) 
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Proof. Note that 

(5) 

Thus, to show (4), it suffices to show that the right-hand side of (5) can be made arbitrarily 
small, by choosing n sufficiently large. Now by (5) we need only to prove that the theorem is 
true in the case where fn(x) ~ 0 and f(x):: 0 (Le., replace fn(x) by I fn(x) - f(x) I, and g(x) 

by 2g(x)). Henceforth we assume that fn(x) ~ 0 and f(x):: o. Let L be any positive real 

number, and let J be the set of points x in I such that Ixl > L. Since II g(x) dx < 00 , we 

can make L g(x) dx arbitrarily small by choosing L large enough. Moreover, since 

o ~ fn(x) ~ g(x), L fn(x) dx can also be made arbitrarily small (for all n simultaneously) by 

choosing L large enough. Let K be the set of points in I which are not in J. Thus, K is a 

finite interval contained in [-L,L]. It remains to prove that 1 im I fn(x) dx = o. A step 
n-+oo K 

function defined on K, is a function which is constant on each of a finite number of subintervals 
of K and is zero elsewhere in K. Since piecewise continuous functions on a closed interval are 

Riemann integrable, we know that I f (x) dx may be approximated arbitrarily closely by a 
K n 

lower sum. In other words, there is a step function sn(x), such that 0 ~ sn(x) ~ fn(x) for all x 

in K, and 0 ~ IK fn(x) dx ~ IK sn(x) dx + n-1 . Thus, it suffices to show that 

1 im I Sn(X) dx = O. Let G(x) be a step function, defined on K, such that· G(x) ~ g(x) for 
n-+oo K 

all x in K, and I K G(x) dx ~ I K g(x) dx + 1 < 00. For any fixed f > 0, let 

En:: {x E K: sn(x) > f·G(X)} and Tn:: { x E K: sn(x) ~ f·G(X) } . 

Since sn and G are step functions, En and Tn are unions of finitely many intervals. Then 

IK sn(x) dx = IE Sn(X) dx + IT Sn(X) dx ~ IE Sn(X) dx + I f·G(X) dx 
n n n Tn 

< IE G(x) dx + f· [IKg(x) dx + 1] . 
n 

Thus, 

IK Sn(X) dx ~ Jt(En) + f UK g(x) dx + 1 ] , (6) 

where Jt(A):: I A G(x) dx , for any subset A of K, which is a union of finitely many intervals. 
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We call such subsets A elementary. Since c is arbitrary, it suffices to show lim JL(En) = o. 
n-+oo 

Let F :: U > E = {x E K : sm(x) > c· G(x) for at least one m ~ n} . n m_n m (7) 

Note that F 1 ) F 2 ) F 3 J ... (i.e. the sets F n "shrink" as n increases). There is no point 

which is in all of the sets F n ' n = 1, 2, 3, ... , because fn(x) converges to 0 and fn(x) ~ sn(x) 

on K. (Even if (·G(x) = 0 for some x, we still have 0 ~ sn(x) ~ fn(x) ~ g(x) ~ G(x) = 0, i.e. 

sn(x) = 0 for all n, and thus x is in none of the sets F n.) Recall that we want to show that 

lim JL(En) = o. Suppose, on the contrary, that there is a constant c, such that JL(En) > c > 0 
n-+oo 
for infinitely many values of n. For each n = 1, 2, 3, ... ,let Hn be a subset of F n ' such that 

Hn consists of a finite number of closed intervals and 

(8) 

for every elementary subset A of F n. Note that JL(A) < JL(K) < 00, so that Hn exits. Let 

Zn :: nm<n Hm = HI n H2 n ... n Hn· Then the Zn form a shrinking sequence of closed, 
bounded-sets and they must have a point of intersection if they are all nonempty. [For each n, 

select a point Pn from Zn and note that Pn will have a subsequence which converges to a point 

in each of the closed bounded sets Zn by the Bolzano-Weierstrass Theorem of Appendix AA .J 
However, there can be no point in every Zn' since Zn C Hn C F n and the sets F n have no 

common point. Thus, Zn must be empty for some no, and hence Zn is empty for all n ~ no. 
o 

However, for n ~ no and 0 ~ i ~ n, En is a subset of Fi' and Hi U En is a subset of Fi 

consisting of a finite number of intervals. By (6), JL(Hi) ~ JL(En U Hi) - c2-i 

= JL(En - Hi) + JL(Hi) - c2-i or JL(En - Hi) ~ c2-i. Then 

(9) 

for n > no. Now (9) contradicts our assumption that JL(En) > c for infinitely many n. Thus, 

<?ur assumption that lim JL(En) f. 0 is false, and lim JL(En) = 0 is true. Hence, by (6), we can 
n-+oo n-+oo 

make IK sn(x) dx as small as desired, by first choosing ( small and then choosing n 

sufficiently large. 0 

In many situations it is convenient to have the following "continuous" version of the 
Dominated Convergence Theorem, which follows rather easily from the above "discrete" version. 
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Corollary (Dominated Convergence Theorem - continuous version). For each real number h 
in some interval H containing ho, let F(x,h) be a piecewise continuous function of x defined 

on some nonempty interval I (which may be open or closed, finite or infinite) of real numbers. 
Suppose that f(x) == 1 im F(x,h) is piecewise continuous on I. Assume that there is a 

h-+ho 

piecewise continuous function g(x) ~ 0 , such that I F(x,h) I ~ g(x) for all x E I and h E H, 

and the integral of g(x) over I, denoted by L g(x) dx, is finite. Then, 

1 im I F(x,h) dx I 1 im F(x,h) dx I f(x) dx. (4') 
h-+ho I I h-+ho I 

Proof. Let hI ' h2, .. · be any sequence of points in H, such that 1 im hn = ho . Let fn(x) = 
n-+oo 

F(x,hn). Since the f(x) and fn(x) satisfy the hypotheses of the Dominated Convergence Theorem 

and the sequence hI' h2, .. · approaching ho is arbitrary, we have 

1 im I F(x,h) dx = 1 im I fn(x) dx = I f(x) dx = I 1 im F(x,h) dx. 0 

h-+ hoI n-+ 00 I I I h-+ h ° 

Theorem (Leibniz's rule). Let R be the region --00 ~ a < x < b ~ +00 , --00 ~ C < t < d ~ +00 in 
the xt-plane. Let' f( x, t) be a continuous function defined on R, such that ft (x, t) is also 

d 
continuous on R. Moreover, assume that I If(x,t) I dx < 00 for each x in (a,b). Suppose 

c 
that there is a piecewise continuous function g(x), such that for all (x,t) in R, 

d 
and Ie g(x) dx < 00 • (10) 

Then, dId Ida at c f(x,t) dx = c at f(x,t) dx (a < t < b). (11) 

If c and d are finite, and f(x,t) and ft(x,t) are continuous on the region c ~ x ~ d and 

a < t < b (including the edges x = c and x = d), then we do not need (10) in order to get (11). 

Proof. From the definition of derivative, 
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d d ~ d 
~ J f(x,t) dx = 1 im k [J f(x,t+h) dx - J" f(x,t) dX] = 1 im J f(X,Hi)-f(x,t) dx. 

c h-+ 0 c c h-+ 0 c 

We justify taking the limit under the integral, as follows. Using the Fundamental Theorem of 
Calculus, and the assumption, Ift(x,t) I ~ g(x), we have 

IJ
t+ h I JHh If(x,Hh)-f(x,t)1 = t ft(x,s)ds ~ t Ift(x,s)I ds ~ g(x)·h 

or I f(X,Hh)h - f(x,t) I ~ g(x). 

Thus, we may apply (4') (d. the above corollary) to obtain 

d d d d 
d J f(x,t) dx = 1 im J f(x,Hh)-f(x,t) dx = J 1 im f(x,Hh)-f(x,t) dx = J a f(x,t) dx. 
at c h-+ 0 c h c h-+ 0 h c 7Jt' 

We now verify the last assertion of the theorem. For any t E (a,b), select a and {3 such that 
a < a ~ t ~ (:J < b. If c and d are finite and ft(x,t) is continuous on the closed rectangular 

region c ~ x ~ d, a < a ~ t ~ {3 < b, then we can take the function g(x) (required in (10), but 
now with t E (0',{3)) to be constant function, equal to the maximum of Ift(x,t)I on this closed 

rectangular region. The existence of this maximum is established independently in Appendix A.4, 
where it is proved that a continuous function (e.g., I ft I ) on a closed rectangle has a maximum. 

d 
Letting the maximum be M, we have Ie g(x) dx = M(d - c) < 00. Thus, the assumptions in 

(10) are satisfied in this case, and the last assertion of the theorem is proved. 0 

Remark (Generalizations). There is a more general version of Leibniz's rule which states that if 

f(x,t) satisfies the assumptions in the above theorem, and if c(t) and d(t) are c1 functions 
with c < c(t) and d(t) < d, for a < t < b, then 

f
(t) f(t) ~ f(x,t) dx = f(d(t),t)d'(t) -f(c(t),t)c'(t) + ft(x,t) dx. 

c(t) c(t) 
(12) 

The proof of this result proceeds just as the proof of the Lemma preceding Theorem 1 (Duhamel's 

principle) in Section 3.4. In other words, one considers a function H(w,z,t) = S; f(x,t) dx, and 

(12) follows at once from the chain rule ~ rH(C(t),d(t),t)] = Hw c'(t) + Hz d'(t) + Ht , the 

Fundamental Theorem of Calculus, and Leibniz's rule. We also mention that the Dominated 
Convergence Theorem and Leibniz's rule extend without much further difficulty to the case of 
multiple integrals. Moreover, the above proof of Leibniz's rule is still valid when f(x,t) is 
continuous in t, but only piecewise continuous in x, and ft(x,t) is piecewise continuous in t. 

As a consequence, we easily prove the following useful result concerning termwise differentiation 
of an infinite series of functions. 0 
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Theorem (Termwise differentiation of series). Let fl (t), f2(t), ... be a sequence of C1 functions. 

Suppose that there are constants Mn , such that 1 fn ' (t) I· ~ Mn and r Mn < 00. Then 
n=1 

(13) 

Proof. We define f(x,t) = fn(t) if n-l ~ x < n, n = 1, 2, .... Observe that ft(x,t) is 
continuous in t and piecewise continuous in x (cf. the end of the above Remark). Also, let 

g(x) = Mn if n-l ~ x < n, n = 1,2, .... Then Ift(x,t) 1 ~ g(x) and roo g(x) dx = r Mn 
JO n=1 

< 00. Thus, Leibniz's rule yields, 

~ [r fn(t) ] = ~ [ roo f(x,t) dx] = roo ft(x,t) dx = r fn'(t). 0 
n=1 Jo Jo n=1 

Leibniz's rule is also used in the following proof of Fubini' s theorem: 

Proof of Fubini's theorem (cf. the statement in Appendix A.2) with some new assumptions. In 
addition to the assumptions in Fubini's theorem of Appendix A.2, here we assume that: 

1. f(x,y) is bounded on any closed subrectangle of a < x < b, c < y < d. 
2. The function f(x,y) is piecewise continuous in x and in y. 

3. For all a and f3 with a ~ a < f3 ~ b, the integrals J: f(x,y) dx and J: 1 f(x,y) 1 dx are 

piecewise continuous functions of y. 
c C 

4. For all 'Y and c with c ~ 'Y < c ~ d, the integrals J f(x,y) dy and J If(x,y) 1 dy are 
'Y 'Y 

piecewise continuous functions of x. 
db db brrl 

Suppose that t fa If(x,y) 1 dx dy < 00. We prove that t fa f(x,y) dx dy = fa J c f(x,y) dy dx 

(The other case follows by symmetry). For c < y < d, let G(x,y) = J: f(x,z) dz, and for 

a < a < f3 < b, let H(y) = Jf3 G(x,y) dx. For any value x for which f(x,y) is a continuous 
a 

function of y at y = Yo' we have Gy(x,yo) = f(x,yo) by the Fundamental Theorem of Calculus. 
Thus, by the assumptions on f(x,y), Gy(x,y) is a piecewise continuous function of x and of y, 

which is bounded on any closed subrectangle. Moreover, by using the boundedness of f(x,y) on 
closed subrectangles, we see that G(x,y) is a continuous function of y for each x (Why?). 
Thus, by Leibniz's rule (cf. also the end of the above Remark), 
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H'(y) = J{J G (x,y) dx = J{J f(x,y) dx. 
a y a 

The Fundamental Theorem of Calculus then yields, 

J
{J Jd Jd Jd J{J d (J f(x,y) dy dx = H(d) = H'(y) dy = G (x,y) dx dy = J J f(x,y) dx dy. 
ac c caY Co' 

Now, 
bd (Jd d{J 

J J f(x,y) dy dx = lim J J f(x,y) dy dx = lim J J f(x,y) dx dy . 
a c ,a-,b a c ,a-,b c a 

J{J b 
Let F({J,y) = f(x,y) dx, for c < y < d, 0'< (J < b. Then IF({J,y)I ) g(y) == J If(x,y)I dx 

a a 
d d b 

and J g(y) dx = J J If(x,y) I dx dy < 00, by assumption. Thus, the Dominated Convergence 
c c a 

Theorem yields 

d (J d d d b 
lim J J f(x,y) dx dy = lim J F({J,y) dy = J lim F({J,y) dy = J J f(x,y) dx dy . 
,a-,b c a ,a-,b c c,a-,b c a 

Using a similar argument for the limit a -t a, the desired result follows. 0 
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AA The Maximum/Minimum Theorem 

Not every function has a maximum or minimum. For example, the function f(x) = x3 (for 
--00 < X < (0) has no maximum or minimum. Also, even though the function f(x) = arctan(x) has 
values which are abitrarily close to 7r/2, this value is never achieved for any real value of x. Our 
goal in this section is to find criteria which ensure that a function of several variables achieves 
maximum and minimum values at points in a prescribed region. For concreteness, we deal with 

subsets of the xy-plane (Le., subsets of 1R2) and functions f(x,y), but all of our considerations can 

easily be generalized to the case of n-variables, n = 1, 2, 3,.... A subset C of 1R2 is called 
closed, if every point, which is the limit of a convergent sequence of points in C, is itself in C. 
For example, a rectangular region is closed, only if the edges are included in the region. A subset 

of 1R2 is bounded, if it can enclosed in a sufficiently large (but finite) square. For example, a disk 

is bounded, but a half-plane is not bounded. A function, defined on a subset C of 1R2, is 
continuous, if, for every sequence of points Pn = (xn'Yn) (n = 1, 2, 3, ... ) in C, which converges 

to some point p = (x,y) in C, we have that the sequence of values f(Pn) converges to the value 

f(p). (There are other equivalent definitions of continuity, but this one is convenient for our 
purposes.) Our main goal is to prove the Maximum/Minimum Theorem which says that a 
function, which is defined and continuous on a closed, bounded subset, has a maximum and a 
minimum value. For the proof, we need the following result. 

Theorem 1 (The Bolzano-Weierstrass Theorem for 1R2). Let Pn = (xn'Yn) (n= 1, 2, 3, ... ) 

be a sequence of points which form a bounded subset B of 1R2. Then the sequence 
PI' P2' P3' ... has a convergent subsequence. 

Proof. For convenience, we uniformly shrink and/or translate the bounded set B, so that it lies 
in the unit square {(x,y): 0 < x, y < I}. Let D == {O, 1, 2, ... ,9} be the set of digits. There are 
digits a l and bI in D, such that for infinitely many values of n, the decimal expansion of xn 

begins with .aI and the decimal expansion of y n begins with . bl . Let N 1 be the set of all 

such values of n. There are digits a2 and b2 such that for infinitely many values of n in N l' 

the decimal expansion of xn and y n begin with .aI a2 and . bI b2 ' respectively. Let N2 be 
the (infinite) subset of N 1 consisting of such values of n. Similarly, we can construct infinite 

sets N3, N4, N5,.·.(each contained in the previous one). Let qI = PnI for some nI in NI , and 

let q2 = Pn2 for some n2 (greater than nI ) in N2, and define q3' q4"" similarly. Let q = 

1 

( ) .. . [ -n 2 (-n)2]2 fl'i-n .al a2a3··· , .bI b2b3···· Smce the distance from qn to q IS 5 (10 ) + 10 = v~ 10 , 

the subsequence qI' q2' q3' ... converges to q. 0 
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The Maximum/Minimum Theorem. Let f(x,y) be a continuous function defined on a closed, 

bounded subset C of 1R2. Then there are points (.lS:,X) and (x,Y) in C, such that 

f(.lS:,X) ~ f(x,y) ~ f(x,Y) 

for all (x,y) in C. In particular, If(x,y) I ~ K for some constant K. 

Proof. We first prove that there is a constant M such that f(x,y) < M. If M does not exist, 
then we can find a sequence of points PI' P2' P3' ... such that f(Pn} > n. By Theorem 1, there is 

a subsequence q1' Q2' q3'···' which converges to some point q in the closed, bounded set C. 

However, since f is assumed to be continuous, we have that f(q) = lim f(qn) which does not 
n-+oo 

exist. This contradicts the assumption that f is defined at all points of C. Let S be the set of 
all values f(x,y) as (x,y) varies throughout C. For any real number r and positive integer n, 

let r[n] be the truncation of r at the n-th decimal place (Le., /l [3] = 1.414). Let sn be a 

number in S, such that sn[n] is as large as possible. The existence of sn is ensured by the 

existence of the constant M which is larger than all members of S. Let s be the real number 
such that s[n] = sn[n] for all n = 1, 2, 3, .... By construction, all numbers in S are less than or 

equal to s. Thus, if we can show that there is a point (x,y) in C, such that f(x,Y) = s, then 

f(x,y) ~ f(x,y), for all (x,y) in C. Let P n = (xn'Yn) be a point in C, such that f(xn,Yn) = sn' 

defined above. By Theorem 1, the sequence PI' P2, P3, ... has a subsequence Q1' Q2' Q3' ... (say 

Q. = P , i = 1, 2, ... ) which converges to some point Q in the closed, bounded set C. By the 
1 n· 

1 

continuity of f, we have f(Q) = !im f(Qi) = !im sn. = s. Thus, Q serves as a point (x,y), 
1-+00 1-+00 1 

such that f(x,y) ~ f(x,Y). Since -f(x,y) is also continuous on C, we now know that there is also 
some point (.lS:,X) such that -f(x,y) ~ -f(.lS:,X) (or f(.lS:,X) $ f(x,y)) for all (x,y) in C. 0 

Remark. A more common proof of the Maximum/Minimum Theorem is as follows. Let Mo be 

the smallest constant which is greater than or equal to all of the values f(x,y) as (x,y) ranges 
over C. Since we have shown that f(x,y) < M for some M, the existence of Mo follows from 

the so-called least upper bound axiom, which we purposely avoided in the above "constructive" 
proof. We need only to show that Mo = f(xo,yo) for some (xo,Yo) in C. If this is not the case, 

then g(x,y) = [Mo - f(x,y)]-l is continuous on C (Why?). Thus, g(x,y) < K , for some positive 

constant K. Hence Mo - f(x,y) = g(x,y)-l > K-1 or f(x,y) < Mo - K-1, which contradicts 

the definition of Mo. 0 
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A.5 A Table of Fourier Transforms* 

f(x) 

1. f' (x) 

2. f(m)(x) (m = 0, 1,2, ... ) 

3. xf(x) 

4. xmf(x) (m = 0, 1,2, ... ) 

5. f(x+a) (areal) 

6. eibxf(ax) (a, b real, a"f 0) 

7. (hg)(x) == [ f(y-x)g(y) dy 
-00 

{
I if Ixl ~ L 

8. f(x) = 
o if Ixl > L 

9. f(x) = {L - I x I if I x I ~ L 
o if Ixl ~ L 

-.J.ax2 
10. e 2 (a > 0) 

11. e-alxl (a> 0) 

1 
12. 2.2 (a> 0) 

a +x 

13. e-alxlcos(bx) (a,b> 0) 

-.J.ax2 
14. e 2 sin(bx) (a,b > 0) 

15. o(x---<:) (c real) 

* The results tabulated here are derived in Chapter 7. 

f(~) = _1_ [ f(x)e -i~x dx 
/fi-oo 

. 
i~f( ~) 

im~mf(~) 

i~ f(~) 

im dm f(~) 
d~m 

eia~ f(~) 

If(~) 
a a 

_1_ 2Sie( {L) 

IIi 
.j2f1r 1 - cos({L) 

11' ~2 

1 -.J. ~2/a -e 2'> 

.;a 
1 2 a 

IIi a2+~2 
l!i e-al ~I 

2a 

A-17 
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A.6 Bessel Functions 

In the text, Bessel functions are discussed in Sections 9.2, 9.3 and 4.4. A classical 
reference for the detailed treatment of Bessel functions is G. N. Watson, Bessel Functions, 2nd 
ed., Cambridge, Cambridge University Press, 1958 (see also E.T. Whittaker and G.N. Watson, 
4th ed. , A Course of Modern Analysis Cambridge, Cambridge University Press, 1952). The 
following is a collection of some of the basic definitions and properties of Bessel functions. 

I. Bessel's (differential) equation of real order v is 

(1) 

The Bessel function of the first kind of order v, satisfies (1) and is defined by 

(2) 

where f is the Gamma function, f(s) == fa e-xxs- 1 dx, s > 0, and f(l+n) = nl, ifn = 1,2, 

.... The reciprocal of the Gamma function uniquely extends to an analytic function "1/f(z)" 
which is defined for all complex z, and l/f(z) is zero only for z = 0, -1, -2, .... This fact can 
be used to make sense of (2), even when v is negative. 

When v is not an integer, the functions J_)x) and Jv(x) are two independent solutions 

of (1), and any other solution will be a linear combination of them. One standard linear 
combination is the Bessel function Y v(x) of the second kind, defined by 

v:f. 0, ±1, ±2, .... (3) 

For integers m, k ~ 0, recall from above that l/f(l-m+k) = ° for I-m+k ~ ° or k ~ m-I. 

Thus, with v = -m, (1) yields J_m(x) = (-I)mJm(x). Thus, Jm(x) and J_m(x) are not 

linearly independent, if m is an integer. However, a solution of (1) with v = m , which is 
linearly independent of Jm(x), is the Bessel function Y m(x) of the second kind of integer order 

m, defined as the limit of Yv(x) in(3) as v-'lm. Inallcases,c1Jv(X)+c2Yv(x) is the general 

solution of (1). For m = 0,1,2, ... , 
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(4) 

n-l 
where the first sum is suppressed if m = 0 ,and ¢(n) == -, + }: _ql (for n = 2, 3, ... ), where 

q=1 

,= 0.57721566 ... is Euler's constant [, == lim (2-1 l_log n)] and ¢(1) == -,. For integers 
n-+oo q=1 q 

m $ 0, it follows from (2) that Y _m(x) = (_I)m Y m(x) , upon taking a limit as v -+ -m . 

II. Some basic properties of Bessel functions of integer order m 

1. Differential recurrence relations : 

2. Pure recurrence relations : 

and 

2m Jm(x) = x[Jm_ 1 (x) + Jm+ 1 (x)] 

2m Y m(x) = x[Y m-l (x) + Y m+ 1 (x)] . 

3. Bessel's integral for Jm(x) (m = 0,1,2, ... ) : 

1 f7r J (x) = - cos(mt - x sin t) dt . 
m 7r 0 

4. A generating function for Jm(x) : 

f(x,t) == exp[~ (t -t)] = }::=--oo Jm(x)tm 

Since f(x,t)f(-x,t) == 1 (t =I 0), it follows that 

JO(x)2 + 2}:oo Jm(x)2 = 1 , 
m=O 

(m> 1) 

(t =I 0) . 

and hence I JO(x) I $ 1 and I Jm(x) I $ If (m = 1,2, 3, ... ; x real) . 

(6) 

(7) 

(8) 

(9) 

(10) 
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5. Asymptotic bevavior: For fixed m, as x -+ 00 , we have 

[2]! 3 Jm(x) = 1TX cos(x - tml- t1l") + O(x 2) (x -+ 00) (11) 

(x -+ 00). (12) 

III. Half-order Bessel functions of the first kind 

1 

J_t(x) = [!rcos x, (13) 

(14) 

J 1 (x) =x-(m+t)~ [x(m+t)J (x)] 
m, WI. m+t· 

(m = 0,1,2, ... ) 

(15) 

IV. A table of zeros of Jm(x) (m = 0, 1, 2, 3, 4)* 

Jm(x) (m = 0, 1, 2, ... ) has an infinite number of zeros, all of which are real. If jm k , 
denotes the k-th positive zero of Jm(x) , arranged in increasing order, then (cf. (11)) 

j k ~ (k + tm - t)1I", for m, k» m. (16) 

rn jrn 1 jrn 2 jrn 3 jrn 4 jrn,5 , , , , 

0 2.404825 ... 5.520078 ... 8.653727 ... 11. 791534 ... 14.930917 ... 

1 3.831706 ... 7.015586 ... 10.173468 ... 13.323691 ... 16.470630 ... 

2 5.135622 ... 8.417244 ... 11.619841. .. 14.795951. .. 17.959819 ... 

3 6.380161. .. 9.761023 ... 13.015200 ... 16.223464 ... 19.409414 ... 

4 7.588342 ... 11.064709 ... 14.372536 ... 17.615966 ... 20.826933 ... 

A table of some zeros of Jm(x) for m = 0, 1, 2, 3, 4 . 

*We used Macsyma on a VAX/785 to obtain the zeros tabulated here. 
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SELECTED ANSWERS 

Answers 1.1 

1. (a) y = Cex2/ 2 (c) arctan(y) = k(x3 - 3x) + C 

(e) Cx-xcos(t) = 1 (g) (t-l)et +e-x =C (i) T(t)= Ce-3t. 

3. 2 minutes. 

4. (a) y= ie-2X [e3X + 2] (c) y=2sin(x)loglsin(x)1 

(e) y = (2x+l)e-X2 (g) x = 100e-sin(t) (i) x = (2t + 100)-1. 

6 (a) y = c1x + c2 (c) Y = c1cos(x,J3) + c2sin(xv'3) 

(e) y = c1e3x + c2 (g) Y = c1e-x/ 2 + c2e-2x (i) y = (c1 + c2x)e2x . 

7. (a) y = e2t (c) y = a cos(t) + b sin(t) (e) y = (5/3)e-(4/5)tsin(3t/5) . 

13. wR = I/JLC . 

15. x(t) = etcos(t), y(t) = --etsin(t). The graph spirals away from the origin in the clockwise 
sense. 

17. (a) x(t) = (1-2t)et y(t) = (l-t)et 

(c) x( t) = (4//J'J)e5t/ 2sinh(t/J'J/2) y(t) = (3/ /J'J)e5t/ 2[sinh(t/J'J/2) + (/J'J/3)cosh( t/J'J/2)]. 

Answers 1.2 

5. (a) third-order, linear, homogeneous. 

(b) first-order, nonlinear. 

( c) fourth-order, linear, inhomogeneous. 

(d) second-order, nonlinear. 

(e) second-order, linear, homogeneous. 

7. (a) u(x,y) = x2 + 2xy - i 
8. (b) n-l. 

(c) For larger n, the hot and cold regions are in closer proximity and the temperature gradient 
between these regions is greater. 

8-1 



5-2 Selected Answers 

9. (c) (m+1)(n+1)(p+1) compartments. 

11. (b) u(x,t) = cos(1r3.t)sin(1IX) + (2/31r3.)sin(31rat)sin(371X) 

v(x,t) = cos(1rat)sin7IX) + (1/31ra)sin(31r3.t)sin(371X) . 

13. (a) u(x,y) = ¥Jx2 + tAX3 + tBy3 . 

(b) Let v(x,y) = u(x,y) + h(x,y) ,where h(x,y) is any of the infinitely many solutions of 
Laplace's equation. 

-1 d ( ) 18. A = ax + p x . 

Answers 1.3 

1. (a) u(x,y) = x3 + y2x + f(y) ,f in C1 

(c) u(x,y,z) = f(x,y) + g(y,z) + h(x,z), f, g, h in C3 . 

2. (a) u(x,y) = f(y)e2x , f in C1 

-x2 x2 1 (c) u(x,y) = e (2ye + f(y)) , f in C 

(e) u(x,y) = f(x)exp[xy] + g(x)exp[-xy] , f, g in C2 . 

3. (a) u(x,y) = ye2x 

(c) u(x,y) = 2y(1_eY2- x2) 

(e) u(x,y) = cosh(xy) . 

4. The following solutions are not the only possible ones. 
2 

(a) u(x,t) = e-2A \c1cos(h) + c2sin(Ax)) 

(c) u(x,t) = (c1eAX + ~e-h)(dle4At + d2e-4At) 

2 2 1 
(e) u(x,y,z) = exp[z(a + b )2Jcos(ax)cos(by). 

5. If A = 0 , u(x,t) = (c1x + c2)e-t . 

If A> 0, u(x,t) = (c1ex.fX + c2e-x.fX)exp[(A -l)t]. 

If A =p.2 ,then u(x,t) = (c1exp. + c2e-xp.)exp[(p.2 -l)t]. 

6. (a) u(x,y) = exp[x + r(2y - 3x)] . 

(c) u(x,y) = exp[(x/rs) + ry + sz], rs f: 0 . 

(e) u(x,y) = exp[rx + y(l - r2)~ . 
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8. Only the ratio alb is uniquely determined. Thus, the answers below are not unique. 
(a) u(x,y) = f(2x - y) 

(c) u(x,y) = f(dx-cy). 

9. (a) u(x,y) = x -!y . 

(c) u(x,y) = (1/49)[(3y + 4x)2 -7(3y + 4x)] . 

Answers 2.1 

1. In each solution below, f is an arbitrary C1 function. 

S-3 

(a) u(x,y) = f(3x+2y) + !x2 (c) u(x,y) = --€x+y + e2Yf(2x-y) (e) v(w,z) = w3 + 

f(3z-w). 

2. (a) u(x,y) = --€x+Y + [eX-1Y + sin((x-~y)2)]e2y 

(c) u(x,y) = ~x+y + [~(x--!y) + 1]e~(x-1Y)e2y . 

4. g(x) must be of the form -l+kex for some constant k. There are infinitely many solutions of 

the problem if g(x) has this form. Any function of the form u(x,y) = -1 + C(y-3x)ex will be a 

solution, as long as C(O) = k and C is C1. 

5. There are infinitely many solutions. Two of them are 

u(x,y) = -1 + 2cos(y-3x)ex and u(x,y) = -1 + 2exp(y-3x)ex = -1 + 2eY-2x . 

6. u(x,y) = (y + 2x)2 . 

7. Both are correct. Note that e-{;y/b = e-{;x/aec(bx-ay)/ab. 

12. (a) By (26), P (y) = C.exp(-( .1 dy) = Ce-y/ 10 . 
00 0 

(b) The number of avocados on the shelf in the long run is r P (y) dy = lO·C. Thus, C = 30. J 0 00 

Since about 30 are lost each day, naturally about 30 need to be acquired daily. 

Answers 2.2 

1. (In each of the following, C is an arbitrary C1 function.) 

(a) u(x,y) = C(x2/y) (c) u(x,y) = xC(yex) . 

2. (a) u(x,y) = [x2/y]!, y> 0 (c) u(x,y) = xyeX • 



S-4 Selected Answers 

3. (a) X(s,t) = s.et , Y(s,t) = e2t-s, U(s,t) = sin(s) 

(c) X(s,t) = s2.et , Y(s,t) = s'exp[s2'(I-et )1, U(s,t) = s3. et. 

7. Let u(x,y) = 0 for x ~ 0, and let u(x,y) = yx2 for x ~ O. Note that u(x,y) f. C(yx2), since 
u(-x,y) f. u(x,y) for x and y f. O. 

8. (d) u(x,y) = fn((-I)nysin(x)) ,for ll1r ~ X ~ n7r + 7r, n = 0, ±1, ±2, .... 

Answers 2.3 

1. u(x,y,z) = [x2 + y2 + 2z2 - 2yz - 2xzlez . 

-
2. (a) y=-x+a,z=(3, x=x+y,y=z,z=x uz+u=y u=y+C(x,y)e-z 

u = z + C(x+y,z)e-x u(O,y,z) = y2ez = z + C(y,z) C(y,z) = y2ez - z 
u(x,y,z) = z + ((x+y)2ez -z)e-x . 

(c) u(x,y,x+y) = (x+y) + eY ::} x+y + C(x+y,x+y)e-x = (x+y) + eY ::} C(x+y,x+y) = eX + y. 

Thus, we need only to choose C such that C(r,r) = l. Consider C(r,s) = If(s-r), where f is 
any C1 function with f(O) = 1. 

3. (a) u(x,y,z,t) = f(x + t, y + 2t, z - t). 
(b) u(x,y,z,t) = (x + t)2 + (y + 2t)2 + (z - t)2. 

(c) (-t,-2t,t). 

4. (a) u(x,y,z) = C(x cos(z) + y sin(z),y cos(z) - x sin(z)) , where C is an arbitrary c1 function 
of two variables. 

6. (a) C(x-u2,y-u2) = 0 (Other equivalent answers are possible.) 

(b) u(x,y) = v'2x-y+l ,for 2x-y+l > O. 

7. (a) C(xy,u2-x2) = 0 . 

(b) u(x,y) = x(x2y4+2y2+1)~ . 

12. (b) t = T, X = [V(s) + sV'(s)lT + s, p = f(s). 

15. (a) x(t) = -co[~( r--l)al-1(at + 1) + C(1 + M 1+1)at)2/( 1+1); C = x(O) - co[~( r--1)al-1. 
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Answers 3.1 

2 2 
3. (a) u(x,t) = 4e -(211'/3) 2tsin(211X/3) - e-(51'(/3) 2tsin(511X/3) 

2 2 
(c) u(x,t) = ~-2(1'(/3) tSin(1IX/3) - !e-21'( tsin(1IX) 

2 2 
(e) u(x,t) = 6e -(1281'( t/9)sin(811X/3) + e -501'( tsin(511X) . 

6. (a) u(x,t) = 5e-tcos(x) + 3e-64tsin(8x) 

(c) u(x,t) = ~(9 + e-36tcos(6x)) 

(e) u(x,t) = ~(5 + 3e-4tcos(2x) + 4e-4tsin(2x)) . 

N 2 
9. (c) u(x,t) = e-ht l bne-(n1'(/L) ktsin(n1lX/L) . 

n=l 

Answers 3.2 

4. Let f(x) = 5sin(3x) - 3sin(5x). Then f' (x) = 15cos(3x) - 15cos(5x) = 30· sin( 4x)· sin(x) = 0 

when x = 0, 1'(/4, 1'(/2,31'(/4,1'(. Now, f(O) = f(1'() = 0, f(1'(/4) = f(31'(/4) = 5/2/2 + 3/2/2 = 4/2, 
while f(1'(/2) = -8. Thus, the Maximum/Minimum Principles yield -85 u(x,t) 54/2. 

Answers 3.3. 

N 2 2 2 
3. (b) u(x,t) = l cnexp[-(n+~) 1'( kt/L ] ,sin[(n+t)1IX/LJ . 

n=O 

4. u(x,t) = up(x,t) + v(x,t) = x-I + e-91'(2t/2sin(311X/2) . 

2 
5. u(x,t) = up(x,t)+v(x,t) = 26·x2 + 2x + ~t + e-51'( tCOS(1IX). 

7. u(x,t) = 4 - 21'( + 2x + 7e-9t/4cos(3x/2) . 

Answers 3.4 

1 -18t. 
1. (b) u(x,t) = 18(1-e )sm(3x) 

3. u(x,t) = e -9tsin(3x) + sin(t)e -4tsin(2x) . 

2 
5. (a) w(x,t) = (b2L)x + ax + (b-L)k t + f h(t) dt 
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7. u(x,t) = (et - t2)x/7r + t2 + e -4tsin(2x) + sin(x) (t - 1 + e -t) 

9. u(x,t) = t[x - x2 + e-4n2tcos(27rX)J . 

Answers 4.1 

2. (a) FS f(x) = ~ - ~os( 47rX) . 

(b) FS f(x) = ¥:os(x) + sin(x) - tcos(3x) . 

1 1 00 1 
4. (a) FS f(x) = n + -, -. [1- (_1)n]sin(n7rX/L) . 

L, 7r In=l n 

7. (a) FS f(x) = !.(e7r - e -7r) [ ~ + f (-1); [cos(nx) - n .sin(nx)J]. 
7r n=l 1 + n 

8. FS f(x) = ~ + ~sin(x) - ~[COS(2x)/(1.3) + cos(4x)/(3·5) + ... J . 

8 48 00 (_I)n 
9. (a) FS f(x) = 15 - "4l _ ~ cos(n7rX). 

7r n-l n 
(b) N = 3243. 

(c) N = 6. 

Answers 4.2 

2. f(x) = a(x3 - L 2x) + d for any constants a f. 0 and d. 

Answers 4.3 

4. (a) FCS f(x) = ~ - 4~ f 1 2 cos [(2k+ 1)7rX/L] . 
7r k=l (2k+l) 

(b) FSS f(x) = 2L ,00 (_I)n+l!. sin(n7rX/L) . 
7r In=l n 

5. (a) FCS f(x) = 1 and FSS f(x) = ~ ~=l 2f+lsin[(2k+l)7rX/L] 

(b) FSS f(x) = §. ~ ~2 sin(2kx) and FCS f(x) = cos (x) . 
7r lk=l 4k -1 
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7r2 ,00 (-1) n -n2kt 
8. (a) u(x,t) = ""3 + 4 /., _ 2 e cos(nx) . 

n-1 n 

9. (a) u(x,t) = 42l
OO (-1); e-(2m+l)2~tsin((2m+l)7rX) . 

7r m=O (2m+l) 

10. (a) The formal solution is u(x,t) = ~t cos([n + t]7r!2) e-[n + t]2ktsin [(n + t)x] . 
n=O n + t . 

_ ,00 [1 2 ( _1)n ] -(n+t)2~kt. 1 
11. u(x,t) - x-I + 4 /., (2n+l)7r - 2 2 e sm[(n+~)7rX] . 

n=O (2n+ 1) 7r 

12 () kt + x2 + 2 _35 + 20.,00 (2 - 3(-I)n) e-(n7r/1O)2kt (n7rX) 
. u x,t = 10 20 x 3 /., 2 2 cos 10 . 

n=1 7r n 

Answers 4.4 

1. (a) An = (n - ~~27r2, Yn(x) = AnSin[(n - t)7rX] , n = 1,2,3, ... 

(c) An = (n_~~27r2, Yn(x) = BnCOSUn-l(7rX], n = 1, 2, 3, .... 

2. (a) A1 = -1, Y1(x) = AleX 

An = (n-l)2, Yn(x) = an[sin((n-l)x) + (n-l)cos((n-l)x)], n = 2, 3, 4, ... 

(c) An = (~n_l)27r2 , Yn(x) = Ansin((2n-l)7rX) + Bncos((2n-l)7rX) , n = 1,2,3, .... 

5. (b) L f. n7r, n = 1,2,3, .... 

2 2 
7. (a) (xy')' + [x ~ ill ]Y = 0, x> O. 

(c) ((I-x2)!y')' + (l_x2)-!m2y = 0, -1 < x < l. 

14. (b) Yn(x) = BnCOs(n7rX/L), zn(x) = Ansin(n7rX/L), An' Bn f. 0, n ~ 1 . 

8-7 
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Answers 5.1 

1. (a) u(x,t) = 3cos(~)sin(¥) + 4~asin(¥)sin(2f) - cos(41at)sin(4f). 

(c) u(x,t) = 4~asin('rI:t)sin(¥) + IJ''II"aSin(~)sin(~). 

3. (b) u(x,t) = U(x) = -~ x(L - x), which represents a hanging string. 
2a 

N 
6. (a) u(x,t) = ~ \' (2k+1)-3 cos((2k+1)t) sin((2k+1)x), where N ~ 13. 

'II" £k=O 

Answers 5.2 

1. (a) ~(1 + h)(x + at)2 + ~1 - h)(x - at)2 . 

(c) t. 
(e) sin(x + at) . 

4. u(x,t) = ~Ix - atl 3 + ~Ix + atl 3 . 

Answers 5.3 

2. (a) u(x,t) = ~+ ~t + ![cos(2at) -iasin(2at)]cos(2x). 

(b) u(x,t) = Hcos2(x+at) + cos2(x-at)] + h[2at + isin(2(x+at)) -isin(2(x-at))]. 

4. (a) u(x,l) = 0, u(x,2) = -f(x), u(x,3) = 0, u(x,4) = f(x). 

5. (b) a/4L, which is half the lowest frequency a/2L in the case where both ends are fixed. 

2 2 
6. u(x,t) = 4~ + x'll" - X + 2cos(6t)cos(3x) + ~in(2t)cos(x). 

'. 
7. u(x,t) = ~[e-tcos(x) + h[sin(x+at)-Sin(x-at)l-~[cos(x+at)+cos(x-at)]]. 

l+a 

( 
(9a2 - w2)-1[cos(wt) -cos(3at)]sin(3x), w t- 3a, 

9. u(x,t) = 
(t/6a)sin(3at)sin(3x), w = 3a (resonance). 
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Answers 6.1 

2. (c) Among the many possibilities, consider x and 2x. More generally, consider x and any 
harmonic function u(x,y) which is not of the form ay + b (cf. part (b)). 

3. For arbitrary constants a, b, c, A and B, we have the product solutions (ax + b)(Ay + B) , 

(aecx + be--cx)(Asin(cy) + Bcos(cy)) and (aecy + be--cY)(Asin(cx) + Bcos(cx)). 

The factor (aecx + be--CX) may be replaced by (acosh(cx) + ,8sinh(cx)) which is often more 

useful, and similarly for (aecy + be--cy). 

6. In the Dirichlet problem, the value of the steady-state temperature is prescribed at each point 
on the boundary of the plate, whereas in the Neumann problem the flux of the heat energy 
through the boundary of the plate is specified at all points along the boundary. 

7. (a) q(x,y) is proportional to the rate of heat energy production per unit area at the point 
(x,y). 

(b) In order that there be a steady-state temperature distribution u(x,y), the rate of heat energy 
production inside the plate must equal the rate of heat loss through the boundary. 

Answers 6.2 

2. (a) u(x,y) = 9[sinh(87rM/L)]-lsin(87rX/L)sinh[87r(M-y)/L] 

(b) u(x,y) = [sinh(7rM/L)]-lsin(7rX/L)sinh(1rY/L) . 

3. u(x,y) = (sinh 7r)-l[sinh(7r-y)sin x + sinh y sin x + sinh(7r-x)sin y + sinh x sin y]. 

4. (a) U(x,y) = x - y + 2xy 

(b) u(x,y) = 3[sinh(7r)]-lsin(7rX)sinh(7r-1rY) + [sinh(27r)]-lsin(21rY)sinh(27r-27rX)] + U(x,y) . 

5. (b) two terms (d. Example 5) 

(c) Yes, by applying the Maximum/Minimum Principle to the difference. 

7 (b) (x) = --cos x cosh(7r-Y) _ cos(2x) ~OShJ2~7r-Y)1 + coth + !roth (2 ) . . u ,y smh 7r 2s lllh ( 7r 7r:l- 7r 

Answers 6.3 

1. (a) U(r,O) = log(r)/log(2) + ([2/(2-1)]r + [-2/(2-1)]r-1)cosO 

+ ([1/(4--!)]r2 + [-1/(4--!)]r-2)cos(20) + ([--!/(4--!)]r2 + [--!/(4--!)]r-2)sin(20) 

= log(r)/10g(2) + t(r - r-1)cosO + It (r2 - r-2)cos(20) + I! ([_r2 + 16r-2)sin(20). 
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(c) U(r,O) = b + (a - b)log(r)/log(2) 

(d) U(r,O) = [(a - !b)/(8 - !)lr3 + [(8b - a)/(8 - !)lr-31sin(30) 

= {[(8a - b)/631r3 + [(64b - 8a)/631r-3}sin(30) . 

3. (a) U(r,O) = 1 + r cosO + !r2 cos(20) (c) U(r,O) = a (d) U(r,O) =! a r3sin(30) . 

We cannot use the solutions in Problem 1 because they are singular at the origin. 

4. (a) U(r,O) = 1 J7I" (4 - r2)t2 d b Th 1 
2i -71" 4 _ 4r cos(O- t) + r2 t, y eorem. 

(b) FS f( 0) =- 171"2 + 4 [2:=1 (:pn cos(nO) ] . 

Thus, U(r,O) = 171"2 + 4[ f (_~)n (r/2)n cos(nO) ] , which is exact, according to Theorem 4 
n=1 n 

and the fact that FS f( 0) = f( 0), since the periodic extension of f( 0) is continuous and piecewise 

C1 (i.e., the series converges to f( 0) when r = 2). 

(c) By the Maximum Principle (Theorem 1 of Section 6.4), the maximum of the difference 
between a truncation, say UNlr,O), of the infinite series solution and the exact solution U(r,O) is 

achieved on the boundary. Thus, we need only to estimate the number of terms of FS f( 0) 
needed to approximate f( 0) to within .01 . We use an integral comparison: 

I f( 0) - SNf( 0) I 5 4 fo x -2 dx = 4/N . Thus, N = 401 will suffice. 

. n 2.1 2.1 
(b) (1) 271" r /(I-a )2 ,where r = [1 - (l-a )21/a, for n = 0, 1, 2, .... 

9. By the Mean-Value Theorem, the steady-state temperature (i.e., the harmonic function with 

the given boundary values) is the average i7l" r 10 rf2 dO = i7l" 20 71"3/3 = 10 71"2/3 . 
-71" 

Answers 6.4 

3. Note that u(x,y) = c sinh(y) sin(x) solves the problem, for any constant c. This does not 
contradict Theorem 2, because the domain 0 < x < '11",0 < y < 00 is not bounded. 

4. The functions u t and u2 are singular at the origin and thus are not harmonic everywhere in 

the disk x2 + y2 ~ 1. 

7. (a) If u(x,y) is a solution, then so is u(x,y) + y . 
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Answers 6.5 

2. The function log r is not defined, and hence not harmonic, at the origin. 

10. (d) The streamlines result from a fluid flow through the slit from -1 to 1 on the v-axis. 
Electrostically, the hyperbolas represent the equipotential curves formed when a large positively 
charged plate is placed edge-t~dge with large negatively charged plate, so that there is a slit 
between them. If the plates are maintained at different constant temperatures, then the 
hyperbolas will be the isotherms of the resulting steady-state temperature distribution. 

11. (a) The image of (-00, -1] + i f slightly above the u-axis under g(w) = (1 - w2)! is slightly 
to the right of the positive :y-axis. The image of r-l, 1] + i f slightly above the u-axis runs 
slightly above the segment lO,I] on the x-axis and then runs slightly below this segment back 
toward the origin. The image of [1,+(0) + if is slightly to the right of the negative y-axis. 
Thus, the streamlines flow around a segment perpendicular to the y-axis. 

(b) The streamlines are (cross-sectional) isotherms of a steady-state heat distribution about a 
large flat plate with a perpendicular strip attached, or the equipotential curves of the potential 
created by a charged conductor which has the same shape. 

Answers 7.1 

1. The sums in (a), (b) and (c) below run over all nonzero integers. 

(a) F8c f(x) = L/(i7r) l §(_I)m+l/m1 eim1lX/ L 

(b) L2/3 + l (-I)m§2L2/(mlll1 eim1lX/ L, 

(c) L/2 + L/ 7r2 l .-\(1 - (_I)m)/m21 eim1lX/ L, 

3. (a) f(e)= (l/e2)v'27i[I-COS(eL)], 

(c) f(e) = 1/(2iy'a) [e-(e-b)2/2a _ e-(e+b)2/2a], 

11. f(x) = x, among many other possibilities. 

Answers 7.2 

2. (a) f(e) = (1-e2)e-e/2 

7. f(e) = .f£Ti (1 + ie)-3. 
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00 

19. (a) I sin(am)/m = !(1r-a). 
m=1 

(e) ~ + 21 00 1/(a2 + m2) = i eoth(1ra) (a f 0). 
a m=1 

Answers 7.3 

¥ -Lax2 
¥ {O 

1. (a) g(x) = e 2 (e) g(x) = t Ixl > 1 
x = %1 . 
Ixl < 1 

3. heel = IE in+1 e f(e)f(n)(e) . 

5. (a) f (e)=~[1 - i{]n+l 
n .j2il+e 

6. (a) g(x) = b exp[-tabx2/(b-a)] . 
v"h(b=a) 

7. (a) !1ra3 . 

(e) n-2 [1_e-ab]. 

10. f(x) = 1 - Ixl if Ixl < 1, and f(x) = 0 if Ixl ~ 1. 

Answers 7.4 

2. u(x,t) =.jffl.K e-x2/4kt. 

11. u(x,t) = s i n(x+at) + s i n(x-at) . 
1 + (x+at)2 1 + (x-at)2 

- 1 [ y f( s ) _ 1 JO -y 1 r y 14. u(x,y) - i 2 2 ds -i 2 2 ds + i 2 2 ds 
10 Y + (x-s) 10 y + (x--s) 0 y + (x--s) 

1 1
0 1 1

00 2 = i aretan[(x--s)fy] 10 - i aretan[(x--s)/y] 0 = i aretan(x/y) . 
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Answers 7.5 

2. u(x,t) = -lIt (t-s)-t e-x2j4(t-s) h(s) ds. 
Ii 0 

3. u(x,t) = _1_ r'[e-(x+y)2j4kt + e-(X-y)2j4kt]f(y) dy -lIt (t-s)-t e-x2j4(t-s) h(s) ds. 
v'41il<t J 0 Ii 0 

5. u(x,y) = ~ [ y [2 1 2 - 2 1 2] f(s) ds , 
o y + (x-s) y + (x+s) 

8. (a) u(x,y)=~[ [y[ 2 1 2- 2 1 2]f(S)+X[ 2 1 2- 2 1 2]g(S)] ds 
o y +(x-s) y +(x+s) x +(y-s) x +(y+s) 

Note that other solutions may be obtained by simply adding multiples of xy or Im[(x+iy)2n] , n 
= 1,2,3, .... 

Answers 8.1 

1. (a) Isin(x)I ~ 1 

(c) lex -(1+x+x2j2!)1 = 1}::=3hxnl~ IxI31}::=3hxn-31 ~ e·lxl 3 for Ixl~l. 

5. (b) If f(x) = x and g(x) = x2, then f(x) + g(x) * O(x2). In general, choose any f(x) such 

that f(x) = O(x), but f(x) * O(x2). Then f(x) + g(x) * O(x2) for otherwise f(x) = 
[f(x) + g(x)]- g(x) = O(x2). 

10. lim f(~x) 2ZS!(-~x) = lim ~[f(~x)ZS~ f(O) + f(-~xlzs~ f(O)] = ~(f'(O) + f'(O)). 
~x-,O ~x-,O 

If f(x) = I x I, then lim f(Lh) 2ZS!( -fue) = 0, but f' (0) does not exist. 
~x-'O 

Answers 8.2 

1. (a) vII = 3.5, u(0.5, 1) = 3.5, , 
(b) (i) vI 32 = 3.625, v2 32 = 3.5, v3 32 = 3.625, , , , 

2. (a) vII = 5, v21 = 8, v31 = 13, v41 = 20, , , , , 
(b) (i) vI4 =5, v24 =8, v34 =13, v44 =20, , , , , 
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3. (d) u4(0.1,0.005) = 0.984 ... , while v12 = 0.9875 . , 

6. I Wi,j I ~ 0.0016276.... Note that u(.5,.5) - v 4,128 = .500073831... - .500071505 ... = 

.00000232 ... , which is much less than the upper bound .0016276 .... 

13. /31 = .653271... , /32 = 3.292310 ... , /33 = 6.361620 ... , /34 = 9.477485 .... 

Answers 8.3 

2. (a) Yn = c12n + c23n (b) Yn = c1 + c2 n (c) Yn = 2n/2(c1cos(~) + c2sin(~)) . 
2 

6. (b) Using (30), V!M,N [1-4,!sin2(m)lN sin(~) = [1-~in2(m)13M , N = 3M2. 

til t t 
(d) If r > 0, M = 7r e-n (3240)6 r6 r::J (0.3588 ... ) r-i . If r < 0, then 

M = 7re--rt~(1620r-i Irl-i r::J (0.4027 ... ) Irl-i. 

(e) With r = _10-7, theoretically the error is smallest when M r::J (0.4027 ... ) 110lk = 5.91.. .. 

Numerical calculation by computer yields u(.5,.5) = .0071918 .... The values vM 3M2 computed , 
via the explicit difference method with a systematic round off error introduced by dropping all but 

the first 6 decimal places are given by v 2,12 = .007706, v 4,48 = .007213, v 6,108 = .007184, 

v8192 = .007170, v10 300 = ~007156, v12,432 = .007141. Note that the error , , 
I u( .5,.5) - vM 3M2 I is smallest when M = 6, as predicted. , 

Answers 9.1 

1. u(x,y,t) = 4 exp [_7r2[(~)2 + 1216t] sin(311X/2)sin( 7r)') - 2 exp [_7r2 [12 +(i)216t] sin( 1IX)sin(27r)' /3). 

3. u(x,y,t) = eXP[-7r2[@2+(!)21t]COS(311X/2)sin(7r)'/2) . 

7. For the justification of the following approximations, see Example 3. 

(a) u(!,t,t,t) r::J 64007r-3 'h/2 e-9~kt/4. Note that sin(1I'/4) = til and 12+12+(!)2 = 9/4. 

(b) u(t,t,t,t) r::J 4007r-1 +/1. e-ilkt/ 4 . 

(c) For opposite insulated faces, u(!,t,t,t) r::J 16007r-2e-2~kt. 
For adjacent insulated faces, u(t,t,t,t) r::J 64007r-3~-3i1kt/2. Thus, the temperature drop in the 

middle is smallest for adjacent insulated faces, when t is large, because ~ < 2. 
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8. u(x,y,z) == sin(x)sin(y)sinh(J2(I-z))/sinh(J2) . 

00 ' 

13. u(x,y,t) = l cncm [1!'a(n2+m2)~-lsin[ll'a(n2+m2)!t] sin(ll1l'x)sin(m1rY) . 
n,m=1 

II. 2 
where ck = 2 ° z(z-l)sin(k1rZ) dz = 2 <sk,z(z-I» = - 2 (k1!')- <sk,z(z-I» 

1 
= - 2 (k1!')-2 [{ sk(z)z(z-l) - sk(z)(2z -I)} 1o + <sk,2>] = - 2 (k1!')-2 <sk,2> 

1 
= 2 (kll')-3 2cos(k1rZ)1 o = 2 (k1!')-3 2[cos(k1!') -1] = 2 (k1!')-3 2[(-1/ -1] 

3 
= - [Ib] if k is odd, and ° otherwise. 

~ [4 ] 3 2 2 t -1 2 2 t Thus, u(x,y,t) = L nmn [ll'a(n +m)2] sin[ll'a(n +m )'zt] sin(n1l'X)sin(m1rY) . 

n,m = 1 (odd) 

Answers 9.2 

1. (a) f (x,y) = cos(n1l'X/3)cos( m1rY /2) m, n = 0, 1, 2, .... n,m 

(b) The associated solutions of ut = k~u are of the form 

u (x,y,t) = exp [-k1!'2(m2/32 + n2/22)t]cos(n1l'X/3)cos(m1rY/2) . n,m 

N M 
Note that u(x,t) = l l un m(x,y,t) solves the problem 

n=O m=O ' 

D.E. ut = k~u on R with t > ° 
B.C. uy(x,O,t) = uy(x,2,t) = ° (0 ~ x ~ 3) and ux(O,y) = ux(3,y) = ° (0 ~ y ~ 2) 

N M 
I.C. u(x,y,O) = l l an mcos(n1l'X/3)cos(m1rY/2). 

n=O m=O ' 

4. The two solutions are of the form ut(x,y,t) = exp(-1l'2(32+12)kt)cos(31l'X)cos(1rY) 

and u2(x,y,t) = eXP(-1l'2(22+22)kt)cos(21l'X)COS(21rY)' The solution ut decays more rapidly, 

since 32 + 12 > 22 + 22. In general, the larger the eigenvalue, the more rapid the decrease. 
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Answers 9.3 

1. (a) U(p,rp,O) = p-l (c) U(p,rp,O) = iSin2(rp) -2icos2(rp) = p2(1-3cos2rp). 

3. ~s(sin rp) = (sin rp)-1 cos2rp - sin rpj sin rp is not C2 (nor C1) on the unit sphere. 

s. U(p,t) = p-l[ie-rktsin(1rp) -!e-9~ktsin(31rp)] . 

11. (a) U(p,t) = 1:._1_ r [e-(p-fi)2/4kt -e-(P+P)2/4kt]Pf(fi) dp. 
P~Jo 

Answers 9.4 

2. The following answers are not unique 

(a) (x,y,z) H (.Jf(y+x),.Jf(y-x),z) ; rotation by -45' about the third axis. 

(c) (x,y,z) H (-y,x,z) ; rotation by 90' about the third axis. 

4. (a) Sp4p 4(cOS rp) = p4(35 cos4rp - 30cos2rp + 3) = 35z4 - 30p2z2 + 3p4 

= 35z4 _ 30(x2 + y2 + z2)z2 + 3(x2 + y2 + z2)2. 

(b) Yes, since f(rp,O) = f(O,O), which is the constant value of f at the north pole. 

6. (a) 2sin2rpcosOsinO = tS22(rp,0)-tS2_2(rp,0). , , 
2 sinrp cosrp sinO = t S2 1 (rp,O) - t S2 -1 (rp,O). , , 
2 sinrp cosrp cosO = t S2 1 (rp,O) + t S2 -1 (rp,O). , , 
sin2rp(cos20- sin20) = t S2 2(rp,0) + t S2 -2(rp, 0). , , 
sin2rpsin20-cos2rp = -~[tS22(rp,0) +tS2_2(rp,0)] -S20(rp,0). , , , 

11. (a) u(x,y,z) = !+x+~z _!x2+iy2_!z2+z3_~z(x2+y2+z2). 

() ( ) -3 1 -1 1 (2 1 2) -5 1( 2 2) -5 3 -7 6 -5 6-3 b U p,rp,O = xp + lP - ~ z -l P P - ~ x -y p + z p - ~ zp + ~ p . 

17. U(p,rp,O,t) = exp[-41r2ktj jO(21rp) + exp[-(.81 3)2ktjjl (.81 3 p) cos rp , , 
+ exp[-(.82 1)2ktj j2(.82 1 p) sin2rp sin(20). , , 
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Answers 9.5 

7. Let fv,q(r,O) = JvOv,qr/ro)sin(n7rOla), v = nla , n = 1, 2, 3, ... , where Jv(r) is defined as 
in (6), but with m replaced by v and (m+k)! replaced by f(v+k+1), and j is the q-th v,q 
positive zero of J (r). The eigenfunctions f (r,O) (with eigenvalues j Ir) can be used to v ~q ~q 0 
solve for heat flow in a thin wedge insulated on the top and bottom surfaces, and maintained at 0 
on the edges. Moreover, they can be used for describing the vibrations of a wedge-shaped drum. 

8. U(r,O,z) = ,00 ,00 cm q Jm(j r/r) sinh(j z/r) eimO , 
'-m=-oo '-q=l' m,q 0 m,q 0 

9. (e) No, the minimum energy is ~ h./Kfm. , which is obtained when N = o. 

Answers 9.6 

8. Let U(P,t) == J 8vG(P,Q) f(Q,t) d8M(Q) . From (47), U(P,t) solves the D.E. ~MU = 0, 
8M 

with B.C. U(Q,t) = f(Q,t) for Q E 8M. Let v(P,t) == u(P,t) - U(P,t). Then v solves the 
related problem with homogeneous B.C. and with the I.C. v(P,O) = -U(P,O). This related 

00 -,\ Kt 
problem has the formal solution v(P,t) = l ceq u (P), where cq = -<U( . ,O),uq> . 

q=l q q 

J 00 -,\ Kt 
Thus, u(P,t) = 8vG(P,Q) f(Q,t) d8M(Q) + l ceq u (P) . 

8M q=l q q 

00 00 ·n 

21. G(r,r') = l l l - (Pn,q)-11IEn,q,mll-2 jn(Pn,qP)8n,m(cp,0)jn(,8n,qP')8n,m(cp' ,0'), 
n=O q=l m=-n 

where (p,O,cp) [resp. (p' ,0' ,cp')] are the spherical coordinates of r [resp. r']. 
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B.C. 

8,j 

8M 

FS f(x) 

FScf(x) 

FCS f(x) 

FSS f(x) 

f(e) 

£(e) 

fc(e) 

fs(e) 

f(x) 

INDEX OF NOTATION 

Fourier cosine coefficient 

boundary conditions 

Fourier sine coefficient 

k-times continuously differentiable 

cos (ll7l'x/L) 

closure of subset D 

differential equation 

outward normal derivative of f 

boundary of manifold M 

Dirac delta "function" or distribution 

Laplace operator 

Laplace operator on a manifold M 

Laplace operator on the unit sphere 

Fourier series of f(x) on [-L,L] 

complex Fourier series of f(x) on [-L,1] 

Fourier cosine series of f(x) on [-L,L] 

Fourier sine series of f(x) on [-L,1] 

Fourier transform of f(x) 

inverse Fourier transform of f(x) 

Fourier cosine transform of f(x) 

Fourier sine transform of f(x) 

adjusted function (averaged at jumps) 

193 

24 

193 

23 

191 

385 

27 

657 

655 

471 

36 

657 

594 

193 

419 

240 

240 

423 

447 

491 

491 

224 

N-1 



N-2 Index of Notation 

fe(x) even extension of f(x) 239 

fo(x) odd extension of f(x) 239 

re(x) extension, even about x = L and odd about x = 0 246 

fO(x) extension, odd about x = L and even about x = 0 253 

IIfll norm of the function f 189 

f*g convolution of f and g 436 

<f,g> inner product of the functions f and g 189 

f(x) gamma function 643 

Hm(x) Hermite polynomial of degree m 445 

Hk 
n standard, closed, k-climensional half-space in IRn 654 

H(x,t) heat kernel 461 

I.C. ini tial condi tion( s) 24 

Im(x) modified Bessel function (of the first kind) 641 

jm(x) spherical Bessel function of first kind of order m 622 

Jm(x) Bessel function of first kind of integer order m 271 

Jv(x) Bessel function of first kind of real order v A-18 

jm,q q-th positive zero of Jm(x) 638 

km(x) Hermite function of order m 443 

L~(x) generalized Laguerre polynomial of degree q 648 

LS f( y?,O) Laplace series for functions on the unit sphere 616 

L[u] differential operator acting on function u 32 

O(g(x)) big "0" notation 504 

ODE ordinary differential equation 2 

p.C. periodicity condition 386 



Index of Notation N-3 

PDE partial differential equation 2 

P(r,ro,O--t) Poisson kernel 374 

Pn(x) Legendre polynomial of degree n 610 

P n m(x) associated Legendre function 613 , 
:!:: 

Rn(p) radial functions in spherical coordinates 598 

IRk 
n standard k-dimensional subspace of IRn 654 

SN(x) N-th partial sum of Fourier series 195 

Snm spherical harmonics 613 , 

sn(x) sin( 117rx/L) 190 

ux' uxy' ... partial derivatives of u 23 

u .. 
1,J value of u at grid point (iLlx,jLlt) 509 

up particular solution of D.E. and B.C. 161 

U(r,O) u(r cosO, r sinO) 366 

v(x,tjs) used in connection with Duhammel's Principle 176 

w· . 1,J 
local discretization error 516 

Ym(x) Bessel function of the second kind of integer order m A-19 

Yv(x) Bessel function of the second kind of real order v A-18 
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INDEX 
(See also Index of Notation) 

A 

Abel's formula, 21 
absolutely integrable function, 423 
action, 

instantaneous, 118 
total, 118 
principle of least, 119 

Adams-Moulton method, 550 
adjoint equation, 264 
adjusted function, 224 
admittance, 20 
aggregate propagated error, 539 
analytic function, 

complex, 398 
physical interpretations of, 407 

real, 379 
associated Legendre 

equation, 610, 627 
functions, 613 

integral of squares of, 632 ff 
auxiliary equation, 

for ODEs, 7 
for difference equations, 534 

B 

backward difference approximation, 
of ordinary derivative, 507 
of partial derivative, 508 

Bernoulli, Daniel, 281 
Bessel functions, 

cylindrical, 637 
asymptotic behavior, A-20 
of the first kind 

infinitude of zeros, 271 ff 
of integer order m, 271, 637 
of half-order, A-20 
of real order v, A-18 
table of zeros of Jm(x), A-20 

of the second kind, A-18 
recurrence relations, A -19 
integral representation for J m (x), A -19 
generating function for Jm(x), A-19 

spherical, 622 
integrals of squares, 651 

modified, 641 
integrals of squares, 650 

Bessel's equation of order m, 271, 637 
Bessel's inequality, 

single variable, 209 
two variables, 590 

big "0" notation, 504 

black holes, 35 
block iterative methods, 557 
Bolzano-Weierstrass Theorem, A-15 
boundary conditions (B.C.), 24 
boundary conditions of the third kind, 165 ff, 489ff 
boundary 

point, 385 
of subset of the plane, 385 
of manifold, 655 

bounded 
fUllction, 458 
subset, 385 

c 
cardinal series, 457 
catenoid, 35 
Cauchy, Augustin Louis, 417 
Cauchy principal value, 424 
Cauchy-Riemann 

equations, 349, 398 
in polar coordinates, 412, 625 

operator, 624 ff 
Cauchy-Schwarz inequality, 229, 234 
central difference approximation, 

of ordinary derivative, 507 
of partial derivative, 508 
of second derivatives, 508 ff, 548 

change of variables, 33, 59, 70, 89 
characteristic 

curves, 74 
equation, 74 
lines, 60 
strip, 112 
system of equations, 77, 112 
3-curve, 112 
triangle, 329 

C k function, 23 
Classification Theorem for second-order, linear 

PDEs, 31, A-2 ff 
closed subset, 385 
closure of a subset, 385 
compatibility condition for Neumann problem, 

345, 350 
for a domain in the plane, 390 
on a manifold, 669 
on a rectangle, 359 

complex analytic, 347, 398 
complex Fourier series, 419 ff 
complex harmonic function, 347 
conditionally stable numerical method, 549 

I-I 
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conformal mapping, 401 ff 
preservation of harmonic functions under, 403 

conjugate-analytic, 347 
connected subset, 385 
continuity condition for heat problem, 458 
continuity equation, 85 
continuous function, 23 
continuous uniform dependence of solutions (see 

also Maximum Principle) 
on initial/boundary data for 

the heat equation, 147, 153 
the wave equation, 314 

on boundary data for the Dirichlet 
problem, 387 

continuous mean-square dependence on 
initial data, 141 
convection, 121 
convergence of functions, 

pointwise, 217 
uniform, 217 

Convergence Theorem for the Explicit Difference 
Method,523 
convolution of functions, 436 
Convolution Theorem, 436 
Coulomb potential, 646 
Courant-Friedrichs-Levy condition, 549 
Crank-Nicolson method, 549 
critically damped, 10 

D 

D'Alembert, Jean, 281, 340 
D'Alembert's formula, 300 ff 

derivation using Fourier transforms, 469 ff 
in space, 600 ff 
proof of, 300 ff 

decay order (m, n) of a function, 431 
degenerate, second-order, linear PDE, 31 
De Moivre, Abraham, 372 
De Moivre's formula, 372 
descent, method of, 607 
diameter of a set, 385 
difference approximation of 

first-order derivatives, 506 ff 
second-order derivatives, 508 ff 

diffeomorphism, 654 
differentiable with respect to a complex 
variable, 398 
diffusion equation, 121 
diffusivity of heat, 123 
Dirac delta "function" or distribution, 471, 665 
Dirichlet, Gustav Peter, 340 
Dirichlet kernel, n - th, 214 

Dirichlet problem, 
continuous dependence of solutions on bound­
ary data, 387 
for a compact manifold with boundary, 668 ff 
for the annulus, 367 ff 
for the disk, 371 ff, 378 
for the exterior of a disk, 405 
for the rectangle, 351 ff, 354 
Uniqueness Theorem for, 351, 387 (see also 
Maximum Principles) 

divergence of a vector field 
on the plane, 406 
on a manifold, 673 

Dominated Convergence Theorem, A-H, A-13 
Du Fort-Frankel method, 531 
Duhanlel, Jean-Marie-Constant, 173 
Duhanlel's method or principle 

E 

for the heat equation, 172 ff, 250 
for various B.C., 180 ff 
physical motivation, 174 ff 
rigorous statement and proof of, 177 ff 

for the wave equation, 326 ff 

eigenfunction 
expansion, 578 

in terms of Sturm-Liouville eigenfunctions, 273 ff 
on a ball, 623 
on a circle or interval (see Fourier series) 
on a compact manifold, 661 
on a disk, 638 ff 
on a rectangle, 582 
on a sphere (Laplace series), 616 

in spherical coordinates, 626 
of.:l on C2 functions (see also eigenfunction expansions) on 

a circle, 605 
a k-manifold, 660 ff 
a rectangle, 577 
space, 597 ff 
a sphere, 594 ff 

of the Schriidinger operator for 
the coulomb potential, 646 ff 

. the harmonic oscillator potential, 646, 651 ff 
eigenspace 

of the Laplace operator, 582 
on a disk, 638 
on a sphere, 608 
on a ball, 623 
on a manifold, 658 
on a rectangle, 582 

eigenvalues for Sturm-Liouville problem, 259 
conditions for nonnegativity, 268 
existence theory, 260, 270 
reality of, 267 
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eigenvalues of the Laplace operator for the Dirich­
let and/or Neumann problem, 577 ff 
on a ball, 623 
on a disk, 638 
on a manifold, 658 
on a rectangle, 577 ff 

eikonal equation, 117 
Einstein, Albert, 296 
electrical circuit 

admittance, 20 
impedance, 20 
RCL 11 

electron states in the hydrogen atom, 646 
elliptic, second-order, linear PDE, 31 
energy levels, quantum, 

for harmonic oscillator, 652 ff 
for hydrogen atom, 648 

equation of continuity, 85 
equation of state, 102 
equipotential curves, 407 
escape velocity, 25 
Euler, Leonhard, 281 
Euler's 

constant, A-19 
equation (ODE), 368 
equations in continuum mechanics, 102 

even function, 238 
even extension, 239 
explicit difference method, 515 ff 
exponential substitution, 54 

F 

Fejer's theorem, 230 
Fermat's Principle, 118 
first-order approximation to f'(x), 506 ff 
first-order ordinary differential equations 

linear, 4 
separable, 2 
special systems, 13 ff 
systems, 13 
standard form, 4 

first-order PDEs 
continuum mechanics, application to, 101 
Existence and Uniqueness Theorem, 66 
gas flow, application to, 85 ff 
geometrical application, 87 
general nonlinear, 111 ff 
global considerations, 83 ff 
higher dimensional, 92 ff 
inventory analysis, application to, 67 
linear, with constant coefficients, 58 ff 
linear, with variable coefficients, 74 ff 
parametric form of solutions to, 79 ff 

quasi-linear, 95 ff 
traffic flow, 99 

five-point formula for Poisson's equation, 550 
fluid flow, 

around a cylinder, 409 ff 
circulation of, 406 
incompressible, 406 
irrotational, 406 
steady, 405 
stream function, 406 
velocity potential (real and complex), 406 

formal solutions 
vs. exact solutions, 248 ff 
definition, 249 
of heat problems, 248 ff 

validity of, 483 
of Laplace's equation, 356 ff 
of wave problems, 292, 332 ff 

validity of, 312 ff 
forward difference approximation, 

of ordinary derivative, 506 
of partial derivative, 508 

forward difference operator and derivatives, 513 
Fourier-Bessel series of order 0, 639 
Fourier coefficients, 

ordinary (circular), 189 
sine and cosine, 240 
complex, 419 

Fourier cosine series 
definition, 240 
convergence theorem for, 242 

Fourier cosine transform, 491 
Fourier, Joseph, 417 
Fourier series, 

definition, 189, 193 
convergence theorems, summary of, 231 

for C 2 functions, 198 
for C1 functions, 217 
for piecewise C 1 functions, 224 
for continuous piecewise Cl functions, 228 
for double Fourier series, 583 

differentiation of, 255 
double, 582 ff 
error estimates via integral comparisons, 200 
integration of Fourier series, 255 
multiple, 582 ff 
usc of Green's formula in computing, 201 ff 

Fourier sine series, 
definition of, 240 
convergence theorem for, 241 ff 
double, 562 

Fourier sine transform, 491 
Fourier transforms 

one-dimensional, 423 
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double, 586 
table of, A-17 

frequencies, 28 
for a circular drum, 638 
for a rectangular drum, 571 
relationship of eigenvalues with, 577 ff, 589, 
662 
resonant, 13, 20, 332 ff 
for string with 

both ends fixed, 289 
one end fixed, 337 

Fubini's Theorem, A-5 ff, A-13 
fundamental pitch, 28 
fundamental source solution of heat equation, 124, 

461 

G 

derivation using Fourier transforms, 460 ff 
a derivation without Fourier transforms, 136 
on manifolds, 664 
probabilistic derivation, 125, 136 

Galerkin method, 553 
gamma function, 643, A-18 
gas flow, 85 
Gauss Divergence Theorem 

on a compact manifold, 673 
Gauss, Karl Friedrich, 340 
Gauss-Seidel iteration, point, 557 
general solution of PDE, 44 
Generalized Maximum Principle, 148 
generalized Poisson/Laplace equation, 30 
generalized Laguerre polynomials, 648 
generating function for 

the Bessel functions Jm{x), A-19 
a sequence of functions, 632 
Hermite polynomials, 445 
Legendre polynomials, 632 
associated Legendre functions, 632 

generic solution of PDE, 46 
Gibbs phenomenon, 227, 235 
gravity 

Newtonian, 24 
Einstein's theory, 35 

gravitational potential, 24 
Green, George, 36 
Green's formula, 

for Sturm-Liouville differential operator, 265 
on a compact manifold, 660 
on a disk, 650 
one-dimensional, 190 
on the unit sphere, 616 

Green's function, 37 
for a ball, 676 
for a disk, 397 

for plane domains, 396 
for problems on manifolds, 663 ff 

heat problems with a source, 664 ff 
wave problems, 667 ff 

relation to Poisson's kernel 
for the disk, 397 
for manifolds, 669 

for the upper half-plane, 474 
grids and approximations for PDEs, 509 ff, 515 

H 

Hamilton, Sir William Rowan, 119 
Hamilton-Jacobi equation, 117 
Hammings method, 550 
Hardy, Godfrey, H., 435 
harmonic 

conjugate of a harmonic function, 399, 400 ff 
function, 26, 341, 609 

regularity of, 377 
oscillator potential, 646 

harmonics 
spherical, 595 

zonal,612 
for wave problems on 

a circular drum, 639 
a finite string, 288, 293 
a rectangular drum, 571 
a sphere or balloon, 620 

Harnack's inequality, 384 
heat equation, 26, 124 (see also heat problems) 

generalized, 30 ff 
product solutions, 127 
with variable density and specific heat, 138 
for radial heat flow in a ball, 138, 598 ff, 606 
three dimensional, 566, 621 ff 
two-dimensional, 342 

heat kernel, 
on the line, 461 
on manifolds, 664 

approximation of, 666 
connection with Weyl's formula, 666 ff 

heat problems 
on a ball, 621 ff 
with both ends at 0, 127 ff 
with both ends insulated, 157 ff 
with boundary conditions of the first, 
second and third kind, 164 ff 
for the circular wire, 130 ff 
for the infinite rod, 458 
with inhomogeneous B.C., 160 ff 

particular solutions of D.E. and B.C., 161 ff 
periodic, 137 
related homogeneous problem for, 161 
time-independent, 160 ff 
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time-dependent, 172 ff 
for the inhomogeneous rod, 273 
on manifolds, 663 ff 
with one end insulated with the other 0, 159 ff 
with periodic B.C., 137 
polynomial B.C., 186 
on rectangular plate and solids 561 ff 
for the semi-infinite rod, 138, 458 ff 
transient solution of, 163 
uniqueness of solutions, 
(see also Maximum Principle) 

finite rod, 140 ff 
infinite rod, 465 
Tychonov's countef/~xample of, 459 

Heisenberg uncertainty relation, 644, 653 
Helmholtz, Herman L. F., 281, 597 
Helmholtz equation, 597 
Heaviside, Oliver, 417 
Hermite 

functions, 443 ff 
polynomials, 443 ff, 652 

higher-order approximations of derivatives, 506 
Hilbert transform, 417 
holomorphic function, 398 

physical interpretations of, 407 
homogeneous 

linear PDE, 29 
polynomial, 609 

Hooke, Robert, 9 
Huygens' principle, 603 
hydrogen atom, 646 ff 
hyperbolic sine and cosine, 10, 20 
hyperbolic, second-order, linear PDE, 31 

I 

impedance, 20 
implicit difference method, 549 
initial conditions (I.C.), 24 

initial/boundary-value problems, 
(see also individual problems and/or equa­
tions) 
introduction to, 24 
steps for solving, 578 
on manifolds, 661 

inner product of 
real-valued functions, 189 
complex-valued functions, 420 
functions on a sphere, 615 
functions on a compact manifold, 660 

insulated end, 157 
integrability condition, 399 
integral equations, 452 
integral of a function on a compact manifold, 659 
integral transform of a function, 417 

integrating factor, 4 
instantaneous action, 118 
inventory analysis via first-order PDEs, 67 ff 
inverse problems, 418 
inverse Fourier transform, 

one-dimensional,447 
double, 586 

Inversion Theorem for Fourier transforms, 447, 
498ff 

isoperimetric inequality, 256 
isotherms, 407 
iteration matrix, 555 

J 

Jacobi. Karl Gustav Jacob, 119 
Jacobi Theta Function, 446 
Jacobi iteration, point, 557 

K 

kernel of integral transform, 417 
Kirchhoff, Gustav, 11, 281 
Klein-Gordon equation, 30 

L 

Lagrange, Joseph, 96, 340 
Lagrange, method of, 95 ff 
Lagrange's form of the remainder, 506 
Lagrange's identity, 263 
Laguerre polynomial, generalized, 648 
Laguerre's ODE, 648 
Landau, E., 504 
Laplace, Pierre Simon de, 340, 417 
Laplace's equation, 24, 341 (see also Dirichlet and 

Neumann problems) 
in a cylinder, 641 
in a half-plane, 473 
in a quarter-plane, 492, 497 
general solution of, 347 
on a rectangular solid, 568 ff 
product solutions in dimension 2, 352 
rotational invariance of, 342 ff 
spherically-symmetric solutions of, 24, 25 
with B.C. of the third kind, 346 

Laplace operator 
in dimension 2, 341 
in polar coordinates, 366 
in spherical coordinates, 592 
on the unit sphere, 594 

Laplace series for functions on a unit sphere, 616 ff 
Laplace transform, 417, 453 
left-tension of a string, 283 
Legendre's differential equation, 610 
Legendre polynomials, 612 

orthogonality of, 632 ff 
integrals of squares, 632 ff 
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Leibniz's rule, A-7 ff, A-11 ff 
linear elasticity, 28 
linear combination, 29 
linear PDE, 

definition, 29 
homogeneous, 29 

linearization, 110 
linearly independent, 7 
Liouville, Joseph, 259 
local discretization error at (i, j), 516 
Lorentz transformations, 296 

M 

magnetic quantum number, 647 
manifold in R n, smooth, k-dimensional, 654 

boundary of, 654 
boundary point of, 654 
compact, 658 
connected, 658 
Laplace operator on, 660 

matrix 
band structure, 553 
diagonal of, 554 
diagonally dominant, 554 
inverse of, 554 
invertible or nonsingular, 553 
iteration, 555 
splitting of, 555 

Maximum/Minimum Theorem, A-16 
Maximum Principle, 

for heat problems, 142 ff 
proof of, 148 ff 
on a compact manifold, 674 
on a rectangular solid, 590 
on a sphere, 635 
strong, 154 ff 

for Laplace's equation, 386 ff 
on bounded plane domains, 386 
on a rectangle, 355 ff 

Mean-Value Theorem, 377 ff 
Mellin transform, 417 
method of 

descent, 607 
images, 308 ff, 458 ff 
Lagrange, 95 ff 

method of lines, 550 
Milne's method, 550 
minimal surface equation, 34, 41, 43 
Minimum Principle, (see Maximum Principle) 

N 

Neumann, Karl Gottfried, 340 
Neumann problem, 

for the annulus, 383 

Index 

for the disk, 383 
for a compact manifold, 668 ff 
for a rectangle, 359 
for a rectangular solid, 576 
uniqueness of solutions up to a constant, 365 

Newton, Isaac, 9 
Newton-Raphson Method, 532 
nodal curves, 580 
noncentral difference quotients, 514 
nonlinear PDEs, 33 ff 

first-order, 111 ff 
norm of a function, 189 

o 
odd function, 238 odd extension, 239 
Ohm, George Simon, 340 
open subset, 385 ordinary differential equations 

(see first-order ODEs) 
over-damped, 10 
orbital angular momentum, 647 
orthogonal family of functions, 190, 421 
orthogonal functions on 

a ball, 634 
a disk, 639, 651 
an interval, 189 
a manifold, 660 
a rectangle, 582 
a sphere, 615 

orthogonality 
of eigenfunctions of Sturm-Liouville problems, 
267 
of Legendre polynomials, 632 
of spherical harmonics, 615 
relative to a weight function, 266 

operator, 36 
differential, 36 
integral, 36 

outward normal derivative, 345, 657 

p 

Paley-Wiener functions, 457 
parabolic, second-order, linear PDE, 31 
parametric form of solutions to first-order PDEs, 

80 ff 
Parseval's equality 

for Fourier series 
single variable, 210, 422 
two variables, 590 

for Fourier transforms, 
single variable, 423, 450 
two variables, 590 

partial difference equation, 533 
partial differential equation (PDE), 

definition of, 23 
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first-order, linear, with constant coefficients, 
57 ff 

percentage error, 526 
periodic function, 207 
periodic extension of a function, 208 
Perron-Frobenius theory of nonnegative matrices, 

557 
phase function, 118 
piecewise continuous function, 223 
piecewise C1 function, 223 
planetary orbits, instability of in higher dimen­

sions,42 
Poisson, Simon D., 281, 340, 417 
Poisson kernel, 

for compact manifold, 668 
for the disk, 374 
uniqueness of, 388 

Poisson's equation, 24, 346 
generalized, 30 
numerical solution of, 550 
on a manifold, 658 
on the whole plane, 396 

Poisson's integral formula 
for a compact manifold, 669 
for the disk, 374 
for the upper half-plane, 395, 474 

Poisson Summation Formula, 445 
Polar coordinates, 366 

Laplace's equation in, 366 
wave equation in, 638 ff 

polynomial, 
harmonic, 
Hermite, 443 ff, 652 
Laguerre, 648 
Legendre, 610 ff 

precharacteristic strip, 112 
preferred parametrization of characteristic curves, 

77 
principal branch of multi-valued log function, 401 
product solutions of a PDE, 50 (see also individual 

PDEs) 
pointwise convergence of functions, 217 
population density, 67 

steady-state, 69 
population analysis via first-order PDEs, 67 ff 

Q 

quantum, 
mechanics, 644 ff 
state, 645 

quasi-linear first-order PDE, 95 ff 

R 

radial equations, 621, 636 ff 

Radon, Johann, 418 
Radon transform, 418 
rapidly decreasing function, 431 
Rayleigh, John W. S., 281 
Rayleigh-Ritz procedure, 552 ff 
reconstruction problems, 418 
regular curve, 66 
reproducing kernel, 457 
Richardson extrapolation procedure, 513, 550 
Riemann, Georg Friedrich Bernhard, 281, 446 
Riemann-Lebesgue Lemma, 211 
Riemann Hypothesis, 446 
right-tension of string, 283 
round-off errors, 525, 533, 539 ff 
Runga-Kutta method, 550 

S 

Schriidinger's equation, 645 
Schwarzchild radius, 35 
second-order ordinary differential equations 

constant coefficients, 6 ff 
inhomogeneous, 11 ff 

self-adjoint 
form of second order, linear, homogeneous 
ODE,264 
second-order ordinary differential operator, 
264 

separable first order ODE, 2 
separation of variables, 50 ff 
shift operator, 513 
shock point, 100, 105 
side condition, 62 

curve, 66 
smooth mapping, 654 
soap film, between coaxial rings, 34 ff, 43 
solution of k - th order PDE, 24 
specific heat, 122 
spectral radius, 556, 557 
spherical 

Bessel functions, 622 
coordinates, 591 ff 
harmonics, 

definition, 595 
zonal, 612 

volume element, 592 
stagnation point, 407 
standard k-dimensional subspace in R n, 654 
standard closed k-dimensional half-space in R n , 

654 
steady fluid flow, 405 
steady-state 

population density, 69 
problem, 24 
temperature in a 
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annulus, 370 ff 
ball, 619 
cylinder, 641 
disk, 371 ff 
manifold, 668 ff 
rectangle, 351 ff, 354 

Strong Maximum Principle, 
for heat equation, 154 ff 
for Laplace's equation, 391 

Sturm, Jacques Charles Fran<;ois, 259 
Sturm Comparison Theorem, 269 
Sturm-Liouville 

differential operator, 265 
Green's formula for, 266 

equation, 259 
problem, 259 

successive overrelaxation (SOR) with parameter w, 
point, 557 

superposition principle (or property), 32 
systems of linear equations, 

T 

direct vs. iterative methods, 553 
band structure, 553 

Taylor, Brook, 281, 505 
Taylor's theorem, 

for one variable, 505 ff 
for two variables, 510 

temperature, 122 
tension of a string, 283 
termwise differentiation of series, A-13 
thermal conductivity, 123 
Toricelli, Evangelista, 17 
total quantum number, 647 
traffic flow, application of first order PDEs to, 99 
transformation of variables, 31, 59, 89 
transversality condition, 66 
trigonometric identities for products of sines and 

cosines, 132 
trigonometric polynomials, 188 
truncation error, 506 
Tychonov, A. N., 459 
Tychonov's solution of the heat equation, 459 

u 
unbounded subset, 385 
uncertainty relation, Heisenberg, 644 

proof of, 65 
under-damped, 10 
uniform convergence of 

Fourier series, 198, 221, 228, 230 
functions, 217 
Laplace series on a sphere, 616 
of eigenfunction expansions on manifolds, 661 

uniqueness results for 

v 

first-order PDEs with side condition, 66 
heat problems, 

finite rods, 140 
circular wires, 142 
infinite rods, 465 
semi-infinite rod, 467 

Sturm-Liouville eigenfunctions, 265 
Laplace's equation 
(see Dirichlet and Neumann problems) 
wave problems, 

finite string, 289, 296 
infinite string, 301 

variational approximation method, 551 ff 
vibrating 

w 

balloon, 620 
circular drum, 638 
rectangular drum, 570 ff, 577,580 ff 
string, 

arbitrary, 297 ff 
longitudinal, 282 
transverse, 282 
with air resistance, 298 

wave equation, 27 
derivation of, 282 ff 
energy integral, 290 ff 
generalized, 281 
Huygens' Principle for, 603 
in space, 600 ff 
one-dimensional 

fixed ends, 286 ff 
continuous dependence on initial data, 314 
harmonics, 288 

amplitude, 288 
energies, 290 
frequencies, 288 
nodes, 293 
phase, 288 
periods, 288 

maximum magnitude principle for, 304, 313 
method of images for, 310 ff 
one end fixed, the other free, 323 ff 
plucked string, 291 ff, 315, 319 
uniqueness, 289 

free ends 
solution by Fourier series, 312 ff 
solution by method of images, 310 

general solution of, 301 
infinite string, 300 ff 

interval of dependence for, 305 
maximum magnitude principle for, 313 
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periodic initial data for, 306 harmonic oscillator potential, 652 
propagation speed of disturbances, 305 Coulomb potential, 646 ff 

inhomogeneous, wave problem (see wave equation) 
time-independent B.C., 324 ff Weierstrass transform, 417 
time-dependent B.C., 325 ff weight function, 266 
forcing term, 327 ff Weyl, Hermann, 659 
Duhamel's method, 328 ff Weyl's formula for asymptotic behavior of eigen-
Fourier series approach, 332 ff values, 658, 666 ff 

product solutions, 286 Wirtinger's inequality, 256 
on semi-infinite string, 307 ff Wronskian function, 21 

method of images, 308, 310 ff 
on manifolds, 662 ff, 667 
on spheres, 620 
radial, 598 ff 
two-dimensional, 570 ff 

wave function, Schrodinger, 645 
normalized, 645 
normalizable, 645 
of definite energy for particle in 

x 
XX, Dr., 51 

y 

Yukawa potential, 599 

z 
zonal spherical harmonics, 612 
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