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PREFACE

Quantities which depend on space and/or time variables are often governed by differential
equations which are based on underlying physical principles. Partial differential equations (PDEs)
not only accurately express these principles, but also help to predict the behavior of a system from
an initial state of the system and from given external influences. Thus, it is hard to overestimate
the relevance of PDEs in all forms of science and engineering, or any endeavor which involves
reasonably smooth, predictable changes of measurable quantities.

Having taught from the material in this book for ten years with much feedback from
students, we have found that the book serves as a very readable introduction to the subject for
undergraduates with a year and a half of calculus, but not necessarily any more. In particular,
one need not have had a linear algebra course or even a course in ordinary differential equations to
understand the material. As the title suggests, we have concentrated only on what we feel are the
absolutely essential aspects of the subject, and there are some crucial topics such as systems of
PDEs which we only touch on. Yet the book certainly contains more material than can be
covered in a single semester, even with an exceptional class. Given the broad relevance of the
subject, we suspect that a demand for a second semester surely exists, but has been largely unmet,
partly due to the lack of books which take the time and space to be readable by sophomores. A
glance at the table of contents or the index reveals some subjects which are regarded as rather
advanced (e.g., maximum principles, Fourier transforms, quasi—linear PDEs, spherical harmonics,
PDEs on manifolds, complex variable theory, conditions under which Fourier series are uniformly
convergent). However, despite general impressions given (perhaps unwittingly) by mathematical
gurus, eny valid mathematical result or concept, regardless of how "advanced" it is, can be broken
down into elementary, trivial pieces which are easily understood by all who desire to do so. With
regard to the so—called "advanced" topics in this book, we feel that we have accomplished this to
a degree which surprised even us. For us it was a constant and worthwhile challenge to make the
book completely self—contained for those who have only been through the typical
freshman/sophomore calculus sequence, even if they forgot most of it. We have successfully
taught students who did not recall how to solve y’(x) = y(x) with y(0) =1 at the beginning of
the semester, as was the case with over half of our students according to initial survey tests.
However, before the semester's end, these same students could prove and understand the
Maximum Principle for the heat equation and could easily deduce the continuous dependence of
solutions on initial and boundary data. In essence, "advanced topics" are rarely difficult per se,
but they may seem so, if (for the sake of elegance) too little time is spent explaining and
motivating them.

We have avoided the temptation to first prove unmotivated results in great generality and
then use them to deduce an abundance of particular cases. By and large, we have introduced
results and techniques inductively through many solved examples. By the time students have
seen enough examples, they can often anticipate, as well as understand, the argument for the
general case. In particular, we have found that, in spite of the fact that Sturm—Liouville Theory
provides a uniform approach to boundary—value problems, it is not so wise to teach it first to
students who are barely familiar with sines and cosines, and then cover the elementary
boundary—value problems as special cases. We have proceeded in the opposite manner. After we
have handled a variety of simple boundary conditions for the heat equation and treated Fourier

ix
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series, the student is prepared to study and appreciate Sturm—Liouville Theory as a natural
continuation of what has been learned without it. Proceeding from examples to theorems may
result in a book which is physically longer, but students learn more rapidly and effectively this
way. In short, it is easier to build from the ground up than from the roof down. In the process,
we may have sacrificed some degree of elegance, but we have not sacrificed rigor. Nearly every
basic result is proved rigorously at some stage, or at least we give a reference (e.g., for the
convergence of eigenfunction expansions on manifolds). We certainly do not recommend proving
everything in class, since this would severely limit the range of the material covered, but instead
the interested student may be directed to the many detailed, thoroughly digestible proofs in the
text. On the point of rigor, we mention that many solutions of PDEs are expressible in terms of
integrals of Greens functions against boundary and/or initial data. In most PDE texts, such
integral formulas are derived (if at all) under the assumption that solutions of the PDEs actually
exist. To be honest, one should have the tools to check that the functions defined by such integral
formulas actually solve the given problem. This necessarily entails the use of Leibniz's rule for
differentiation under an integral, sometimes when the interval of integration is unbounded. One
feature of this book, which appears to be absent in other texts, is that there is a complete,
elementary proof of Leibniz's rule in the Appendix. To experts, this may be surprising, since
many standard proofs entail the use of the Lebesgue Dominated Convergence Theorem. However,
in the Appendix, we have proven a suitable version of dominated convergence which avoids the
notion of Lebesgue measure and integration. (The idea originated in [Lewin, 1986, 1987].)

Solving problems is the major part of learning any mathematical subject. "This book
contains many problems which range from the purely routine to those which will challenge even
the most brilliant student. Sometimes one finds that although some students can arrive at a
solution to a problem through mimicking procedures, they still may not be able to interpret or use
the solution or even understand why the expression they have found is actually a solution of the
problem. We have tried to counter this tragedy by including many exercises which require the
student to think, draw some conclusions, and express themselves, instead of simply implementing
purely computational procedures. Since some students will do anything to get the answer in the
back of the book, we have been sparing with the answers. However, a solution manual (with
complete solutions to all but the most trivial problems) is available to instructors only. We
personally worked out each of the problems.

Since the whole book cannot be covered in a single semester, instructors who are limited to
a single semester must decide which sections or chapters to cover. Given the demand, instructors
might consider the introduction of a second semester of PDEs. Below, we summarize the material
covered in the chapters and sections. Following this, some suggestions are given on what sections
must, should or could be included in a one—semester or two—quarter course.

Acknowledgements. It is our pleasure to acknowledge the comments and suggestions of our
colleagues and students. In particular, we thank Hans Broderson, Karl Heinz Dovermann,
Christopher Mawata, Ken Rogers, Mi—Soo Smith, Wayne Smith, David Stegenga, Joel Weiner,
George Wilkens, and Les Wilson, who have adopted the notes in their courses. We also
acknowledge Paolo Agliano and Paul Kohs who helped us with the typing and the graphics. In
addition, a warm mahalo is due to the secretarial staff of the Department of Mathematics at the
University of Hawaii. A special mahalo nui loa is due to Pat Goldstein who cheerfully helped us
with much of the clerical work. Last, but not least, we wish to thank our families for their
patience and support during the preparation of this work.

Honolulu, 1992 David Bleecker & George Csordas



Preface xi
Chapter-by—chapter synopsis and suggestions for the instructor

Chapter 1 (Review and Introduction): If the students have had a course in ODEs, then Section
1.1 can be skipped, or assigned as reading. Some coverage of Sections 1.2 and 1.3 is necessary for
a general overview of PDEs and their applications, and for an introduction to certain topics, such
as separation of variables and the superposition principle. These concepts are used often in the
sequel.

Chapter 2 (First—Order PDEs): For instructors who regard first—order PDEs as devoid of any
real application, we urge them to read the introduction to Chapter 2, before deciding to skip
Chapter 2 entirely. Not only are there wide applications to birth and death processes (e.g., the
evolution of population densities), continuum mechanics and the development of shocks in traffic
flow, but also the student sees how a change of variables can greatly simplify a PDE.
Incidentally, we elected not to include examples and drill exercises for putting second—order,
linear PDEs (with constant coefficients) into the standard normal forms (e.g, by rotation of axes,
etc.), for the simple reason that second—order PDEs which arise in applications are already in a
standard form. However, a complete statement of the Classification Theorem is given in Section
1.2, and a complete proof is given in the Appendix A.1. To compensate for lack of practice in
change of variables drill for second—order PDEs, there are plenty of change—of—variable problems
for first—order PDEs in Chapter 2. First—order PDEs which arise in applications are seldom in
the standard form of a parametrized ODE. While Chapters 3—9 do not depend on Chapter 2,
instructors should seriously consider doing at least Section 2.1 in which au_+ bu +cu= f(x,y)

is solved, when a, b, and ¢ are constants. The case of variable coefficients is covered in Section
2.2, and the quasi—linear case is covered in Section 2.3. The fully nonlinear case is covered in the
purely optional Section 2.4.

Chapter 3 (The Heat Equation) : Section 3.1 begins with a derivation of the heat equation. The
simplest initial/boundary—value problems are solved without first introducing Fourier series.
Here, we use separation of variables to find product solutions of the heat equation which meet the
homogeneous boundary conditions B.C. and then find a linear combination which meets the initial
condition. In Chapter 3, initial temperatures are chosen so that they are expressible (via
trigonometric identities) as finite linear combinations of sines or cosines of the appropriate form.
Students then naturally ask what can be done if this is not the case. In other words, they are
naturally motivated for the introduction of Fourier series which is the topic of Chapter 4. In
Section 3.2, uniqueness of solutions of various initial/boundary—value problems for the heat
equation is proved, by showing that for homogeneous B.C. of the first or second kind, the
mean—square of the temperature is non—increasing. The Maximum Principle provides a second
approach. We first illustrate the Maximum Principle through a number of examples and we show
that it easily leads to continuous (uniform) dependence of solutions on initial/boundary data. The
proof of the Maximum Principle is then given at the end of Section 3.2. Section 3.3 deals with the
case of various simple B.C. which are time—independent, but possibly inhomogeneous. In Section
3.4, the case of time—dependent B.C. and heat sources are handled by means of Duhamel's
principle. Section 3.4 can be skipped or covered later if time permits, and Section 3.3 can be
covered quickly and lightly. However, Section 3.1 is certainly part of any first PDE course, and
we strongly recommend that Section 3.2 be covered in some detail.

Chapter 4 (Fourier Series and Sturm—Liouville Theory): Students see the need for Fourier series
in Chapter 3. In Section 4.1, we introduce the notion of functional orthogonality, and the
definition of Fourier series of a function as a formal expression which may or may not converge to
the function. Many examples are computed, and the question of convergence is motivated. An
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estimate for the number of terms needed to uniformly approximate a C2 function is stated (but
the proof is deferred until Section 4.2). We provide a technique for obtaining much sharper
estimates by means of integral estimates of the tail of a Fourier series. Section 4.2 contains
detailed proofs of the convergence of Fourier series under various assumptions. We gently
introduce the difference between pointwise convergence and uniform convergence. Pointwise

convergence is proved for piecewise C™ functions and uniform convergence for continuous piecewise

C1 functions. Without the luxury of time, we recommend that the lengthier proofs be skipped or
assigned for reading. However, certainly one should get across the general idea that the smoother
a function is on a circle, the more rapid is the convergence of its Fourier series. In Section 4.3, we
introduce Fourier sine and cosine series which are used to handle /(lat least formally) the case (left
dangling in Chapter 3) that the initial temperature was not a finite linear combination of the

appropriate form. It is emphasized that infinite sums of 02 functions need not be C2, and hence
the formal solutions obtained need not be strict solutions. However, by truncating the series at a
large enough number of terms one can often meet the I.C. within any positive error, which is all
that is needed for applications. The validity of formal solutions under certain assumptions is
deferred to Chapter 7. Sturm—Liouville Theory is covered in Section 4.4. At this point the
student is ready to savor this subject which extends what is known already to the case of
inhomogeneous rods and boundary conditions of the third kind. We provide a convincing sketch
of a proof of the infinitude of the eigenvalues for Sturm—Liouville problems, by means of the
Sturm Comparison Theorem. Practically none of the rest of the book depends on Section 4.4,
except the statement found in Chapter 9 (Section 9.5) that Bessel functions have infinitely many
zeros. Thus, in the face of time pressures, it is possible to omit Section 4.4 entirely, although one
should at least tell students what it is about. We have found that Section 4.3 can and should be
covered rapidly, and that one should stress the statements of the theorems in Section 4.2, but not
necessarily the details of the proofs. Section 4.1 should be covered in detail, as it is frequently
used later.

Chapter 5 (The Wave Equation): In Section 5.1, the wave equation for a transversely vibrating
string is derived from Newton's equation. Some care is taken to explain why the assumption of
transverse vibrations actually smplies a linear wave equation instead of an approximately linear
equation. The dubious assumption of "small" vibrations is thus eliminated. The simplest
initial/boundary—value problems for a finite string are solved. Uniqueness of solutions of these
problems is also proved in Section 5.1, using the energy—integral method. In Section 5.2, we cover
D'Alembert's solution of wave problems on the infinite string. Consequences of D'Alembert's
solution, such as finite propagation speed are covered, and the method of images for semi—infinite
strings is explained. For finite strings, the method of images provides an alternative to the
Fourier series approach. The continuous dependence of solutions for the finite string on initial
conditions is also an easy consequence of D'Alembert's formula and the method of images. In
Section 5.3 a variety of boundary conditions for the string are handled. Also, the inhomogeneous
wave equation (i.e., with forcing term) is treated via both Duhamel's principle and the Fourier
series approach. Section 5.1 should be covered in some detail, with the complete derivation
possibly assigned as reading. Section 5.2 is equally crucial, but if time is running short Section 5.3
can simply be summarized, so that students are aware of what is covered in case they need it.

Chapter 6 (Laplace's Equation): In Section 6.1, Laplace's equation is motivated and it is shown
that solutions may be interpreted as steady—state temperature distributions. The Dirichlet and
Neumann problems are introduced. Section 6.2 concerns the solution of these problems on a
rectangle. Since students are familiar with separation of variables and superposition, this material
can be done quickly. Uniqueness and the Maximum Principle are motivated and utilized, but
proofs are deferred until Section 6.4. In Section 6.3, we solve Dirichlet and Neumann problems on
annuli and disks using polar coordinates. The Mean—Value Theorem and Poisson's Integral
Formula are carefully proved, and the regularity of harmonic functions is demonstrated. In
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Section 6.4, the Maximum Principle for harmonic functions on bounded domains is proved along
with continuous dependence of solutions of the Dirichlet problem on boundary data. The
importance of these results has been amply demonstrated to students in the previous sections.
Section 6.5 is on the application of complex variable theory to Laplace's equation. We assume no
knowledge of complex—variables. We do not cover Cauchy's theorem, contour integration, or
residue theory, for the simple reason that we do not need it. However, the intimate connection
between complex analytic functions and harmonic functions is brought out and exploited.
Moreover, the concept and use of conformal mapping to solve problems in steady—state
temperatures, fluid flow and electrostatics are handled without any difficulty. All of the material
in Chapter 6 is important, and if too much time is spent on material in previous chapters, it may
not be possible to cover all of Chapter 6. For a class of mostly engineers, it may be wiser to cover
Section 6.5 instead of Section 6.4, if a choice must be made, whereas for mathematics majors the
reverse choice is desirable.

Chapter 7 (Fourier Transforms): It will take an exceptional class to reach Chapter 7 in one
semester, without skipping all but the most essential material in the previous chapters. However,
if students are likely to take a full complex variable course in the future, many concepts in
Chapter 6 will be treated in that course. Then, skipping much of Chapter 6 and proceeding with
Chapter 7 becomes an attractive possibility. Of course, the possibility of introducing a second
semester (or more quarters) of PDEs should be contemplated. The demand is there. In Section
7.1, we introduce complex Fourier series and define the Fourier transform. Many examples are
computed. In Section 7.2, we develop the basic properties of Fourier transforms which make them
a useful tool for finding solutions of PDEs (i.e., differentiation is carried to a multiplication
operator, and multiplication of transforms corresponds to convolution). The idea that the
regularity of a function increases the rate of decay of its Fourier transform (and vice versa), is
brought out. Although, this is typically regarded as an advanced topic, we treat it in an
elementary way, and it is a close relative of the idea gcovered in Section 3.2) that the smoothness
of a function on a circle increases the rate of decay of its Fourier coefficients. Section 7.3 covers
use of the Inversion Theorem, inverse Fourier transforms, and Parseval's equality. The proof of
the Inversion Theorem is deferred to a supplement at the end of Chapter 7. In Section 7.4,
Fourier transforms are applied to solving PDEs. One may wish to cover Sections 7.1 to 7.3
quickly and concentrate on Section 7.4. Here, we solve the heat problem on the infinite rod, and
the Dirichlet problem for the half plane. We felt that it was a good idea to emphasize the fact
that Fourier transform methods not only presume that a solution of a problem exists, but also
that it has certain decay properties. Thus, integral formulas for solutions obtained in this fashion
should be checked independently through a caretul application of Leibniz's rule for differentiating
under the integral. For a class of mostly engineers, this point can be made, without going through
the details of the verification. Although a derivation of D'Alembert's formula for the wave
equation is given in Chapter 5, we also show how to get it by Fourier transform techniques and
the Dirac delta distribution is discussed. In Section 7.5, heat problems for semi—infinite and finite
rods are solved via the method of images. The validity of formal infinite—sum solutions, found in
Chapter 4, is now handled with ease. Also, Fourier sine and cosine transformations are introduced
and applied.

Chapter 8 (Numerical Solutions of PDEs) : While the solution of PDEs by numerical methods
could constitute a whole course, we offer an introduction to the subject in Chapter 8. Our aim is
not to present, without proof or motivation, a huge number of algorithms. Instead, we have
concentrated on the foundations of the numerical approach, and we work mostly with the familiar
heat equation to illustrate the nature and possible pitfalls of the numerical approach. To broaden
the horizons, we do provide an optional overview of other numerical methods for other PDEs for
the interested reader in Section 8.4. In Section 8.1, the "big O" notation is introduced. There is
discussion of Taylor's Theorem which is the basis for the approximation of partial derivatives by
finite differences. This allows the approximation of PDE problems by a finite system of equations
for the values of the unknown function at grid points. For the heat equation, these systems are
easily solved by the explicit method in Section 8.2. Moreover, in the case of the heat equation,
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the discretization error (i.e., the difference of the numerical solution from the actual solution) is
proved to approach zero as the grid point separation goes to zero, at least in the absence of
round—off errors. In Section 8.3, we obtain exact solutions for a finite grid by means of the theory
of difference equations. We then examine how systematic round—off errors lead to the conclusion
that best results are not always obtained by taking the grid size as small as possible. Continuing
with the simple case of the heat equation, we obtain theoretical estimates for optimal grid sizes,
which are born out to be correct in concrete examples. We believe that it is better to discuss in
some depth a number of crucial issues for a single equation, than only briefly comment on a lot of
PDEs and techniques. Again, Section 8.4 provides some overview and plenty of references for
further study.

Chapter 9 (PDEs in Higher Dimensions): In Section 9.1 the fundamental ideas in Chapters 3
though 7 are extended in a straightforward manner to the case of several cartesian spatial
coordinates. We solve dynamic heat problems on rectangles and cubes, and consider Laplace's
equation on a solid rectangle. Double Fourier transforms and series are easily motivated and
introduced. In Section 9.2, it is made clear that the primary objects from which solutions of the
heat, wave and potential problems are constructed are the eigenfunctions of the Laplace operator
which meet the B.C. . This basic fact is often hidden behind the process of separation of variable
and the plethora of special functions which thereby arise in various coordinate systems. A great
variety of series expansions for functions all fall into the category of eigenfunction expansions. In
Section 9.2, we also prove a uniform convergence result for double Fourier series, and discuss
simple properties of double Fourier transforms. In Section 9.3, we begin our study of the standard
PDEs in terms of spherical coordinates. The spherical harmonics are defined as eigenfunctions of
the Laplace operator on a sphere. They arise as the angular part of eigenfunctions of the Laplace
operator on space and can be expressed through associated Legendre functions. We solve a
number of heat and wave problems with spherical symmetry. The three—dimensional version of
D'Alembert's formula is derived and Huygen's principle is discussed. The determination of all
eigenvalues and spherical harmonics, dimensions of eigenspaces, etc. is covered in Section 9.4.

There is a complete proof of the uniform convergence of the Laplace series for 02 functions on a
sphere. Moreover, a number of problems with angular dependence (e.g., heat flow in a ball) are
solved through the use of spherical harmonics and spherical Bessel functions. In Section 9.5, we
consider PDEs in cylindrical coordinate systems and some more PDEs in spherical coordinates,
but with nontrivial potentials, such as Schrodinger's equation. The special functions which arise
in the process are discussed. While spherical Bessel functions can be expressed in terms of sines
and cosines, the cylindrical Bessel functions (of integer order) cannot, which is why we did not
handle cylindrical coordinates before spherical ones. We consider a number of applications,
ranging from the vibrating circular drum, to the determination of the energy levels and wave
functions for the (nonrelativistic) hydrogen atom and the degeneracy of the energy levels which
forms the basis for the periodic table. Section 9.6 deals with the standard heat, wave and

potential problems on compact submanifolds with boundary in R™. Laplace operators are defined
on these objects in an easily understood way. Although, we do not prove the existence theory for
eigenfunctions and eigenvalues in this general setting, some of the more readable references are
cited. Admittedly, the eigenfunctions are difficult to concretely compute or approximate, but
once the eigenfunctions are given, the solution of the standard heat, wave and potential problems
on manifolds proceeds in a way which is quite analogous to the many special cases covered in the
rest of the book. This last section essentially unifies and consolidates these special cases into a
single framework. Moreover, there is some discussion of Weyl's asymptotic formula for the
eigenvalues of the Laplace operator, and the geometric information about the manifold which can
be "heard" from the eigenvalues which may be interpreted as frequencies of vibration.
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In constructing a one—semester or two—quarter course, we suggest selecting sections from
the list below, keeping the indicated priorities in mind. In addition, 1.1 should be covered if your
students are weak in ODEs. Sections which are marked with stars can or should be covered in
only 2 hours, whereas most instructors will want to spend about 3 hours on the other sections.
Leave time for tests and going over some of the homework. Chapters 8 and 9 are probably best
left for a second semester or possibly as sources of projects for advanced, gifted and/or highly
motivated students. In some schools where students have strong backgrounds or interests in
computers one may wish to cover Chapter 8 in lieu of Chapter 7.

crucial sections: 1.2, 1.3%,3.1,3.2, 4.1, 4.2, 4.3% 5.1, 5.2, 6.1, 6.2%, 6.3

highly desirable sections: 2.1, 3.3%, 5.3%, 6.4, 6.5, 7.1*, 7.2% 7.3% 7.4
luxury sections: 2.2, 2.3, 2.4, 3.4,4.4,7.5
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CHAPTER 1
REVIEW AND INTRODUCTION

In this chapter, we review those aspects of ordinary differential equations (ODEs) which
will be needed in the sequel. We also provide an overview of the applications of partial
differential equations (PDEs), and introduce the reader to some elementary techniques, such as
separation of variables. The review of ODEs in Section 1.1 is self—contained, since experience
dictates that a remedial study of this material is often sorely needed. Even those whose
mathematical knowledge of ODEs is sufficient may find the applied examples and problems
(dealing with biology, fluid flow, electronics, mechanical vibrations, resonance, etc.) interesting
and challenging. Section 1.2 gives the reader a perspective on the uses. of PDEs in various
scientific applications, such as gravitation, electrostatics, thermodynamics, acoustics, and minimal
soap film surfaces. Some of the material (e.g., the use of Green's functions and integral
operators), will not be universally appreciated upon a first reading. Indeed, students will find
certain aspects of Section 1.2 more illuminating at later stages in their course of study. In Section
1.3, the studies of ODEs and PDEs are contrasted, with regard to the differences in the typical
forms for general solutions. We illustrate how side conditions are used to extract particular
solutions from general ones. Moreover, the method of separation of variables is also covered in
this section.



2 Chapter 1  Review and Introduction

1.1 A Review of Ordinary Differential Equations

A differential equation is an equation involving an unknown function and its derivatives. If
the unknown is a function of more than one variable, then the differential equation is called a
partial differential equation (henceforth, abbreviated PDE), since the derivatives of the unknown
function are partial derivatives. In an ordinary differential equation (ODE), the unknown
function depends on a single variable. Before studying PDEs, a review of certain basics of ODEs
is desirable, because solutions of PDEs can often be found by solving related ODEs. The following
review of first—order ODEs (separable and linear) and homogeneous second—order linear ODEs
with constant coefficients will suffice for our purposes.

First—Order ODEs

A first—order ODE is separable, if it can be written in the form

where y is an unknown function of the independent variable x.

One solves such an equation by integrating (if possible) both sides with respect to x. Integrating
the left side yields

|10 $ax= 1y dy=F + .,

where F(y) is an antiderivative of f(y) (i.e., F’(y) = f(y)) and C; is an arbitrary constant.

Integrating the right side of (1) also, and letting G(x) denote an antiderivative of g(x), we then
obtain

Fiy)+C,=Gx)+C, or F(y)=G(kx) +C, (2)

where we have incorporated the arbitrary constants C, and C, into the single arbitrary constant
C = C,— C,. In practice, one can obtain (2) by first rewriting (1) in terms of differentials

f(y)dy = g(x)dx . (3)

Then, integrating both sides of (3) yields (2). Note that in (3) the variables x and y are on
different sides of the equation, and hence the term "separable equation" is used. If possible, one
solves (2) for y in terms of x. However, there may be more than one value (or possibly no value)
for y, given x and C. Observe that for a fixed value of C, equation (2) will usually define a curve
in the xy—plane, but there is no guarantee that this curve will be the graph of a function of x.
Nevertheless, the family of curves obtained by allowing C to vary in (2), is usually considered to
adequately represent the set of solutions of (1) or (3).
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Example 1. A certain population has P(t) individuals at time t, and its rate of growth is
proportional to its size (i.e., P’(t) = aP(t) , for some constant a > 0 ). Find P(t) in terms of
the initial population P(0) and a.

Solution. The equation P’(t) = aP(t) is separable, since we can write it in the form

Integrating, we obtain (assuming P > 0) log(P) = at + C or P(t) = exp(at + C) = eCedt.

Since P(0) = e, the desired solution is

P(t) = P(0)e! .

Note that the same technique will work in the more general case where P’(t) = a(t)f(P(t)) for
iven functions a(t) and f(P), since this equation is also separable. However, the technique fails
or P’(t) =t + P(t) and many other equations which are not separable. o

Example 2. A particle is carried along by a fluid flow in the xy—plane. Suppose that the velocity
of the fluid at the arbitrary point (x,y) is 2yi + 4xj (i.e., the direction and magnitude of the fluid
flow varies from point to point). Find the path traced out by the particle, if it is known to pass
through the point (1,3).

Solution. The slope of the path of a particle at (x,y) is the ratio 4x/2y (assuming that y #0) of
the components of the fluid velocity vector at (x,y). Assuming that the path is the graph of a
function y of x, we then obtain the ODE y’(x) = 4x/2y , which is separable (2y dy = 4x dx).
Integrating, we obtain the family of streamlines (cf. Figure 1)

v=ol+C, (4)

Figure 1
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which are hyperbolas. The streamline passing through (1,3) is the upper branch of the hyperbola
1
(4) with C =32 -2(1)2 =7, namely y(x)=(2x2+7)?. o

Another type of first—order ODE which arises in the sequel is the first—order linear ODE
a(x)y’ (x) + b(x)y(x) = ¢(x) (5)

where a(x), b(x) and c(x) are given continuous functions. Assuming that a(x) # 0 , we may
divide (5) by a(x), obtaining an ODE in standard form, in the following sense.

We will say that the first—order linear ODE
y'(x) + p(x)y(x) = q(x) (6)

is in standard form.

If we replace q(x) by 0, the resulting equation

y'(x) + p(x)y(x) =0 (7)
is called the related homogeneous equation for (6). Unlike (6), (7) is always separable :
(i, = —p(x) dx (y#0). (8)

Thus, by integrating (8), we obtain the following general solution yh(x) of (7):

yp(x) = C-exp[-P(x)] , where P(x) = J p(x) dx . (9)

The integrating factor for equation (6) is defined to be

m(x) = exp[P(x)] = exp U p(x) dx] . (10)

Note that by (9) we have m(x)yh(x) = C. Thus,
0 = & 0y, ()] = m()yy(x) + m’ (x)yy, (0
= m(x)y} (%) + m(x)p(x)yy(x) = M7 (x) + p(x)yp(x)] (11)

where we have used the fact that m’(x) = exp[P(x)]P’(x) = m(x)p(x) . For a solution y(x) of
(6) with g(x) # 0, we do not have m(x)y(x) = C, but the computation in (11) yields
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3; [m(x)y(x)] = m(x)[y’(x) + p(x)y(x)] = m(x)q(x) (12)
Integrating (12), we obtain

m(x)y(x) = [m(x)q(x) dx + C
or

(9 = [mGo] ™ { [mix)qtx) dx + ¢} (13)

Note that (13) reduces to (9) when g(x) = 0. While one may simply use formula (13) to write
down the solution of (6), it is preferable to remember the steps of the solution process. (For a
summary of these steps see the end of this section.)

2

2)y’ + 2xy = 3x“ .

Example 3. Sclve (1+x

Solution. First, put the equation into the standard form (6), namely

v’ + [2x/(14x0)y = 3%/ (14+x7) . (14)
The integrating factor for equation (14) (cf. (10)) is

m(x) = exp [ J {2x/(1+x2)} dx] = expllog(14x2)] = 14x2.

Equation (12) tells us that if we multiply both sides of (14) by m(x), then we will obtain
d 2
¢ Im@y(x)] = mx)a(x) = 3<% (15)

Integrating both sides of (15), we get m(x)y(x) = 3 +C or y(x) = (x3+C)/(1+x2) .o

Example 4. Consider two identical cans, A and B. Assume that syrup will leak out of either can
at a rate which is proportional to the volume V of the syrup in the can, say V’(t) = —kV(t) ,
where k > 0, due to the leakage. Suppose that the initial volume of syrup in can A is V A(0),

while can B is initially empty. If can A begins leaking into can B at t = 0, find the volume
VB(t) of syrup in can B at an arbitrary time t > 0.

Solution. The rate of change of VB(t) is

V() = —kV(t) - Vi) . (16)

Since V(t) = —kV,(t) , we find, as in Example 1, that V,(t) = VA(O)e_kt . Thus, by (16)
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V(1) + KV, () = kV, (0) X

kt

Multiplying by the integrating factor e~ , we obtain (via (12))

kv 0] =kv,(0) or V(1) = ¢ M kev,(0) + €.

—kt

Since VB(O) =0, we know that C=0. So, VB(t) = ktVA(O)e )

Example 5. Suppose that tank A contains salt water with 4 pounds of salt per 100 gallons.
Tank B is initially filled with 100 gallons of pure water. Over a period of one hour, the water in
tank B is drained at the rate of 3 gallons per minute. The water in tank A flows into tank B at
the rate of 5 gallons per minute, as tank B is drained. How many pounds of salt are dissolved in
tankﬂ B at the end of the hour? Assume that tank B is well-mixed at all times and does not
overflow.

Solution. Let S(t) denote the number of pounds of salt in tank B at time t. At time t, tank B
loses salt (via draining) at the rate of 3 gallons per minute, times the amount of salt per gallon in
tank B, namely, 3S(t)/(100 + (5-3)t) lbs./min.. The rate at which tank B gains salt from tank
A is 5 times 4/100 lbs./min. . Thus, the net rate of salt increase in tank Bis given by
S’(t) = [-3S(t)/(100 + 2t)] + 1/5. Hence,

S’ () + [35(£)/(100 + 2t)] = 1/5 . (17)

3
The integrating factor is m(t) = exp[§ log(100 + 2t)] = (100 + 2t)2. Multiplying (17), on both
sides, by the integrating factor, we obtain

3 3 5
(100 + 2t)2 and S(t) = (100 + 2t) 2 [5(100 + 2t)2 + C] .

(S

4 m(vs)] =

3 5
Since S(0) =0, we have C = —4-10% and S(t) = (100 + 2t) 2((100 + 2t)Z — 10%). Finally,
S(60) » 7.574 1bs. . O

Second—Order Linear ODEs with Constant Coefficients

We will need a good understanding of the homogeneous second—order linear equation

ay"(x) + by’(x) + cy(x) =0, (18)

where the coefficients a,b, and ¢ are real constants. If a = 0 , then (18) is either a linear
first—order ODE, or (if also b = 0) trivial. Thus, we assume that a # 0. The usual method of
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rx

solving (18) is to first assume that a solution is of the form y(x) = e " for some constant r.

Substituting this y(x) into (18), we obtain

2e™1% + be™r 4+ ce™ = erx(abr2 +br+c¢)=0.

Thus, r must satisfy the quadratic equation ar2 + br + ¢ = 0, known as the auxiliary equation

for (18). Let d = b2 — dac . There are three cases : d >0, d=0 and d <0 .
If d > 0, then there are two distinct real roots, namely

n=—39; and 1, = b o

In this case, the general solution of (18) is the superposition (or linear combination)

y(®) = e + e (19)

where c¢; and ¢, are arbitrary constants. Recall that the superposition of two solutions of a

homogeneous linear equation is also a solution (cf. Problem 7). Moreover, if the equation is
second—order and the ratio of two particular solutions is not constant (i.e., they are linearly
independent), then any solution is a superposition of these two solutions (cf. Problem 20).

If d =0, then there is only one solution of ar2 + br + ¢ =0, namely r = —b/2a, which
is a root of multiplicity 2. However, we recall that, in addition to e , there must be another

linearly independent solution of (18). By trying a solution of the form f(x)e'™, one finds "(x) =
0 (cf. Problem 9). Thus, choosing f(x) = x , we obtain another linearly independent solution,

xe'. Hence, when d = 0, the general solution of (18) is

y(x) = ce™ + cxe™ | (20)

where r = —b/2a. If d < 0, the roots of ar2 + br + ¢ = 0 are complex, namely

b+ i —b — i
r1=—j%@— and r2=‘g;@—, (21)

where i has the property that i2 =—1. (Thus, i cannot be a real number.) Now set

n=a+if and 1,=a-—ip (22)

where « and § are real numbers. Then it can be shown that
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y(x) = cSe(CV'*'iB)x + C4e(ar—i,6)x , (23)

where c; and c, are arbitrary constants, satisfies (18). In order to construct a more useful form of
the solution (23) (for the details see Problem 11) we use Euler's formula

ey = cos(y) + isin(y) . (24)

[The Swiss—born mathematician and physicist, Leonhard Euler (1707—1783), made important
contributions to many areas of mathematics and celestial mechanics. The number e is named
after him.]. Euler's formula can be established by setting z = iy in the power series expansion of

the complex exponential et

o n 2 3
ez=2n_0%_r=1+%+%_r+§r+.... (25)
Now using the relation e(a+iﬁ x ea/xeiﬁ * and Euler's formula, we can express (23) in the form
y(x) = eax[c3(cos(ﬂx)+isin(ﬂx)) + ¢,(cos(Bx)—isin(fx))]. (26)

Setting ¢, = ¢ + ¢, and ¢, = i(c3 —c,) , (26) becomes

y(x) = ea/x[clcos(ﬁx) + cysin(fx)] . (27)

Finally, with the notation of (22) and (21), we obtain from (27) the following general solution of
(18), in the case when d < 0:

y(x) = ¢ Dx/2a {clcos [1@——’(} + cysin [Mﬁ” . (28)

2a 2a

The foregoing results may be summarized as follows :
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Consider the ODE
ay"(x) + by’(x) + cy(x) =0 , (29)

where a,b and c are real constants and a#0. Let r, and r, be the roots of the associated

auxiliary equation ar’ +br+c=0. Let d= b? — dac , and let c;, ¢, denote arbitrary

constants.

1. If r; and r, are real and distinct (i.e., d > 0), then the general solution of (29) is

y(x) = e + ce' 2. (30)
2. If r; =1y =71 (i.e. d=0), then the general solution of (29) is

y(x) = ™ + cyxe™ . (31)
3. f ry=0a+1iB and 1, = a—if (i.e, d < 0), then the general solution of (29) is

y(x) = e®c,cos(Ax) + cysin(Bo)] . (32)

Example 6. An object of mass m is attached to a spring which lies along the x—axis, as shown in
Figure 2 below. With Hooke's law in effect, when the object is displaced to the position x, the
spring exerts a force —kx (toward the origin, since the constant k is positive) on the object. Let
x(t) be the position of the object at time t. The object is also subject to a force, say due to air
resistance, which is —bx’(t) , for a constant b > 0. If the object is released from the position x,

at time t = 0, find the position of the object at any time t > 0, using Newton's second law of
motion mx"(t) = F(t) , where F(t) is the total force on the object at time t . [The English
scientist Robert Hooke g1635—1703) and mathematician/physicist Isaac Newton (1642—1727) were
often at odds, in particular, over the division of credit for the inverse—square law of gravity.]

0 x
Figure 2

Solution. Since the total force on the object is F(t) = —kx(t) — bx’(t) , Newton's second law
yields the ODE

mx"(t) + bx’(t) + kx(t) = 0. (33)



10 Chapter 1  Review and Introduction

Here d = b? —4mk. All three cases d >0,d =0 and d <0 are possible. They are referred to
as over—damped, critically—damped and under—damped (or oscillatory) respectively. The
solutions in these cases are

x(t) = e 108/ mye BV t/m o ety ) (34)
x(t) = e M e (d=0), (35)
x(t) = € TP/ M cos(L/TAT-t/m) + csin(TdT-t/m)] (d < 0). (36)

The constants ¢, and c, are found from the given initial conditions x(0) = X and x’(0)=0.
For (34), we have that

x(0) = ¢, + ¢ = xp and x'(0) = g [(d—b)e,~ (vd + b)ey] = 0

imply ¢, =3{1 + (b/¥d)]x, and ¢, =31 — (b/vd)]x, .
Hence, (34) becomes

x(t) = xoe_%bt/m[%(e%‘/a't/m + e‘%«/a't/m) + (b/,/a)-%(e%“/a't/m _ e—%w/a-t/m)J

= xg¢ 2/ M{cosh(y-t/m) + (b/y@)sinh(}yd-t/m)] . (37)

The hyperbolic sine and cosine often occur naturally, when initial conditions are imposed. They
are defined by sinh(x) = J(e* —e™*) and cosh(x) = 4(e* + e %) . The interested reader who is

unfamiliar with these functions and their relation to the usual sine and cosine, should consult
Problem 18. The computation of the values for ¢, and ¢, in (35) and (36) is suggested in

Problem 12. For certain values of b, m and k, the solutions are graphed in Figure 3 below. o

x m=1

16
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Example 7. Equation (18) also arises in electrical circuit theory. Suppose that a battery of
voltage V, a resistor of resistance R, a coil of inductance L and a capacitor of capacitance C are
placed in series as shown below in Figure 4. We wish to find the most general expression for the
current i(t) in this circuit as a function of time t. [The flow of current in this circuit is governed
by the second law of the German physicist Gustav Kirchhoff (1824—1887), who is famous for his
contributions in electronics and spectroscopy.]

- +
— | 1}
A\
C == @) R
L
000009
Figure 4

Solution. Kirchhoff's second law asserts that the sum of the voltage drops across the elements of
any closed loop in a circuit must be zero. At time t, the voltage drop across the resistor is R
times the current i(t). The voltage drop across the coil is L i’(t). (This drop is due to the fact
that an increasing current in a coil creates a changing magnetic field which induces an opposing
electric field and induces a voltage drop across the coil.) The voltage drop across a capacitor is
1/C times the total amount of charge ([i(t) dt ) which it has accumulated on one of its plates.
By Kirchhoff's second law,

Ri(t)+Li’(t)+éJi(t) d—V=0, (38)
and differentiating, we obtain
Li"(t) + Ri’(t) + ¢i(t) = 0. (39)

Hence, the current i(t) behaves just as the displacement of an object attached to a spring as in
Example 6, with m =L ,b=Rand k =1/C. In particular, with these new values, formulas
(34),(35) and (36) give us the general solutions for i(t) in the three cases. o

We will not cover the general case of the inhomogeneous equation
ay"(t) + by’ (t) + cy(t) = f(t) (40)

which would arise in Example 6 when there is an external driving force f(t), or in Example 7 when
the voltage source is variable [f(t) = V’(t)]. One could solve (40) by adding a particular solution
to the general solution of the related homogeneous equation with f(t) replaced by 0. A particular
solution can be obtained by the method of variation of parameters which can be found in most
ODE books. However, as an illustration of resonance and the utility of the complex approach, we
will find a particular solution of (40) in the important case when f(t) is of the form Acos(wt) or
Asin(wt), for a constant amplitude A and angular frequency w.
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Example 8. Find a particular solution of (40) with abc # 0, in the case when f(t) = Acos(ut) or
f(t) = Asin(wt) for a real constant w, by using the followmg approach. Determine a complex

constant C, such that y(t) = Ce'“t solves (40) with f(t) = Ael“t . Then show that the real and
imaginary parts of y(t) will be the desired particular solutions.

Solution. Substituting the trial solution y(t) = Ce'“t into (40) with f(t) = Ael¥t , we obtain
Cei“’t[a(iw)2 + biw +¢] = At o C-[(c—awz) + ibw] = A. (41)

Using the identity (r + is)(r —is) = 1 4 g2 , we see that
[r+ 1s] (r— 1s)/(r2 + 52) . (42)

Thus, multiplying by [(c—aw?) + lbw] in (41), we obtain

C = Af(c — aw?) — ibu]/[(c — au?)? + b2A] (43)
and )
y(t) = Ce!“ = Clcos(ut) + isin(ut)]
= Af(c —aw?)cos(wt) + bw sin(wt))/[(c — aw?)® + ]
+ 1Ag( —aw2)sin(wt) — bw cos(wt ]/[ 2 2 + b2w ]
= yR(t + in(t) s

where the last equation defines the real and imaginary parts of the solution y(t) of (40) with f(t)
= AWt = Acos(wt) + iAsin(wt). Since

ay" + by’ + ¢y = (ayg + byg + cyg) + i(ay] + byj + cyp) (44)
we see that yR(t) solves (40) with f(t) = Acos(wt) , while y(t) solves (40) with f(t) = Asin(ut) .
If the frequency w is allowed to vary, then the amplitude A[(c — 2)2 b2w2]_% (cf. Figure 5

below) of YR and yy is largest, when w is chosen so that h(w) = (¢ - auuz)2 +b2e? is minimal.

Figure 5
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By setting h’(w) = 0, these resonant frequencies wg are found to be

1
2.2
C b
o=+ [543 | )
unless 2ac — b2 <0 , in which case wp =0 yields the maximum amplitude. Observe that if

1
b2 —dac < 0 , then |wR| is less than the natural frequency v = |{]d] /2a| = [(c/a) —i(b/a)2]7
which occurs in (32). Note that

(wp/v)? = [1 - (b /a0)) /1 — §(b?/ac)] |

which shows that |wR] J[v—1 as (b2/ac) — 0. Inthe above argument, we have assumed that

A does not depend on w. In applications to electronics, A is usually proportional to w, in which
case (45) does not apply. As an illustration see Problem 13. o

Special Systems of ODEs

Occasionally we will meet a system of linear ODEs of the form

x’(t) = ax(t) + by(t) (46a)
y’(t) = cx(t) + dy(t) , (46b)

where a,b,c, and d are given real constants and x(t) and y(t) are unknown functions. We are
required to solve the system (46a) (46b) for x(t) and y(t), given the initial values x(0) and y(0).
If b =0, we can solve the first order ODE (46a) for x(t). Then we substitute the solution x(t)
into (46b), and solve the resulting first—order ODE for y(t). If b # 0, we differentiate both sides
of (46a) and use (46b) as follows :

x"(t) = ax’(t) + by’(t) = ax’(t) + b(cx(t) + dy(t))
= ax’(t) + bex(t) + d-(x’(t) — ax(t)),
where we have used 46(a) for the last equality. Thus, x(t) must satisfy
x"(t) — (a + d)x’(t) + (ad —be)x(t) =0 . (47)

This familiar second—order ODE is solved for x(t), using the initial values x(0) and x’(0) =
ax(0) + by(0). There is no need to solve (46b) for y(t), since by (46a)

y(t) = (x"(t) —ax(t))/b . (48)

The above ideas suffice to solve certain other types of systems of ODEs which arise in the sequel,
and there will be no need for differential operator/matrix methods.
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Example 9. In Example 2, calculate the position (x(t),y(t)) of the particle at any time t, given
that x(0) =1 and y(0) =3.

Solution. The velocity vector at time t is x’(t)i + y’(t)j. Thus, we have the system
X’ (1) = 2y(t) (49a)
y’(t) = 4x(t) . (49b)
As above, differentiating (49a) and using (49b) we get
x"(t) =2y’(t) = 8x(t) or x"(t)—8x(t)=0.

Since r2 —8 =0, we have r = 22 | and the general solution is
x(t) = c1e2‘/2—'t + c2e_2‘/§'t ,
but we need x(0) =1 and x’(0) = 2y(0) = 6 . These conditions yield

cp +¢ =1 ¢ V2
or .
242 ¢, — 2/2¢,=6 Cy V2

1 3
7t
1 3
7T

Using (49a),
y(t) =4 x’(t) = ﬁ[cleQ‘/?'t ~C2e—2ﬁ-t] ‘

As t varies, the point (x(t),y(t)) traces out a branch of the hyperbola y2 —al =1 (cf. (4) in
Example 2 with C = 7), because one can verify that [y(t) ]2 — 2[x(t )]2 = 7 . The parametric
)

Y
representation (x(t),y(t)) for this curve gives us much more information than y —ox? =1
does, since (x(t),y(t)) gives us the particle's position at any time t. o

Example 10. The weight w(t) of a certain animal grows at a rate w’(t) = Cs(t) — K , where s(t)
is the size of the animal's food supply and K, C > 0 are constants. We assume that s(0) and
w(0) are positive. If s(t) ever becomes 0, then it remains at 0. The animal has starved to death,
if w(t) drops to 0. The heavier the animal gets, the more it eats from its food supply which
ordinarily would grow at a rate proportional to s(t) in the animal's absence. Thus, while the food

supply lasts, s’(t) = As(t) — Bw(t) , for constants A, B > 0. Show that if A% < 4BC , then the
animal will eventually starve to death (after a number of diet/binge cycles), unless w(0) =

AK/BC and s(0) = K/C , in which case w(t) and s(t) are constant. (The case where A% > 4BC
is the subject of Problem 19.)
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Solution. We have the system
s’ (t) = As(t) — Bw(t) (50a)
w'(t) =Cs(t) - K. (50b)
Differentiating the first equation and using the second, we have
s"(t) — As’(t) + BCs(t) = BK . (51)

The general solution of (51) is the constant particular solution K/C plus the general solution of
the related homogeneous equation

s"(t) —As’(t) + BCs(t) = 0. (52)

Equation (52) is of the form (18), with a=1,b=—-A and ¢=BC. Thus, d = b2 — 4ac
= A2 _4BC. 1f A% < 4BC ,then d < 0 and the general solution of (51) is

s(t) =K/C + e%At[clcos(,/]H']’-t/Q) + cysin(y]d-t/2)] . (53)

1
The function in brackets can be written as (c% + c%)%os[(,/'[HT -t/2) + 6] for some constant @ (cf.
Problem 10). Thus, if ¢, and ¢, are not both zero, the solution will oscillate about K/C with the

2

11
growing amplitude (cj + c%)fe?At

, as the animal diets and indulges with greater intensity.

Eventually this amplitude will be greater than K/C (provided w(t) remains positive), and s(t)
must drop to zero at some time, say t,, during the next cycle. Thus, if the animal is still alive at

time t,, then after t;, w’(t) = —K , and w(t) drops steadily to zero. If ¢, and c, are both zero,

then s(t) = K/C , and (50a) then says that w(t) = AK/BC . Figure 6 shows that w(t) might
drop to zero while s(t) is still positive. o

20
s(0)=12.75 K=12.5 C=B=1,A=.2
18

16 w(0)=2.77 o(t) - / K
- A~ SN\ [ /°
" N4 \/

& w(t) KA

: AN
2 T\

0 4 8 12 16 20\ /24 28

Figure 6
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Summary 1.1

1. First—order separable ODEs : To solve the first—order separable ODE {(y) % = g(x) , write

it in the form f(y)dy = g(x)dx and integrate :

Jf(y)dy=[g(x) dx + C.

2. First—order linear ODEs : The general solution of the first—order linear ODE
y (%) + p(x)y(x) = q(x) , (S1)

which is in standard form, can be obtained as follows.

(a) Multiply both sides of (S1) by the integrating factor m(x) = exp“p(x) dx} and check that

4 [m(x)y()] = m(x)q(x) (s2)
(b) Integrate both sides of (52) to obtain m(x)y(x) = Jm(x)q(x) dx + C,
where C is an arbitrary constant.

(c) The general solution of (S1) is then

y(0) = M) [mix)a() ax + €]

3. Homogeneous second—order linear ODEs : To determine the general solution of the
homogeneous second—order linear ODE
ay"(x) + by’(x) + cy(x) = 0, (S3)

where a,b,c are real constants and a # 0, first find the roots r, and r, of the associated
auxiliary equation a,r2 +br+c¢c=0.
Let c, and c, denote arbitrary constants and let y(x) denote the general solution of (S4).
(i) If r, and r, are real and distinct, then y(x) = clerlX + CQer2x .
(ii) If 1, =1, =, then y(x) = c,e™ + c,xe™.

(iii) If r, = o+ if and r, = a—if, then y(x) = eax[clcos(ﬁx) + cysin(fx)] .
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4. Linear systems : To solve the linear system of ODEs
x’(t) = ax(t) + by(t) (A)
y'(t) = ex(t) + dy(t) (B)

where a,b,c, and d are real constants, with given initial values x(0) and y(0), consider the
following cases.

Case 1. If b =0, solve (A) for x(t) and substitute the solution into (B).
Then solve the resulting ODE for y(t).

Case 2. If b # 0, differentiate both sides of (A) with respect to t , and then use (B) to get
x"—(a+d)x” +(ad=bc)x=0.

Using the initial values x(0) and x’(0) = ax(0) + by(0), we first solve the above
second—order ODE for x(t), and then set y(t) = [x’(t) —ax(t)]/b by (A).

Exercises 1.1

1. Find the general solutions of the following separable equations :

(a) ¥ = xy (b) & = x(1x) () B=y?4:2-y2 -1
2 —X
dy _ 1+ dx | 2. dy x+e
(d) =21y (e) 55 + x“sin(t) =0 (f —=—=—=0
o L dt X yyeY
() Zd% — (Xt (h) x g}z{ =14 y° (i) T’(t) +3T(t)=0.

2. A radioactive substance decays at a rate proportional to the amount of the substance present.
If 64% of the substance remains after 10 years, what percentage will remain after 15 years ?

3. Torricelli's law states that (under certain ideal circumstances) fluid will leak out of a hole at
the base of a container at a rate proportional to the square root of the height of the fluid's surface
from the base. Suppose that a cylindrical container is initially filled to a depth of one foot. If it
takes one minute for three quarters of the fluid to leak out, how long will it take for all of the fluid
to leak out ? [Italian Evangelista Torricelli §1608—1647) succeeded Galileo as professor of
mathematics at the Florentine Academy, and following a suggestion of Galileo, invented the
mercury barometer.]
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4. Solve the following first—order linear equations, subject to the given conditions :

(@) y'(9) + 2900 = &, y(0) =1 (b) x'(4) — (2/Ox(t) = 1 , x(1) =9

(c) sin(x)y’(x) — cos(x)y(x) = sin(2x) , y(7/2) =0 (d) x'(t) + @ = t2 ,x(0)=0

(© 3% 4 6xy =67, y(0) =1 () L=3y+e™ , y0)=0

(8) x’(8) + x(t)cos(t) = 0, x(m) = 100 (h) ¥+ 1423y = XX y0) = 3

o dx 3x
() 4t * 264100

=0, x(—49.5)=1.

5. A population P of bacteria grows at a rate (say b-P , b > 0) proportional to its size, but it is
destroyed at a steadily increasing rate (say c:t, ¢ > 0) by a spot of mold which starts growing at
t = 0. Under what circumstances will the mold completely consume the bacteria ?

Hint. Solve P’(t) = bP(t) —ct in terms of b, ¢, P(0) and t. Under what condition(s) (on P(0),
b and c¢) will P(t) drop to zero for some t > 07

6. Find the general solution, y(x), of the following second—order homogeneous linear ODEs.

(a) y"=0 (b) y"-3y=0 (c) y"+3y=0

(d) y'+y =0 (e) y" 3y’ =0 (f) 4y" +3y" +5y =0
(g) 2y" +5y" +2y=0 (h) y" -6y’ + 13y =0

(i) y" -4y’ +4y=0 () y"+10y" +25y=0.

7. Find the particular solutions y(t), meeting the given initial data, of the following second—order
homogeneous linear ODEs.

() y"—=3y’ +6y=0; y(0)=1,y'(0)=2 (b) y"—4y’ +4y=0; y(0)=0,y’(0) =1
() y"+y=0;y0)=a,y’(0)=b (d) y'-y=0;y(0)=a,y (0)=>b
(e) 5y"+8y’ +5y=0; y(0)=0,y(0)=1 (f) 5y" +8y"+5y=0; y(0)=1,y’(0)=0.

8. (a) Show that if yl(x) and yZ(x) are solutions of the homogeneous linear ODE
a(x)y" + b(x)y” + c(x)y = 0, then the superposition c,y,(x) + cyy,(x) is also a solution.

(b) If a(x), b(x) and c(x) are continuous with a(x) never zero, then the ODE in part (a) has a
unique solution y(x) with given values for y(x,) and y’(x,) (cf. [Simmons, Section 57]).

Assuming this, show that no solution of this ODE can have a graph which is tangent to the x—axis
at some point, unless the solution is identically zero.
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9. (a) If ar? + br + ¢ =0 has only one root (of multiplicity 2) r = —b/2a , show that f(x)e™ is
a solution of ay" + by’ + cy =0, if and only if f"(x)=0.

X _ )X
(b) For distinct numbers r, and r, observe that lim &———%— = xe"*.

r,or, 12 7 T
How is this observation related to the result in part (a) ?
10. (a) Show that any complex number z = x + iy can be written in "polar form" rela , where
1
r=|z| = [x2 + y2]7 and @ are the polar coordinates of the point (x,y) in the Cartesian plane.

(b) For real x, y and w, note that xcos(wt) + ysin(wt) is the real part of the product
(x + iy)(cos(wt) — isin(wt)) = rel%e ¥, In view of this show that

xcos(wt) + ysin(wt) = rcos(wt — §) = rsin(wt — 8 + 7/2).

0 n

11. (a) By setting x = 0 in the formula e = z IZTT , 2z =x + iy, and by using the series

n=0 """
expansions for cos(y) and sin(y), verify that " = cos(y) + isin(y) .

(b) If r, = a+ if and 1, = a — if , verify that 4[e"* + 2% = e®cos(Ax) and
—4ife"* — &%) = e®sin(px).
(c) Use the definition g; [f(x) + ig(x)] = f'(x) + ig’(x) and the formula
elatif)x _ qoxifx _ e®{cos(fx) + isin(fx)]
to show that g; e™® = re™  where r = a +if.

(d) Use part (c) to verify that the function y(x) defined by (23) (see also (21) and (22)) satisfies
the differential equation (18).

12. Find the constants ¢, and ¢, in (35) and (36) such that x(0) = x, and x’(0) =0.

13. Suppose that in Example 7 (with LRC # 0), the voltage source is alternating, say V(t)
= sin(wt). For what value of w is the amplitude of i(t) the greatest, for large t ?

Hint. In the case of variable V(t), the right side of (39) is replaced by V’(t). Show that any
solution of the related homogeneous equation approaches 0 as t - w (such a solution is called
transient). To find a nontransient particular solution, apply Example 8, with f(t) = V’(t)
= w-cos(wt), noting that A is w.
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Remark. If V(t) = Voe“"t and I(t) = Ioei""t for complex constants V, and I, , then the
complex number I,/V, is called the admittance and it is usually denoted by Y(w) since it

depends on w, while Z(w) = [Y(w)]_1 is called the impedance. The problem is to determine the
"low impedance resonance" w, which makes |Z(w)| smallest.

14. For the system (46), we showed that x(t) must satisfy x" —(a + d)x’ + (ad —bc)x = 0.
Show that y(t) must also satisfy y" — (a + d)y’ + (ad — bcgy =0.
15. Solve the following system subject to the given initial data

x’(t) = x(t) +y(t)  x(0) =1

y'(t) = —x(t) +y(t)  y(0)=0.

Draw a rough sketch in the xy—plane of the solution curve (x(t),y(t)) as t varies.

16. Consider the system (46). If (a—d)? + 4bc # 0, then show that any complex solution
(x(t),y(t)) of the system must be of the form

t ot

x(t) = cler1t +ce and y(t) = dlerlt + de'2”

where ¢, ¢y, d;, dy are complex constants and 1, and r, are the (possibly nonreal) roots of
12— (a+ d)r + (ad — bc) = 0. What happens if (a—d) + 4bc = 0 ?

Hint. See Problem 14.

17. Solve each of the following systems subject to the given initial data :

RS o SR
LI S O 5
O gTAL e

18. For any complex number z, we define the hyperbolic sine and cosine by

sinh(z) = §(e? —¢ %) cosh(z) = e® +e79).
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(a) Verify that cosh’(z) — sinh®(z) = 1 .
(b) For a real variable x, show that g—xsinh(x) = cosh(x) and g;cosh(x) = sinh(x) .

(c) For a real variable y , check that sinh(iy) = isin(y) and cosh(iy) = cos(y) .

(d) Define sin(z) and cos(z) for any complex number z, by allowing y to be complex in (c). Check
that sinz(z) + cosQ(z) =1.

19. In relation to Example 10 , assume that A2 > 4BC in each of the following parts.

(a) If the animal does not starve to death first, show that its weight eventually grows at an
exponential rate, unless the animal maintains the constant weight AK/BC .

(b) Explain intuitively why it is possible to choose positive initial values for w(0) and s(0) such
that the animal starves to death.

(c) Give a concrete example to prove your claim in (b).

20. By completing the following steps, show that the general solution of a second—order
homogeneous linear equation ay" + by’ + cy = 0 [where a,b and c are constants (a #0) ; see,
however, the final remark after step (f)] is of the form c¢,y,(x) + ¢yy5(x) , where y,(x) and ¥o(X)

are any two linearly independent solutions (i.e., neither is a constant multiple of the other). We
assume that all functions under consideration here have continuous second derivatives everywhere.

(a) Show that two functions f(x) and g(x) (with g(x)/f(x) or f(x)/g(x) differentiable) are
linearly dependent on some open interval I, if and only if their Wronskian function Wif,g](x),
defined as f(x)g’ (x) — f’(x)g(x) , is zero for all x in I. [Jozef M. Hoene—Wronski (1778—1853)
was a Polish—born, egocentric mathematician and metaphysician. Wronski became later a French

citizen. He is best known for the determinants such as ’f, g, ’ = fg’ —{’g , which he used in his
"highest law" of mathematics. The term "Wronskian" was coined by Thomas Muir around 1882.]

(b) Show that if y(x) and z(x) are any solutions of ay" + by’ + cy = 0, then Wiy,z|(x) is a
solution of aW’(x) + bW(x) = 0. Thus W]y,z](x) = Cexp(—bx/a) , for some constant C which
depends on the choice of solutions y and z. (This is Abel's formula.)

(¢) Conclude from (b) that if W(y,z](x) = 0, for some x, then Wiy,z](x) =0 for all x .

(d) In (b) and (c), let z(x) = dyy,(x) + dyyy(x) for constants d; and d, (a solution, by
Problem 8(a)). Show that W(y, dy; + dyy,](x) = d;Wly,y,l(x) + d,W[y,y,)(x) . Explain why
there must be some constants d; and d, (not both zero), such that d,;W{y,y,](x) + dyW[y,y,l(x) =

0 for some particular x.

(e) Conclude from (c) and (d) that there are constants d; and d, (not both zero) such that
Wly, d;y, + dyy,)(x) = 0 for all x.
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(f) Conclude from (a) and (e) that y(x) = ¢’[dy,(X) + dyyo(x)] = ¢y(x) + coyo(x) for some
constants ¢’, ¢; and ¢, on any interval where y(x) is never 0. (We omit the proof of the fact
that if y(x) = ¢,y,(x) + Cyy5(x) on one interval, then the same is true everywhere.)

Remark. The same proof works in the case where a,b and ¢ are replaced by continuous functions
a(x), b(x) and c(x) , if one assumes that a(x) is never zero. Then, W[y,z] = Cexp [—J %E% dx].
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1.2 Generalities About PDEs

Let u = u(x,y,z,...) be a function of several unrestricted real variables x, y, z,... . (In the
remark below, we consider the case where (x,y,z,...) is restricted to some region.) Recall that the

partial derivative % of u, with respect to the variable x, is just the ordinary derivative of u

with respect to x, treating the other variables as constants. We use the following convenient
notation

P P

xx "~ 527 yx — Oxdy’ “xy Oyox’
The order of a partial derivative is then the same as the number of subscripts. The function u is
said to be continuous at a point p = (X;,¥4,2¢,.--) , if the values of the function can be made

arbitrarily close to u(p) by allowing the variables x, y, z,... to vary (simultaneously) only
within sufficiently small open intervals about x,, y,, 2y, ..., respectively. The function u is

continuous if it is continuous at all points p.

For a nonnegative integer k, a function u is said to be a Ck function, if every
k—th order partial derivative of u exists and is continuous.

A function is a C° function, if and only if it is continuous. The notation " u € Ck " is used to
indicate that u is a member of the set of the Ck functions. It is a standard fact that u € Ck
implies u € Ck_1 for k > 0. For a C2 function u, recall that Uyy = uyx . More generally, the

order in which one takes k or fewer partial derivatives of a Ck function is immaterial.

Remark. We have assumed above that the function u is defined for all values of the independent
variables. The function might only be defined for (x,y,z,...) in a certain region D. The regions
which we will encounter are rather simple (e.g., rectangles, strips, discs). If such a region includes
some point p of its boundary, then technically the notion of partial derivative of u at p is not
defined, unless one wishes to deal with one—sided derivatives. Let us simply say that a function u

is Ck on a region D with boundary points, if there is a ck function v, defined on a larger region
without boundary points (i.e., an open region) such that u = v at all points of D.

Definition 1. A partial differential equation (PDE) of order k > 0 is an equation involving
an unknown function u, such that k is the greatest of the orders of the partial derivatives of
u appearing in the equation.
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Definition 2. A solution of a k—th order PDE, on a prespecified region D, is a Ck function
defined on the region D such that the PDE is satisfied at all interior points of D. If no

region is specified in advance, then a solution of a k—th order PDE is a Ck function defined
on at least some nonempty open region where it satisfies the PDE.

There are many functions of several variables which arise in practice. At a point (x,y,z) at
time t, u(x,y,zt) might be any one of the following quantities : temperature, electrostatic
potential energy, gravitational potential energy, pressure, mass density, energy density,
concentration of a certain chemical, etc. . The laws of science are frequently stated in terms of
PDEs involving such functions as unknowns. One often has the problem of determining the
function u(x,y,z,t) for arbitrary t, for given information about u at time t = 0 (i.e., initial
conditions, abbreviated I.C.). Such problems are referred to as initial-value problems . In
steady—state problems, the function u is independent of t. In this case, one is often interested in
solving a PDE for u(x,y,z) in a certain region D in space, where information is given about the
behavior of u on the boundary of D (i.e., boundary conditions, B.C., are given). Such problems
are known as boundary—value problems. More generally, one often seeks a solution u(x,y,z,t) of
some PDE for points (x,y,z) in a region D at arbitrary time t > 0, subject to initial conditions
at time t = 0, as well as boundary conditions specified at each time t > 0. Such a problem is
aptly called an initial/boundary—value problem. It is important that the initial conditions and
boundary conditions be chosen in such a way that the PDE has a unique solution satisfying them.
Otherwise, one cannot meet the chief goal of predicting the relevant physical quantity represented
by wu. Mathematicians tend to be more interested in proving the existence, uniqueness and
qualitative behavior of the exact solutions of initial/boundary~value problems, while those who
apply the theory are concerned with actually finding functions which satisfy the PDE and
initial/boundary conditions, at least within experimental error. In this book, we try to adopt an
intermediate stance, believing that each camp can benefit from the considerations of the other.
Before continuing our general discussion, we-will now present some specific examples. Example 1
is lengthy, but it is well worth understanding.

Example 1 (Spherically symmetric gravitational potentials). In the Newtonian (pre—Einstein
theory of gravity, at a fixed time, the gravitational acceleration vector field (force per unit mass
is —Vu , where Vu = u i+ uyj + uk is the gradient of a function u(x,y,z), called the

gravitational potential. The function u obeys the second—order PDE

u + e +u, = 41Gp (1)

where p = p(x,y,z) is the density (mass per unit volume) of matter at (x,y,z), and G is the

%ravitational constant, G % 6.668 x 10 s 2kg L One can also interpret u in other ways,
or example, (i) as a steady—state temperature distribution in a solid with internal heat source
density proportional to p, or (ii) as an electrostatic potential whose negative gradient is the
electric field produced by a charge density proportional to p. In any case, equation (1) is known
as Poisson's equation. In the special case when p =0, (1) is better known as Laplace's equation.
Suppose that we seek a solution u(x,y,z) of Laplace's equation which is spherically symmetric in

the sense that u(x,y,z) only depends on the distance r = [x2 + y2 + z2]é to the origin (0,0,0).

In other words, u(x,y,z) = f(r) for some function f of a single variable r > 0. Using the chain
rule, we have
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1 — —
ux=g%%;(=f’(1)rx, where 1= 9 [x2+ y2+ z2]7=%r lox =xrt.
" 2 4
Then u,, = 'O ] + (@),

= () (%)) + 1 (O + ()]

= () (/) + () = (YY)

We get similar expressions for uyy and u,,- Adding these results, we obtain

U Uy H Uy, = )2+ y2 + 22+ T = (2 + 2 + )
="(r) + 2r /(1) = 0. ©)

Writing g(r) = f'(r), equation (2) becomes the separable (or linear) ODE g’(r) + 2r_1g(r) =0,

whose solution is g(r) = cr 2. Thus, f(r) = —crl oy K, where C and K are arbitrary
constants. Hence the general spherically symmetric solution of Laplace's equation is

1 —
u(xyz) = —Ch2+y2+ 2 2+ K=-Cr ' +K. 3)

If C#0 , then this solution is not defined at (0,0,0). Thus, the only spherically symmetric
solutions that are defined everywhere are the constant solutions u = K , which give rise to a zero
gravitational (or electric) field (—VK = 0). Of course, one does not expect to find any gravity (or
static electrical field) when the density p is 0 everywhere. When C # 0, we obtain a solution
defined in any region D which excludes (0,0,0). In the gravitational context, take D to be the

exterior, r > r,, of some isolated planet. Suppose that the magnitude |Vu| = f'(r) = Cr 2 of
the gravitational acceleration is known to be g at the planet's surface (e.g., for the earth
g~ 9.8 m/sec2 ~ 32 ft/sec2). Then we have the boundary condition Cr52 =gorC= grg. Thus,

u= —gr%r_1 +K and —Vu= —g(ro/r)2 e, for r>1y, (4)

where e, is the unit vector field pointing away from (0,0,0). When r < I these formulas do not
apply, since p > 0 inside the planet. (In this case we would have to solve Poisson's equation (1)
for r < ro). Since |Vu| in (4) is proportional to r_2, we have deduced the inverse—square law for
gravity from Laplace's equation. D

Remark 1 (Escape velocity). The potential difference u(w) —u(r,) = gr, is the energy (per unit
mass) required to move an object from the planet's surface to arbitrarily far reaches of space.
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Thus, ignoring atmospheric resistance, the kinetic energy per unit mass, namely %vz (v =

velocity), which is needed for a projectile to completely escape from the planet is 8r - In other

words, the escape velocity is ﬂgro . For the earth, this is about 11.2 km/sec ~ 7 miles/sec. o

Remark 2 (Spherically symmetric solutions in dimension n). In n—dimensional space, the

spherically symmetric solutions u(x,,...,x,) of Laplace's equation (ux 5, ttu =0) can
171 n'n

be found in the same way as in Example 1 (cf. Problem 6), and are of the form

P4 K, ifn>2 (5)
and
C-log(r) + K, ifn=2, (5b)

1
where r = [(X1)2 + ..+ (xn)2]7 . Regardless of the dimension, solutions of Laplace's equation are

called harmonic functions. The formulas (5a) and (5b) show that in dimension n, the magnitude
of the force —Vu (per unit mass), associated with a spherically symmetric harmonic potential, is

proportional to rl_n. In Problem 19, we prove that when n > 4 , a planet subject to such a

force cannot have a closed orbit unless the orbit is a perfect circle, a very unstable possibility. (Of
course, a wide variety of closed elliptical orbits are possible when n = 3). Thus, perhaps it is not
so surprising that the space that we live in has no more than 3 dimensions. o

Remark 3 (Other solutions of Laplace's equation). It should be mentioned that there are actually
infinitely many independent solutions (not just depending on 1) of Laplace's equation in any

dimension n>1 . For example, consider u = x,y, x2—y2, 2xy, x3—3xy2, e“sin(y),... .

Chapter 6 is devoted mainly to Laplace's equation in dimension 2 : u__ +u__ = 0. There, we
XX yy

will consider the boundary—value problem (among others) of determining solutions u of Laplace's
equation on a plane region D, given the values of u on the boundary of D. This problem has
applications to steady fluid flow, electrostatics and steady—state heat theory in which there is no
dependence on the spatial variable z. One reason for the appearance of Laplace's equation in so
many contexts is that it is the only homogeneous, linear (cf. Definition 3 below) PDE which
involves only partial derivatives of orders strictly between 0 and 4 and retains its form under
translations and rotations of coordinates. o

Example 2 (Heat problems). Suppose that u(x,y,z,t) is the temperature at time t at the point
(x,y,z) in a homogeneous heat conducting solid without heat sources. Under natural assumptions,
one can show that u satisfies the following second—order PDE called the heat equation:

u, = k(uxx + Uy +u,), (6)

where k > 0 is a constant which measures the heat conductivity of the material in the solid.
Note that in the case of a steady—state temperature distribution, where u does not depend on t,
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the left side u, of (6) vanishes, and thus the steady—state temperature u(x,y,z) satisfies Laplace's

equation. In Chapter 3, we will derive and study the heat equation in the simpler
one—dimensional setting, where u depends only on x and t . One example of the
initial/boundary—value problems which we will consider is

DE. u 0<x<1,t20

t = kuxx
B.C. u(0t)=0 u(l,t)=0 (7)
LC. u(x,0) =f(x) .

Here u(x,t) is the (uniform) temperature of the cross section at distance x along a solid rod
which extends from x = 0 to x = 1. We assume that the rod is covered with heat insulation
except at the end cross sections. The B.C. u(0,t) =0 and u(l,t) = 0 state that the ends of the
rod are to be maintained at temperature 0 (e.g., the rod is placed in ice water). The L.C.,,
u(x,0) = f(x), tells us that, at t = 0, the rod has the given temperature distribution f(x). For
example, suppose that f(x) = sin(mx). One can easily verify that

u(x,t) = ™ Kbin(rx) (8)
solves the PDE (7) and the initial condition u(x,0) = sin(7x), as well as the boundary conditions.
We expect that the rod's temperature will approach the temperature (zero) of its icy environment.

Indeed, the factor exp[—7r2kt] in (8) tells us that, as t - o , the temperature of the rod
approaches 0, and it does so more rapidly for larger values of the heat conductivity k. More
generally, choosing f(x) = sin(n7x) for an arbitrary positive integer n, we get the solution

u(x,t) = exp[—n27r2kt]sin(n7rx) . Note that the rate at which this solution approaches 0 as t - o
is faster for larger values of n. Physically, this is so, because the rate of heat transfer from hot to
cold regions is greater when these regions are separated by smaller distances, which is the case
when n gets larger. Associated with the heat equation, there are many other types of boundary
and initial conditions which will be explored and solved in Chapter 3. o

Example 3 (Wave problems). If u(x,y,z,t) is the deviation of air pressure (from its normal value)
at (x,y,z) at time t, then (to a good approximation) u satisfies the wave equation

_ 22
u, =a(u +u

tt + uzz) ’ (9)

yy

where a is the speed of sound. We assume that the elevation is near sea level, so that a can be
taken to be the constant 1087 ft/sec . For another interpretation of (9), the scalar potential (as
well as the components of the vector potential) of a possibly time—dependent electromagnetic field
in vacuum also satisfies the wave equation, where a is the speed of light in a vacuum %z 186,000

mi/sec & 2.998 x 108 m/sec). Note that when u is time—independent (e.g., when u is an
electrostatic potential), (9) reduces to Laplace's equation, since u, = 0. Returning to the case

where u measures air pressure deviations, suppose that we wish to find possible sounds
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(variations of pressure) inside a closed box. As one nears a wall of the box from inside, one finds
that the derivative of the pressure in the direction normal (perpendicular) to the wall approaches
0. This is because wind blows in the direction of the negative pressure gradient,
—Vu = uxi + uyj + uzk. Since there can be no wind velocity component normal to the wall, the

pressure gradient has no normal component. So, for thebox 0 < x<A,0<y<B,0<z<C, we
have the following B.C. :

ux(O,y,z) =0, uy(x,O,z) =0, uz(x,y,O) =0

u(Ayz) =0, u(xBz) =0, u(xyC)=0.

(10)

There is a large family of solutions of (9) which satisfies the B.C. in (10). For any triplet (m,n,p)
of integers, let »(m,n,p) = %a[(m/A)2 + (n/B)2 + (p/C)2]%. Then,

u(x,y,z,t) = sin[27¥(m,n,p)t]-cos(mmx/A)-cos(nry/B)-cos(pnz/C) (11)

satisfies the PDE (92 and the boundary conditions (10) (cf. Problem 9). Moreover, if in (11) we
replace the leading factor by cos[27v(m,n,p)t], then we get another solution. Notice that, at
points in the box, the pressure (11) oscillates through #(m,n,p) cycles per unit time. Hence,
v(m,n,p) is called the frequency of the solution (11). If A < B < C, the lowest possible nonzero
frequency (called the fundamental pitch) is I/(S0,0,I = 4a/C . Taking the box to be an enclosed
shower stall with a 7 ft height (and smaller dimension for the base), we have 4a/C = 1087/14
~ 78 cycles per second (or 78 Hertz), which is the pitch of a rather low voice. o

Remark. In Chapter 5, we concentrate on the one—dimensional wave equation

)
tp = @ Uy (12)

u
for a function u = u(x,t). At a fixed time t, u(x,t) can be interpreted as the transverse
displacement at position x of a vibrating string which is stretched along the x—axis when at rest.

Here a2 is T/p, where T is the tension at rest and p is the mass per unit length of string. In
Chapter 5, we provide a derivation of (12) using Newton's second law, and we solve numerous
initial/boundary—value problems for the vibrating string. In contrast to the heat equation, in
order to determine a unique solution of 512), one needs to know not only the string's initial
displacement u(x,0), but also the initial rate of change ut(x,O). A simple example of an

initial/boundary—value problem for the string is

_ .2
D.E. Uy = 27U, 0<x<1,t2>0

B.C. u(0,t) =0, u(1,t)=0 (13)
I.C. u(x,0) = 1{(x), u,(x,0) = g(x) .
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The B.C. of (13) state that the ends of the string are held fixed on the x—axis at 0 and 1.
Intuitively, the motion of the string is determined only if both the initial transverse displacement
f(x) and the initial transverse velocity g(x) are given. For example, if f(x) = sin(7x) and
g(x) = sin(37x), the theory of Chapter 5 yields the solution

u(x,t) = cos(rat)sin(x) + (1/37a)sin(3rat)sin(3rx). o (14)

Linear PDEs, Classification, and the Superposition Principle

All of the PDEs in the above examples are linear. The notion of linearity for PDEs is
strictly analogous to linearity for ODEs. Recall that the general n—th order linear ODE is an
ODE which is expressible in the form

a,(xX)y ™+ L+ a(x)y" + a(x)y’ + ag(x)y = f(x) (15)

where a4(x), a,(x), ..., a,(x) and f(x) are given (possibly constant) functions of the independent
variable x. In particular, terms involving y2 or higher powers of y (or more complicated
functions of y or its derivatives), which cannot be eliminated, will make an equation nonlinear.

For example, the equations y’ + y2 =0, (y")_1 - x'log}y) =x and yy’ =1 are nonlinear.
We say that the left side of (15) is a linear combination of y, y’, y", ... with coefficients a,(x),

a,(x), ag9(x), ... , which are given functions of the independent variable x.

Definition 3. A linear n—th order PDE is a PDE which can be put in the following form.
The left side of the equation is a linear combination of the unknown function u and its
partial derivatives (up to order n) with coefficients which are given functions of the
independent variables. The right side must be some given function f of the independent
variables. If the function f is identically zero, then the linear PDE is called a
homogeneous PDE.

Example 4. The general second—order linear PDE for an unknown function u = u(x,t) is

q(x,t)uxx + r(x,t)uxt + s(x,t)utt-k a(x,t)u, + b(x,t)ut + c(x,t)u = f(x,t) , (16)

where q,r, s, a, b, c and f are given functions (possibly constant) of x and t, with q, r, and s
not all zero. If f=0, then (16) is the general second—order homogeneous linear PDE. o

Example 5. The one—dimensional heat equation u = kuxx can be put in the form (16) with

q=—k and b =1, and with zero values for all other coefficients and f. Thus, the heat equation
is a homogeneous linear PDE. When heat sources or sinks are present, they can often be
represented by the terms cu and h(x,t) in the inhomogeneous heat equation
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—ku  +u +cu= h(x,t), k>0, (17)

which is again a special case of (16). We call (17) the generalized heat equation. o

Example 6. As another instance of (16), in the case of a vibrating string with a transverse applied
force density proportional to —cu(x,t) + F(x,t) , we obtain the one—dimensional inhomogeneous
Klein—Gordon equation

2
—a"u, +u, +cu= F(x,t) , a>0 . (18)

If F=0 and ¢ =0, (18) reduces to the (homogeneous) wave equation —aLQuXX +u, =0 or
(12). We refer to (18) as the generalized wave equation. o

Example 7. Usually one does not use t as an independent variable in Poisson's equation (cf. (1)),
since t usually connotes time, whereas Poisson's equation is used in a steady—state context.
However, using t unconventionally, we obtain Poisson's equation U Uy = g(x,t) in

dimension 2. More generally (but still as a special case of (16)), we have the equation

2
a“u, +u, +eu= g(xt) , a>0 . (19)

If t is replaced by y (so that there will be no way of confusing t with time), then equation (19) is
known as the inhomogeneous Helmholtz equation in dimension 2. Among other things, it is used in
the analysis of vibrational modes of the skin or a drum. Roughly speaking, the constant a differs
from 1 if the drum has a tension that is higher in one direction than in the other. We refer to (19)
as the generalized Poisson/Laplace equation. o

It might appear that if we were to concentrate only on the "physical" equations (17),(18)
and (19), then we would not make much progress in the study of the more general equation (16).
However, in the case where the coefficients in (16) are constants, we have the following result,
whose proof is given in Appendix A.1.



Section 1.2  Generalities about PDEs 31

The Classification Theorem. Consider the second—order linear PDE

aU§£+bU§T+ cUTT+dU£+eUT+kU=F(§,r), (20)

(a2+b2+c2 # 0), where the unknown function U = U(§,7) is 02 and a, b,c, d, eandk
are given real constants and F(&,7) is a given continuous function. Then there is a
change of variables of the form

x=af+ pfr t=-B{+ ar
(21)
u(x,t) = p lexp(7€ + 6r)U(E,7)

where a, f3, 7, 6 and p (p # 0) are real constants with o+ ﬁ2 =1, such that (20) is
transformed into exactly one of the following forms :

1. the form of the generalized wave equation (18), if b2 — dac > 0, in which case (20) is
called hyperbolic ;

2. the form of the generalized Poisson/Laplace equation (19), if b2 — dac < 0, in which
case (20) is called elliptic ;

3. the form of the generalized heat equation (17), if b2 — dac = 0, and 2cd # be or
2ae # bd in which case (20) is called parabolic ;

4. the equation u__ + cu = g(x,t), if b®—4dac =0, 2cd = be and 2ae = bd, in which
case (20) is called degenerate.

In other words, aside from the degenerate case, equation (20) with constant coefficients is
only a disguised version of the generalized wave equation, Poisson/Laplace equation or heat
equation, depending on whether (16) is hyperbolic, elliptic or parabolic respectively. While it is
good to know the Classification Theorem, it is perhaps not essential to become a virtuoso in
performing the required change of variables, because when PDEs are derived from physical
considerations in natural coordinates, almost always they are already found to be in a simple
standard form. If it is ever needed, the method for the transformation of variables can be gleaned
from the proof of the Classification Theorem in the Appendix A.1. Perhaps, the most significant
facts to emerge are the following :

(i) Every equation of the form (20) has a physical interpretation, when rewritten in terms of
appropriate variables.

(ii) In the general study of (20), there is really no loss of generality in confining one's attention to
(17),(18),(19) and the degenerate case which is addressed in Section 1.3 .
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The Superposition Principle

A very important fact concerning linear equations is the superposition principle which we
will now describe. By definition, a linear PDE can be written in the form L[uf = f, where L[u]
denotes a linear combination of u and some of its partial derivatives, with coefficients which are
given functions of the independent variables. Since L[u] has this form, if we were to replace u
by u, + u, the result, namely L[u, + uy], will be the same as L[ul] + L[u2]. The underlying

reason for this is the fact that a partial derivative of the sum of two functions is the sum of their
partial derivatives taken separately. More generally, for any constants c, and ¢, ,

As a direct consequence of (22), we have

The Superposition Principle (or Property). Let u, be a solution of the linear PDE
Lu] = f, andlet u, be a solution of the linear PDE L[u] = f, . Then, for any constants
¢, and ¢, , CU; + Cyu, is a solution of L[u] = c,f, + c,f, . In other words,

Licu; + couy) = ¢ f) + cf, . (23)

In particular, when f, =0 and f, =0, (23) implies that if u, and u, are solutions of the
homogeneous linear PDE L[u] = 0, then c,u; + c,u, will also be a solution of L[u] = 0.

Proof. By (22), L[c,u; + cyuy] = ¢,L[u;] + ¢,L[uy] = ¢,f; + ¢of, . ©

Example 8. Observe that u,(x,y) = x3 is a solution of the linear PDE Uy — uy = 6x, and

u,(x,y) = y2 is a solution of u - uy = —2y. Find a solution of gy ~ Uy = 18x + 8y.

Solution. Here L[u] =u - ug, fi(x,y) = 6x and fy(x,y) = —2y. Note that 18x + 8y
= 3f,(x,y) — 4f,(x,y) , and thus ¢; =3 and c, = <4 . The superposition principle then tells us

that 3u,(x,y) —4uy(x,y) (or 3x3 — 4y2) will be a solution of gy ~ Uy = 18x + 8y, as can be
easily checked directly. o

Example 9. Observe that u,(x,t) = sin(t)cos(x) and uy(x,t) = cos(3t)sin(3x) are solutions of

tt = Uyy By applying the superposition principle, find infinitely many other

solutions, none of which is a constant multiple of any other.

the wave equation u
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Solution. Note that can be written in the form of an homogeneous linear PDE

u

u, = 1u
tt XX
tt ~ Uy = 0. According to the superposition principle, for any constants c, and c, ,

¢,sin(t)cos(x) + c,cos(3t)sin(3x)

is a solution. For each choice for ¢, and c¢,, we obtain a different solution (cf. Problem 14). By
choosing c; =1 and letting c, vary, we obtain an infinite family of solutions, none of which is a
constant multiple of any other. o

A great difficulty in the study of nonlinear equations is the typical failure of the superposition
principle for such equations. This failure makes it difficult to form families of new solutions from
an original pair of solutions, as the next example illustrates.

2

Example 10. Consider the nonlinear first—order PDE uu, — u(ux + uy) +u° =0 or

y

equivalently (ux —u)(u, —u) = 0. Note that we have two solutions, namely e~ and e’.

y
However, show that c,e* + c,e¥ will not be a solution, unless ¢, = 0 or ¢y, = 0.

Solution. Defining N[u] = (uX ~u)(u ) , observe that for any ¢! functions v and w

y U
N[v+w]=(vx+wx—v—w)(v +w —v-—w)

= N[v] + N[w] + (vy —v)(w, —w) + (v

This computation shows that N[v + w] # N[v] + N[w] in general, due to the nonlinearity of the
PDE. Taking v = ce® and w = c,e’ we obtain Nlc,e® + ce¥] = Nlc,e¥] + Nicye']

x—v)(wy—w) .

+ (—c,e¥)(—ce¥) = c1c2ex+y. Thus, N[c,e® + ¢,e’] =0 onlyif ¢, =0 or ¢,=0. O

Although all of the physically relevant PDEs which we have discussed so far are linear,
there are many examples of nonlinear PDEs which are of great importance in physics. For
example, Einstein's theory of relativity describes the force of gravity in terms of the curvature in
the geometry of space—time. The Einstein field equations form a system of nonlinear PDEs.
Because of the nonlinearity, solutions of these field equations are difficult to obtain, except in
situations where several degrees of symmetry are assumed. Nonlinearity is also found in the PDEs
of fluid mechanics, optics and elasticity theory. Nonlinear equations are often approximated by
linear equations which hopefully yield solutions that are close to the corresponding solutions of the
nonlinear equations. However, many interesting features of the original equations can be lost in
the process, and gross errors can arise. In the next example, we illustrate these issues with the
nonlinear minimal surface equation whose solutions yield soap film surfaces.
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Example 11. Imagine a soap film surface which remains after a (possibly nonplanar) loop of wire
is dipped in a soap solution. Due to the surface tension of the film, it will form a surface of least
area spanning the loop (i.e. a minimal surface). If the surface is the graph z = u(x,y) of some

function u, defined on a bounded region D, then its area is ” 1+ ui + ug)% dxdy. In 1760,
D

Joseph Louis Lagrange showed that if u(x,y) minimizes this integral among all functions with the
same values on the boundary of D, then u must satisfy the (nonlinear) minimal surface equation

—2uuu,_ =0 . (24)

2 2
1 =
Ju,, + (1 + ux)uyy Uy Uy

(1+uy XX

If one were to assume that the surface z = u(x,y) is nearly level, then u, and uy would be small

(say compared with 1), and u)2( , ug

appear that equation (24) is reasonably approximated by Laplace's equation

and u,u_ would be very small. In this case, it would

u .+ Uy = 0 . (25)

Indeed, if the wire loop is nearly planar, and is held nearly level, then the minimal surface
formed will be close (in a sense which is rather difficult to make precise) to the graph of the

corresponding solution of Laplace's equation. Troubles arise when the supposition ui + u2 <<1
turns out to be incorrect. As an illustration, we compare the solutions of (24) and (25) in the case

where u is assumed to have the form u = f(r) , r= [x2 + y2]J’L. By the computation done in
Example 1, it is found that (24) and (25) become

f'(r) + /(1)1 + [ (1)) = 0 (26)
rf'(r) + /(r) =0, (27)

respectively. If we set g = f’ , then both (26) and (27) are separable first—order ODEs. The
corresponding general solutions of (26) and (27) are, respectively,

Clog(y[r + (12— C%)) + K

—

Py
G

N
I

2

These solutions agree well for large r, where {’(r) ~» f’(r) ~ 0 (i.e., where u)z( + uy << 1).

However, I(r) and f(r) behave differently as r | C, and ¥(r) is undefined for 0 <r < C,
whereas f(r) is defined for all r > 0 . In Figure 1 below, we have chosen C > 0 and
K = —Clog(C/2) so that (C) = 0. The graph of u(x;y) = 1'([x2 + y2]%) is a minimal surface
obtained by revolving the graph of the curve z = f(r) about the z—axis. By joining the curve
z=1f(r) with z = —(r), and revolving, we obtain a complete minimal surface running from
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z=-w t0 z=+w. The portion of the surface between the two circles at z=a and z=Db is
the soap film obtained by dipping those circles (say, wires) in soap solution, provided that |b— a|

is not too large (cf. Problem 20). The curve z = #I(r) is the same as the curve r = C-cosh(z/C),
and the complete minimal surface revolution is called a catenoid. The catenoids obtained in this
way vary in size but not in shape. The minimum distance of the film to the z—axis is C . If we
were to believe the validity of the Laplacian approximation, we might erroneously conclude that
the film will continue to approach the z—axis, as z = f(r) does. The reason for the failure of the

approximation is that f’(r) = [u)2( + ug]% does not remain small as r | C , but approaches
infinity. o

Figure 1

Remark (Black holes). A very similar phenomenon happens when the nonlinear Einstein field
equations are used to compute the spherically symmetric geometry for a gravitational field about
a ball of mass M and radius ry . In Example 1, the spherically symmetric Newtonian gravitational

potential was found to be C/r + K, and it was derived from (the linear) Laplace equation. This
formula for the potential is valid as long as r > ry, no matter how small or dense the ball is.

However, it is found that Einstein's nonlinear description of the space—time geometry, in terms of
the variable r and "time" t , can break down before r reaches r;. Indeed, if the radius of the ball

of mass M is less than the so—called Schwarzchild radius r, = 2GM/c2 (where c is the speed of

light and G = 6.668 x 10711 m‘gs’akg_1 is the gravitational constant), then the representation
of the solution of the field equations becomes undefined as r | Iy - In place of the ball, we then

actually have what is known as a black hole. As with the soap film, the solution of the Einstein
field equations can be mathematically continued, if one changes coordinates from r and t to new
variables which can be related to r and t via hyperbolic functions. This continuation of
space—time goes inside the throat of the black hole and into "another universe" which is, however,
inaccessible by any ordinary means. Indeed, any object that enters the black hole and travels at a
speed not greater than ¢ will meet a singular boundary of space—time, never reaching the other
universe or returning to our own. These interesting features of Einstein's theory are lost in the
linear Newtonian theory which approximates Einstein's theory in less extreme circumstances. o
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Operators and Green's Functions

A useful approach to solving linear initial/boundary—value problems for PDEs or ODEs is
based on the construction of so—called Green's functions. This concept originated in the memoir,
"Essay on the Application of Mathematical Analysis to the Theory of Electricity and Magnetism",
published in 1828 by the English mathematician George Green (1793—1841). Green introduced
the term "potential" and used what is known now as Green's theorem, to study the properties of
electric and magnetic potentials. Here we briefly explain the concepts of linear differential
operators, Green's functions and integral operators.

An operator is a prescription which assigns to each suitable function some new function.
For example, suppose that L[u] = f is a k—th order linear PDE. The operator which assigns, to

each Ck function u, the new function L[u], is an example of a differential operator. The concept
of such an operator is independent of any particular choice of u, in the same sense that the concept
of a certain function, say log(x), is independent of any particular choice of x. Just as one might
prefer to speak of the log function, without any reference to x, it is fashionable to speak of partial
differential operators L without any reference to u. For example, the Laplace operator, say in
dimension 3, is denoted by

A= oA (28)

=0+ 4% .
o o ot

The operator A assigns to each ¢? function u, the new continuous function A[ufj or simply
Au, which is u .+ uyy +u, . Thus, Poisson's equation is Au = f, where f = f(x,y,z) is a

given function. To solve an equation such as log(x) = C for x > 0, recall that we simply
operate on both sides by the inverse function exp , obtaining x = exp[log(x)] = exp(C). To solve

Poisson's equation, one might attempt to find the inverse operator, say A_l, of the Laplace
operator. Then we would simply apply A7l to both sides of Au = f , obtaining the solution
u=A"1 [f]. It turns out that the inverse of the Laplace operator (on a certain class of functions)
is the operator which operates on the function f to produce the new function ATl [f] defined by

A f)(xy,2) = m Glxy 2%,y 2)%7.7) dxdydz , (29)
where
Glxy. %3 2) = - 4= [(x0° + (5) + 2. (30)

Observe that when the integration with respect to X, y and z is performed, we are left with a
function of x, y, and z, which is by definition A_l[ﬂ. If the function f is C1 and is zero
outside some ball, then armed with the appropriate tools, one could prove that A_l[f] is a

solution of A[u] = f . The operator A " is an example of an integral operator, i.e. an operator
B of the form

BlfI(p) = [8(pia)f(@) dq - (31)
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Here p and q range over possibly multidimensional domains. When the solution of an
initial/boundary—value problem for a PDE (or ODE) is expressed in the form of an integral
operator (e.g., as in (292) the function g(p,q) is called a Green's function for the boundary—value
problem. In the case of Poisson's equation (roughly speaking, with the boundary condition that

solutions tend to zero at infinity), the Green's function is G(x,y,z;x,y,z) in (30). Once the correct
Green's function is found, the problem is reduced to computing the integral (31) for arbitrary p.
Such a computation can be quite difficult, and numerical methods might be needed. Of course,
when possible, one might prefer an algebraic formula, of the solution of a particular
initial/boundary—value problem. For the most part, this is what we strive for in this book.
Nevertheless, in general circumstances, Green's functions and their associated integral operators
provide a tidy way of presenting solutions which we will exploit occasionally. It should be noted
that integral operators (31) are linear, in the sense that Bc,f, + c,f,] = ¢,B[f;] + ¢,B[f,] , and

consequently they can only serve as inverses of linear operators. In particular, Green's functions
and their integral operators cannot be used to express solutions of nonlinear PDEs !
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Summary 1.2

1. Ck functions : For a nonnegative integer k, a function u is said to be a Ck function, if every
k—th order partial derivative of u exists and is continuous.

2. Linear PDEs : A linear n—th order PDE is a PDE of the form L[u] = f , where L[u] is a
linear combination of the unknown function u and its partial derivatives (up to order n), where
the coefficients and f are given functions of the independent variables. If f = 0, the PDE is
called homogeneous.

3. The Classification Theorem : The Classification Theorem asserts that every second—order
linear PDE (cf. (20)) with constant coefficients, where the unknown function has two independent
variables, can be transformed (by a change of variables) into exactly one of the following forms
(where u = u(x,t)):

(i) the form of the generalized wave equation

—azuxx +u, +eu= F(x,t) , a > 0, (hyperbolic case) ;

(ii) the form of the generalized Poisson/Laplace equation

azuxx +u, +ou= g(x,t) ,a> 0, (elliptic case) ;
(iii) the form of the generalized heat equation

—ku, +u +cu=h(xt), k>0, (parabolic case) ;

(iv) the form

u, + cu = g(x;t) (degenerate case).

4. The superposition principle : The superposition principle (or property) asserts that if u, and
u, are solutions of the linear PDEs L[u] = f, and L[u] = f, , respectively, then for any constants
¢, and ¢y, cuy + Cyuy is a solution of L[u] = cf; + cyfy . In other words, Lic,u; + cyu,
= ¢,L{u,] + ¢,L[uy).

5. Green's functions : Green's functions and their associated integral operators are used to
represent solutions of initial/boundary—value problems for linear PDEs (or ODEs).
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Exercises 1.2

1. Show that the given functions satisfy the accompanying PDE.
a) u(xy)=x4+y; uxx+uyy=0
b) u(xy) = f(x) + g(y) ; u =0, where the functions f and g are assumed to be c?.

c) u(xy) = f(x+y) + g(x-y) ; v, — Uyy = 0.

Uy

= i h . =
(x,y) = sin(x)cosh(y) ; uxx+uyy 0

f) u(x,t) = sin(x—ct) ; Uy — c2uxx =0 , where c is a real constant.

)
~
=

(

(

( )

(d) u(xt)=x*+2t 5 u, =
( )

(

2. Verify that the following functions are solutions of Laplace's equation u, + Uy = 0.
3

(a) u(xy) = e¥cos(x)  (b) ulxy) =3Py —y
(©) u(xy) = log(x> + y%), x2+y>#0
(d) u(xy) = eycos(x) + 3x2y —y3 + log(x2 + y2) , x2 + y2 #0.

3. Show that the following solve the heat equation u, —ku = 0.

—a%kt
e cos(ax) , for any real constant a.

(1/vRE)expl—x”/(4kt)] .

(2) u(xt) = € Ksin(x) (b) u(x,t)
(©) u(x,t) = ecosh(x) (d) u(x.t)

4. Show that the following are solutions of the wave equation u,, — c2uxx =0, for some c.

(a) u(x,t) = 2 + 2 (b) u(x,t) = cos(ax)sin(bt), for any real constants a, b.
(¢) u(x,t) = log(x + t) + (x=1)% (d) u(x,t) = f(x+2t) + g(x-2t), for any C? functions f and g.

5. Give the orders of the following PDEs, and classify them as linear or nonlinear. If the PDE is
linear, specify whether it is homogeneous or inhomogeneous.

(a) x2uxxy + y2uyy —log(1 + y2)u =0 (b) u + w1 (c) u
(d) uuxx+uyy—u=0 () u +u =3u.

x —
Xny+e ux-y

6. Derive formulas (5a) and (5b) for the most general spherically symmetric solution of Laplace's
equation in dimension n .
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7. (a) Find a solution of Laplace's equation U + Uy = 0 of the form u(xy)

= A + Bxy + Cy2 (A2+B2+C2 # 0) which satisfies the boundary condition u(cos(#4),sin(§))
= cos(26) + sin(26) for all points (cos(6),sin(4)) on the unit circle, K2+ y2 =1.

(b) Show that the graph of any solution u(x,y) of Laplace's equation of the form in (a),
intersects the xy—plane in a pair of perpendicular lines through (0,0).

8. (a) Show that wu(xt) = exp[—n27r2kt]sin(n7rx) solves the initial/boundary—value problem
given in equations (7) with 1.C. f(x) = sin(nmx), if and only if n is an integer.

(b) In how many points does the graph of sin(nwx) intersect the x—axis between 0 and 1 ?
(c) Give a physical reason for why the temperature approaches 0 faster if n is larger.

9. Let u(x,y,z,t) be the solution (11) in Example 3 on wave problems.

(a) Show that u, = —[27r1/(m,n,p)]2u y Uy, = —(m7r/A)2u, etc. . Use these facts to deduce that
u(x,y,z,t) satisfies the wave equation (9).

(b) Verify that u(x,y,z,t) meets the B.C. (10).

(c) The set of points (x,y,z) inside the box, where u(x,y,z,t) is always zero, is the union of a
number of intersecting rectangular surfaces which divide the interior of the box into a number of
compartments. How many compartments are there ?

(d) At what points in the box does the pressure experience the greatest changes ?

10. Refer to Example 3, and assume that the box is cubical with A=B=C=1 and a=2.

(a) By giving an example, show that it is possible for two independent solutions of the form of
u(x,y,z,t) in (11) to have the same frequency.

(b) List the ten lowest positive distinct frequencies for the box.

11. (a) Show that if f(x) = sin(mx) and g(x) = sin(37x) , then u(x,t) in (14) solves the
initial/boundary—value problem (13).

(b) Find two solutions u(x,t) of the D.E. and B.C. in (13) such that these two solutions have the
same initial profile u(x,0) , but have different initial velocity distribution u, (x,0) .

12. For what values of the positive constants m and n will the second—order PDE u  + uyy
+ mu, +u, + nu, = 0 be (a) hyperbolic, (b) elliptic, (c) parabolic or (d) degenerate ?



Section 1.2  Generalities about PDEs 41

13. Observe that u,(x,y) = x> solves u, tu =2 and uy(x,y) = xS + dy3 solves

u .t uyy = 6¢x + 6dy for real constants ¢ and d.

yy

(a) Find a solution of u  +u y= Ax + By + C for given real constants A, B and C.

M

(b) How can many more solutions of the problem in (a) be produced ?

14. In relation to Example 9, show that if ¢;sin(t)cos(x) +  cycos(3t)sin(3x)
= d,sin(t)cos(x) + dycos(3t)sin(3x) for all (x,t) , then ¢; =d; and c,=d,.

15. By direct computation, verify that by revolving the curve y = cosh(x) about the x—axis, we
obtain a solution u(x,y) = [coshQ(x) - y2]% of the minimal surface equation (24) on the domain

ly| < cosh(x) . In view of the solution T(r) found in Example 11, give a purely geometrical
reason for why u(x,y) must be a solution.

16. Suppose that u(x,y) is any solution of the minimal surface equation (24), for (x,y) in some
open region D in the plane.
(a) Show that it is not always true that cu(x,y) will be a solution for all real c.

b) Show that if c¢ # 0, then cu(x/c,y/c) will be a solution on the new region consisting of all
x,y) with (x/c,y/c)inD .

(c) Explain the results of (a) and (b) geometrically in terms of similarity between the shapes of
the surfaces.

17. Let u(x) be an arbitrary ¢! function defined for x > 0 , such that u(0) = 0. Consider the
ordinary differential operator d/dx which assigns to each such function u the new

). Show that the inverse operator, say B, assigns to each continuous
x > 0, the function

continuous function u’(x
function f(x), defined for
1 0< z<x
0 z>x

Blf](x) = E)g(x,z)f(z) dz , where g(x,z) = {

Conéequently, the solution of the problem u’(x) = f(x) (x > 0) with boundary condition
u(0) = 0, is given in terms of the integral operator B with Green's function g(x,z).

18. Let p(x) and q(x8 be given continuous functions. Show that the solution of the linear ODE
u’(x) + p(x)u(x) = q(x) (x20), with B.C. u(0) =0, is given by
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Alg)(x) = jZG(x,z>q<z> dz | (x20),

where the Green's function is G(x,z) = exp[P(z) — P(x)]g(x,z) , and P(x) is an antiderivative of
the function p(x) and g(x,z) is defined in Problem 17. What is the inverse operator of A ?
Hint. Use Leibniz's rule in Appendix A.3.

19. Here we demonstrate the instability of planetary orbits in dimension greater than 3, assuming
a spherically symmetric harmonic potential. In Example 1 (or Problem 6), we showed that such a

potential in dimension n > 2 is of the form —? ™ (where C > 0, as we assume that the force
is attractive). The angular momentum for the path (r(t),4(t)) in polar coordinates of a planet of
mass m is mrQé (where 9 = alfﬂ ) which is some constant, say A, for a central force. Thus,

0 = A/(mr2). The kinetic energy of the planet is then %m(i2 + r242) = %miz + A2/(2mr2),

where T = g% . The total energy (kinetic + potential) is a constant

E= %mfz + [A2/(2mr2) - Cmr2~n] ) (%)
Let f(r) be the function in brackets in (x). Assume that the planet's orbit has at least two
consecutive local extrema for r, say r; and r, (with r, < r,). Of course, this assumption is
possible when n = 3, since then there are elliptical orbits. For n > 3, we now show that this
assumption leads to a contradiction. At such extreme points on the orbit, we have 1 =0, and
thus f(r;) =f(r,) = E by (%). Since %111{'2 > 0 while the planet moves between the two
consecutive extrema, we must have f(r) < E for r, <r <r, by (x). Hence f(r) must have a
local minimum which is strictly less than E at some point r, between r, andr, .

(a) When n = 4, show that there is no r; such that f’(r;) = 0, unless f(r) = E = 0, but then
f(ry) is not strictly less than E .

(b) When n > 4, show that there is only one positive value r; where f’(r,) = 0, and this value

is a local maximum instead of a local minimum, as can be deduced from the fact that
limf(r) = -0 and limf(r)=0.
-0 I~

(c) Show that there is no such contradiction when n = 3 , since lim f(r) = 4w and
r-0

lim f(r) = 0, when n=3.

=00

(d) A circular orbit is possible for n > 4, but such an orbit is unstable, since the slightest nudge
will throw the planet out of a circular orbit. Assume that the orbit is not a perfect circle.
i) If n =4, show that either r(t) o as t-o, or r(t) -0 ast approaches some finite value.
it) If n> 5, show that in addition to the two possibilities in (i), it can also rarely happen that
the orbit will spiral toward a circular orbit. Show that this can only occur if the maximum value
of f(r) is E. Why is this a rare occurance ?
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20. In the the following, we deduce that a minimal soap film cannot be formed between two
coaxial rings of radius R which are separated by a distance of more than 1.3255-R.

(a) For C > 0, consider the curve r = C-cosh(z/C) in the zr—plane. Show that the tangent line
through the point (2g5To) on this curve passes through the origin only when

cosh(zy/C)/sinh(z,/C) = z,/C (i.e., coth(z,/C) = z,/C).

(b) Show that there is a unique positive solution of coth(x) = x, say a =~ 1.200.
Hint. Let g(x) = coth(x) —x. For small x > 0, show that g(x) > 0, while g(x) < 0 for large
x > 0. Show that g(x) is strictly decreasing for x > 0, by computing g’ (x).

(c) Show that the tangent lines in part (a) must be of the form r = #sinh(e)-z, where o is
defined in (b). Hence, regardless of the value of C, these lines are tangent to each of the curves
r = C-cosh(z/C).

(d) From Part (c) and the convexity of the curves r = C-cosh(z/C) (C > 0), deduce that all of
these curves are contained in the wedge r > sinh(e)- |z]|.

(e) Conclude that there is no minimal surface joining two coaxial rings of radius R, if the rings
are separated by a distance of more than 2R/sinh(a) < 1.3255-R.

Remark. If the separation distance is less than 2R/sinh(a), then there are actually two surfaces
of the form r = C-cosh(z/C) that join the rings. The surface with the larger value of C is the
one which actually has the minimum area (i.e., the one which arises physically).
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1.3 General Solutions and Elementary Techniques

Ideally, one would like to have a general technique that could be used to find all of the
solutions of an arbitrary PDE, or at least a relevant solution that satisfies certain initial /boundary
conditions. Such a general technique does not exist even for the class of first—order ODEs. Recall
that for such equations, there is a variety of techniques which work when the first order ODE is of
a particular form (e.g., separable, homogeneous, exact, linear, etc.). Moreover, it is easy to find
first—order ODEs that do not have any of these forms. The situation for PDEs is similar. It is
easy to find PDEs for which there is no known method which will yield a single solution.
Fortunately, the PDEs which arise in practice are not completely arbitrary. Indeed, there are few
different kinds of PDEs, or systems of PDEs, which regularly appear in applications. Although
there are some procedures that apply to more than one relevant equation, it is better not to
develop excessively such procedures apart from the specific PDEs to which they will be applied.
Instead, we prefer to handle each relevant equation separately. When a pattern of techniques
emerges, we will note it and appreciate it, but we see no advantage in trying to force the solution
process into a preconceived mold which could be motivated only with a great deal of hindsight.
Also, unlike the theory of ODEs, the methods for solving PDEs often depend more on the form of
the imposed boundary conditions than on the PDE itself. This makes it even more difficult to
develop a unified theoretical edifice, if that were our goal. Nevertheless, in this section, we discuss
some elementary techniques. One technique, known as "separation of variables", is a preliminary
step used in solving a wide variety of PDE problems. However, first we shall illustrate some of
the differences between PDEs and ODEs. We also explore some of the difficulties in determining
the form of the general solution of a PDE, and in finding particular solutions which meet given
side conditions.

General Solutions and Particular Solutions of PDEs

Recall that the general solution of an n—th order linear ODE involves n arbitrary
constants. These constants are determined when the solution is required to satisfy n initial
conditions. For example, the general solution, y(t), of the second—order ODE

y'+y=0 (1)

y(t) = c,cos(t) + cysin(t) , (2)

where ¢, and c, are arbitrary constants. If we also specify the initial conditions y(0) = 0 and
y’(0) = 1, then the only solution of (1) which meets these conditions is y(t) = sin(t). Recall

(cf. Definition 2 of Section 1.2) that a solution of PDE of order n is required to be a C" function
on the open set (possibly prespecified) where it is defined.

The general solution of a PDE is the collection of all solutions of the PDE.

As with ODEs, it is usually not possible to list all of the solutions, but rather one specifies the
form of the general solution as in (2). However, the form of the general solution of an n—th order
PDE typically involves n arbitrary functions, rather than arbitrary constants. The following
Example illustrates this.
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Example 1. Find the general solution of the first—order linear PDE for u = u(x,y)

u (x,y) =2xy, forall (x,y). (3)
Solution. If we hold y fixed and integrate with respect to x, we obtain

u(x,y) = x%y + f(y) - (4)

Note that the constant of integration may depend on y, and indeed any function of the form (4)
satisfies (3). As a technical point, recall that in Definition 2 of Section 1.2, we require that the
function f(y) in (4) be c! (i.e., f has a continuous first derivative). If in place of (3) we had the

PDE u_(x,y,2) = 2xy, then the form of the general solution would be u(x,y,z) = x2y + g(y,z)

for an arbitrary ¢! function g(yz). o

Whenever integrating with respect to one variable, remember to add an arbitrary
function of the other variables.

Example 2. Find the general solution of the third—order PDE

Uyyy = 2sin(x) , u=u(x,y,z), forall (x,y,z). (5)

Solution. Integrating (5) once with respect to y, we get uxy(x,y,z) = 2ysin(x) + f(x,z) .
Integrating again with respect to y, we obtain ux(x,y,z,) = y2sin(x) + yf(x,z) + g(x,z). Finally,
integrating with respect to x, we obtain the general solution

u(x,y,2) = =y cos(x) + yF(x2) + G(x2) + h(y2) , (6)

where F(x,z) and G(x,z) are antiderivatives (with respect to x) of f(x,z) and g(x,z),

respectively. Since we want the solution to be C3, we require that F, G and h be C* functions,
and except for this requirement, these functions are arbitrary. o

Of course, as with the ODEs, it is not always possible to find the general solution of a PDE
simply by integrating a few times. Nevertheless, the above examples suggest that typically the
general solution of an n—th order PDE, for an unknown function u of m independent variables,
involves n arbitrary functions of m—1 variables. However, it is easy to find examples which
violate this rule. For instance, consider the following example.

Example 3. Find the general solution of

=0, u=u(xy), forall(x,y). (7
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Solution. A C2 function u(x,y) solves this equation, if and only if u, =0 and Uy = 0. Since
u =0, u must have the form u(x,y) = f(y)x + g(y). However, since u =0, u must also
have the form u(x,y) = h(x)y + k(x). The only functions which have both of these forms are of
the form

u(x,y) =axy + bx +cy +d, (8)

where a, b, ¢ and d are arbitrary constants. Thus, the general solution of (7) involves four
arbitrary constants instead of two arbitrary functions of a single variable. Note also that the
superposition of two solutions of the form (8) is also a solution. Hence, (7) also provides us with
an example of a nonlinear PDE whose solutions obey a superposition principle. o

In Example 3 of Section 2.2, we show that the homogeneous first—order linear equation
xu, — yuy + yu = 0 has a general solution which depends on two arbitrary functions, instead of

one. Thus, there are really no precise rules concerning the form of the general solution of (even)
linear PDEs. However, it will be convenient to introduce the following notion of a "generic"
solution of a PDE. Such a solution has the ezpected form of a general solution, a form which might
not be realized for certain PDEs as we have just seen.

Definition 1. A generic solution of an n—th order PDE for an unknown function of m

independent variables is a solution which involves n arbitrary C" functions of m—1
variables. Moreover, we require that none of these arbitrary functions can be eliminated
or combined without losing solutions in the process.

Remark. The last requirement ensures that one cannot simply increase the number of arbitrary
functions by replacing some arbitrary function by a sum of two new arbitrary functions, or by

some similar artifice. For instance, the solution (6) is generic, but —y2cos(x) + y[k(x,z) — j(x,2)

+ g(x,z) is not generic (even though there are three arbitrary functions), since k(x,z) — j(x,z
can be replaced by f(x,z). o

While the general solutions (4) and (6) for the PDEs in Examples 1 and 2 above are generic,
according to Definition 1, the general solution (8) of the PDE (7) is not generic. It is also possible
to have a generic solution which is not a general solution as the following example shows.

Example 4. Find a generic solution of the nonlinear first—order PDE
2
w (xy) = [uxy)?. 9

Solution. By fixing y, we may regard (9) as a first—order separable ODE, namely v 2du = dx,
assuming that u # 0. Integrating, we get the solution —ul=x + g(y) , or

u(xy) = —x + gy, (10)
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where g is an arbitrary ¢! function and u(x,y) is defined everywhere except for points (x,y) on
the curve x = —g(y). The solution (10) is generic. However, (10) is not the most general
solution, because there are solutions of (9) which are not of the form (10). Indeed, u(x,y) =0 is
such a solution. One can produce other solutions, by "pasting" two solutions together (see
Problem 11). Now suppose that an open region D is given beforehand, and suppose that only
solutions which are defined throughout D are allowed, then the function g(y) must satisfy the
requirement that the curve x = —ggy) does not intersect D. Since no such region was specified
here, we regard all functions of the form (10) as solutions. If we had required that the solution be
defined everywhere, then the only solution would be u(x,y)=0. o

Example 5. Consider the first—order linear PDE

xux—2xuy=u . (11)

Show that
u(x,y) = xf(2x + y) (12)

is a generic solution of (11), where f is an arbitrary ¢! function.

Solution. First note that despite the involvement of both x and y in f(2x + y), the function f
is still really a function of one variable, since f has only one "slot", unlike say g(x,y). Thus, by
definition, u(x,y) in (12) will define a generic solution if it satisfies (11). The product and chain
rules yield u = f(2x + y) + xf’(2x + y)-2 and uy, = xf’(2x + y). Hence, xu, — 2)(uy

=xf(2x +y) + 2x2f’(2x +y) - 2x2f’(2x +y) = xf(2x + y) = u. Thus, (12) defines a generic
soluti?n.) Using the theory of Chapter 2, one can prove that the general solution of (11) has the
form (12). o

Usually one wants to find a particular solution of a PDE which meets a side condition. The
next two examples show how such a solution may be extracted from a generic solution.

Example 6. Find a solution of (11) which satisfies the condition u(1,y) = y2 for all y.

Solution. The condition u(l,y) = y2 specifies the values of the solution u(x,y) for points (x,y)
on the line x = 1, parallel to the y—axis. Since (12) is a generic solution, it suffices to find a

function f such that u(l,y) =1-f(2+y) = y2 or f(2+y)= yz. To find ‘such a function, let
r=2+y. Since y=r—2, wehave f(r) = (r — 2)2. Thus, f is the function which takes a
number, subtracts 2, and squares the result. In particular, f(2x + y) = (2x + y — 2)2. Hence,
u(x,y) = x(2x + y — 2)2. One should check directly that this u satisfies the PDE (11) and

2
u(ly)=y" o
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Example 7. Show that the wave equation Uy = c2uXX has a generic solution of the form

u(x,t) = f(x + ct) + g(x —ct) , (13)
where f and g are arbitrary 02 functions. Find a particular solution meeting the initial

conditions

I.C. u(x,0) =h(x) and ut(x,O) =0, (14)

where h(x) is a given 2 function.

Solution. One can directly verify that (13) is a solution of Uy = czuxx, as in Problem 4(d) of

Section 1.2 . Since the wave equation is second—order and there are two arbitrary functions in
(13), neither of which can be eliminated without losing solutions (cf. Problem 12), we conclude
that (13) is a generic solution. By setting t = 0 in (13) and using u(x,0) = h(x) , we get that
f(x) + g(x) = h(x). By differentiating (13) with respect to t, we obtain ut(x,t) = f/(x + ct)c

+ f/(x — ct)(—c), whence ut(x,O) = 0 yields f'(x) —g’(x) = 0. Thus, (14) gives us two
conditions on the two unknown functions f and g, namely

f(x) + g(x) = h(x) and f(x) —g(x) =K. (15)

Adding corresponding sides of the equations (15), we obtain f(x) = 4h(x) + K]. Similarly g(x)
= }{h(x) — K]. These identities determine the functions fand g in terms of the given function h.

Thus, we obtain the following solution of Uy = c2uxx, which meets the initial conditions (14) :

u(x,t) = 4h(x + ct) + K + h(x — ct) — K] = §[h(x + ct) + h(x —ct)] . (16)

In Problem 12, the reader is asked to check directly the validity of (16) . ©

Elementary Techniques

We have already seen in Example 1 and 2 that PDEs, which simply set a partial derivative
of the unknown function equal to a given function, can be solved by direct integration. The PDE
u = u2 in Example 4 cannot be solved by integrating both sides with respect to x, because the

right side involves the unknown function u(x,y). However, we were able to solve this equation by
ODE techniques.

If a PDE involves only partial derivatives with respect to one of the independent

variables, then such an equation may be regarded as an ODE for an unknown function of a
single variable, where the other variables are held fixed. In the solution, the arbitrary
constants are replaced by arbitrary functions of these remaining variables.
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By way of illustration, we solve here the homogeneous version of the degenerate equation
u. teu= g(x,t) which arose in the Classification Theorem of Section 1.2 .

Example 8. Find the general solution of the PDE

u,teu=0, u= u(x,t) (17)

in the three cases ¢ >0, ¢ =0 and ¢ < 0.

Solution. For fixed t , (17) is a second—order linear ODE with constant coefficients (discussed in
Section 1.1) for u, regarded as a function of x. If ¢ > 0, then for each fixed t, the solution is of

the form c,sin(yC-x) + cycos(yc-x). However, as t varies, the choices for c; and ¢, may change
(i.e., they may be functions of t). Consequently, the general solution of (17) is

u(x,t) = f,(t)sin(yc-x) + fy(t)cos(vc-x) ,

where f; and f, are arbitrary C? functions. The general solution in the cases ¢ =0 and ¢<0

are, respectively,

u(x,t) = (6% + () and u(xt) = (01T X + fe)e VI * g

Example 9. Find the general solution u = u(x,y) of

=X . 1
uyy+uy X (18)

Solution. By fixing x, we can regard (18) as a linear, inhomogeneous, second—order ODE with y
as the independent variable. A particular solution is u(x,y) = xy. The auxiliary equation for the

related homogeneous equation is 4= 0, which has roots 0 and —1. Remembering that the
arbitrary constants may depend on x, we add the general solution of the homogeneous equation to
the particular solution, and thus obtain the following general solution of (18) :

u(xy) = xy + f(x) + g(x)e (19)

where f(x) and g(x) are arbitrary 2 functions. One can also solve (18) by first integrating with
respect to y, obtaining the first—order linear ODE (where x fixed)

uy +u=xy+h(x) . (20)
We multiply each side of (20) by the integrating factor e¥, obtaining

% [Yu] = xye¥ + eh(x) or e¥u = x(ye¥ —e¥) + eYh(x) + k(x) .
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Thus, another form of the general solution of (18), is given by

u(x,y) = xy —x + h(x) + k(x)e ¥, h ke c2. (21)

Note that (19) and (21) appear to be different, but they are actually equivalent. Indeed, adding
the function —x to the arbitrary function h(x) simply gives us another arbitrary function which
may be identified with f(x) in (19). Often, different methods yield general solutions which
appear to be different, but which are actually equivalent in the sense that they generate the same
family of solutions as the arbitrary functions vary. o

Separation of Variables

The method of separation of variables is used to find those solutions (if any) of a PDE
which are products of functions, each of which depends on just one of the independent
variables. Such solutions are called product solutions.

The following examples illustrate the method of separation of variables.

Example 10. Using separation of variables, find the product solutions of the heat equation with
temperature—dependent sink, namely

{ Uy ="u, u= u(x,t) (22)

Solution. Substituting a product solution of the form u(x,t) = f(x)g(t) into (22), we get
f(x)g’(t) —1"(x)g(t) = —A(x)g(t) . (23)

Then we separate the variables, so that functions in the variable x only appear on one side, and
functions in the variable t only appear on the other side. If this is possible, it can usually be
accomplished by first dividing by f(x)g(t) and then rearranging :

[ (t)/e(®)] + 1 =1"(x)/f(x) . (24)

The only way that a function of x can equal a function of t is for both functions to be the same
constant, say A. Thus, (24) splits into two ODEs, namely

[g7(t)/g(t)] + 1 =X or g'(t)+ (1—X)g(t)=0 (25)
f1(x)/f(x) = A or f"(x) — M(x) =0 26)

and

—_

The general solution of (25) is g(t) = Cexp[(A — 1)t]. The form of the general solution of (26)
depends on whether A > 0, A <0 or A =0 If XN <0, then f(x) = csin(y[A]'x)

+ cycos(yJA]-x), and in this case the product solution f(x)g(t) is
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u(x,t) = [c;sin(y[A]-x) + cocos(y[A]-x)]exp[(A — 1)t]. (27)

Note that the arbitrary constant C in g(t) has been absorbed into c, and c,, without loss of
generality. (For the cases where A > 0 and A =0, see Problem 5). o

Remark 1. Note that (27) is not a generic solution, since there are no arbitrary functions
involved. Thus, solutions obtained by separation of variables are usually far from being general
solutions. However, if the PDE is linear and homogeneous, then the linear combinations of
product solutions (for various values of ) will also be solutions according to the superposition
principle in Section 1.2 . Often, solutions obtained in this way are sufficiently general for
applications, as will be seen repeatedly in Chapter 3 onwards. O

Remark 2. A seasoned separatist, say Dr. XX, will realize in advance that undesirable square
roots and absolute value signs will appear in the solution of (27). To avoid this, Dr. XX (by

second nature) will write the negative separation constant A in the form % for some A > 0.
Then Dr. XX arrives not only at the prettier solution

u(x,t) = [¢;sin(Ax) + cz,cos(/\x)]exp[—(/\2 + 1)t]
which is equivalent to (27), but also dazzles fledgling students with her brilliance. We hope that
this remark will spare the reader such bewilderment. o

In the case of more than two independent variables, separation of variables involves a
number of stages, as we illustrate next.

Example 11. Find some nontrivial product solutions of the following wave equation for the
amplitude u(x,y,t) of a transversely vibrating membrane at (x,y) at time t

U, =u.  +u . (28)

yy

Solution. Let u(x,y,t) be of the form X(x)Y(y)T(t) for functions X, Y and T. This notation
for the function is helpful in keeping track of the variables which correspond to the functions.
Substituting u into (28), we get XYT" = X"YT + XY"T. Separating t from x and y, we get

T'/T = X"/X + Y"/Y .

tt

A function of t can only equal a function of x and y when these functions are constant. Thus,
T'"/T=X or T"=AT=0 (29)
and
X'/X+Y"/Y=X or X"/X=A-Y"/Y . (30)
Both sides of the last equation in (30) must be a constant, say x (Why ?). Thus we obtain
T"=AT=0, X"—pX=0, Y'+(g—A)Y=0. (31)

There are a number of possibilities, depending on the signs of A, p and g — A. Since our aim is
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not to produce every conceivable product solution, we will make some choices that will produce a

popular family of solutions. For constants a, b and ¢, let X = —a2 - b2, p=-a% p—A= b2.
Then selecting some particular solutions of (31), we obtain a nontrivial family of product solutions

cos([a2 + bz]%t)sin(ax)sin(by) . (32)

Of course, in (32) one can replace the cosine by a sine and any of the sines by cosines; there are
eight possibilities. By forming a linear combination of the eight possibilities, we obtain an even
larger family of solutions, by the superposition principle. One can even replace all of the sines and
cosines by hyperbolic sines and cosines, say in (32), and still get a valid family of product

solutions. Indeed, such families would result from setting A = a’ + b2 , W= a2 and L= A
= —b? (see Problem 18 of Section 1.1). o
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Summary 1.3
1. General solutions : The general solution of a PDE is the collection of all solutions of the PDE.

2. Generic solutions : A generic solution of an n—th order PDE for an unknown function of m

independent variables is a solution which involves n arbitrary C" functions of m—1 variables.
Examples 3 and 4 show that a general solution need not be generic, and a generic solution need
not be general.

3. ODE technique : If a PDE involves only partial derivatives with respect to one of the
independent variables, then such an equation may be regarded as an ODE for an unknown
function of a single variable, where the other variables are held fixed. In the solution, the
arbitrary constants are replaced by arbitrary functions of these remaining variables.

4. Separation of variables : The method of separation of variables is used to find those solutions
u(x,y) (if any) of the form f(x)g(y). Such solutions are called product solutions. Upon
substituting the form of the product solution into the PDE, one tries to get expressions involving
x on one side of the equation and those involving y on the other (i.e., one tries to separate
variables). If this is possible, then both sides can be set equal to a constant, and one obtains an
ODE for f(x) and an ODE for g(y). For unknown functions of three or more variables, several
stages of the separation process are carried out. Solutions obtained in this way are usually far
from being general solutions of the PDE.

Exercises 1.3

1. Find the general solution of each of the following PDEs by means of direct integration.

(a) u, = ¥ +y% , u=uxy) (b)) u=x% , u=u(xy)

=0, u=u(xy,z) (d) uyy = exp[2x + 3t] , u=u(x:).

2. Find general solutions of the following PDEs for u = u(x,y) by using ODE techniques.
(a) u —2u=0 (b) yuy+u—x

(c) u, + 2xu = 4xy (d) y Uy +2u x (Hint. First integrate with respect to x.)
(&) u. ~xu=0.
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3. For the PDEs (a) through (e) of Problem 2, find a particular solution satisfying the following
respective side conditions.

(a) u(0,y) =y (b) u(x,1) = sin(x)
(¢) u(x,x) =0 (i.e.,u=0 ontheline y=x) (d) u(x,1) =0 and u(0,y) =0
(e) u(x,0)=1 and uy(x,O) =0 .

4. Find a nontrivial family of solutions of the following PDEs by the method of separation of
variables. You need not find the most general solution obtainable in this way.

(a) uo=2u ., u=uxt) (b) u = 4uy , u=u(x,y)
(c) U, =16u  , u=u(xt) (d) u =u. + gy o+ U= u(x,y,t)
(e) u. + Uyy tu,=0,us= u(x,y,z) .

5. Find the product solutions of the PDE in Example 10, in the cases where the separation
constant (i.e., A) is positive or zero. When the separation constant is positive, find an equivalent
product solution (as in Remark 2) which does not involve square roots.

6. In Section 1.2 we have used trial solutions of the form €™ to find particular solutions of
certain ODEs. The higher dimensional analogue of this substitution (as, for example, u(x,y)
= exp(rx + sy), where r and s are constants) is called the exponential substitution. Use the
exponential substitution to find a nontrivial family of solutions of each of the following PDEs.

(a) 2u, + 3uy —2u=0, u=u(xy) (b) du - 4uxy + Uy = 0, u=u(xy)

(c) Uyyg U= 0, u=u(xy,z) (d) u, + Uyy = l4exp(2x +y) , u=u(x,y)
(e) u .+ Uy =0, u= u(x,y) .
7. Consider the problem u . tug + =0, u = u(x,y), and attempt to use the method of

separation of variables to arrlve at f" g();r ) + 1 (x)g’ (y) + f(x)g"(y) = 0.

(a) If f(x)g(y) # 0, verify that —f"(x)/f(x) = [g" (y)/g(W)[f’ (x)/f(x)] + &"(¥)/8(y)-

(b) Deduce from (a) that if f’(x)/f(x) is not constant, then g’(y)/g(y) is a constant, say s.
(c) Deduce from (b) that g(y) = cesy, and g"(y)/g(y) =

(

d) Show that f"(x) + sf’ ( ) + ( ) = 0. Solving this ODE for f(x ) obtain the solution
u(x,y) = [c,cos(3y3-sx) + cysin(y3-sx)]exp[s(y — ix)] .
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8. For each of the following PDEs, find some constants a and b (not both zero), such that u(x,y)
= f(ax + by) is a generic solution, where f is an arbitrary ¢! function.

(a) u, + 2uy =0 (b) Su, + 6uy =0 (¢ cu, + duy = 0, for any constants ¢ and d.

9. Use the technique of Problem 8 to solve the following PDEs, subject to the given side
conditions. Explain why one cannot obtain the solutions by using separation of variables.

2
(a) u + 2uy =0, u(x,0) =x (b) u + 3uy =0, u(x2x+1)=x

(c) 3u, —4uy =0, uxx)=x*—x (d) u + 2uy =2x +4y , u(0y) = y2 + 1.

Hint. For (d), first find a particular solution up(x,y) of the form ax® + by2.

10. For given real constants A, B and C, consider the second—order PDE
Au  + Bu  + Cuy = 0. Show that if B2 —4AC > 0 (i.e., the PDE is hyperbolic), then this
PDE has a generic solution of the form u(x,y) = f(ax + by) + g(cx + dy) , where a, b, ¢ and d
are real constants, and where f and g are C” functions.

Hint. Assume u(x,y) = h(rx + sy), obtain A2 + Brs+ Cs2 =0 , fix r and solve for s.

11. In relation to Example 4, where the PDE u, = u2 was considered, define

) “x + ) for y>0, x#-gy)
u(x,y) =
Y 0 for y <0

(a) Show that if g(y) = y_2, then u(x,y), ux(x,y) and uy(x,y) are continuous at points of the
x—axis. Deduce that u is C! (and a solution of u, = u2), except at points on the curve
X = —y_2, y > 0.

(b) Let g(y) = y_l. Show that u_(x,y) is not continuous at points on the x—axis, because in this
case uy(x,y) jumps as y passes through 0. Why does this imply that u(x,y) is not a solution

of the PDE u = u? in the region consisting of the whole plane except for points on the curve

x=—y_1,y>0?

12. The following parts concern the solution u(x,t) = f(x + ct) + g(x —ct) of the wave equation

Uy = C2uxx’ where fand g are ¢2 functions.
ga) Let u(x,t) = f(x + ct). Suppose that for each fixed time t we graph u as a function of x.

how that as t advances, the graph moves to the left with velocity ¢. What about
u(x,t) = g(x—ct)?
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(b) Show that if f(x + ct) = g(x —ct) for all x and t, then f and g must be constant.

(c) Deduce from (b) that neither f(x + ct) nor g(x —ct) can be eliminated from the solution
u(x,t) = f(x + ct) + g(x —ct) without losing solutions in the process.

(d) Check directly that (16) solves the PDE u,, = c?u__ with the LC. given by (14).



CHAPTER 2
FIRST - ORDER PDEs

In most PDE textbooks, first—order PDEs usually receive only a brief treatment. One reason
for this is that the PDEs which have the most obvious applications are the standard second—order
PDEs, namely the heat, wave and Laplace equations. Moreover, the theory of first—order PDEs
locally reduces to the study of systems of first—order ODEs, which is presumably a subject of
another course. Here we will find that first—order PDEs have a variety of applications. Also,
there are certain global topological considerations which arise in the study of first—order PDEs
which make the theory more than just a study of systems of ODEs.

In Section 2.1, we solve first—order, linear PDEs with constant coefficients by introducing a
linear change of variables, which converts the PDE into a family of ODEs depending on a
parameter. We apply this theory to population and inventory analysis. In Section 2.2, we handle
the case of first—order, linear PDEs with nonconstant coefficients. This is done by making a
nonlinear change of variables, so that when all but one of the new variables is held fixed, one
obtains a characteristic curve along which the PDE becomes an ODE in the remaining new
variable. By piecing together the solutions of the ODEs on these curves, we indicate how certain
global considerations may arise. Applications to gas flow and differential geometry are provided.
In Section 2.3, we show how this method of characteristics extends to first—order linear PDEs in
three dimensions, which we use to solve related first—order quasi—linear PDEs in two dimensions.
Among many possible applications, we show how quasi—linear PDEs arise in the study of traffic
flow and nonlinear continuum mechanics, particularly with regard to the phenomenon of shock
waves. In the optional Section 2.4, the more involved theory of arbitrary nonlinear first—order
PDEs is introduced, and there is an application to the study of the motion of wave fronts in an
inhomogeneous medium with a variable wave propagation speed. Moreover, in this application,
we see the wave/particle duality in the Hamilton—Jacobi theory which foreshadows the analogous
duality which lies at the foundations of quantum mechanics.

87
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2.1 First-Order Linear PDEs (Constant Coefficients)

Perhaps the simplest nontrivial type of PDE is the first—order linear PDE

au, +bug +cu=1(xy), u=u(xy), a2 +b2>0, (1)

where a, b and ¢ are given constants and f(x,y) is a given continuous function. Qur first main
goal will be to find the general solution of (1). In the easy case, when b =0, (1) is

a'ux(x7Y) + cu(x,y) = f(xvY) ’ (2)

which (for each fixed y) is a first—order, linear ODE for u(x,y) regarded as a function of x.
Following the procedure in the Summary of Section 1.1, we can solve (2), by first dividing by a

(a # 0) and multiplying by the integrating factor ecx/ & Thus,

/2 Pixy) + e/ Luty) = L(xy)e™/?

a
or
%[e‘”‘/ au(x,y)] = %f(x,y)ecx/ &
Integratinfg both sides with respect to x and multiplying by e—cx/ a’ we obtain the general
solution of (2), namely

u(xy) = e/ a[ L J f(x,y)e™/® dx + C(y)} , 3)

where C(y) is an arbitrary ¢! function of y. The success of this method depends heavily on the
fact that uy is not present in (2). This is what enabled us to treat (2) as an ODE.

To handle the more general case when b # 0, we begin with the observation that au + bu
is the dot product of the vector ai + bj with the gradient Vu = uxi + u_j , and hence
au_+ bu_ is essentially the derivative of u in the direction of the vector ai+ bj . If we
introduce a new coordinate system for the xy—plane, so that one of the new axes is pointing in the
direction ai + bj , then au_+ bu will be proportional to the partial derivative of u with
respect to the new variable labeling that axis, and we will have reduced (1) to the form of (2) in
terms of new coordinates. To find an appropriate change of variables, first note that the family of
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lines of the form bx —ay = d (where d is an arbitrary constant) all have slope b/a, and hence
these lines are parallel to the direction ai + bj. We want to choose new coordinates, say (w,z),
such that this family of lines becomes the family of new coordinate lines, say w = d. A simple
change of variables (}(I)r coordinates) which has this effect is given by

w=bx—ay, z=y. (4)

The family of new coordinate lines w = d then coincides with the family of lines bx —ay = d.
The lines z = const. are the same as the lines y = const. which are parallel to the x—axis. We
assume here that b # 0, so that the transformation (4) is invertible :

We define a new function v by

w+az
)

v(w,zz) = u(x,y) = U(T ,Z) .

Note that v(w,z) is just u(x,y) expressed in terms of the new variables (w,z). By the above
remarks, we expect that au, + bu_  will be proportional to v, since au, + buy is the
derivative of u along the lines w = const. . Indeed,

au + buy =a(v w +vz )+ b(vwwy+vzzy) = (ab—ba)v_ +bv, =bv, .

Thus, equation (1) can be rewritten in terms of the variables (w,z) as

bv,+ov = f(*H2Z ) . (5).

This equation is of the simple form (2), namely an ODE depending on the parameter w. We
know how to solve (5) for v(w,z), and the solution of problem (1) will then be given by
u(x,y) = v(bx—ay,y), using u(x,y) = v(w,z) and (4). We have converted problem (1) to the
simpler form (5) by making a change of variables so that, when one of the new variables is held
constant, we get a member of the family of lines bx —ay = d.
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The lines bx —ay = d, which are parallel to ai + bj (i.e., have slope b/a), are called
the characteristic lines of the PDE (1), au + buy + cu = f(x,y) .

Thus, a first—order linear PDE with constant coefficients becomes much simpler when expressed
in terms of a new coordinate system with the set of characteristic lines as a set of coordinate lines.

Example 1. Find the general solution of the PDE
3ux—2uy+u=x , u=u(xy). (6)

Solution. The characteristic lines have slope —2/3. They constitute the family of lines
2x + 3y = d. Hence, we make the change of variables

w=2x + 3y x=(w—32z)/2
; (7)
z=y y=z.
Y N
w3
w0
X
-3 -2 8] 1] 2 3
w<-3 \
i N
W = -6
N
Figure 1
Setting v(w,z) = u(x,y) , we have du, —2u, = 3(vax + vz - 2(vwwy + vzzy) =3(v,, 2) -
2v, + vw-3) = —2v, . Thus, the PDE (6) becomes
—2v, + v = (1/2)(w-32) . (8)

Dividing by —2 and multiplying by the integrating factor e_z/ 2, we obtain
%[e_z/zv] =- zlf e_z/2(w—3z) .

Integrating with respect to z, regarding w as fixed, we obtain



Section 2.1  First—Order Linear PDEs (Constant Coefficients) 61

e_Z/Zv(w,z) = —%w e_z/2 dz + % ze_z/2 dz + C(w)
= Lwe®?y %[ze—z/ 2.(<2) —je“l/ 2(_9) dz] + C(w)
= ¢ ?2w/2 —32/2 - 3] + C(w)

where C(w) is an arbitrary function of w, which we will assume is c! (i.e., C’(w) is continuous).
Thus, we have v(w,z) = 4[w —3z —6] + eZ/QC(w) , and using (7) we get the general solution

u(x,y) = -21-[2x + 3y — 3y — 6] + e¥/2C(2x+43y)

= x— 3+ &/ 2C(2x43y) (9)
where C(2x+3y) is an arbitrary ¢! function of (2x+3y), such as (2x+3y)2, exp(2x+3y),
|sin(2x+3y)|3/2, etc. . The c! assumption on C is needed so that u(x,y) will be cl. @

Remark. In (9), if we choose C to be the zero function, then we obtain the particular solution
up(x,y) = x—3 . For any choice of the ¢! tunction C , we have a solution
uh(x,y) = ey/20(2x + 3y)

of the related homogeneous PDE 3ux - 2uy 4+ u=0. Indeed,

39 [V/2C(2x+3y)] -2 gy ¥/ 2c(2x43y)] + &/20(2x+3y)
= 3¢¥/2¢" (2x+3y) -2 — 20¥/2. %C(2x+3y) —2e¥/2¢7 (2x43y) 3 + &¥/2c(2x43y) = 0.

The general solution (9) is the sum of the particular solution u_ and the general solution uy of

the related homogeneous equation. We can obtain other particular solutions by choosing specific
functions for C. For example, setting C(2x+3y) = 2x+3y, we obtain the particular solution

x—3+ ey/ 2(2x+3y). The general solution of (6) can then be written as
u(xy) = x—3 + e/ 22x+3y) + /2D (2x+3y) , (10)

where D(2x+3y) is an arbitrary ¢! function of (2x+3y). The solutions (9) and (10) are both

correct, and they are actually equivalent, in the sense that, as C and D range over all 1
functions, both (9) and (10) generate the collection of all solutions. Thus, it can happen that two
expressions for general solutions may look different and yet both are correct. Keep this in mind
when comparing your answers with the given answers for the ezercises. Note also that although we
are essentially forced to take one of the new variables to be a function of 2x+3y, the expression
for the other new variable could be any linear combination of x and y which is not a multiple of
2x+3y. For example, in place of the transformation (7), we could have used
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w = 2x + 3y X=1z
; (11)
Z=X y=(w-22)/3.
With this change of variables we obtain [in place of (8)] the equation 3v,+ v =z, whose solution

is viwz) =z—-3 + e_z/3G(w), where G is an arbitrary ¢! function. Thus,

u(x,y) = x—3+ e-X/3 G(2x+3y) = x—3+ ey/2e—(2x+3y)/6 G(2x+3y) ,

which is equivalent to (9). o

In many cases, especially in applications, one is interested in finding a particular solution that
satisfies a certain side condition. For equation (1), an appropriate side condition might be the
requirement that u(x,y) have specified values at points (x,y) that lie on a certain line. Such a
condition has the form

u(x,mx + d) = g(x) , (12)

where g(x) is some given c! function, m is the slope of the line, and d is the y—intercept. In
the case where the line is vertical (with infinite slope), condition (12) must be replaced by the
condition u(d,y) = g(y), where d is the x—intercept of the vertical line. In the following
examples, we will see that such conditions usually suffice to completely determine the arbitrary
function which is always present in the general solution. There is one important exception,
however. If the line, on which the side condition is given, happens to be a characteristic line for
the PDE, then the side condition does not uniquely determine a solution. Indeed, in this case, we
will find that the function g(x) in (12) must have a particular form, in order for a solution to
exist. If g(x) has this particular form, then we will find that there are infinitely many solutions
of the PDE (1) with side condition (12).

Example 2. Solve the following PDE with the given side condition :

2

Uy~ Uy +2u=1, u(x,0) = x°. (13)

Solution. Here the side condition specifies the values of u at points on the x—axis. First, we find
the general solution of the PDE, and then we try to meet the side condition. The characteristic
lines have slope —1 and are of the form x 4+ y = d . Thus, we make the change of variables

wW=Xx-+y X=W-—2
z=y ’ y=12.
and define v(w,z) = u(x,y) . The PDE in (13) becomes —v, + 2v =1, and we obtain v(w,z)

=}+ eQZ_C(w), where C is an arbitrary c! function. Thus we obtain the following general
solution of the PDE in (13)
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u(x,y) =4+ e2yC(x+y) . (14)

Now, we must choose the function C, so that the side condition u(x,0) = x2 is met. From (14),
we have u(x,0) = 3 + C(x). Thus, } + C(x) = X2 or C(x) = X2 - . This completely
determines the function C, in the sense that we know what C does to any real number [ e.g.,
C@3) = 32 1] In particular, we know that for any values of x and y, C(x+y)= (x+y)2 -1

Thus, the unique solution of the PDE, with the side condition, is

u(xy) = §+ X (x+y)2 - 172 .

Note that u(x,0) = x2, and one can check directly that u(x,y) satisfies the PDE. It is a good
idea to check your solutions directly, as this is the ultimate test of their validity. o

Remark. Some students run into difficulties with the function C. For example, do not make the
mistake of thinking that just because C(x) = X2 - 3, we would also have C(x+y) = X2 - 3 Also,
almost always, it is mot true that C(x+y) = C(x) + C(y). For example, log(x+y) # log(x)
+ log(y) , sin(x+y) # sin(x) + sin(y) , (x+y)2 # 2+ y° , etc. . Some students find it
objectionable to take the result C(x) = x —} and simply replace x by x+y to get the correct

result C(x+y) = (x+y)2 — 1 The objection is that x+y is not the same as x, unless y
happens to be zero (i.e., what gives us the right to replace x by something which is unequal to

x 7). The objection may be circumvented, as follows. The formula C(x) = X - 4 tells us that

C is the function that assigns to each number its square minus § The formula C(r) = 2 -3

describes the same function. In other words, the variable that is used to describe a function can
be changed without changing the function. Thus, in place of C(x) = K- %, use C(r) = 2 -5
and then set r = x+y . Hence, the objection that x+y # x is overcome. 0

Example 3. Solve the PDE u, + 2uy —4u = &Y subject to the condition u(x,4x +2) =0.

Solution. Here the side condition requires that u vanish on the line y = 4x+2 . The
characteristic lines are of the form 2x—y = const., and we make the change of variables
[w=2x—y {xz(w+z)/3

z=x+Yy y=(2z—-w)/3.

Recall that the choice of z is essentially arbitrary. Our choice is motivated by the fact that

&Y in the PDE will become simply e’ if we set z = x+y . For v(w,z) = u(x,y) , we have

ux+2uy = (wax+vzzx) + 2(vwwy+vzzy) = (2—2)vW + (142)v, = 3v, . Thus, the PDE
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becomes 3vz—4v = e? , from which we obtain

v(w,z) = —% + e¥/3C(w) or u(xy) = Y4 2TV Bo(axy) . (15)

Note that the exponent is 4(x+y)/3 = —4(2x—y)/3 + 4x . Thus, we could rewrite (15) as
u(x,y) = 5ty e4x[e—4(2x_y)/30(2x—y)] or u(x,y)= &Y e4xD(2x—y) , (16)
for an arbitrary C1 function D. In order to meet the side condition, we need

0 = u(x,4x+2) = —¥ 12 4 e¥D(—2x-2) .
In other words, the function D must be chosen so that
D(-2x-2) = X +2 / X _ X2

To find the function D, we employ the following device. Set r = —2x—2, and note that
x = —(r+2)/2. Then

D(r) = D(=2x=2) = &¥t2 = ¢ (1+2)/2+2 _ (-14+2)/2

Thus, D is the function given by the formula D(r) = e(—r+2)/2, and the solution of the PDE
with side conditions is

u(x,y) = _eXty + e4xe—(2x—y)/2 +1 _ _XtY n e3x+y/2 +1 ' (17)

If we had used the form (15) for the general solution, then the side condition u(x,4x+2) =0
would enable us to find the arbitrary function C. Although C would be different from D, the
reader can check that the final result (17) would be the same. Thus, it is certainly not necessary
to make any clever transformation of the exponent, although (16) looks tidier than (15). o

In Example 3, the side condition was given on the line y = 4x+2 , which is not one of the
characteristic lines of slope 2. Using the same PDE as in Example 3, we next illustrate (cf.
Examples 4 and 5 below) what happens when the side condition is given on a characteristic line.

+y

Example 4. Attempt to solve the PDE ux+2uy—4u = e*7Y with side condition u(x,2x—1) = 0.

Solution. The general solution u(x,y) = &ty +e4xD(2x—y) of the PDE was found in Example 3
(cf. (16)). The side condition is given on the characteristic line y = 2x—1, and it implies that

0=u(x2x-1) = -1+ D) or D()=e*T . (18)

Regardless of the choice of D, we have that D(1) is a constant, whereas e X1 is a nonconstant
function of x. Hence, the side condition u(x,2x—1) = 0 can never be met, and the problem has
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no solution. We can see that the trouble here is that the side condition is given on a characteristic
line, and D(2x—y) is always constant on such a line. This makes it impossible to determine the
function D, and typically (but not always; cf. Example 5) we arrive at a contradiction such as in
(18), and the problem has no solution. When the side condition is on a line which is not a
characteristic line, the argument (e.g., 2x—y) of the arbitrary function is not constant, and the
function can be found as in Example 3. ©

3 4x

Example 5. Solve the PDE ux+2uy—4u =&Y, subject to the condition u(x,2x) = —°*+ e

Solution. As in Example 3, the general solution of the PDE is u(x,y) = Y 4 e4XD(2x—y).
The side condition (given on the characteristic line y = 2x ) then tells us that

34 e = y(x,2x) = =+ e¥D(0) .

In this case, the condition can be met, as long as the C! function D is chosen so that D(0)=1.
There are infinitely many ¢! functions D such that D(0)=1,e.g.,

D(r) =r+1 , D(r) =cos(r) , D(r)=¢e" . (19)
Corresponding to the choices (19), we have the respective solutions

u(an) = _ex+y + e4x(2x_y+1), U(X,}’) = —ex+y + e4XCOS(2x—y), u(x,y) = —ex+y + e4xe2x_y-

All of these functions satisfy both the PDE and the side condition. The fact that we did not get a

contradiction as in Example 5 is due to the special choice of the function e“3x + e4x in the side
condition. Indeed, we would have to choose the function to be of the particular form

—e3x + ke4x for some constant k, in order that there be no contradiction. The C1 function D
would then be arbitrary, except for the requirement D(0) = k . Thus, we see that it is possible for
a PDE, with a side condition given on a characteristic line, to have solutions, if the side condition
has a particular form. In this case, there will be infinitely many solutions. However, if the
function in the side condition does not have the correct particular form, then the problem has no
solution, as in Example 4. o

There is a simple geometrical reason for the peculiarities that arise, when the side condition is
iven on a characteristic line. For if a coordinate system is chosen so that the coordinate lines
%say w = d) are the characteristic lines, then the PDE becomes an ODE in the remaining variable
z which acts as a position variable on each characteristic line. Since v (regarded as a function
of z) satisfies a certain ODE on each characteristic line w = d , we know that v (or u) must
have a particular form on such lines. Since solutions of first—order ODEs are typically determined
by prescribing the value of the solution at a single point, the solution cannot be arbitrarily
prescribed on the entire line, but only at a single point. The following example makes this clear in
a special case when the change of variable is not necessary.

Example 6. Determine the form of the functions g(x) for which the PDE u, —u =0, with side
condition u(x,1) = g(x), has a solution.
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The variable x serves as

Solution. Here the characteristic lines are the horizontal lines d.
the PDE becomes the ODE

y
a position variable on each of these lines. Also, on the line y =d

9 Ju(x,d)] ~u(xd) =0, (20)

which has the solution u(x,d) = C(d)e® , where C(d) is an arbitrary constant that can vary with
d. Thus, on each characteristic line, u must be a constant times e*. In particular, when d = 1,

u(x,1) = C(1)e* , and so g(x) must be of this form for a solution to exist. Along any
characteristic line, u must have a particular form, because u is a solution of a particular ODE

(20) on each of these lines. By piecing together the solutions u(x,d) = C(d)e* on each of the

lines, we arrive at the general solution u(x,y) = C(y)e™ , where C(y) is an arbitrary c! function
of y. Note that if u is prescribed on a noncharacteristic line which intersects each line y = d
exactly once, then the constant C(d) will be determined by the prescribed value of u at the
intersection point. For this reason, a suitable side condition given on a noncharacteristic line will
determine a unique solution, by piecing together the unique solutions on the characteristic lines. o

A side condition need not be given on a straight line.

Definition. If u is required to have specified values on some curve (e.g., a circle,
a parabola, a line,etc.), then we call such a curve a side condition curve.

In order to ensure the existence of a unique solution of the PDE aux+bu +cu = f(x,y), which

meets the side condition, various assumptions about the side condition curve are needed, and we
will define a few terms. A regular curve is a curve with a unit tangent vector which turns
continuously (if at all) with respect to arclength. A regular curve intersects a line transversely, if
at each intersection point, the angle of intersection is nonzero. The following fact can be proved
(cf. Problem 15).

Theorem 1 (Existence and Uniqueness). For the PDE au_+ buy+ cu = f(x,y), suppose that
we are given a regular side condition curve which intersects each characteristic line of the
PDE exactly once, and transversely. Assume also that the values of u are specified in a c!

fashion along the side condition curve (i.e., the values define a ¢! function of arclength along
the curve). Then there is a unique solution of the PDE which meets the given side condition.

Remark. Uniqueness follows easily from the fact that the values of a solution on a characteristic
line is determined by its given value at the point of intersection with the side condition curve.
The regularity of the side condition curve and the transversality of the intersections enter into the

proof that the solutions on the individual characteristic lines can be pieced together to yield a c!
solution of the PDE. From the previous examples, the interested reader should have little
difficulty in proving Theorem 1 in the case where the side condition curve is a straight line. Note
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that the transversality condition guarantees that the side condition curve is not a characteristic
line (Why ?). Examples 4 and 5 show that the transversality condition is necessary (cf. also

Problem 9). In the next example, the side condition curve is y = x3, instead of a line.

3)‘

Example 7. Solve the PDE u, U, + u =0, subject to the condition u(x,x3) =e X(x+x

Solution. Here u is specified on the curve y = x3. This curve intersects each characteristic line

x+y = d exactly once, and transversely (since the slope of the curve x3 is 3x% which is never
the same as the slope (—1) of the characteristic curves). With v(w,z) = u(x,y), where

w=x+Yy X=W-—12
z=y y=2.

the PDE becomes —v, + v = 0. The general solution is v(w,z) = C(w)e?, whence u(xy)

= C(x+y)e¥ = D(x+y)e . In order to meet the side condition, we need to choose D, so that
e_x(x+x3) = u(x,x3) = D(x+x3)e_x. The choice that works is the function D(r) = r, and the
solution of the problem is then u(x,y) = (x+y)e . o

An Application to Population or Inventory Analysis

Under certain natural assumptions, here we derive and solve a first—order PDE which governs
the way in which the composition, with respect to age, of a population of individuals, changes
with time. The individuals need not be biological organisms, but they could be manufactured
items (e.g., light bulbs, transistors, food products) or more generally any collection of similar
objects which become defective with age according to a statistical pattern. Thus, perhaps this
first—order PDE has a greater variety of applications than the heat, wave and Laplace equations.

Suppose that at time t a certain population has approximately P(y,t)-Ay individuals
between the ages of y and y + Ay. In other words, at a fixed time t, P(y,t) is the population
density with respect to the age variable y. At time t, the number of individuals between the ages

of a and b is then J P(y,t) dy. We suppose that the number of individuals of age between y
a
and y + Ay, which die in the time interval from t to t + At is approximately
D(y,t)-P(y,t)- Ay- At, for some function D(y,t) which has been statistically determined, say by
observation. One usually expects that the "death rate density" D(y,t) increases as y increases
(i.e., older individuals may be more likely to expire), and D(y,t) could very well depend on t
because of seasonal variations (e.g., air conditioners are more likely to die in the summer). If
individuals never expire (i.e., D(y,t) = 0), then P(y,t+At) = P(y—At,t) for any y and time
interval At with 0 < At <y, since the population density at time t+At is just a translate, by
the age difference At, of what it was at time t. However, if D # 0, then we must take into
account that a number of individuals will die, as time advances from t to t+At. Indeed,
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At ,
P(y,t+At) = P(y=At,t) —j D(y—At+8,t45)P(y—At-+s,t+5) ds. (21)
0

Differentiating both sides of (21) with respect to At, and then setting At = 0, we obtain

Pt(y,t) = —P_(y,t) — D(y,t)P(y,t) or Py + Pt + D(y,t)P=0. (22)

y

The coefficients for Py and P, are constant (both are 1), but the coefficient D(y,t) of P is

not necessarily constant. Nevertheless, all of the theory of this section still applies to PDEs of the
form au + buy + ¢(x,y)u = f(x,y) (i.e., only the constancy of the coefficients of u, and u_ is

needed to reduce this PDE to an ODE, by a linear change of variables). For equation (22), the
family of characteristic lines is y —t = d. Hence, we make the change of variables

w:y—t t=2z—w
; (23)
z=1y y=12.

With Q(w,z) = P(y,t), we have Py + P = way + szy + wat + szt =Q,, and (22)
becomes Q, + D(z,2—w)Q = 0. The integrating factor is exp[f D(z,z—w) dz], and we obtain

Q(wa) = Clw) exp[ | " D(G¢-w) ¢ 4

where C(w) is an arbitrary c! function, and the lower limit w in the integral is introduced for
future convenience, but it can be replaced by any ¢! tunction of w (Why 7). Hence,

POt = G-t exp[ = [ DlGey+0 dc]

y—t

If we set t =0, then we obtain P(y,0) = C(y). Thus, C(y) is just the initial population density
This is why we chose w for the lower limit in (24). We have (with 7= (—y+t)

P(y,t) = P(y—t,0) exp| — Y D(¢,¢—y+t) d¢ | = P(y—t,0) exp| — t D(y—t+7,7)dr | . (25)
y—t 0

Note that since P(y,0) has not yet been defined for y < 0 (i.e. for negative ages), the solution
(25) is undefined for t >y . For y <0, it is convenient to define P(y,0), so that P(y,0)-Ay is
approximately the number of individuals to be produced between |y| and |y| + Ay time units
into the future. In other words, for y < 0, P(y,0) is the production rate at —y time units into
the future. Naturally, we take D(y,t) =0 for y < 0. Then (25) defines P(y,t) for all (y,t).

In the case of a constant rate of production (say C) and when D(yt) = D(y) is
time—independent (for y > 0), we can determine (using the middle expression in (25)) the
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steady—state population density Pw(y) which is obtained as t -  :

P (y)=lim P(yt) = C exp[ —JZ D(() dg] : (26)

t- o0

Example 8. The number of avocados that a merchant acquires per day is a constant C. At any
time, the probability that an avocado acquired y days ago is removed from the shelf (say due to
spoﬂage or sale), during a small time interval of At days, is (y/25)At.

a) What must C equal, so that there will be about 300 avocados on the shelf, in the long run?
b) Assume that when the merchant took over the business at t = 0, the initial population

density of avocados was P(y,0) = 300e Y. Find P(y,t), assuming that C is as in part (a)?

Solution. Here D(y,t) = y/25, for 0 <y (and D(y) =0, for y <0). For part (a), formula (26)
implies that, in the long run, the population density is

[¢4]

P (y)=Cexp [— JZ y/25 dy] = Cexp (—§y%/25) .

The number of avocados on hand is then Jw Pw(y) C r) exp(—iy /25)

2
=C- 5J°u exp(—4x“) dx = C-5-y7/2 ~ 6.27-C , using the fact that Jme X" 4x = J772 . Thus,
0

C =~ 300/6.27 ~ 48. For part (b), we use (25) with P(y,0) = C for y <0, and P(y,0) = 300e 7,
for y > 0. Hence, for y > t, (25) yields

P(y,t) = 300e_(y_t)exp[—-Jy ¢/25 dg] = 300 exp[~—(y—t)—t(2y—t)/50]] Ly >t

y—t
Recall that D(y) = 0 when y < 0. Thus, when y < t, the interval of integration from y—t to
y in (25) can be replaced by the interval from 0 toy. Hence, (25) yields
y 2
P(y,t) =C exp[ —J y/25 dr] = Cexp (—4y“/25) = Pw(y), for 0<y<t.
0

Thus, the steady—state density applies, as longas 0 <y <t. o
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Summary 2.1

1. Characteristic lines : The lines bx — ay = const. which are parallel to ai + bj (i.e., have
slope b/a) are called the characteristic lines of the first—order PDE

au + buy + cu = f(x,y) , (S1)

with constant coefficients a, b and ¢, with 32+b2 # 0. The equation (S1) may be solved as a
first—order linear ODE, if a=0o0r b =0 (i.e., if the characteristic lines are x =dor y = d).
The geometrical significance of the characteristic lines is that au + bu  is essentially the

directional derivative of u along these lines. Thus, on each characteristic line, (S1) is really an
ODE for a function of a position variable along the line.

2. Change of variables : The PDE (S1) is converted to an ODE (with parameter w), when it is
expressed in terms of new variables (z,w) for which the characteristic lines are the new
coordinate lines w = d . Specifically, if b # 0, consider the transformation

w = bx —ay x = (w + az)/b
(52)
z=y y=z.
(i.e., the characteristic lines are now given by w = d), and let v(w,z) = u(x,y) = u((w+az)/b,z)

be the unknown function in terms of w and =z  Then, by the chain rule (e.g.,

u =v.w +vz = bv and Uy = Vy Wy + V2 = Ay + vz) , (1) becomes

bv, +cv = f((w+az)/b,z) , (S3)

w

in which there is no Vo Then (S3) may be solved as a first—order ODE for v with w held

constant, and the general solution of (S1) is then u(x,y) = v(bx—ay,y). Depending on the form of
the function f(x,y) in (S1), it may be more convenient to choose z = x or some other linear
combination of x and y (anything except a multiple of bx—ay). The resulting equation for v
will still have no v term, although the coefficient of v, may nolonger be b asin (S3).

3. Side conditions on lines : The general solution of (S1) involves an arbitrary ¢! function. In
order to single out a particular solution, an appropriate side—condition must be given. If we
require that the solution have given values at points (x,y) on a line, say y = mx + d, then the
side condition is

u(x,mx+d) = g(x) (54)

where g(x) is a given ¢! function. As long as m # b/a (i.e., the line on which the side
condition is given is nmot a characteristic line), the PDE (S1) will have a unique solution which
meets the side condition (S4). In other words, if m # b/a, the side condition (S4) can be used to

uniquely determine the arbitrary C1 function in the general solution of (S1). However, if the side
condition is given on a characteristic line (i.e., m = b/a), then there will be no solution of (S1)
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with (S4), unless g(x) has a particular form. If g(x) has this particular form, then there will be
infinitely many solutions of (S1) satifying the side condition (S4).

4. Side conditions on curves : It is not necessary that a side condition be prescribed on a line.

Indeed, a unique solution of (S1) is determined, if the values of u are given in a leashion on a
regular curve which transversely intersects each characteristic curve exactly once. The essential
idea is that the solution of (S1) is determined on a characteristic line by its value at a single point
of the line, since (S1) is an ODE on the line. The regularity of the side condition curve and the
transversality condition are needed to ensure that the solutions, on the individual characteristic

lines, piece together to form a ¢! solution of (81).

5. Application : An application to population and inventory analysis is given in the last
subsection.

Exercises 2.1

1. Find the general solution of each of the following PDEs, where u = u(x,y) in (a) —(d).

(a) 2ux—3uy=x, (b) ux+uy——u=0
(c) u, + 2uy —4u = &1V (d) 3u, —4uy =x+e*
() v, +3v, = ow? , vV =v(w,z) (f) g, —cg,=0,g= g(x,t) (c constant).

2. Find the particular solution of u + 2uy —4u =Y satisfying the following side conditions.

2

(2) u(x,0) =sin(x?) () u0y)=y> (c) u(x,—x)=x .

3. Show that the PDE u, + u U= 0 with side condition u(x,x) = tan(x) has no solution.

4. What form must g(x) have in order that the following problem have a solution ?

u + 3uy —-u=1, u(x,3x) = g(x) .

If g(x) has the required form, will there be more than one solution ?

5. Write down two different solutions of the PDE in Problem 4, when g(x) = —1 + 2e*.

2x 2

6. Solve the problem : u, —2u =0, u(x,ex) = e taxe®+4x°.

y
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7. Let a, b and ¢ be constants with ab # 0 . Consider the homogeneous linear PDE
au_+ buy + cu = 0. Bob says that the general solution is given by u(x,y) = e—cx/ af(bx—ay)

for an arbitrary ¢! function f, while Jane says that it is u(x,y) = e_cy/bf(bx—ay). Who is
correct 7

8. (a) Show that the PDE u =0 has no solution which is c! everywhere and satisfies the side
condition u(x,x2) = X.
(b) Find a solution of the problem in (a) which is valid in the first quadrant x > 0, y > 0.

(c) Explain the results of (a) and (b) in terms of the intersections of the side condition curve and
the characteristic lines.

9. (a) Show that the PDE u =0 has no solution which is c! everywhere and satisfies the side

condition u(x,x3) = x , even though the side condition curve y = x> intersects each
characteristic line (y = d) only once.

(b) Part (a) demonstrates the necessity of the transversality condition on the intersections of the
side condition curve with the characteristic lines. Explain why.

3

Hint. At what angle does the curve y = x” meet the x—axis ?

10. (a) Show that a solution of the homogeneous PDE au + buy +cu=0 cannot be zero at
one, and only one, point in the plane.

(b) If ¢ =0 in the PDE in (a), then show that the graph z = u(x,y) of a solution u (defined
everywhere) is a surface composed of horizontal parallel lines.

11. In Example 8 (b), how many of the original avocados (already present at t = 0) will remain
after time t 7 Your answer should be a function of t.

12. In Example 8, now assume that an avocado has a 10% chance of being removed from the
shelf on any given day (i.e., more precisely D(y) = .1, for y > 0), regardless of its age.

(a) Show that in the long run, there will be about Ce™ Y 10 y—day—old avocados on the shelf.

(b) According to part (a), what should the value of C be, if there are still to be about 300
avocados on the shelf in the long run. Does your answer agree with common sense ?

13. Air conditioners are produced at a constant rate of 100 per month beginning on New Years
Day. The probability that an air conditioner will break down during a small time interval At
months, assuming that t months have elapsed since New Years, is (.2 —:1-cos(7t/6))At,
regardless of the its age. Approximately how many y-month—old air conditioners will be
operational at the end of the year, where y < 12 ? How could the total number of operational air
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conditioners, at the end of the year, be determined ? If you have the resources for numerical
integration, compute this number.
Hint. When using formula (25), remember that D(y,t) =0 for y < 0.

14. A certain population has initial population density C(y), for y > 0. The birth rate of the

population at time t is proportional to its total size at time t, say a-Jm P(y,t) dy for some
0

constant « > 0. (We assume that Jw C(y) dy < o .) The death rate density is constant, say
0

D(y,t) =k for y >0 and some k > 0. Find the population density P(y,t) for all y,t > 0.

Hint. First note that formula (25) applies, but P(y—t,0) is not yet known for t > y. Let f
= P(0,t) (i.e., f(t) is the birth rate at time t). Once f(t) is determined, then P y—t,0
f(t—y) for t > y (Why?), and the solution will then be explicitly given by ( 25 ind t ),

note that

f(t)

Il
Q

t
P(ut) du = a-J P(u,t) du + a'Jm P(u,t) du
0 t

ot

=a-| P(u-t,0) e KU gy 4 a'Jm C(u—t) e Xtqu
Jo ¢

t

= a f(t—u)'e—ku du + a-e Kt Jm C(u) du

70 0

The last integral is the total initial population, say p,. Change to the variable v = t—u in the

first integral, to obtain ek = a- J V'du + a-p,. Now differentiate.

15. By completing the following steps, prove Theorem 1. Let (h(s),k(s)) be a parametrization of
the side condition curve in Theorem 1 by an arclength parameter s.

(a) For each point (x,y) in the plane, show that there are unique numbers o(x,y) and 7(x,y),
such that x = h(a(x,y)) + a-7(x,y) and y = k(o(x,y)) + b-7(x,y). (Draw a picture.)

(b) Using the functions o(x,y) and r(x,y) of part (a), show that with the change of variables
s = a(x,y) x = h(s) + at
t = 1(x,y) ’ y = k(s) + bt ,
and with v(s,t) = u(x,y), the PDE au, + buy + cu = f(x,y) becomes v, +cv = F(s,t), where

F(s,t) = f(h(s) + at,k(s) + bt) . Hint. Note that v, =u x, + Uy -

(c) Show that v(s,t) = et [Lt] e F(s,r) dr + U(s) ] where U(s) = v(5,0) = u(h(s).k(s)) is

the Cl function which specifies the values of u on the side—condition curve. Thus, the unique
solution of the problem in Theorem 1 is the ¢! function u(x,y) = v(a(x,y),7(x,y)). (Note that
the Jacobian xy, —y.X, = h’(s)b —k’(s)a # 0 (Why?), so that ¢ and 7 are c! by the Inverse
Function Theorem which is covered in most advanced calculus books, e.g., [Taylor and Mann].)



74 Chapter 2 First—Order PDEs

2.2 Variable Coefficients

In many applications, we find first—order linear PDEs with variable coefficients

a‘(x’y)ux + b(X,y)lly + C(X,y)ll = f(x7Y) y U= u(an) ) (1)

where a, b, c and f are given ¢! functions of x and y. Note that a(x,y)ux + b(x,y)uy is the
directional derivative of u at the point (x,y) in the direction of the vector

g(x,y) = a(xy)i + b(x,y)j -

In Section 2.1, a and b were constants, and this vector had a fixed direction and magnitude, but
now the vector can change as its base point (x,y) varies. Thus, g(x,y) is a vector field on the
plane. It is helpful to think of g(x,y) as the velocity (at the point (x,y)) of a fluid flow in the
xy—plane. When a and b are constants, the streamlines of the fluid are the straight lines with
slope b/a (i.e., with tangent vectors parallel to ai + bj), and hence they are the characteristic
lines. When a and b are not constant, the streamlines will be curved in general, and we refer to
the streamlines as characteristic curves. More precisely, we make the following definition.

Definition 1. A curve in the xy—plane is called a characteristic curve for the PDE (1), if at
each point (x,,y,) on the curve, the vector g(x,,y,) = a(X4,yo)i + b(X,,¥,)j i8 tangent to
the curve.

At each point on a characteristic curve, we have that g-Vu ( or a(x,y)ux + b(x,y)uy ) is the

directional derivative of u in the direction of the curve's tangent vector, and hence g-Vu is
proportional to the derivative of u , with respect to a position variable along the curve. Thus, as
with the constant coefficient case, on each characteristic curve, the PDE (1) is actually an ODE
for a function of a position variable along the curve. I the characteristic curves are graphs of
functions y(x) (i.e., assuming that a(x,y) # 0), then Definition 1 implies that

g% = ggi,y; : (2)

(i.e., the tangent line to the graph of y(x) at (x,y) is parallel to g(x,y) = a(x,y)i + b(x,y)j )-

The ODE (2) is known as the characteristic equation for the PDE (1). The solution curves
of the the characteristic equation are the characteristic curves for (1). '
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In the case of constant coefficients a and b, the general solution of (2) is simply
y= gx + const. or bx—ay =d, where d is an arbitrary constant. In the general case of

variable coefficients, (2) may be considerably more difficult to solve, but let us assume that (2)
has been solved, and that the solution has been put in the implicit form h(x,y) = d, where d is
an arbitrary constant. We can simplify the PDE (1), by making the change of variables

w=nh(xy) and z=y, (3)

as we did when a and b were constant (e.g., h(x,y) = bx—ay, in that special case.). The
rationale for this procedure is that w is constant on each characteristic curve and the PDE
should become an ODE in the position variable z along these curves. As before, the choice

z =y is not necessary. Indeed, we can set z equal to any ¢! function of x and y, as long as
the transformation can be 1nverted to tg]ve x and y in terms of z and w. Setting v(w,z)
= u(x,y) , we can verify that (1) is transformed into an ODE in z, for w fixed. First compute,

au, + buy =a(vw, +v,z )+ b(vwwy +v zy)

= (aw, + bwy)vW + (az, + bzy)vZ

w
PDE for v. To this end, let (x,,y,) be a given point and let y(x) be a solution of (2) such that

¥(X9) =y, - We know that h(x,y(x)) = const. , and hence using (2),

_d _ dy _ b(x
0= & nxy() = b+ B = w 4w DY)

Thus, aw -+ bwy =0 at any point (x,y(x)). In particular, aw,_ + bwy =0 at the arbitrary
given point (x,,y,). Alternatively, recall that Vh is normal to any level curve h(x,y) =d and
by construction g = ai + bj is tangent to this level curve. Thus, aw, + bw = g-Vh = 0.

Although we have shown that the method works, in many instances it turns out that (3) may be
invertible only in a certain domain in the xy—plane. This signals the need for some care, as we
will find in some of the examples below.

Thus, it suffices to show that aw <t bwy = 0, in order that v_  drop out of the transformed

Example 1. Find the general solution of

—yuy +xu, = 0 . 4)

Solution. The characteristic equation is dy/dx = —x/y This is a separable equation which is
readily solved by separating the variables and integrating :

ydy = —xdx = §y2 = -%xz-{-éd.
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Thus, the characteristic curves form the family x2+y2 =d of circles [d > 0] and the point (0,0)
[d = 0]. We make the change of variables

w=x2+y2 x=t[w—z2]%
; (5)

z=y y=z.

In spite of the fact that the inverse transformation is double—valued and only defined for w 2 22 ,

we will arrive at the correct solution anyway. Setting v(w,z) = u(x,y) , the PDE (4) becomes

0=-yu +xu = —y(v w +v z )+ x(vww +v,z) = —(y-2x—x-2y)vW + XV, =XV

y WX zZX y y z’

(e, xv, = 0). Thus,if v isa ¢! function of w, say v = f(w), we suspect that

u(xy) = (<2 + y%) (6)

will be a solution of the original PDE, in spite of the defects of the transformation (5). Indeed, we
can check the solution (6) directly :

—yu, + Xuy = —yf’(x2+y2)2x + xf’(x2+y2)2y =0.
This shows that (6) is a solution. We will often resort to tentative procedures in deriving
"hypothetical solutions", but until they are actually checked, we have no proof that they are
actual solutions. We have still not conclusively demonstrated that (6) is the most general
solution. A solution is of the form (6), if and only if it is a constant on each of the circles

)c2+y2 = a’. We should check that any solution of (4) must be constant on these characteristic

circles. To show this, we parameterize the circles via
x(t) = a cos(t) , y(t) =a sin(t) , a>0. (7)

As t varies, (x(t),y(t)) traces out the c1rcle x + = a®. The value of u at (x(t),y(t)) isa
function of t that we denote by U(t) We want to show that U(t) is a constant,

so that u will be constant on the albltrary c1rcle X +y2 = a“” . For this, we compute :

g% = %f u(x(t),y(t)) = u x’(t) + uyy’(t) = —u a-sin(t) + uya-cos(t)
= —u (x(t),y () y(t) + u (x(t),y(t))-x(t) = 0,

by the PDE $ ). Thus, the PDE tells us that the function u is constant on characteristic circles,
and (6) is in fact the most general form for the solution. o

y

Remark. In Example 1, it is not necessary for the function f(z) to be C1 at z =0. For example,
. _ 2.2/3 a2, 2\2/3 LA/ 2 2.4 R |
if f(z) = 3z°/°, then u(x,y) = 3(x"+y“)*/° = 3r (r = (x* + y“)?) , which is still C", even

though f'(z) = 2771/3 is undefined at z = 0. Technical difficulties such as this can occur at
"critical points" (xg,y,), where a(xg,y,) = 0 and b(xy,y,) = 0. In Example 1, we can still say
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that all solutions are of the form (6), but the requirement that f(z) be ¢! can be relaxed a bit
at z=0. The degree of concern over such matters will be left to the instructor. However, one

should note that if h(x,y) is ¢! and Vh(x,y) # 0 for all (x,y) in an open set S, then f(h(x,y))
will be Cl on S, if and only if £ is C! on h(S). Thus, in order that the solutions of (1) be C.,
the arbitrary function of integration must certainly be C* near h(x,,y,), if Vh(x,,y,) #0. o

The preferred parametrization of a characteristic curve

In Example 1, we parametrized a characteristic curve via the functions x(t) and y(t), and we
defined a function U(t) = u(x(t),y(t)) which is simply the value of u along the curve at "time"
t. We found that U(t) obeys the ODE U’(t) = 0, by virtue of the PDE (4). For the general
first—order, linear PDE (1), the main goal of this subsection is to explicitly show that the function
U(t) = u(x(t),y(t)) must satisfy a certain ODE, if (x(t),y(t)) traces out a characteristic curve,
as t varies.

There are many ways in which a particle can move along a characteristic curve (e.g., quickly,
slowly, etc.). Perhaps the most natural way is to have the particle move in such a way that its
velocity is g(x,y) = a(x,y)i + b(x,y)j , when it is at the point (x,y) (i.e., as if it were carried
along by the fluid flow with velocity g(x,y) ). For the particle to move in this way, the functions
x(t) and y(t) which give the position (x(t),y(t)) of the particle at time t, must obey the system

& ax()y(1) s %= b(x(t)y (1)) - (8)

Since the velocity vector x’(t)i + y’(t)j of the particle is tangent to its path, we know that (8)
ensures that the point (x(t),y(t)) traces out a characteristic curve for the PDE (1).

Definition 2. The system of equations (8) is called the characteristic system of the PDE (1).
If x(t) and y(t) solve this system, then (x(t),y(t)) is said to be a preferred parametrization
for the characteristic curve that is traced out as t varies.

In Section 1.1, we solved systems such as (8) in the simple case, where a(x,y) and b(x,y)
were linear combinations of x and y. In general, we will only consider problems where the
characteristic systems are easily solved. For the PDE considered in Example 1, the system (8) is
x’(t) = —y(t) , y’(t) = x(t). Differentiating the first equation and using the second, we have
x"(t) = =y’ (t) = —x(t), or x"(t) + x(t) = 0. Thus,

x(t) = c,cos(t) + cosin(t) and y(t) = —x’(t) = ¢;sin(t) — cycos(t) . (9)

For any choices of the constants c, and c,, a characteristic curve (a circle or a point, in this case)
is traced out. In (7) of Example 1, we chose ¢, = a and c, =0 for convenience.
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Suppose that (x(t),y(t)) is a preferred parametrization for a characteristic curve of

a(xy)u, + bxy)uy + clxy)u = fxy) (10)
Let U(t) = u(x(t),y(t)), C(t) = c(x(t),y(t)) and F(t) = f(x(t),y(t)) . (11)
In order to find the ODE which U(t) must obey, we compute
U’ (t) = ux(x(t),y(t)) x’(t) + uy(x(t),y(t)) y'(t) (by the chain rule)
= u, (x(t),y(t)) a(x(t),y(t)) + uy (x(t),y(t)) b(x(t),y(t)) ~ (by (8))
= —¢(x(t),y(t))u(x(t),y(t)) + f(x(t),y(t)) (by the PDE (10) )
= —C(t) U(t) + F(t). (by (11)).
Thus, we have shown that U(t) = u(x(t),y(t)) must obey the ODE
U’(t) + C(t)U(t) = F(t) . (12)

t
Letting m(t) = exp[ J C(t) dtJ be the integrating factor for (12), we obtain the solution
0

U m(t t)dt+U()] (13)

In this formula, m(t) and F(t) depend only on the values of c(x,y) and f(x,y) along the
characteristic curve x = x(t), y = y(t). Thus, (13) shows that the values U(t) of the solution u
along the entire characteristic curve are completely determined, once the value
U(0) = u(x(0),y(0)) is prescribed. If c(x,y) and f(x,y) are zero, as in Example 1, then (13)
says that u will be constant on each characteristic curve. However the constant can change, as
one moves from one characteristic curve to another. For example, the particular solution

u(x,y) = (x +y2)3 of Example 1 is 64 on the circle of radius 2, and 1 on the circle of radius 1.
If c(x,y) and f(x,y) are not zero, then U(t) need not be constant although (13) shows that U(t)
must have a certain form which depends only on the choice of U(0). Thus, in general we cannot
specify the value of u at two distinct points of a characterlstlc curve as the fo ollowing example
shows.

Example 2. Show that the problem —yu, + xu, = 0, u(x,0) = 3x has no solution.

Solution. The side condition is given on the x—axis which intersects each of the characteristic

circles x2—i-y2 = a2 twice, at (a,0) and (—a,0) [a # 0]. We saw in Example 1 that u(x,y) must be
constant on such circles, and yet the side condition requires that u(a,0) = 3a and u(—a,0) = —3a.
Thus, this side condition can never hold for a solution of the PDE. The difficulty arises, because
we cannot expect to prescribe u at more than one point on any characteristic curve. Given a
value for u at one point, the values of u at the other points along the curve will be uniquely

determined by the fact that u is a solution (13) of a certain ODE (12) along the curve. o
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Remark. Sometimes, if the side condition is chosen carefully, a problem may still have a solution,
even if the characteristic curves intersect the side condition curve more than once. For example,

the problem, —yu + xu =0 with u(x,0) = 3x2, has the solution u(x,y) = 3(x2+y2). The

y
saving grace of this side condition is that u(a,0) = 3a’ = u(-a,0). o

The parametric form of solutions
We have seen that it is convenient to think of characteristic curves of the PDE

a(x,y)uy + b(xy)uy + c(xy)u = f(xy) (14)

as paths of particles moving with the flow of a fluid with velocity g(x,y)= a(x,y)i + b(x,y)j . The
position (x(t),y(t)) of a particle is completely determined by its starting position (x(0),y(0)) at
time t = 0. If a side condition is given on some regular side condition curve which transversely
intersects each characteristic curve exactly once, then it is convenient to take the starting position
of the particle on a characteristic curve to be the point of intersection of the characteristic curve
with the side condition curve. If we let s denote a position variable along the side condition
curve, then we obtain a different characteristic curve for each value of s. For each fixed s, let
(X(s,t),Y(s,t)) be the position, at time t, of the particle which begins at the point corresponding
to s on the side condition curve, and flows with the fluid.

S — N\

\ t

characteristic
curves

7
side condition curve (t = 0)

Figure 1

Note that the side condition curve itself is traced out by (X(s,0),Y(s,0)), as s varies and t is
held fixed at 0. In other words, we have the following : . )
The functions X(s,t) and Y(s,t) are the solutions of the characteristic system (for each fixed s)

Y(s,t) = b(X(s,t),Y(s,t)) , (15)

E:'CL

g-t-X(s,t) = a(X(s,t),Y(s,t))

with given initial values X(s,0) and Y(s,0).

Suppose that the values of u at points on the side condition curve are given by
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u(X(s,0),Y(s,0)) = G(s) (16)

where G(s) is a given ¢! function. We obtain u(X(s,t),Y(s,t)) as follows.

Let U(s,t) = u(X(s,t),Y(s,t)), C(s,t) = c(X(s,t),Y(s,t)), F(s,t) = f(X(s,t),Y(s,t)) an
t

d b))z ex C(s,t) dt] .
an m(s,t) ep”0 (s,t) tJ

Then we may apply the result (13) of the previous subsection, for each fixed s, to deduce that

t
Uls,t) = H(ls—ﬁ UO m(s,t) F(s,t) dt + G(s) ] (18)

From (17), we know that U(s,t) is the value of u at the point (X(s,t),Y(s,t)). Thus, as sandt
vary, the point (x,y,u) , in xyu—space, given by

x=X(s,t), y=Y(s,t), u=U(st), (19)

traces out the surface of the graph of the solution u of the PDE (14) which meets the side
condition (16).

The equations (19) constitute the parametric form of the solution of (14) with the condition (16).

Although (19) does not directly give us a formula for u(x,y), it may be possible to solve the
equations x = X(s,t) and y = Y(s,t) for s and t in terms of x and y, say s = S(x,y),
t = T(x,y). Then u(x,y) = U(S(x,y),T(x,y)) will be the usual explicit form for the solution. It
is often convenient to leave the solution in the form (18) for the purpose of generating
three—dimensional computer plots of the graph of the solution in xyu—space (cf. Figure 2 below).

Example 3. Find the parametric form of the solution of the problem

—yu +xu =0, u(s,sz) = (s>0). (20)

y
Solution. By (15), the family of characteristic curves (X(s,t), Y(s,t)) are found by solving
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X6 =Y, F Y0 =X60

with initial conditions (21)
X(s,0) =s, Y(s,0)=s

The general solution of this system is (cf. (9))

X(8,t) = ¢(s)cos(t) + cy(s)sin(t) and Y(s,t) = c,(s)sin(t) — cy(s)cos(t) .

By the initial conditions, c,(s) =s while cy(s) = ~s2 . For the PDE in (20), we have c¢(x,y) =0

and f(x,y) =0 (cf. (14)). Thus, m(s,t) =1 and F(s,t) =0 in (17). According to (20) and (16),
we have G(s) = s3, and so U(s,t) = §3 by (18). Hence, we have the parametric solution

2

X(s,t) = s cos(t) — §2 sin(t), Y(s,t) = ssin(t) + s cos(t), U(s,t) = $3 .

(22)

When t =0, and s (s > 0) varies, we get the point (s,sz,s?’) in xyu—space, which traces out
the so—called twisted cubic. As t varies, the points on the curve move in circles about the
u—axis. Thus, the graph of the solution is the surface obtained by revolving the twisted cubic
about the u—axis, as we illustrate in Figure 2.

Figure 2
We can also obtain the solution in explicit form. We know from Example 1 that the general
solution is of the form u(x,y) = C(x2+y ). Thus, the side condition tells us that C(32+s4) $3.

Setting 2 = ¢ + st , we have §2 = (-1 + 1+4r° )/2. Thus, C(r ) = §3 yields

3/2
u(xy) = [—1 +\/1+4(x2+y§)] f /48 .
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If the side condition curve were replaced by (s,s7), then the explicit form of the solution would be
difficult (if not impossible) to obtain, due to the difficultly in solving for s in terms of r°.
However, in the parametric form for the solution, we can simply replace §? by s’ in (22). o

Example 4. Solve (y+x)u,+ (y—x)uy = u, subject to u(cos(s),sin(s)) =1 for 0<s <2

Solution. The side condition states that u is to be 1 on the unit circle x?+y? = 1. The
characteristic equation g.)% = }YIE% (cf. (2)) is neither separable nor linear, although it becomes
separable under the change of dependent variable y(x) = x-z(x). Instead, we opt for the
parametric approach. The characteristic system (cf. (15)) is (for fixed s)

d d
I X(s,t) = X(s,t) + Y(s,t) and I Y(s,t) = =X(s,t) + Y(s,t) ,
with initial conditions (23)

X(s,0) = cos(s) , Y(s,0) = sin(s) .

We solve the system using the method of Section 1.1. We differentiate the first equation in (23)
with respect to t, and use the second equation to obtain X" =X’ +Y’' =X’ + (X +Y) =X’

+ (X + X’ —X), or X"—2X’ + 2X =0. The roots of the auxiliary equation -2 +2=0
are 1+i. Thus,

X(s,t) = cl(s)etcos(t) + c2(s)etsin(t) and Y(st) = —cl(s)etsin(t) + c2(s)etcos(t),

using Y = X’ — X. For fixed s these curves (X(s,t),Y(s,t)) spiral away from the origin as t
advances. The initial conditions yield c,(s) = cos(s) and cy(s) = sin(s). Thus,

X(s,t)‘= cos(s)etcos(t) + sin(s)etsin(t) = etcos(s—t) and Y(s,t) = etsin(s—t) .

Since U(s,t) = u(X(s,t),Y(s,t)) satisfies gf U(s,t) = U(s,t) (cf. (12)) with U(s,0) = 1, we have
U(s,t) = et (cf. (18), also). Thus, we have the parametric solution

t

¢ sin(s—t), u=e".

x =e'cos(s—t), y= et

Since x2 + y2 = e2t = u2, we can write the solution in the explicit form u(x,y) = \/x§+y2.
Note that the graph of the solution is a cone and it is not cl at the origin. If the initial
condition had not been so simple, then we might not have been able to get a simple formula for
the solution in explicit form; but obtaining the parametric solution would be easy (e.g., consider

u(cos(s),sin(s)) = cos(3s), in which case we would have U(s,t) = etcos(3s) ). o
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Global Considerations

When the values of u are prescribed in a ¢! fashion along a regular side—condition curve
which transversely intersects each characteristic curve once, then we have some way of piecing
together solutions for u on the various characteristic curves. However, as we show in the next
example, it can happen that there is no single side condition curve which transversely crosses each
characteristic curve once. In such cases, constructing solutions which are defined throughout the
xy—plane (i.e., globally) can lead to some interesting complications.

Example 5. Find the general solution of the PDE
xu, —yu, +yu=0. (24)

Solution. The characteristic curves are found from
dy _ -y dx , dy _
a)x( = X or < + v = 0.

Integrating, we obtain log(|x|)+log(]|y|) = log(|d|). Thus, the family of characteristic curves is
the collection of curves xy = %hyperbolas, when d # 0). From the viewpoint of preferred
parametrizations, the two branches of the hyperbola xy = d should be regarded as distinct
characteristic curves. Indeed, the system of equations for the preferred parametrization

(x(t),y(t)) is x’(t) = x(t) , y’(t) = —y(t), with solutions x(t) = c,e", y(t) = ¢, . For fixed

nonzero ¢, and c,, the point (clet,cze_t) traces out only one branch of the hyperbola xy = c,c,.
We proceed with the general solution process, as in Example 1, by making the change of variables

{w=xy . {x=w/z

y=12.

(25)
z=y

The inverse transformation is not defined everywhere (only for z # 0 ). This will lead to some

unexpected difficulties. Setting v(w,z) = u(x,y) we have xXu, — yu, = x(vax + vzzx)

— y(vay + vzzy) = (xy—yx)vW —yv, =-yv, . Thus, the PDE becomes —zv, + zv = 0, which
Z

has the solution v(w,z) = C(w)e” . Hence, we are led to the hypothetical solution

u(xy) = Clxy)e” , (26)

where C is an arbitrary ¢! function. Although one can directly check that (26) is a solution,
this time we demonstrate that (26) is not the most general solution. Observe that the solution

(26) is the function C(d)e’ on each of the branches of the hyperbola xy = d, and yet the
branches are disconnected, so that there is no reason why the solution would have to be the same

multiple of e¥ on each branch. Note that if we restrict the domain of u to the upper half plane
y > 0, then each hyperbola xy = d has only one branch in this half plane, so that (11) will in
fact be the most general solution in the half plane y > 0. Similar remarks apply, if we restrict
ourselves to y < 0. Suppose that we try to glue together the two general solutions in each half
plane by defining
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C(xy)eY y20

u(x,y) = [ Dey)e’ <o (27)

where Cand D are C! functions. Certainly (27) is a ¢! solution of the PDE for y > 0 and for

y < 0, but we must make sure that u is well defined and cl at points on the x—axis (y = 0).
For u to be well-defined, we need C(0) = D(0) [i.e., the formulas must agree when y =0

Also, for y > 0, we have ux(x,y) = C’(xy)ye’, and for y < 0, we have ux(x,y) = D’(xy)ye” .
Hence, ux(x,O) =0 in both cases, and u is well—defined and continuous. Therefore,

(x,y) = C’(xy)xe¥ + C(xy)eY, for y20 and (x,y) = D’(xy)xe¥ + D(xy)e’, for y < 0.

Yy Yy
In order that the formulas match at y = 0, weneed C’(0) = D’(0) . Thus, (27) is a solution,
provided we assume that C(0) = D(0) and C’(0) = D’(0) . Indeed, (27) is the most general

solution of the PDE, where C and D are arbitrary C1 functions, subject only to the conditions
C(0) = D(0) and C’(0) = D’(0) . For example, taking C(r) =t and D(r) = sin(r), we have
the particular solution

xyey y20

uoy) = [ sin(xy)e¥ y<0 .

It is interesting to note that the functions C and D in (27) must each be defined for all real
numbers in order that wu(x,y) be defined for all x and y. Thus, we have an example of a
first—order PDE that requires two arbitrary functions to express its general solution. This leads
to an interesting question. Is there one side condition for the PDE (24) which uniquely
determines a solution ? It is plausible that the answer is "no", because the side condition would
determine two arbitrary functions, C and D. Indeed, the curve on which this side condition is
given would have to cross each branch of every hyperbola xy = d once and only once. Consider
the four branches shown below in Figure 3. As is easily seen, there is no continuous curve that

y
Ixyl =1 2
1
X
-2 -1 (o} 1 2
-1
-2

Figure 3
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crosses each of these branches just once. This shows that there is no single side condition that will
uniquely determine a solution of the PDE. One could get a unique solution by imposing two side
conditions, say

u(x,1) = h(x) and u(x,~1) = k(x), where h(x) and k(x) are ¢! functions.
Then we could determine the functions C and D in the general solution (27) via the relations

C(x)e = u(x,1) = h(x)
D(x)e ~ = u(x,—1) = k(x) .

Thus, C(x) = h(x)/e and D(x) = k(x)e . Since we must have C(0) = D(0) and C’§0) = D’(0),
we deduce that in order for a solution to exist the functions h(x) and k(x) must satisty the rather

weird conditions h(0) = e2k(0) and h’(0) = e2k’(0) ' o

Example 5 shows that, in constructing general solutions, complications can arise, when the
family of characteristic curves has a "topologically nontrivial" configuration, in the sense that
there is no regular side condition curve which transversely intersects each characteristic curve
once. For this reason, it is difficult if not impossible (or at least very awkward) to formulate a
specific procedure, whereby one can capture the completely general solution of a first—order linear
PDE with variable coefficients. Essentially, one can form any solution by solving the ODE (12)
on characteristic curves (x(t),y(t)) and piecing the solutions on the curves together. But in
practice this is not as easy as it sounds. It is possible to give examples of first—order linear PDEs
for which the general solution involves infinitely many arbitrary functions (cf. Problem 8).

An application to gas flow

Imagine a gas (or compressible medium) which flows parallel to a given line (say the x—axis).
We denote the density (mass per unit volume) of the gas at the point (x,y,z) at time t by
p(x,t) ; we assume for simplicity that the density is independent of y and z. Let the velocity at
the point (x,y,z) at time t be wv(x,t)i, where i is the unit vector in the positive x direction.
We show that because of conservation of mass, the functions p(x,t) and v(x,t) must obey the
so—called continuity equation :

py + (pv)x =0 or p+vp +vp=0. (28)

For the derivation, consider the space between x, and x, + Ax (see Figure 4).

Al ANNANINA TR
U \dbaxte)  \J x
X, X +Ax

Figure 4



86 Chapter 2  First—Order PDEs

The amount of mass passing through a unit area of the plane x = x,, into this space in the time
interval At is p(xg,t)v(xq,t)At, and the amount that leaves through the face x = x, + Ax (per
unit area) in the time interval At is » p(xo+Ax,t)-v(xo+Ax,t)At . Thus, the net change in the
mass, per unit cross—sectional area, between the planes during At is given approximately by

Xo+AX
J [o(x,t + At) — p(x,t)] dx » —[p(xy + Ax,)V(Xo + Ax,t) — AtV (xgot)] - At -

Xo

Dividing by Ax-At , and taking the limits as Ax and At tend to zero, we obtain pt(xo,t)
= —(pv)x(xo,t) , which gives us (28). By specifying v(x,t) in advance, we can use (28) to figure

out the "unknown" density p(x,t), provided we know p(x,0) [i.e., the density at the time
t = 0]. In other words, finding p(x,t) amounts to solving the problem

Py + VOt + v (xt)p =0, p(x,0) = py(x) , (29)

where py(x) is some given ¢! function (the initial density). We consider some special cases.

1. Suppose that v(x,t) = v, , a constant. Then the PDE in (29) becomes py + Vopy, = 0. The
characteristic lines form the family of lines with slope dx/dt = v, (i.e., x — vt = d ). Without
going through the familiar change of variables , it is evident that the general solution of the PDE
is p(x,t) = C(x —vyt) , for an arbitrary c! function C. From the initial condition in (29), we get
po(x) = C(x —vy+0) = C(x) . Thus, the solution of the problem (29), in this case is

p(x,t) = po(x — vot) .
In other words, the density distribution is carried downwind with speed |v,]|.

2. Suppose that v(x,t) = ax , where a is some positive constant. In this case, the velocity is in

the direction —1 for negative x and in the direction +7 for positive x (i.e., the wind is
blowing away from the point x = 0 ). Of course, we expect the density at x = 0 to decrease
with time in this case. The PDE in (29) becomes py + axp, + ap = 0. The solutions of the

characteristic equation x’(t) = ax, form the family of characteristic curves x = de® or
xe % = d in the xt—plane. We make the change of variables
w=xe % x = we®
)
z=1t

t=2z,

and let r(w,z) = p(x,t) . The PDE then becomes
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0=p, +oxp, +0p= (r,,wy +1,2) + ax(row, + rz)+a=r, +or,

or 1, +ar=0. The general solution is r(w,z) = C(w)e %, for an arbitrary ¢! function C ,
and this yields p(x,t) = C(xe_m)e—m. Using the initial condition, we have py(x) = p(x,0)
= C(x), whence C(x) = py(x). The unique solution of problem (14) in this case is then

plx.t) = po(xe” e (30)

The density at x = 0 decreases, as we expected. It is interesting to note that in the case where
po(x) = py = const. , we have that p(x,t) = poe'""‘t
velocity v = ax depends on x. Also, note that (30) shows that the graph of p(x,t) is the graph

is independent of x, even though the wind

of py(x), after it has been stretched horizontally by a factor of e® and compressed vertically by

a factor of € ® . These operations (taken together) conserve the area under the graph, which
means that the total mass (i.e., integral of the density with respect to x) is conserved.

A geometrical application

Here we will find all functions u = u(x,y) such that the tangent plane to the graph z = u(x.y)
at any arbitrary point (Xq,yo,u(X,yo)) Dasses through the origin. Assume that u is Cl, and
recall that the equation of the tangent plane to the graph at (xg,y,u(Xq,y,)) i8

U, (X0,¥o) (X—Xo) + u (%0,¥0) (y=¥o) = (2 = u(Xo,¥o)) = 0 .

y

In order that (0,0,0) be on this tangent plane, we need —u_(Xo,y)Xp — uy(xo,yo)y0 + u(xg,y,) = 0.
For this to hold for all (xg,y,) in the domain of u, the function u must satisfy the PDE

xux+yuy—u=0. (31)

The characteristic curves obey dy/dx = y/x , whose solution is log(y)—log(x) = log(d) or
y/x =d , the family of rays from the origin in the xy—plane. To solve (31), we switch to a
coordinate system such that one of the coordinates is constant on each such ray. Polar
coordinates (r,f) are perfectly suited, as § = constant defines a ray. The transformation (for

(x,y) #(0,0)) is

202 _
r=(x"+y%) X =r cosf
with inverse
2, 2\%
arccos[x/(x“+y“)?] y20
6= 1 y = rsind,
arccos[—x/(x2+y2)7j +r y<0
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The inverse transformation is simpler than the transformation itself (which is not defined at the
origin). We know that (31) should become an ODE in r. Rather than computing xu . + yu

using the transformation, we use the inverse transformation to compute v, where v(r,0) = u(x,y):
V= ux + gy, = uxcos(ﬂ) + uysm(ﬂ) or v =xu + yu -
Thus, (31) becomes rv. —v =0, whose solution is v(r,d) = C(f)r , where C() is an arbitrary

c! function of 6. The graph z = v(r,6) consists of a family of rays in space issuing from the
origin and forming a conical object, with possibly a vertex at the origin, as in Figure 5.

Figure 5

Note that the surface 8 = §, is a half—plane issuing from the z—axis and the graph intersects this
half—plane in the line z = C(f,)r . When there is a vertex at the origin, the graph will not have a
well—defined tangent plane at (0,0,0), which implies that the function u(x,y), corresponding to

v(r,d) = C(f)r, will not be clat (0,0) even though C is cl. This oddity arises, because the
transformation (x,y) — (r,d) is ill-defined at (0,0). When the cone degenerates to a plane

through (0,0,0), we obtain a solution u(x,y) = ax + by of the PDE (31) which is c! even at

(0,0). We can easily demonstrate that any solution of (16) which is clat an points (x,y) (even
at (0,0)) must be of the form u(x,y) = ax + by (i.e., with a planar graph). Indeed, if a solution

is ¢! at (0,0), then it has a tangent plane, say P, at the origin. However, since all of the rays
which form the surface are tangent to the surface at the origin, they must be tangent to P. A ray
which is tangent to a plane must lie in the plane. Thus, these rays are contained in P, which is
then the graph of u(x,y).
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Summary 2.2

1. Characteristic curves : A curve in the xy—plane is called a characteristic curve for the PDE

a(x.y)u, + b(x,y)uy +c(xy)u=1f(xy), u=u(xy), (S1)

if at each point (x,,y,) on the curve, the vector g(x,,y,) = a(xq,¥o)i + b(xq,¥o)j i8 tangent to the
curve. The family of characteristic curves can be found by solving the characteristic equation

dy _ b(x,

E= H o (S2)
The significance of the characteristic curves is that on each characteristic curve the PDE (S1)
becomes an ODE for a function of a positional variable along the curve (cf. parts 2 and 3 below).

2. Change of variables : Let the family of solutions of (S2) (i.e. the family of characteristic
curves) be written implicitly as h(x,y) = d, where d is an arbitrary constant. Then under the
change of variables

w=h(xy), z=y, andwith v(wz)=u(xy), (S3)
the PDE (S1) becomes a PDE for v which involves v, butmnot v . In placeof "z =y"in

§S3)’ one can use z = k(x,y), for any convenient ¢! function k(x,y). But in general, the PDE
or v will be equivalent to (S1) only for domains in the xy—plane where the transformation
w = h(x,y), z = k(x,y) is uniquely invertible. In order to achieve the general solution, it is

necessary to paste together solutions on such domains in such a way that the solution is C1 across
the borders of the domains (cf. Example 5).

3. The characteristic system : A characteristic curve may be thought of as a path that is traced
out by a particle which flows with a fluid which has velocity g(x,y) = a(x,y)i + b(x, )] . The
functions x(t) and y(t) which give the position (x(t),y(t)) of such a particle at time t, satisfy
the characteristic system

F=alx()y(®) and FF=bx(t)y() (54)
By definition, a solution (x(t),y(t)) of (S4) constltutes a preferred parametrization of the

characterist:c curve which it traces out. Let u X, ; be a solution of (S1), and let U(t) =
u(x(t),y(t)), C(t) = c(x(t),y(t)), and F(t) =f t{ then U(t) satisfies the ODE

U/(8) + C(HU() = F(1), with solution U(t) = =tes H:) m(t)F(t) dt + U(0) } , (S5)

t
where m(t) = exp(I C(t) dt) . Thus, the value U(t) of any solution u of the PDE (S1) at
0

(x(t),y(t)) along a characteristic curve, is determined by its value U(0) = u(x(0),y(0)).
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4. Parametric form of solutions : Let s be a position variable along a regular side—condition
curve which transversely intersects each characteristic curve that it encounters exactly once. For
each fixed s, let (X(s,t),Y(s,t)) be the position, at time t, of the particle which begins at the
point corresponding to s on the side condition curve, and flows with the fluid. In other words,
the functions X(s,t) and Y(s,t) are the solutions of the characteristic system (for each fixed s)

gf X(s.t) = a(X(s,£),Y(s4)) and - Y(s.) = b(X(5.:0),Y(s,1)) , (S6)

with given initial values X(s,0) and Y(s,0), where (X(s,0),Y(s,0)) traces out the side condition
curve as s varies. Given the PDE (S1) with side condition u(X(s,0),Y(s,0)) = G(s), then by
applying the formula (S5) for each fixed s, we have

u(X(5,8),Y(5,t)) = U(s,t) = H(ls_tf [ J [t] m(s,t) F(s,t) dt + G(s) ] (S7)

Consequently, we have the following solution of the PDE (S1) in parametric form
x=X(5t), y=Y(s,t), u=U(s,t). (S9)
In the event that we can uniquely solve the first two equations in (S9) for s and t in terms of x

and y , say s = S(x,y) and t = T(x,y), we obtain an explicit solution u(x,y) = U(S(x,y),T(x,y)).
As s and t vary, the point (X(s,t),Y(s,t),U(s,t)) typically traces out a surface which contains

the graph of an explicit solution u(x,y), if such exists.

Exercises 2.2

1. Obtain the general solution of each of the following PDEs in the indicated domain.
_ _ X

(a) xux+2yuy—0,forx>0,y>0 (b) xu, 2yuy+u—e , for x>0

(c) xu — Xyu, —u = 0, forall (x,y) (d) yu, — 4xuy =2xy, forall (x)y).

2. Find the particular solution of the PDEs in Problem 1 satisfying the following respective side
conditions.

(2) u(xl/x)=x (x>0) (b) u(ly) = y?
(c) u(xx)= x2eX (d) u(x,0) = .

3. Find the parametric form of the solutions of the PDEs in Problem 1, which satisfy the
fo(llovx;ing respective side conditions. In each case, note the futility of finding an explicit solution
u(x,y).

(a) u(se™) =sin(s),s>0 (b) u(s,sinh(s)) = 0,5 >0
(c) u(szas) =3 (d) u(s,s3) =1.
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4. Show that the PDE in Problem 1(d) has no solution satisfying the side condition u(x,0) = 3

Explain this result in terms of characteristic curves.

5. Show that the only solutions of the PDE in Problem 1(a) that are ¢! and defined for all (x,¥)
are the constant functions (e.g., u(x,y) =5 ).
Hint. Note that the characteristic curves all issue from the origin.

6. Note that the general solution u(x,y) of the PDE in Problem 1(c), namely u(x,y) = xC(ye®) ,
has the property that u(0,y) = 0. Thus, u(0,y) cannot be arbitrarily prescribed, even though

the y—axis crosses each '"characteristic curve" y = de * only once. Explain this apparent
discrepancy by giving the characteristic curves their preferred parametrizations (x(t),y(t)) with

x’(t) = x(t) and y’(t) = —x(t)y(t). Note that each curve y = de” * is composed of three such
characteristic curves, one of which is a point on the y—axis.

7. Construct a solution of the PDE Xu, — 2yuy = (0, which is c! throughout the xy—plane, but

which is not of the form u(x,y) = C(yxz) for a C! function C.

8. Consider the PDE sin(x)u, — ycos(x)uy =0.

(a) Sketch the characteristic curves of this PDE .

(b) Show that any regular side condition curve, which transversly (i.e., at a nonzero angle)
intersects, exactly once, any characteristic curve of this PDE that it encounters, must be
contained in a vertical strip of width 27.

(c) Deduce that infinitely many side condition curves are needed in order to uniquely determine a
solution of this PDE, which is defined throughout the xy—plane.

(d) Show that, given an infinite family of c! functions, say fn(y), such that fn(O) =0 and

fr’l(O) =0 (n =0, 1, +2, ...), there is a solution u(x,y) (C1 for all (x,y)) of the PDE which

satisfies each of the infinitely many side conditions u([n+3]7,y) = f,(y), for n=0,+1,+2,....

9. In the continuity equation P+ v(x,t)p, + vx(x,t)p =0, suppose that v(x,t) = ax" for an

integer n > 1 and a constant a > 0. Solve this equation, subject to the initial condition p(x,0)
= po(x). Show that contrary to expectations, the density p(0,t) at the origin is independent of t.
Moreover, show that the solution exists provided az(n—l)txn_,1 > —1, which is true for t > 0
and all x, if n isodd. What if n is even 7 When n is even, discuss the nature and possible
physical significance of the solution for negative t.
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2.3 Higher Dimensions, Quasi-linearity, Applications

The method of characteristics also applies to the case of linear first—order PDEs in higher
dimensions. For example, in dimension 3, the most general linear first—order PDE is

for given ¢! functions a, b, c,d, and f. The characteristic curves (x(t),y(t),z(t)) [parametrized
by the preferred parameter; cf. (8) of Section 2.2] are the solutions of the system

E = ax(®)y()2(t) , F=bx(v)y(0)a(t) , &= cx)yt)a(t) (2)

In practice, it is usually more convenient to treat x as the parameter instead of t, in which case
the above system is reduced to the two equations (assuming that a(x,y,z) # 0)

X),z(X dz _ c(x,y(x),z(x
= n =
a(x,y(x),z(x and dx ~ a(x,y(x),z(x)) (3)

for the uhknowns y(x) and z(x). The solutions of (3) typically depend on two arbitrary
constants, say « and 8. Writing the solutions as y(x;a,0) and z(x;a,0) , the curve traced out by
the point (x,y(x;0,8),2(x;a,0)), as x varies, is a characteristic curve for each fixed pair of values
for @ and 3. Now, suppose that we can uniquely solve the two equations

y=y(xa0) and z=z(x;0,0) (4)

simultaneously for o and # in terms of x,y and z. Say we find @ = A(x,y,z) and 8= B(x,y,z
for some functions A and B. The characteristic curve corresponding to the pair of values (a,3
is the intersection of two surfaces A(xy,z) = a and B(x,y,2) = § (Why ?). On this
characteristic curve, the functions A and B are constant (namely « and §, respectively). The
PDE reduces to an ODE, if we change coordinates so that characteristic curves are obtained when

two of the new coordinates (say x and y ) are fixed and the remaining coordinate z varies. Let
x=A(x,y,2), y=B(xyz) and z=3z. (5)
Note that when X and y are fixed, we obtain a characteristic curve. Ideally, we hope that the

transformation (5) is invertible, or else some difficulties can arise, as we have seen in dimension 2.
Letting u(x,y,z) = u(x,y,z) , we have
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au + buy +cu,
=a-(upx, +
= (aA, + bAy + CAz)ﬁ)'E (aB <t bB +cB )u— + cu— = cu , (6)

where the two terms in parentheses drop out for the following reason. Let (xg,y,,20) be any point
and let (x,y(x),z(x)) be a characteristic curve passing through this point (i.e., y(xy) =y,
z(Xy) = zy). Since A is constant on any characteristic curve, we have (for a # 0)

_d _ d dz _ b c _1
0 = gz Axy(x),2(x)) _Ax+Aya§+ A=At A R+ A S _a(an+bAy+cAZ).

Thus, aA  + bAy + cA, =0 at the arbitrary point (Xo,yq,2o). Similarly, aB, + bBy +cB, =0.
By (6), we see that the PDE (1) becomes an ODE in z (for fixed x andy ),

c(xyz)u; +d(xyz)u=1xyz) , (7)

where ¢, d and T are c, d and f, written in terms of X,y and z, using the inverse transformation
(if such exists) of (5). Then (7) can be solved for u(x,y,z), and

u(x,y,z) = u(A(x,y,z),B(x,y,2),2),

is a solution of the original PDE (1).

There are a number of technical obstacles to carrying out all of this. One must solve the
system (3) which is not an easy matter in general, altho h sometimes the solution presents itself
in the desired form A(x,y,2) = ¢ and B(x,y,2) 5 making it unnecessary to solve (4)
simultaneously for « and (. Also, the inverse transformatlon of (5) may be ill—defined or hard to
obtain. We have seen difficulties that can arise in dimension 2 because of ill—defined inverse
transformations. In dimension 3, the "global" situation can be further complicated because of the
possibility that the chdracteristic curves can be knotted and linked. In the examples and
exercises, we will keep things fairly simple.

Example 1. Find the general solution of the PDE
2u, + 3uy +5u —u=0, u= u(x,y,z) . (8)
Solution. The characteristic curves are found by solving the system
gx =3 dz _5
X~ 2 dx 72

We obtain y = %x + % , 2= gx + g . Alternatively, the characteristic curves, are the lines
given by the intersection of the level surfaces (planes, here) 2y—3x = o and 2z-5x = . Hence,
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we make the change of variables

X =2y —3x x=-y/5+ 2z/5
y = 2z — 5x ; y = (5x — 3y + 62z)/10
z=17z z2=12.

Here, the inverse transformation exists and was computed, although we will have no need for it.
Setting u(x,y,z) = u(x,y,z) , we obtain
2ux + 3uy + 5uZ

=(—6+6+0)uz +(-10+0+ 10)ﬁ§+ 5u .

Thus (8) becomes 5u; —u = 0, whose solution is u(x,y,z) = C(i,)_l)ez/ 5, where C(x,y) is an

arbitrary ¢! function of (x,y). In terms of x,y and z, the general solution of (8) is

u(x,y,z) = C(2y—3x,2z—5x)ez/5 . o (9)

Remark. The function C can be determined by imposing a side condition on a surface that cuts
each characteristic line in a single point. Consider the following side condition yn the xy—plane :

u(x,y,0) = x’sin(y) - (10)
Equations (9) and (10) tell us that

C(2y-3x,-5x) = u(x,y,0) = xzsin(y) . (11)

Now, set r =2y —3x,s = —5x.Then x =-8/5 and y = (r —3s/5)/2, and (11) gives
C(r,s) = (—3/5)2sin(r/2 —3s/10) .
The desired solution of the PDE (8), with side condition (10), is then

u(x,y,2) = ((5x—22)/5)%sin((2y—3x)/2 —3(22—5x)/10) -e?/
= (x—2z/5)2sin(y—32/5)-ez/5 . O
Example 2. Find the general solution of
u + 2uy +6xu =0, u=u(xy,z). (12)

Solution. The characteristic curves are found by solving the system



Section 2.3 Higher dimensions, Quasi—linearity, Applications 95

d dz _
ag(’-:z, —d;—Gx,

for y = y(x) and z= z(x) . Note that the first equation cannot be integrated to give y = zx,
because z is an unknown function of x. The second equation can be integrated, yielding

z= 3x2 + a . Then, the first equation gives y = x3 + ox + . Thus, the characteristic curves
are traced out by the point (x,x3 + ox + ﬂ,3x2 + @), as x varies. We solve for « and f in
terms of (x,y,z) to obtain a =z — 3x2 ,B=y— xS — (z — 3x2)x =y+ 2x3 —xz . The

characteristic curves are the intersections of the surfaces a =z — 3x2, 8=y + 2x2 —xz. We
change variables :

— S | S
X=12-3x x= [} (z—X)2 (z > %)
— — - .3 - —ai_
y=y+2x3—xz ; y=y-223zZ-%)2[}(z—-X)%z
z2=12 z=12.

Note that the inverse transformation is not well defined, unless we either restrict to the domain
x2 0 (in which case we use "+" in the equation for x) or restrict to x < 0. Thus, we must be
careful when claiming that any solution found via the transformation is the most general solution.

Setting u(x,y,z) = u(x,y,z) , the PDE (12) becomes 6xﬁz = 0, and we arrive at the solution
u(x,y,z) = C(x,y) or
_ 2 3
u(x,y,z) = C(z — 3x°,y + 2x° —xz) , (13)

where C is an arbitrary ¢! function. However, we can only assert with confidence that this is
the general solution in the domain x > 0 (or in the domain x < 0 ), where the transformation is
uniquely invertible. Actually, any solution must be of the form

U(X,y,z) = 3 (Ca De Cl)

C(z—3x2,y+2x3—xz) x20
[D(z—3x2,y+2x —Xz) x<0.

However, in order for the solution to be well-defined at x = 0, we need C(z,y) = D(z,y). Hence,
the functions C and D must be the same, and (13) is in fact the most general solution which is
defined for all (x,y,z). Since u(0,y,z2) = C(zy), the function C would be immediately
determined by a side condition specifying u on the plane x =0. ©

Quasi—linear First—Order PDEs and the Method of Lagrange

The general first—order PDE for u = u(x,y) is of the form F(x,y,u,ux,uy) =0, where F isa

function of five variables (e.g., F(x,y,u,ux,uy) = u2u)3( - 3xuxuy + y2 ). While there is an
extension of the method of characteristics which can be used to solve such equations (cf. Section
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2.4), the explanation of the solution procedure is rather lengthy. However, there is one class of
first—order PDEs which we can attack now.

A first—order quasiinear PDE is an equation of the form
a(x,y,u)u, + b(x,y,u)uy —c¢(x,y,u) =0 (u=u(xy)), (14)

where a, b and ¢ are given ¢! functions of three variables.

In the special case when a and b do not depend on u and c(x,y,u) = —C(x,y)u + f(x,y), (14)
becomes the first—order linear PDE a(x,y)ux + b(x,y)uy + C(x,y)u = f(x,y), which we have

already considered. However, when a and b depend on u, (14) is nonlinear. In 1779, Joseph
Lagrange showed that solutions of (14) can be expressed implicitly as ¢(x,y,u) = 0, where
gp(x,y,z% is a solution of the linear PDE (in dimension 3),

a(X,Y»Z)‘PX + b(X,)’aZ)‘Py + C(X,y,z)‘ﬂz =0, (15)

which is a special case of (1). First, suppose that u(x,y) is a solution of §14). If we define
w(x,y,2) = u(x,y) —z, then at any point (x,y,z) = (x,y,u(x,y)), on the graph of u,

a(x,y,2) 0, +b(xy,2) o +e(x.y,2) 9, = a(x,y,u(xy))u, +b(xy,u(xy))u +e(xyu(xy))-(-1) =0,

by virtue of equation (14). Conversely, suppose that ¢ is a solution of (15), such that the
normal vector Vo = ¢ i+ ¢ j+ ¢k to the surface ¢(x,y,2) = 0 at some point p = (X,¥0,2¢)
is not horizontal (i.e., goz(p) # 0). Then near p, the surface will be the graph of some function
u(x,y) [i.e., ¢(x,y,u(x,y)) = 0]. We can show that u(x,y) must be a solution of (14), as follows.
Differentiating the equation ¢(x,y,u(x,y)) = 0 with respect to x and y, we have

Py u(xy)) + o, (xy,ulxy))u, (xy) = 0 and ¢ (xy,u(xy)) + ¢ (x.yu(xy))u (xy) =0.

Thus, u, = —<px/ 0, and uy = —pr/ @, - Substituting these expressions for uy and uy into the
left side of (14), we obtain

—[a(x,y,u(x,y))tpx + b(x,y,u(x,y))tpy + C(X,y,U(X»Y))SPZ]/‘PZ y

which is 0, by the assumption that ¢ satisfies (15). Thus, u(x,y) solves (14). In summary, the
method of Lagrange yields the following fact.

Solutions u = u(x,y) of the quasi—linear PDE (14) can be implicitly defined by ¢(x,y,u) = 0
where ¢(x,y,z) solves the linear PDE (15), with gpz(p) # 0 at some point p where ¢(p) = 0.
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Remark. There is a simple geometrical idea behind the the method of Lagrange. Let v(x,y,2) =
a(x,y,2)i + b(x,y,2)j + c(x,y,z)k be a given vector field in space. The PDE
a x,y,u)ux + b(x,y,2)u, — c(x,y,u) =0 (e, v-(ui+ uyj — k) = 0) says that v is tangent to

the graph of u at all points (x,y,u(x,y)). Suppose that we think of the graph of u as a surface
defined implicitly by ¢(x,y,2z) = 0. Since Vg is normal to this surface, the condition that v is
tangent to the surface is implied by Vi-v = 0, which is precisely the linear PDE (15). o

Example 3. Find a solution of the following quasi—linear PDE with the given side condition

ux+u-uy=6x, u(0,y) = 3y . (16)

Solution. The associated linear PDE in dimension 3, is

tpx+z-(py+6X(pZ=0. (17)

This is the same PDE which was solved in Example 2. By (13), the general solution is

w(x,y,z) = C(z — 3x2,y + 2x3 — xz), where C is an arbitrary ¢! function. Hence the solutions of
the PDE in (16) are given implicitly by

Clu - 3x%y + 2x° — xu) = 0, (18)

for various choices of the function C. For example, if C(r,s) = r, then we obtain the solution
u—-3x2 = 0, or explicitly u(x,y) = 3x2 , while if C(r,s) =r —s, then we get u— 3x2 — y— 2x3

+ xu = 0, or explicitly u(x,y) = (y + 32 + 2x3)/(1+x). The side condition in (16) can be used
to determine the function C . Indeed, since this condition says that u = 3y when x =0, we
substitute 3y for u,and 0 for x, in (18), arriving at the condition C(3y,y) = 0. There are
many functions C which satisfy this condition, and a simple choice is C(r,s) = r — 3s. This
yields the solution

u—3x% - 3(y+2x3—xu) =0 or ulxy)= 3(y+x2+2x3)/(1+3x) . D (19)

Remark. If we replace the side condition in (16) by the more general condition u(0,y) = G(y)

(for a given ¢! function G), then the function C must be chosen so that C(G(y),y) = 0.
Again, the choice for C is not unique, but a simple possibility is C(r,s) = r — G(s). Thus, a
solution of the PDE in (18) might be obtained implicitly via the equation

3

u—3x2— G(y+2x"—xu) = 0. (20)

In general, only rarely is it possible to solve (20) for u explicitly in terms of x and y.

Nevertheless, at the point (O’Y’G()é)) on the surface <p2x,y,z) = 7-3x% — G(y+2x3—xz) =0, the k
component of the normal vector Vi(0,y,G(y)) is 1 (nonzero). Thus, the surface is not vertical
at these points, and hence the surface is then the graph of some solution u(x,y) (defined in a
neighborhood of the y—axis) of the PDE in (16), even though the explicit formula for u(x,y) may
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be elusive. Recall that in Section 2.2, we were able to determine parametric solutions X(s,t),
Y(s,t), U(s,t), even when finding explicit solutions u(x,y) was futile. One can readily obtain
parametric solutions of the quasi—linear equation (14) from the characteristic curves of the of the
associated linear PDE (15) in xyz—space. We illustrate the method in the following example. o

Example 4. Find a parametric solution of the following quasi—linear PDE with side condition

uy +uug = 6x, u(0y)=G(y), (21)
where G(y) is an arbitrary c! function.

Solution. The characteristic system (cf. (2)) for the characteristic curves (x(t),y(t),z(t))
associated with the linear PDE o, + 20y + 6xp, =0 is

dx _ dy _ dz _
af—]., a%—z, af—GX (22)
The general solution is

3

x(t)=t+a, yt)=t3+3at2+p+17, 2(t)=3t+6at+4, (23)

where we solved first for x, then for z, and finally for y. The PDE o, + 20, + 6xp, =0
implies that ¢ is constant on any characteristic curve, since

Sf (x(t).y(6)2(t) = @y x"(8) + 9y ¥ (1) + 9,027 (8) = ¢ + o -2(t) + ¢, -6x(t) = 0,

by the chain rule and (22). In other words, each characteristic curve lies on a surface of the form
¢(x,y,2) = constant. The graph of the solution u(x,y) is one of these surfaces, namely ¢(x,y,z)

= 0, where ¢(x,y,z) = 2—3x% — G(y+2x3—xz). This suggests that the graph of u(x,y) consists of
a family of characteristic curves. Of course, we want each curve of this family to pass through a
point of the form (0,5,G(s)), in order that that the side condition be met. Let x = X(s,t),
y = Y(s,t), z = Z(s,t) be the curve which passes through (0,5,G(s)) at "time" t = 0. By setting
x(0) = 0, y(0) = s, and z(0) = G(s) in (23), we find =0, 3= G(s) and 7y=s. Then

X(st) =t, Yt =t3+GE)t+s, Zst) =362+ G(s) .

As s and t vary, we get a surface which passes though the curve (0,5,G(s)), as required by the
side condition. Since this surface is comprised of characteristic curves on which ¢ is constant
(i.e. independent of t, we know that (X(s,t),Y(s,t),Z(s,t)) = ©(X(s,0),Y(s,0),Z(s,0)) =
¢(0,5,G(s)) = 0. Thus, as s and t vary, the point (X(s,t),Y(s,t),Z(s,t)) traces out a set of
points (x,y,u) such that ¢(x,y,u) = 0 (i.e., the graph of u). In other words, we have the
parametric solution

x=X(st)=t, y=Y(st) =t +GE)t+s, u=Ust)=2(st) =362+ Gs) . a
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An Application to Traffic Flow

Let p(x,t) be the density of cars at the point x at time t on a one—way road (i.e.,

J p(x,t) dx is the number of cars between x = a and x = b). We make the simplifying
a

assumption that p(x,t) is cl. Let M be the the legal speed limit plus the additional 5 mph
which one can usually add with impunity. Let d be the density of bumper—to—bumper traffic.
Then one might assume that the traffic velocity v(x,t) at x at time t, is given by v(x;t) =
(1 = p(x % Note that v =0 when p=d,and v=M when p =0. However, when
p = ld (i.e., there is about a car—length between cars), we have v = 4M, which is rather unsafe
if M= 60, but let us proceed. The equation of continuity p, + (vp) =0 (cf. (28) of Section

2.2) holds for traffic flow as well as for gas flow. Since (vp), = [M(1 — p/d)p], = M(1 —2- g
we have the quasi—linear PDE for the traffic density

p+M(1-2-f)p =0. (24)

The associated linear PDE for ¢(x,t,z) is p, + M(1 - 2-§)pr + 0-¢, = 0. We directly obtain
the parametric form of the solution, as follows. We use the parameter 7 instead of t which is
already used in the equation. The characteristic equations are t’(7) = 1, x’(7) = M(1 —2-%{),
and z’(7) = 0. Thus, for arbitrary constants «, #and 7, the characteristic curves are given by

(r)=r+a, x()=M1-397+8, ar)=17. (25)

Suppose that we are given the initial density p(x,0) = f(x) , or p(s,0) = f(s). For a fixed s, we
want to choose a characteristic curve of the form (25) which runs through (0,s,f(s)) when 7=0.
Thus, choose @ =0, =35 and y = {(s). The parametric solution is then

t="T(s,7) =7, x=X(s,7) =M(1 —%f(s))r +s, p=2I(s,1) =1(s). (26)

Let s have some fixed value, say x,. Then (26) implies that the density p(x,t) is a constant
(namely f(x,)) on the line

= M(1 = 2-1(x0))t + xq (27)

in the xt—plane. If we change the value of x, to a new value x, and f(x;) # f(x,), then the new
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line will intersect the old line at some point (x,,t,), since the slopes of the two lines will differ.
Moreover, since f(x,) # f(x,), the constant value of p on the new line will not equal the constant
value of p on the old line. Thus, at the intersection point, we arrive at a contradiction, p(xXs,ts)
= f(x,) and p(x,t;) = f(x,;). Hence, the only solutions p(x,t) of equation (24) which are defined
for all (x,t) are the solutions where the initial density p(x,0) = f(x) is constant, say f(x) = c, in
which case p(x,t) = ¢ (i.e., the traffic moves with a uniform velocity M(1 —g), if 0<c<d). It

may happen that a nonconstant solution will exist for all t > 0 (but not all t < 0). Indeed, if the
initial density f(x) of cars is chosen to be decreasing in the positive x direction (i.e., f’(x) < 0),
then f(x,) > f(x;) if x; > x,, and the intersection point (x,,t,) will lie below the x—axis (i.e.,

t, < 0), since the slope of the line through (x,,0) is less than the slope of the line through (x,,0).
However, if f’(x) is positive at some point, say x,, then for some x, > x,, we have f(x,) >
f(x,) and the corresponding lines will intersect above the x—axis (i.e., the solution p(x,t) will fail
to exist at (xq,ty) where t, > 0). When f’(x) > 0 somewhere, we will now find the smallest
time t > 0, for which the solution will fail to exist. At any fixed time t,, the "graph" of the
parametric solution (26) is the curve in the xp—plane given parametrically (as s varies) by

x(s) = ML= 3 £(8))tg + 5, p(s) = pls,to) = £(s) (28)

The tangent vector of this curve at (x(s),o(s)) is
PR SlaNs 2M ,, . R
X ()i + p’(8)j = [1 - (s)to] i+ ()], (29)

Thus, the tangent vector at (x(s),p(s)) will be vertical when f’(s)#0 and 1 — %M f'(s)t, = 0

(or t, = d[2M-f’(s)]_1). Let G be the largest value (or more precisely, the smallest upper

bound) for f’(x) (i.e., G is the maximal initial density gradient for the traffic). Assume that
G < w. Then, as long as t, < d/(2MG), there will be no vertical tangent to the density profile

p(x,ty) and the solution will exist for all (x,t) with t < d/(2MG). However, unless f’(x) = G,

the solution p(x,t) fails to be cl for ¢ "slightly" greater than d/(2MG), since there will be

vertical tangents at such times. Indeed, the density profile will typically double back on itself and
cease to be the graph of a function, such as a wave that is breaking (cf. Figure 1 below). Note
that p(x,t) itself never exceeds d, if f(x) = p(x,0) < d. However, the theory predicts that if
f’(x) > 0 somewhere, the density will develop a sharp jump (i.e., a vertical tangent) or what is
known as a shock. When a shock occurs, the density gradient is infinite, and this necessitates a
rapid change in the velocity of cars approaching the shock point. Since car breaks can only act so
fast, the theory suggests that accidents are likely to happen at the shock points. Moreover, as the
next example illustrates, the theory can be used to predict where and when shocks are likely to
occur.
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Example 5. With the above notation, let the initial density of cars be p(x,0) = a(l + x2)_1 , for
some positive constant a < d. Initially, the point of maximum density is at x = 0. Where is the
point of maximum density at time t 7 When and where does the first shock arise ?

Solution. For each x, , the solution has the constant value f(x,) = a(l + x%)“1 on the line

x=M(1 —%-f(xo))t + xo (cf. (28)). Setting x, = 0, we immediately see that the maximum

density is at x = M(1 — 2-%)t , at time t. Thus, the point of maximum density will move to the
right if a < d/2, and to the left if a > d/2, and it stays at x =0, if a = d/2. The maximum of

f'(x) = —2ax(1 + x2)'—2 occurs at a value of x where 0 = {"(x) = 2zjm(3x2 -1)-(1 + xz)_3 ,

namely x, = —1/y3 . The maximum value of f'(x) is G = {'(-1/43) = 2a(4/3)_2/J3 =
(9a/8) /43 = (3a/8)y3. Thus, the first shock occurs at time t, = d/(2MG) =d/( 2M-(3a/8)¢3)

JS and at the position x = M(1 —%-f(x Nty + x; = M(1 - 3a/4) B-1/8 =
(1- JE W3= —1)y3 . As one might expect, this is less than the point of maximum
den31ty at time t,, namely the point M(1 — 'H)'§‘/— d/(aM) = (g—g——g)ﬁ. o

An application to continuum mechanics

Imagine a tube of gas or some possibly compressible medium (cf. the application to gas
flow in Section 2.2) which has velocity v(x,t)i. If x(t) is the position of a small "gas element" at
time t, then x’(t) = v(x(t),t), and

x"(t) = $vix(e)) = P8 Ty ((0),0) v(x(8),1) + vy(x(t),8) -

Thus, the acceleration of of fluid particles at (x,t) is not simply vt(x,t), but rather v-v, +v,.
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A naive application of Newton’s second law then yields the equation of motion

p(x,t)~(vt +vev )= f(x,t), (30)

where p(x,t) is the mass density and f(x,t) is the force density (mass and force per unit length).
While equation (30) is correct, it is not as obvious as we have led the reader to believe. Indeed,
the more universal version of Newton's second law is that the total force on an object is the rate of

change of the momentum (i.e., f(t) = gf[m(t)v(t)] =m(t)v’(t) + m’(t)v(t) ) which is not simply

mass times acceleration in the event that the mass changes with time. Since the density p(x,t)
does depend on time, equation (30) now appears somewhat doubtful. A careful guide through the
correct derivation of (30) is supplied in Problem 13. In the absence of viscosity (which we assume
is negligible), the force density f(x,t) is the sum of the negative pressure gradient (i.e., —px(x,t),

where p(x,t) is the pressure) and the external force density, say due to gravity. For simplicity,
we assume that there are no external forces. Then Euler's equations are

pp+ (pv), =0, (31)
vt VeV, = —px/p , (32)
p =1(p) . (33)

Note that (31) is the equation of continuity (cf. (28) in Section 2.2), while (32) is (30). Equation
(33) is known as the equation of state which gives us the pressure as a function of the density.
The function f depends on the nature of the fluid or gas. For an ideal gas undergoing an

adiabatic process (i.e., not giving up heat to the environment), we have p = Ap7 (i.e., f(p)

= Ap7), where A and 4 are positive constants which depend on the gas. For air, v~ 1.4, and
usually 7> 1. By noting that p = f’(p)px , the equations (31) and (32) form the following

system of PDEs :

P Vo =V (34)
vi +vev, =—A"(p)o, /. (35)

Finding the general solution of this system is a nontrivial undertaking. Through a process of
linearization, the system can be approximately decoupled into two separate wave equations for v
and p (cf. Problem 14). However, we can obtain some ezact solutions and still remain within the
context of first—order quasi—linear equations in a single unknown. Indeed, suppose that we
attempt to find solutions for which v(x,t) = V(p(x,t)) for some function V (i.e., we search for
solutions in which p and v are functionally related). Since Ve = V’(p)px and v = V’(p)pt,

p + V(p)-py =—pV'(P)py » (34')
p, + V(p)-p, =1 (0)p,/(0V’ (p)) - (357)
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Since the left—hand sides of these equations are the same, we see that the function V(p) must be
chosen so that the right sides are equal, namely

oV () =1/ (p)/(pV' () or V’(p) = [’ (D]E/p or V(p) == Z[ff(,,)]%/,,d,,. (36)
0

where p, is the density when the velocity is 0. Thus, if we assume that v and p are

functionally related, then the function which relates them is nearly determined by the equations
(31), (32) and (33). However, there is no firm physical reason to assume a functional relation

between v and p, as was done in the case of traffic flow. When f(p) = Ap7, we obtain

V(p) =+ JZ A" o dp =+ 247_@1 [p%(”’_l) - 03(7_1)] : (37)
0

Returning to the general case, since V’(p) = i[f’(p)]%/p is usually nonzero, we may reasonably
assume that the function V has an inverse say R, sothat p = R(v). Since R’(v) = V’(p) ,

R’ (v)/R(v) = 1/(pV" (p)) = +[f' ()] * = #[f’ (RW)] F = 2c(v) ",

Py

where c(v) = [f/ (R(v)]?. (38)
Thus,
v, + vy, = = (0)p, /o = £ (RO)R' (v}, /R(v) = — £(v)v,
or
v, + (vxg(v))v,=0. (39)

t X

This is a first—order quasi—linear PDE for v. The associated linear PDE in xtz—space is
o, + (2= c(z))p, —0-9,=0.

The characteristic equations are x’(t) =z + ¢(z) and z’(t) = 0. The solutions are z = a and

x—(z + c(z))t = #. It follows that (pgx,t,z) = C(z,x — (z % ¢(z))t), where C is an arbitrary c!
function. The corresponding solution of (39) is then given implicitly by

plvx —(vtc(v))t)=0.

Suppose that the initial velocity is v(x,0) = g(x) for some given function g(x). Then we must
choose ¢ such that ¢(g(x),x) = 0. A simple choice for ¢ is then ¢(r,s) =r — g(s). As it may
be difficult to solve v — g(x — (v £ ¢(v)):t) =0 for v in terms of x and t, the following
parametric form (with 7 as parameter, since t is already used in the equation) of the solution
often proves more useful :
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t=r71, x=I[g(s)c(gs)))r+s, v=gs). (40)

As 7and s vary, the point (t,x,v) traces out the graph of the solution v(x,y) in txv—space.
Observe that the value of v(x,t) on the line x = [g(x,) + c(g(x,))]t + X, is a constant, namely

g(xp).- In summary, we have shown the following :

The solution (where it exists) of the problem
Py + (pv)X =0, (41)
Vi + ViV = _px/p > (42)
_ p = f(p) (43)
with
v(x,0) = g(x) and p(x,0) = R(g(x)), (44)
where R is the inverse function of V in (37), is given implicitly by
—gx—(v£c(v))t) =0, p(x,t) = R(v(x,t)) , (45)
or parametrically, by
t=r1, x=[gs)xc(gbs)lr+s, v=g(s). (46)

From the similarity of (46) with (26) for traffic flow, we expect to have the phenomenon of
shocks. Note that (46) is the parametric solution for the velocity, while (26) is for the density.
Since velocity and density are functionally related in our considerations for gas flow and traffic
flow, it is easy to get the density and velocity solutions from one another in either situation.

Example 6. Assuming the equation of state p = Ap” (y> 1), find v(x,t) and p(x,t) for the
above problem (41) — (44) when v(x,0) = ax (@ > 0, constant), assuming v =0 when p = p,,.

Solution. We take g(x) = ax, and we need to determine R(v) and c(v). Since f(p) = Ap”,
(37) yields

V(p) =+ Jﬁ (YA T /0 dp + V(py) = + 2{,@1 [p%(H) -p%”‘"”] ,
0

p=R(v) = [p(%)(ﬁbl) Y i S

] 2/(r-1)
/7R

and

ov) = [ RO = [ARW) ] = &7 0 s 41y
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Let ¢y =¢(0) = [f’(po)]% = JAy pg('r_l). Then, we have the implicit solution
v—oa(x—(v(co*4(r-1)v)t) =v—a(x—(xcy+ 4(r+1)v)-t) =0.

Thus, v-(1 + $(7+1)at) = a(x — = ¢4-t), and explicitly

v(x,t) = a(x —* ¢y t)- (1 + 4(7+1)at) " (47)
and

]2/(7—1) (18)

p(x,t) = R(v(x.t)) = [;—K feg * 4(7-1)v(x,t)
7.

For definiteness, suppose that we have chosen the plus sign (cf. Problem 16, for the minus sign).
Then for fixed t, the graph of v(x,t) is a line which intersects the the x—axis at c,-t and has
slope o1 + §(7+1)a/t)—1. In Problem 14, we will see that ¢, is the velocity of sound in the gas

when there is little wind (i.e., v is small). Thus we have shown that for our initial conditions,
the intercept point w(t) where v(w(t),t) =0 moves with the velocity of sound, regardless of the

value of @ The slope o1 + %('y+1)m)_1 tends to zero, as t - w. Intuitively, this is because
the wind is always blowing away from the from the zero velocity point, leaving slower moving
wind behind. Note that the solution cannot be continued indefinitely backward in time, since the

slope becomes infinite at t, = —[%('H-l)a]—l. This is a dramatic shock. As time is run backward

the wind blows toward the zero velocity point and there is eventually a "big crunch" when all of
the gas arrives at once. If we run time forward from time t = t;, we get an explosion which issues

from the point x = cyt,. Indeed, if x(t) is the position of a gas element at time t, then by
solving the ODE x’(t) = v(x(t),t), we find (cf. Problem 15) that x(t;) = c,t, , regardless of the
choice of x(0). In the case at hand, parametrically, the solution for v is given by (cf. (46))

t=7, x=(G+3(rtas)r+s, v=os. (49)

In other words, v has the constant value ax, on theline x = (¢, + 4(7+1)ax,)t + x,. Observe

that when t = t; = —[%(7+l)ar]_1, we have x = cyty — X; + X; = Cyto. Thus, all of these lines
pass through the shock point (cytq,ty), where v is then "grossly" undefined, as expected. We

should also note that the solution is not really physically valid everywhere outside the shock
point, because v must be at least —2c,/(7—1) in order that the pressure be nonnegative, by (48).

Substituting —2c,/(7—1) for os in (49), we see that the solution is only valid above the line
which runs through the shock point (cyto,t,) with slope (cy + 4(7+1)-(—2c,/(7-1)))
= ¢y(1 ——:77—_'%) = —2¢y/(7-1). This then is the (constant!) velocity left—hand boundary of the
expanding gas, where the pressure is zero. 0
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Summary 2.3

1. The method of characteristics in higher dimensions : The method of characteristic curves
extends to the case of the first—order linear PDE

a(x,y,z)u, + b(x,y,z)uy + c(x,y,2)u, + d(x,y,z)u = f(x,y,z) , with u=u(xy,z), (S1)

for given C1 functions a, b, c,d and f. With x as a positional variable along the characteristic
curves (streamlines of the fluid flow with velocity vector field ai + bj + ck) are traced out by
x,y(x),z(x)) as x varies, where y(x) and z(x) are solutions of the system of two equations
assuming that a(x,y,z) # 0)

_ b{x,y(x),z(x dz _ c(x,y(x),z(x (S2)
~alx,y(x),z(x dx ~ a(x,y(x),z(x

The solutions of (S2) typically depend on two arbitrary constants « and 3, say y = y(x;&,8) and
z = z(x;a,0). If it is possible to uniquely solve for & and 8 in terms of x, y and z, then the
characteristic curves can be expressed as the intersection of the surfaces A(Yx,y,z) = « and

B(x,y,z) = 8. Then under the change of variables x = A(x,y,z), y = B(x,y,z), z = z, the PDE
(S1) is transformed (via the chain rule) to a PDE (cf. (7)), for u(x,y,z) = u(x,y,z), which does not
involve ug and ug (i.e., (7) can be solved as an ODE for a function of z). For first—order linear

PDEs in any dimension, the basic idea is to introduce a change of variables in such a way that,
when all but one of the new variables is held fixed, a characteristic curve results. Then the
transformed PDE becomes an ODE for a function of the remaining new variable.

2. The method of Lagrange : Solutions u = u(x,y) of the quasi—linear PDE
a(xy,u)uy +b(xy,ujuy —e(xy,u) =0, u=u(xy), (S3)

where a, b and ¢ are given C1 functions of three variables, can be implicitly defined by
w(x,y,u) = 0, where ¢(x,y,z) solves the linear PDE

a(x,y,2)¢, +b(xy,2)Q, + clxyz)p, =0, (54)

with cpz(p) # 0 at some point p = (x(,y:2y) where ¢(p) = 0. The solution for (S4) is typically
of the form ¢(x,y,z) = C(A(x,y,z),B(x,y,z)) for specific functions A and B, and an arbitrary

c! function C. If one is given a side condition, say u(x,0) = f(x), then even if it is possible to
find a function C such that C(A(x,0,f(x)),B(x,0,f(x)) = 0, it may not be feasible to solve
@w(x,y,u) = 0 for u(x,y). Instead, one can aim for a parametric solution x = X(s,t), y = Y(s,t),
u = Z(s,t). The functions X(s,t), Y(s,t), Z(s,t) are the solutions of the following characteristic
system, with the initial conditions X(s,0) =s, Y(s,0) =0, Z(s,0) = (s)

X _axyz), F=bxyz, E=cxyz).
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The graph of u(x,y) is traced by the points (X(s,t),Y(s,t),Z(s,t)), as s and t vary.

In applications to traffic flow theory and continuum mechanics, we found that the parametric
solutions often do not define explicit solutions u(x,y) for all (x,y), but rather the solutions tend
to develop shocks where one or both partial derivatlves become mﬁmte The parametric solutions
can be used to locate the shock points.

Exercises 2.3

1. Solve the PDE u + u, + u, =u for u = u(x,y,z), subject to the side condition

y
u(xy,0) = x2 + y2.

2. Consider the PDE u _— uy +u =1z for u(x,y,z).
(a) Solve this PDE subject to the side condition u(0,y,z) = y2ez.

(b) Show that this PDE has no solution such that u(x,y,x+y) = 0.

(c) Find two (out of the infinitely many) solutions u such that u(x,y,x+y) = x+y + e

(d) Explain the results of (b) and (c) in terms of the characteristic lines of the PDE in space and
the plane z = x + y on which the side condition is given.

3. (a) Find the general solution of the PDE u, =u, + 2uy —u, for u= u(x,y,z,t).

b) What is the particular solution such that u(x,y,z,0) = 2+ y2 + 227

(
(c) For u as in (b), at a fixed time t, find the point (x,y,z) such that u(x,y,z,t) =07

4. (a) Find the general solution of —yu + xu, +u =0 for u = u(x,y,z).
Hint. Use z as the parameter for the characteristic curves and note that dx/dz = —y and
dy/dz = x imply that d2x/dz2 = —x . Hence, x = acos(z) + fsin(z) , etc. .

(b) Show that all but one of the characteristic curves are helixes which wind around the z—axis,
and show that any solution of the PDE is constant on each one of these helixes.

5. Consider the PDE xu_+ yuy +zu, =0.

2

a) Solve the PDE subject to u(x,y,1) = x“ +y + 1. Where is the solution defined ?

or all (x,y,z) must be constant.

(
g ) By considering the characteristic curves, show that any solution of the PDE which is defined
(c) Find any nonconstant solution of the PDE which is c! for all (x,y,2) except (0,0,0).
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6. (a) Solve the quasi—linear PDE 2(u-u + u-u ) =1 by expressing solutions implicitly in the

y
form C(A(x,y,u),B(x,y,u)) = 0, for ¢! functions C.

(b) Find the solution of the PDE in part (a) that meets the side condition u(x,2x) = 1.

(c) Show that there is no solution of the PDE in part (a) such that u(x,x) = 1. Hint. Note that
g} u(x,x) = u (x,x) + uy(x,x).

7. (a) Express solutions of the PDE Xu-u, —yu-uy, = x2 in the form described in Problem 6(a).

(b) Find a solution u(x,y) of the PDE in part (a) such that u(l,y) = y2 +1.

gc) Show that there are infinitely many solutions of the PDE in Part (a), such that u(x,1/x) = x,
or x > 0. Hint. Take C(r,s) = s—f(r), with f(1)=0.

8. Find the parametric solution x = X(s,t), y = Y(s,t), u = U(s,t) for the PDE in Problem 6(a)

subject to the side condition u(s,2s) = g(s), for a given ¢! function g(s). Check that your
answer is consistent with the answer to Problem 6(b), when g(s) = 1.

9. Find the parametric solution x = X(s,t), y = Y(s,t), u = U(s,t) for the PDE in Problem 7(a)
subject to the side condition wu(l1,s) = g(s), for a given function g(s). For simplicity, assume
g(s) > 1. Check that your answer is consistent with the answer to Problem 7(b), when

g(s) = s+ 1.

10. Solve the PDE yuu + Xuuy = Xy , subject to the side condition u(cos(s),sin(s)) = sin(2s).
Where is the solution valid ?

11. Usin§ the notation and assumptions in the subsection on traffic flow, suppose that the initial
density of cars is given by p(x,0) = f(x). Suppose that x; is the only point where f’(x) has an

absolute maximum, say f’(xy) = G. We have already seen that the first shock occurs at time t,

= d-[2MG]_1. If initially there is a distance of about n car—lengths between cars around x,
(i.e. f(xg) = p(x4,0) = d/(1+n)), then show that the first shock point is located at

X=Xy + Q—g—g%; , which is independent of the speed limit M.

12. In the subsection on traffic flow, we assumed that v = M(1 — g). More generally assume that
v = V(p) for some given function V.

(a) Show that the PDE for p becomes p, + (V(p) + pV’(p))p, = 0.

(b) Find the parametric solution of this equation, which meets the initial condition p(x,0) = f(x).
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(c) For what functions V(p) (with V(d) = 0) does the PDE in (a?( become linear ? For such
V, find an explicit form p(x,t) for the solution in (b). Do shocks develop in this case ?

13. In the following steps, we derive Euler’s equation, p(x,t)(vt +w )= f(x,t) (cf. (30)).

(a) Consider the portion of fluid between x = a and x =b at time t = 0. At time t, this
portion of fluid will be between x,(t) and x,(t). Let f(x,t)i be the force per unit length acting

on the fluid. Newton's equation states that the rate of change of the momentum of the fluid
portion is equal to the total force on the fluid portion. Thus,

d Xy(t) Xo(t)
X, 3 dx = f N dx .
¢ jxlm p(xt)v(xt) jxl(t) (xt)

Use Leibniz's rule (cf. Appendix A.3) and evaluate both sides at t = 0 to obtain,

b

b
L gf(pv) dx + p(b,0)v(b,0)x;(0) — p(a,0)v(a,0)x1(0) = Ja f(x,0) dx .

(b) Use x1(0) = v(a,0), x5(0) = v(b,0) and the fundamental theorem of calculus to deduce that

b
dx = J £(x,0) dx .
t=0 a

b
| oy + (02,
a
(c) Since a and b are arbitrary and the choice t = 0 is not necessary, we deduce that
2
(pv); + (0v7), = f(x,t). *)

Use the equation of continuity p, + (vp), =0 to convert the left—hand side of (*) to the desired
form p(v, +v-v ).

14. In the notation of the subsection on continuum mechanics, show by completing the following
steps that for small velocities v(x,t) and densities p(x,t) which deviate little from a constant
density p,, both p(x,t) and v(x,t) obey a wave equation.

(a) Let v=ev(x,t) and p=py+ €p(x,t), where ¢ isa small parameter. From the equation of

state p(x,t) = f(p(x,t)) = f(py + €p(x,t)) ~ f(py) + €’ (po)p(x,t) (Why ?). By substituting these
expressions into the equations py+ (pv)x =0 and p(vt + vvx) =Dy and ignoring terms with

factors of ¢ (which are assumed small), obtain p e + pOVXe =0 and pOVte =—f'(po)p(xt)e ,
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- - - 2— 2 _ .
or py = —pov, and PoVy = —CoPy where c; = f'(p,) . (**)
(b) By differentiating the first equation in (**) with respect to t and the second equation with

respect to x, obtain ptt = ¢gyp, . , and similarly obtain Vtt = cgvxx . For arbitrary 2 functions

xx’
f and g, f(x+ cot) + g(x —cyt) is a generic solution of each of these equations. Thus, ¢, is
interpreted as the speed at which disturbances are propagated in the medium under the above
approximations (cf. Problem 12 of Section 1.3).

Remark. The above process of determining the equations which are satisfied by small deviations
(with factors of €) of known solutions (e.g., p = p, and v = 0) by ignoring terms with higher

powers of ¢ is known as linearization, because the equations obtained in this way are linear.
While this linearity makes the equations much easier to solve (e.g., because of the superposition
principle), one should be aware that the linearized equations are only approximately correct, and
certain important qualitative features of exact solutions may be lost in the process (e.g., the
solutions of the linearized traffic flow equation do not have shocks). We observed this before in
connection with the minimal surface equation (cf. Example 11 of Section 1.2) . o

15. In Example 6, the position x(t) of a gas element at time t obeys the linear ODE
X' (1) = v(x(V).8) = a(x(t) = cot)- (1 + $(7+1)at) " (Why ?).

(
(a) Find the general solution of this ODE.
(b) Show that every solution x(t) of this ODE approaches —c,/[4(7+1)a] as t - —[4(7+1) a]—1
(c
ev

) Show that in spite of the fact that v(x,t) - » as x - w, the velocity of each gas element
ventually approaches —2c;/(7-1), as t - w.

16. Let v (x,t) = a(x — £ ¢p-t)-(1 + %(7+1)at)_1. In Example 6, we elected to consider
v+(x,t). Show that v_(xt) = —v+(—x,t). Why does this mean that v_(x,t) is the solution
obtained by taking the mirror image of the physical setting for v +(x,t) ?

17. As we have done in the derivation of (34”) and (35’), assume that v and p are functionally
related (i.e., v = V(p)).

(a) Assuming an equation of state of the form p = f(p) > 0, where {’(p) > 0, show that the
equation v, + (v % c(v))vx = 0 is linear (not merely quasilinear) if and only if

f(p) = C(1 —D/p), for some positive constants C and D. (Note that D represents a certain
critical density, below which the pressure is presumably 0. As p - o, the pressure approaches a
maximum value of C.)

(b) Let f(p) = C(1—-D/p). Assume that v =0 when p =D, and that v > 0. How does v
depend on p (i.e., what is the function V(p) 7).

(c) Under the assumptions in (a) and (b), show that disturbances propagate with a constant
speed of [C/D]% in the medium. In other words, v(x,t) = g(x — [C/D]%t where v(x,0) = g(x)
and 0 < g(x) < [C/D]2 Why is it necessary to restrict the initial velocity g(x) ?
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2.4 Supplement on General Nonlinear First-Order PDEs (Optional)

The general first order PDE for u = u(x,y) is of the form

)=0, 1)

F(x,y,u,uy,uy

where F is some function [of five variables] which we assume is at least cl. Since we do not
usually think of u and uy as variables, it is customary to denote u by p, and uy by q,

when referring to F = F(x,y,u,p,q) as a function. For linear equations, F is of the form

F(x,y,u,p,q) = a(x,y)p + b(x,y)q + c(x,y)u — f(x,y) , (2)

while for quasi—linear equations,

F(x,y,u,p,q) = a(x,y,u)p + b(x,y,u)q — c(x,y,u) . 3)

We solved first—order linear PDEs by noting that they become an ODEs along the
characteristic curves which may be regarded as the solutions of the system

X’(t) = a(X(t),Y(t)) and Y’(t) = b(X(t),Y(t)), 4)

where the PDE was F(x,y,u,ux,uy) =0 with F asin (2). Note that Fp = a(x,y) and Fq
= b(x,y), in which case the system (4) may be written as X’ = Fp and Y/ =F q To solve the
general first—order PDE (1), with F an arbitrary given ct function, we might attempt to define
characteristic curves as solutions of the system
X7 (t) = F(X(£),Y(t),U(t),P(t),Q(t))
(5)

where U(t) = U(X(t),Y(t)), P(t) = ux(X(t),Y(t)) , Qt) = uy(X(t),Y(t)) . However, unlike the

linear case, the right sides of (5) depend not only on X(t) and Y(t), but also on U(t), P(t) and
Q(t) , which involve the unknown solution ugx,y). But, we can think of (5) as being part of a
larger system of 5 ODEs for the five unknown tunctions X(t), Y(t), U(t), P(t), Q(t). We need to
figure out what the remaining three equations should be.  First, note that U’(t;
= d/dtfu(X(t),Y(t)] = u X'(t) + uyY’(t) = PH)X'(t) + Q)Y'(t) = P(t)Fp(...
+ Q(t)Fq(...), where "..." denotes "X(t),Y(t),U(t),P(t),Q(t)". Thus, the equation for U’(t)

should be
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U(t) = POF () + QUE()

The equation for P’(t) is found by noting that P'(t) = d/dt[ux(X(t),Y(t)]
= uXXX’(t) + uny’(t) = uxpr(...) + quFq(...). It seems as if we have reached an impasse,
because the appearance of u_ seems to require the introduction of yet another function R(t)
= uxx(x(t),y(t)) , and this would lead to an even larger system. However, we have n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>