

AMINISTRY FOR DEVELOPMENT OF INFORMATION
TECHNOLOGIES AND COMMUNICATIONS

OF THE REPUBLIC OF UZBEKISTAN

TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES

A manuscript
UDK 004

CHEREPANOV ALEKSANDR ALEKSANDROVICH

USING DATA MINING TECHNIQUES IN WEB-BASED QUALIFYING

EVALUATION AND QUESTIONNAIRE POLL SYSTEM

5A330601 —―Software Engineering‖

DISSERTATION

on competition of the academic degree of Master

Scientific supervisor

Khan I.V.

Tashkent — 2015

MINISTRY FOR DEVELOPMENT OF INFORMATION TECHNOLOGIES AND
COMMUNICATIONS OF THE REPUBLIC OF UZBEKISTAN

TASHKENT UNIVERSITY OF INFORMATION TECHNOLOGIES

Faculty: Software engineering

Department: The software of information
technologies

Academic years: 2013-2015

Graduate student: Cherepanov A.A.

Scientific supervisor: Khan I.V.

Specialty: 5A____ — ―Software Engineering‖

ABSTRACT TO MASTER'S THESIS

The relevance of the thesis. Currently, the majority of development of information systems is

performed with the use of some data mining, machine learning techniques and real-time analytics.
These techniques provide to customers new intelligent abilities and features such as quick analysis and
smart expectations. Ones of useful systems where data mining abilities can be used are questionnaire
poll and qualifying evaluation systems (later survey system). A literature review of research in this
field has shown that the existing data mining techniques do not fully reflect the relationship between
structure of questionnaire list and appropriate data mining algorithm or technique.

The purpose and tasks of the thesis. The main purpose of this work is to research of using
data mining techniques in web-based qualifying evaluation and questionnaire poll systems on the
example of the module for data mining analysis of open source ―LimeSurvey‖ project.

The objectives of the study are:
- Analysis of the possibility of using classification data mining techniques in

questionnaire poll systems;

- Analysis of the process of surveying;
- Development of an data mining classification algorithm with the structure of

questionnaire lists and other requirements of the development of survey systems;

- Study the effect of the structure of questionnaire list on the data mining techniques
in special ―LimeSurvey‖ module;

- Validation of the results at the operating system.
The object and subject of the thesis. The object of the study is a software module for data

mining analysis in open source web-based qualifying evaluation and questionnaire poll systems
―LimeSurvey‖.

The subject of the study is to investigate the effect of the structure of questionnaire list
on the data mining techniques using classification algorithms.

The methods and techniques of the research. The main research method is an structural and
object-oriented modelling software by means of R and PHP languages. Also the methods of active
experiment are used for module of survey system. Research means are such tools as Microsoft Visio,
IDE JetBrains PhpStorm, database MySQL, PHP language with the library Yii Framework and open
source LimeSurvey project, R language.

The hypothesis of the thesis. The possibility of establishing a link between the structure of
questionnaire list and implementation of data mining techniques for prediction of filtering results. And
the advantages of developing high-quality software systems based on modern techniques.

Scientific and practical importance. The results evolve scientific and practical aspects of
applying data mining techniques to software development.

Scientific novelty in the thesis. The scientific novelty of this work is to optimise classification
techniques with importance of influence a structure of questionnaire to implementation of data mining
techniques.

The structure of the thesis. The thesis consists of an introduction, three chapters,
conclusion, references and applications.

Scientific supervisor: ___________________________ Khan I.V.
 (signature)

Graduate student: ___________________________ Cherepanov A.A.
 (signature)

МИНИСТЕРСТВО ПО РАЗВИТИЮ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И
КОММУНИКАЦИЙ РЕСПУБЛИКИ УЗБЕКИСТАН

ТАШКЕНТСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Факультет: Программный инжиниринг

Кафедра: Программное обеспечение
информационных технологий

Учебный год: 2013-2015

Студент магистратуры: Черепанов А.А.

Научный руководитель: Хан И.В.

Специальность: 5A____ — ―Программный
инжиниринг‖

АННОТАЦИЯ К МАГИСТЕРСКОЙ ДИССЕРТАЦИИ
Обоснование актуальности темы. В настоящее время большинство разработок

информационных систем выполняется с применением различных методов интеллектуального
анализа, машинного обучения и аналитики реального времени. Одни из полезных систем, в
которых могут быть применены возможности интеллектуального анализа данных, это системы
анкетирования и аттестации. Литературный обзор исследований в этой области показал, что
существующие методы анализа данных не в полной мере отражают взаимосвязи между
структурой анкет и соответствующим алгоритмом анализа данных.

Цель и задачи исследования. Основной целью настоящей работы является
исследование использования методов интеллектуального анализа данных в системах
анкетирования и квалификационной оценки, основанных на веб-технологиях, на примере
модуля для анализа данных проекта с открытым кодом "LimeSurvey".

Задачами исследования являются:
- Анализ возможности использования методов классификации интеллектуального
анализа данных в системах анкетирования;

- Анализ процесса анкетирования;

- Разработка алгоритма классификации анализа данных со структурой вопросника
и другими требованиями разработки систем анкетирования;

- Исследование влияния структуры анкеты на методы анализа данных в
специальном модуле "LimeSurvey";

- Апробация полученных результатов на действующей системе.

Объект и предмет исследования. Объектом исследования является программный
модуль для анализа данных в системе анкетирования и квалификационной оценки, основанной
на веб-технологиях ―LimeSurvey‖.

Предметом исследования является изучение влияния структуры анкеты на методы
анализа данных с использованием алгоритмов классификации.

Методы и средства исследования. Основным методом исследования является
структурное и объектно-ориентированное моделирование программного обеспечения с
помощью языков R и PHP. Также используются методы активного эксперимента для модуля
системы анкетирования. Средствами исследования являются инструменты Microsoft Visio, IDE
JetBrains PhpStorm, база данных MySQL, язык PHP с библиотекой Yii Framework, проект
Limesurvey, язык R.

Гипотеза исследования. Возможность установления связи между структурой анкеты и
реализацией методов анализа данных для определения фильтрации результатов и получение
преимуществ разработки программных систем на основе современных методов.

Научная и практическая значимость. Результаты развивают научные и практические
аспекты применения методов интеллектуального анализа данных для разработки
программного обеспечения.

Научная новизна. Оптимизация метода кластеризация с учетом влияния структуры
вопросника на реализацию методов анализа данных.

Состав диссертационной работы. Работа состоит из введения, трех глав, заключения,
списка использованной литературы и приложений.

Научный руководитель: ___________________________ Хан И.В.
 (подпись)

Студент магистратуры: ___________________________ Черепанов А.А.
 (подпись)

 6

CONTENTS

Introduction .. 7

Chapter 1. Technical background ... 12

1. Analysis Web questionnaires 12

2. Guidelines for designing Web and mobile questionnaires 14

3. Capabilities and Limits of the Web Survey 18

4. Data Mining Context 23

5. LimeSurvey Project Overview 28

6. Formalisation of problems 31

Chapter 2. Applying Data mining techniques to Survey Systems 32

1. Measurement level and types of data 32

2. R for Machine Learning 34

3. Text Regression 39

4. Building survey model from data 42

5. Applying classification techniques to survey systems 48

Chapter 3. Software implementation of data mining module................ 59

1. Selection of programming technologies 59

2. Description of implementation classes and methods 61

3. Description of module‘s user interfaces 66

Conclusions ... 72

References ... 74

Appendix ... 77

 7

INTRODUCTION

The relevance of the work lies in the fact that now the majority of

development of information systems is performed with the use of some

data mining, machine learning techniques and real-time analytics. These

techniques provide to customers new intelligent abilities and features such as

quick analysis and smart expectations. Ones of useful systems where data

mining abilit ies can be used are questionnaire poll and qualifying

evaluation systems (later survey system). A literature review of research in

this field has shown that the existing data mining techniques do not fully

reflect the relationship between structure of questionnaire list and

appropriate data mining algorithm or technique. Currently, in Uzbekistan

data mining techniques are generally subjects of academic sphere, but they

are not used in practical software development widely and a little mastered

by domestic programmers.

At present, the developed countries are moving from an industrial

society to an informational one. This is reflected in the intensive

improvement of computer and communication technologies, the emergence

of new information technologies and further development of existing ones,

as well as in the implementation of information systems. Achievements of

the Informatics have taken a worthy place in the organisational

management, industry, research and computer-aided design.

Informatization also covered the social sphere: education, science, culture

and health care.

Given the importance of informatization, computer and information

technologies in solving problems of economic and social development in

the Republic of Uzbekistan was adopted the Law "About Informatization"

(December 11, 2003), the Decree of the President of the Republic of

Uzbekistan "On further development of computerisation and introduction

of information and communication technologies‖ (May 30, 2002).

 8

Currently, intensive development of information and communication

technologies helps to speed up the decision making process, the

establishment and adoption of important documents. In 2004, the Republic

of Uzbekistan on the initiative of President of Uzbekistan Islam Karimov,

the Law "On electronic document‖ was adopted. It sets legally binding

electronic documents.

Web surveys continue to pose many challenges and benefits for

surveyors, much like they did in their early days. Typically, responses can

be gathered from large numbers of people in a very short amount of time.

Web surveys can also often be conducted at a fairly low cost, especially

when e-mail is the only form of communication with sample members.

Thousands or even tens of thousands of questionnaires can be completed in

a single day with the results available for review and analysis immediately.

For this reason and others, the use of web and mobile surveys

continues to grow. The proliferation of opt-in panels and other non

probability online survey methodologies has further fuelled the increase in

web surveys. But surveys of special populations with high levels of

computer ability, such as college students, policy experts, and business

executives, also are increasingly being conducted online, using web alone

or in combination with another mode.

Depending on the characteristics of the business problems and the

availability of ‗clean‘ and suitable data for the analysis, an analyst must make a

decision on which knowledge-discovery techniques to use to yield the best

output. Among the available techniques are:

- Statistical methods

- Decision trees and decision rules

- Cluster analysis

- Association rules

- Artificial neural networks

 9

So in development it is very important to select adequate technologies

and optimise known data mining techniques to appropriate business

problem and software structure and abilities.

The purpose of the master's thesis is the research of using data

mining techniques in web-based qualifying evaluation and questionnaire

poll systems on the example of the module for data mining analysis of

open source ―LimeSurvey‖ project.

The objectives of the thesis’s research are:

- Analysis of the possibility of using classification data mining

techniques in questionnaire poll systems;

- Analysis of the process of surveying;

- Development of an data mining classification algorithm with the

structure of questionnaire lists and other requirements of the

development of survey systems;

- Study the effect of the structure of questionnaire list on the data

mining techniques in special ―LimeSurvey‖ module;

- Validation of the results at the operating system.

The object of the study is a software module for data mining analysis

in open source web-based qualifying evaluation and questionnaire poll

systems ―LimeSurvey‖.

The subject of the study is to investigate the effect of the structure of

questionnaire list on the data mining techniques using classification

algorithms.

Research methods. The main research method is an structural and

object-oriented modelling software by means of R and PHP languages.

Also the methods of active experiment are used for module of survey

system.

 10

Research tools are tools Microsoft Visio, IDE JetBrains PhpStorm,

database MySQL, PHP language with the library Yii Framework and open

source LimeSurvey project, R language.

The hypothesis of the study is the possibility of establishing a link

between the structure of questionnaire list and implementation of data

mining techniques for prediction filters in surveys, and practical testing of

the obtained results, as well as the possibility of developing high-quality

software systems based on modern techniques.

The scientific novelty of this work is to develop an evaluation

method of influence a structure of questionnaire to implementation of data

mining techniques.

The structure of the thesis. The thesis consists of an introduction, three

chapters, conclusion, references and applications.

In the first chapter overview of questionnaire poll and qualifying

evaluation systems is presented, main concepts of data mining are

described, it was analysed some data mining techniques applied to survey

systems. Also the formulation of the problem was made.

In the second chapter it is described the structure of LimeSurvey

project and module‘s structure, the structure of database‘s part needed for

implementing data mining module, the classification algorithms were

adapted for special features which are proper for survey systems and

optimised for usage with such systems as the open source LimeSurvey

project. Also research about possibilit ies of usage data mining techniques

with such software systems was made and regularities in development web-

based questionnaire poll systems with applied data mining abilities were

evolved. The results were tested and approved.

The third chapter explains the choice of development tools and

technologies, describes the practical implementation of the module and includes

a description of the software product.

Finally, The concluding part draws the conclusions of the thesis.

 11

The annex contains a complete block diagram of the database, and the

source code of the module.

 12

CHAPTER 1. TECHNICAL BACKGROUND

1. Analysis Web questionnaires

Surveys that are completely electronic, relying only on e-mail contacts

to obtain Internet responses, are the fastest growing form of surveying

occurring in the world, as well as throughout most of the world. As a

stand-alone mode of data collection, web is especially attractive because of

speed, low cost, and economies of scale.[1] However, despite these

benefits, many barriers to realising them also exist and are discussed in this

chapter. Through this discussion of how to design and implement web

surveys, we focus on both the benefits and the current limitations of using

only the Internet and e-mail invitations to request and obtain responses.

A large majority of the population in Uzbekistan and a growing

number internationally now use the Internet. As of 2013, 85% of adults in

Uzbekistan use the Internet and 70% have broadband Internet access in

their homes.[2] People have also become more familiar with computers and

engaging in various activities online. Many now prefer to conduct their

business electronically rather than pick up a phone, write a letter, or go in

person, and many companies make it difficult to contact them any other

way than electronically.

The increasing use of mobile devices—especially smartphones and

tablets—has further fuelled the growth in online behaviour, especially as

these devices have become the primary way that some people connect to

the Internet. Nearly all adults (91%) have cell phones, up from 75% in

2007. And people are now far more likely to send text messages and access

the Internet on their cell phones than they were just 5 years ago. Further,

21% of cell phone owners say they mostly access the Internet using their

phone, rather than other devices.[3]

The fact that people have become more accustomed to completing

various daily activities online could be good for survey researchers

 13

interested in conducting web surveys, since people may also have become

more receptive to completing surveys online. However, it also means that

web surveys are constantly changing as the ways in which people interact

with computers and mobile devices also continues to evolve. The rise in

mobile devices requires survey designers to reconsider aspects of

questionnaire design to accommodate the smaller screen. Many people may

also receive and quickly scan e-mail and texts on their phone but then wait

to follow-up on requests that need more attention until they get to their

desktop or laptop. The range of devices (from desktop to netbook to tablet

to phablet to smartphone), operating systems and browsers (and different

versions), and customised settings available to users also continues to

expand, making designing and implementing web surveys more

challenging than it was even a few short years ago.

Web surveys continue to pose many challenges and benefits for

surveyors, much like they did in their early days. Typically, responses can

be gathered from large numbers of people in a very short amount of time.

Web surveys can also often be conducted at a fairly low cost, especially

when e-mail is the only form of communication with sample members.[4]

Thousands or even tens of thousands of questionnaires can be completed in

a single day with the results available for review and analysis immediately.

For this reason and others, the use of web and mobile surveys

continues to grow. The proliferation of opt-in panels and other non-

probability online survey methodologies has further fuelled the increase in

web surveys. But surveys of special populations with high levels of

computer ability, such as college students, pol- icy experts, and business

executives, also are increasingly being conducted online, using web alone

or in combination with another mode. Lastly, surveyors have increasingly

been using web surveys in mixed-mode designs of the general public where

sample members are contacted by another mode (e.g., mail) and asked to

complete the web survey.[5]

 14

In this chapter, we present guidelines for designing web and mobile

questionnaires and for implementing web surveys in which e-mail is the

only method used to contact people, but these guidelines will also be

helpful to those who are conducting mixed-mode surveys that include e-

mail contacts or web data collection.

2. Guidelines for designing Web and mobile questionnaires

Most web surveys are browser based, where respondents interact with

the survey through their Internet browser (such as Chrome, Firefox,

Internet Explorer, and Safari). The web survey is made up of a web page or

series of web pages containing survey questions programmed most

commonly in hypertext markup language (HTML) that are stored on a

server. Users with the proper URL can access them through their

computers or mobile devices and an Internet or cellular connection.

Surveyors send requests, often by e-mail, but also by mail or telephone, to

the person (or unit) from whom a response is desired and provide the link

or URL for the web survey (and often an individual identification code).[6]

Respondents click on the URL or enter it into their browser‘s address bar.

Alternatively, QR codes (or quick response codes) provide mobile device

users with a matrix barcode that can be read or scanned by such devices to

take them directly to the web survey. Survey website URLs and a QR code

are illustrated.

Example URLs

URL:

www.wiley.com/WileyCDA/WileyTitle/productCd-1118456149.html

Shortened URL:

http://tinyurl.com/tailored-design

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118456149.html
http://tinyurl.com/tailored-design

 15

Once sample members click on the URL, they are usually routed to a

welcome or introductory screen that briefly describes the survey and asks

them to proceed with the questionnaire. Once they begin the survey,

pressing the ―submit‖ or ―next‖ button on a page sends their answers back

to the web server. Their responses may be reviewed by the survey software

and are stored in a database on the server. What this means, in essence, is

that surveyors have to translate their questionnaire designs into computer

code to be stored on a server. They also have to design databases that will

store survey responses in an accurate, organised, meaningful, and

accessible way on the server.[7]

This can be done by programming the survey and creating the

databases from scratch (using unique code) or by using preexisting

software, most of which provide fairly simple point-and-click interfaces.

Programming the survey and databases from scratch provides the most

design flexibility and ability to innovate, but it requires bringing together

two very specialised skill sets—computer programming and survey

methodology—and is often the most complex and expensive option.

Those who cannot program from scratch or who prefer other options

have an almost dizzying array of software options to choose from. The

available software programs vary along four dimensions that are important

to consider.

1. Design flexibility and difficulty. Almost all survey software

programs provide question templates that can be used. In some programs

the template must be used as is, but other programs allow the surveyor to

alter the underlying programming to customise the design. For some,

customisation can be done in standard programming languages like HTML

and cascading style sheets (CSS), but others require one to use specialised

programming languages developed for the particular software. In addition,

some software packages include either mobile optimisation or mobile app

 16

support and others do not, so it is important to review all of the features

that a program has to offer before selecting one.

2. Control over the data. Some programs only allow the data to be

collected and stored on the software company‘s servers while others allow

collection and storage to take place on the surveyor‘s servers. Others

provide both options. This raises the ethical considerations of how secure

the data are and exactly who has access, issues that need to be considered

carefully in light of any restrictions within one‘s organisation and before

promising anonymity or confidentiality to respondents.

3. Data access and reporting. Some programs limit the analysis to

simple frequencies and cross tabulations while others provide raw data sets

that can be analysed however the surveyor desires (these come in a variety

of formats). Similarly, some packages also offer various automated

monitoring and reporting features that may make it easier to track progress

and quickly look at results.

4. Cost. Cost underlies all the sedimensions. Available software

packages range from free to costing tens of thousands of dollars per year.

Many software providers have tiered pricing structures in which the higher

cost tiers grant more design flexibility for the survey itself and more

control over the resulting data. Generally speaking the design flexibility

required to conduct a good web survey comes with a higher price tag.[8]

Reviewing the various software programs along these dimensions, as

well as the questionnaire design and implementation guidelines presented

throughout this chapter, can help in carefully evaluating the best software

option for a specific survey or organisation‘s needs.

There are several ways, other than a browser-based survey, for

researchers to collect survey data over the web. For example, survey apps

can be used for those who are on mobile devices. Alternatively, other

electronic options, such as fillable PDFs or embedded e-mail or text/SMS

surveys, can sometimes be effective. With fillable PDFs, respondents can

 17

enter answers directly into a PDF file that is then e-mailed back to the

surveyor (or returned some other way). In some cases, such as in surveys

of establishments, this is desirable because PDF files can easily be printed

to keep copies for one‘s records or to pass around to all the people who

need to answer the questions.

Another option is to embed the survey directly into an e-mail or text

message. The major advantage of this strategy is its low cost, as it

eliminates considerable programming costs. However it is difficult to

control the visual appearance of such surveys because of the variety of

ways people read their e-mail and SMS messages (i.e., web-based e-mail

providers, local software programs, on mobile devices and phones, etc.)

and because entering responses shifts their content around. Lastly, these

types of surveys are quite difficult for those completing them on mobile

devices, unless they are kept very short (only one to three questions).

Despite these drawbacks, it is important to evaluate whether one of

these alter- natives may be more appropriate for one‘s survey needs, as

they are often less costly than fully interactive web surveys. The guidelines

for designing web questionnaires presented here are primarily focused on

browser-based web surveys, but we also highlight ways in which the

design may need to be modified and optimised for a mobile experience.

Designing survey questionnaires for mobile devices is still in its infancy

and more research is needed to understand how people complete web

questionnaires on their mobile devices.[9]

If one chooses a browser-based web survey, it is important to

remember that designing a web survey is very different from designing a

website. Although some aspects of visual design apply either way, others

differ because people‘s motivation and purpose for going to a typical

website are quite different from their motivation and purpose for visiting a

web survey site (or using a web survey app). Most of the time, people visit

websites to get information, and are self-motivated to find what they are

 18

looking for. In contrast, most respondents go to a web survey because

someone else asked them to; their own motivation may be low. In addition,

in a web survey, respondents‘ primary task is to provide, rather than seek,

information. Thus, it is critical that web surveys be designed to make he

response task as easy as possible while obtaining accurate measurement.

Doing so may require different design strategies than might be suggested

by the more general website usability literature. Moreover, design errors

that may be tolerated when someone is looking for information or trying to

pay their bills online may more easily trigger break-offs in a web survey.

3. Capabilities and Limits of the Web Survey

Although conducting a survey using computer and Internet technology

gives one a wealth of new possibilities, it also means that one is

constrained by the limits of those technologies. One of those limits that can

be very damaging to a survey project if exceeded is the capacity of the web

server(s). Web servers can only handle so much outgoing or incoming

traffic before they begin to bog down or even crash. As a result, it is

important to know ahead of time what effect sending or receiving mass

amounts of survey-related information might have on one‘s server(s) and to

plan accordingly.

We very rarely send e-mail survey invitations or reminders to the

entire sample at one time (the exception is for small samples) because,

although our e-mail program will allow us to do so, our server cannot

handle that many outgoing e-mails at once. The risk is that some of the

messages will be lost or will be bounced back to the sender, leading to the

incredibly complex task of trying to sort through who got the e-mail and

who did not. Instead, we send our e-mail communications in batches of a

few hundred at a time over the course of a day or, better yet, in the late

evening when the servers are less busy and the messages can arrive before

recipients check their e-mail the next morning. This is slightly more labor

 19

intensive, but it is not nearly the amount of work that sorting out bounced

e-mails would be.

In addition to considering the effects of outgoing communications, it

is also important to consider the effects of incoming survey activity on the

server(s). The nature of the Internet is such that many sample members can

receive their invitations at virtually the same time, and all of them can

immediately try to access and complete the survey. However, if too many

people try to access the same survey on the same server all at once (or if

responses are coming into the same server for different surveys all at

once), the likely results could range from significant slowdowns that might

lead some to quit the survey to a server crash that would cut every

respondent off. Neither of these outcomes, nor any point in between, is

desirable. When we have large survey projects that pose such challenges,

we send invitations in batches over longer time periods so that the

responses come in smaller waves rather than in one large spike. Another

strategy we often employ is to have our server disconnect from

respondents‘ computers if the computers are idle for a specified amount of

time. We do this so that server resources can be devoted to respondents

who are actively completing the questionnaire. When the idle respondents

return to their computers and try to continue, they are provided with a

friendly message that explains what happened and tells them how to return

to their previous place in the survey.

The main point, though, is that it is important to know the limits of the

hosting server(s) and plan accordingly. The best advice we can give here is

to consult one‘s information technology professional or Internet service

provider well in advance to work out an implementation and survey

management strategy that works well within the limits of the server(s) one

will be using.[10]

Assigning respondents a unique identification number is important for

all modes, including web surveys. It allows the surveyor to keep track of

 20

who has responded and to remove respondents‘ contact information from

follow-up databases so that they do not continue to receive reminders. In

web surveys, the unique identification number can also serve an additional

function in that it can be used as a unique access code that can, and should,

be required in order to enter the web survey. Requiring respondents to

enter a code in order to access the survey helps protect the integrity of the

sample and survey data by ensuring that unsampled people who stumble

upon the survey are not able to access it. It also provides a way to ensure

that each respondent answers the survey only once, as the access code can

be deactivated after the respondent submits the completed survey.

Some respondents, however, legitimately need to stop the survey and

return to it at a later time to finish. As a result, deactivating access codes

after they have been entered once is not a desirable practice. For this

reason, we typically program our surveys so that if respondents stop before

completing the survey and then come back to it later, they are returned to

the question where they previously quit. They can leave and reenter the

survey in this way as many times as they desire. However, once

respondents submit the completed survey, their access code is deactivated.

We have found this to be a quite useful strategy because most respondents

who start the survey will finish it all at once if there are no offensive

questions or technical difficulties that lead to artificially high break-off

rates. Although this seems to work well for most of our surveys, other

strategies may be more appropriate in other situations.

That one should assign an access code raises the issue of how one

should require that access code to be used. Currently two main strategies

are used: manual and automatic login. In manual login, respondents are

sent a URL and access code. Once they get to the introductory web page

using the URL, they are asked to key their access code into a designated

space to gain access to the survey. In automatic login, the unique access

code is contained within the URL so that entering the URL in their web

 21

browser (or clicking on it if it is sent by e-mail) will automatically gain

respondents entrance into the survey.[5]

Several studies have compared these two strategies. Crawford et al.

found that providing an automatic login significantly increased response

rates by nearly 5 percentage points over a manual login condition in which

respondents had to enter both a password and access code. Heerwegh and

Loosveldt reported a similar but nonsignificant finding (a 3-percentage-

point advantage for automatic login). However, they also found that a

semiautomatic login procedure in which the password was included in a

URL but the respondent still had to key in an access code resulted in an 8-

percentage-point increase in response rate over the manual login

procedure. Both of these studies as well as an additional study by

Heerwegh and Loosveldt also reported some evidence that respondents

who log in manually (or semiautomatically) provide more complete data.

In particular, Heerwegh and Loosveldt reported that respondents who log

in manually are more likely to complete more of the survey and are more

likely to provide substantive answers to sensitive questions, an effect they

attributed to respondents believing their data are more secure when they

have to key in an access code.[11]

Based on these findings, it seems advisable to require respondents to

key in an access code rather than to provide automatic login. But it is also

important to use access codes large enough that one is unlikely to

wrongfully enter the survey, whether by accident (i.e., a typo in entering

one‘s own code) or by guessing a code. If, for example, one wants to use a

four-digit numerical access code (where each digit can range from 0 to 9),

the total number of possible codes that can be generated is 10,000. If one is

surveying 1,000 respondents, 1 in every 10 possible access codes will be

assigned to a respondent. With a five-digit access code, however, there are

100,000 possibilit ies, meaning that only 1 in every 100 possible codes will

be assigned to a respondent. The likelihood of somebody wrongfully

 22

accessing the survey by guessing an access code or making a typo in

entering his own code is considerably less with a five-digit access code.

However, the use of longer access codes should be balanced with

considerations of the difficulty of transferring the access code from the e-

mail to the website.

Although long access codes can be copied and pasted, many people

will still type in the code, and the more digits they have to enter, the

greater the likelihood for error.

In addition to considering the length of the access code, one should

also be sure to avoid using adjacent numbers for different respondents. For

example, using the access codes 10001, 10002, 10003, and so on would

make it quite simple for a respondent to answer the survey multiple times

by simply altering his own access code by one digit. Thus, it is important

to build in an interval greater than 1 between access codes. However, one

should also avoid regular intervals, as in the following sequence: 10101,

10201, 10301, and so on. Instead, a random interval of between 50 and 300

digits should be used; this can be easily accomplished using the random

functions included in common software.

It is also important to make sure that the access codes one provides are

not easily mistaken with other codes respondents deal with on a daily

basis. For example, we once sent e-mail invitations for a student

experience survey to a sample of undergraduate students. The invitation

included a clickable link to the survey and respondents‘ ID number for

accessing the survey. Shortly after sending the first batch of e-mails, we

began getting messages back from students claiming that their ID did not

work. It was only when one student included her ID number in her message

that we realised that the students were entering their school ID numbers

rather than the randomly generated ID numbers we had sent them in the e-

mail. When surveying this type of group, we now make it a point to refer to

the survey ID numbers as access codes to help differentiate them from

 23

what students more commonly think of as their ID. We also now specify

―Please enter your access code listed in the e-mail we sent you‖ on the

login page rather than the less specific ―Please enter your ID.‖ The types of

specialised groups who can be surveyed via the web oftentimes have

preexisting ID numbers, membership numbers, or access codes that they

use regularly.

4. Data Mining Context

 24

Modern management is data driven; customers and corporate data are

becoming recognised as strategic assets. Decisions based on objective

measurements are better than decisions based on subjective opinions which

may be misleading and biased. Data is collected from all sorts of input

devices and must be analysed, processed and converted into information

that informs, instructs, answers or otherwise aids understanding and

decision making. Input devices include cashier machines, tills, data

loggers, warehouse audits and Enterprise Resource Planning (ERP)

systems. The ability to extract useful but usually hidden knowledge from

data is becoming increasingly important in today‘s competitive world.

When the data is used for prediction, future behaviour of the business is

less uncertain and that can only be an advantage; ‗forewarned is

forearmed‘!

Figure 1 - Increasing profit with data mining

The valuable resource of historical data can lead to a predictive model

 25

and a way to decide on accepting new applicants to a business scheme.

With technological advancements, the computer industry has

witnessed a tremendous growth in both hardware and software sectors.

Sophisticated databases have encouraged the storage of massive datasets,

and this has opened up the need for data mining in a range of business

contexts. Data mining, with its roots in statistics and machine learning,

concerns data collection, description, analysis and prediction. It is useful

for decision making, when all the facts or data cannot be collected or are

unknown. Today, people are interested in knowledge discovery (i.e.

intelligence) and must make sense of the terabytes of data residing in their

databases and glean the important patterns from it with trustworthy tools

and methods, when humans can no longer juggle all these data and

analyses in their heads (see Figure 1).

Data mining is a process that uses a variety of data analysis methods

to discover the unknown, unexpected, interesting and relevant patterns and

relationships in data that may be used to make valid and accurate

predictions. In general, there are two methods of data analysis: supervised

and unsupervised (see Figure 2 and Figure 3). In both cases, a sample of

observed data is required. This data may be termed the training sample.

The training sample is used by the data mining activities to learn the

patterns in the data.[12]

Supervised data analysis is used to estimate an unknown dependency

from known input–output data. Input variables might include the quantities

of different articles bought by a particular customer, the date they made the

purchase, the location and the price they paid. Output variables might

include an indication of whether the customer responds to a sales campaign

or not. Output variables are also known as targets in data mining. In the

supervised environment, sample input variables are passed

 26

Figure 2 - Supervised learning

through a learning system, and the subsequent output from the learning

system is compared with the output from the sample. In other words, we

try to predict who will respond to a sales campaign. The difference

between the learning system output and the sample output can be thought

of as an error signal. Error signals are used to adjust the learning system.

This process is done many times with the data from the sample, and the

learning system is adjusted until the output meets a minimal error

threshold. It is the same process taken to fine-tune a newly bought piano.

The fine-tuning could be done by an expert or by using some electronic

instrument. The expert provides notes for the training sample, and the

newly bought piano is the learning system. The tune is perfected when the

vibration from the keynotes of the piano matches the vibration in the ear of

the expert.[12,13]

Unsupervised data analysis does not involve any fine-tuning. Data

mining algorithms search through the data to discover patterns, and there is

no target or aim variable. Only input values are presented to the learning

system without the need for validation against any output. The goal of

unsupervised data analysis is to discover ‗natural‘ structures in the input

 27

data. In biological systems, perception is a task learnt via an unsupervised

technique.

Figure 2 - Unsupervised learning

Depending on the characteristics of the business problems and the

availability of ‗clean‘ and suitable data for the analysis, an analyst must

make a decision on which knowledge-discovery techniques to use to yield

the best output. Among the available techniques are:

• Statistical methods : multiple regression, logistic regression,

analysis of variance and log-linear models and Bayesian

inference

• Decision trees and decision rules : Classification And

Regression Tree (CART) algorithms and pruning algorithms

• Cluster analysis : divisible algorithm, agglomerative

algorithms, hierarchical clustering, partitional clustering and

incremental clustering

• Association rules : market basket analysis, a priori algorithm

and sequence patterns and social network analysis

• Artificial neural networks : multilayer perceptrons with back-

 28

propagation learning, radial networks, Self-Organising Maps

(SOM) and Kohonen networks

• Genetic algorithms : used as a methodology for solving hard

optimisation problems

• Fuzzy inference systems : based on theory of fuzzy sets and

fuzzy logics

• N-dimensional visualisation methods : geometric, icon-based,

pixel- oriented and hierarchical techniques

• Case-Based Reasoning (CBR): based on comparing new cases

with stored cases, uses similarity measurements and can be used

when only a few cases are available

This list is not exhaustive, and the order does not suggest any priority

in the application of these techniques.

5. LimeSurvey Project Overview

LimeSurvey (formerly PHPSurveyor) is a free and open source on-line

survey application written in PHP based on a MySQL, PostgreSQL or

MSSQL database, distributed under the GNU General Public License. As a

web server-based software it enables users to develop and publish on-line

surveys, and collect responses, without doing any programming.[27]

LimeSurvey is a web application that is installed to the user‘s server.

After installation users can manage LimeSurvey from a web-interface.

Users can use rich text in questions and messages, using a rich text editor,

and images and videos can be integrated into the survey. The layout and

design of the survey can be modified under a template system. Templates

can be changed in a WYSIWYG HTML editor. Additionally, templates can

be imported and exported through the template editor. Once a survey is

finalized, the user can activate it, making it available for respondents to

view and answer. Likewise, questions can also be imported and exported

http://en.wikipedia.org/wiki/Free_and_open_source_software
http://en.wikipedia.org/wiki/Statistical_survey
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/MSSQL
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/GNU_General_Public_License
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Rich_text
http://en.wikipedia.org/wiki/Web_template_system
http://en.wikipedia.org/wiki/WYSIWYG
http://en.wikipedia.org/wiki/HTML

 29

through the editor interface. LimeSurvey has no limit on the number of

surveys a user can create, nor is there a limit on how many participants can

respond. Aside from technical and practical constraints, there is also no

limit on the number of questions each survey may have. [15]

Questions are added in groups. The questions within each group are

organized on the same page. Surveys can include a variety of question

types that take many response formats, including multiple choice, text

input, drop-down lists, numerical input, slider input, and simple yes/no

input. Questions can be arranged in a two-dimensional array, with options

along one axis based on the questions on the other axis. Questions can

depend on the results of other questions. For instance, a respondent might

only be asked about transportation for his or her commute if he or she

responded affirmatively to a question about having a job.

LimeSurvey also provides basic statistical and graphical analysis of

survey results. Surveys can either be publicly accessible or be strictly

controlled through the use of "once-only" tokens, granted only to selected

participants. Additionally, participants can be anonymous, or LimeSurvey

can track the IP addresses of the participants. A much more detailed listing

of features can be found on the LimeSurvey web page.

Some web hosting services offer LimeSurvey hosting, either as a

custom installation or through a control panel, such as cPanel with

Fantastico, Plesk, Softaculous, or Virtualmin Professional. LimeSurvey has

also been ported by third parties to various content management systems,

such as PostNuke, and XOOPS. A port to Joomla exists, but it is not

compatible with version 1.5 of Joomla.

The main developer and project leader of the LimeSurvey project,

Carsten Schmitz, is also the owner of LimeService, a company which

offers LimeSurvey hosting for a fee. This service is similar to web

applications such as SurveyMonkey; the main difference being that

LimeService's fees are based on the number of people that respond to the

http://en.wikipedia.org/wiki/Multiple_choice
http://en.wikipedia.org/wiki/Drop-down_list
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Web_hosting_service
http://en.wikipedia.org/wiki/Control_panel_(Web_hosting)
http://en.wikipedia.org/wiki/CPanel
http://en.wikipedia.org/wiki/Fantastico_(web_hosting)
http://en.wikipedia.org/wiki/Plesk
http://en.wikipedia.org/wiki/Softaculous
http://en.wikipedia.org/wiki/Virtualmin
http://en.wikipedia.org/wiki/Content_management_system
http://en.wikipedia.org/wiki/PostNuke
http://en.wikipedia.org/wiki/XOOPS
http://en.wikipedia.org/wiki/Joomla
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/SurveyMonkey

 30

survey and not on the time that the survey is active for, like other similar

services. LimeService offers up to 25 free responses per month, after which

responses can be purchased in one of several packages.

Problems of scalability exist when using MySQL as the backing

database for LimeSurvey because it cannot reliably support the default

MySQL storage engine, InnoDB, due to the latters limitation of 8000

characters per database row. Thus Limesurvey uses the MyISAM database

engine which has concurrency issues due to lack of row based locking for

database inserts and updates. This in turn can affect MySQL

replication,[13] at least prior to MySQL 5.6, due to the MySQL's limitation

of a single thread being used for execution of inserts and updated on the

replica database server, thus affecting all replicated database on the master

MySQL server.

LimeSurvey in general uses the UTF-8 character set to be able to

display all languages. Both the frontend and backend of LimeSurvey are

available in 60 languages and dialects; 22 of these have over 95% of the

translations done. Primary translations include: Albanian, Basque, Chinese,

Croatian, Danish, Dutch, Finnish, French, Galician, German, Greek,

Hungarian, Hebrew, Italian, Japanese, Norwegian, Portuguese, Russian,

Serbian, Slovenian, Spanish, Swedish. There are also many other partial

translations in other languages.[15]

LimeSurvey allows users to create and host surveys, for general data

gathering purposes. It can be used for collecting data from customers and

employees.

LimeSurvey is used by several open source organisations such as

OpenOffice.org, Ubuntu, and GNOME. LimeSurvey is also used by

educational institutions in 19 countries.

The code base for LimeSurvey 2.0 was completely re-written from

scratch using a MVC (Model–view–controller) approach and the Yii PHP

http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/InnoDB
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Front_end_processor_(program)
http://en.wikipedia.org/wiki/Backend
http://en.wikipedia.org/wiki/OpenOffice.org
http://en.wikipedia.org/wiki/Ubuntu_(operating_system)
http://en.wikipedia.org/wiki/GNOME
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Yii

 31

framework. Besides the structural code changes aimed at better modularity

the new version also has a new GUI with a completely new design using

AJAX technology.

6. Formalisation of problems

The purpose of the master's thesis is the research of using data mining

techniques in web-based qualifying evaluation and questionnaire poll

systems on the example of the module for data mining analysis of open

source ―LimeSurvey‖ project.

To complete the purpose of the research it have to:

- Analyse of the process of surveying;

- Develop the data mining classification algorithm with the

structure of questionnaire lists and other requirements of the

development of survey systems;

- Study the effect of the structure of questionnaire list on the data

mining techniques in special ―LimeSurvey‖ module;

- Validate the results at the operating software system.

Conclusions for the first chapter

In the first chapter overview of questionnaire poll and qualifying

evaluation systems is presented. Main concepts of data mining are

described, it was analysed some data mining techniques applied to survey

systems. Also LimeSurvey project was introduced.

Also the formulation of the problem was made.

http://en.wikipedia.org/wiki/GUI
http://en.wikipedia.org/wiki/AJAX

 32

CHAPTER 2. APPLYING DATA MINING TECHNIQUES TO SURVEY

SYSTEMS

1. Measurement level and types of data

There are different types of quantitative data, all of which can have

good information content. There are many different terms used to describe

the different data types, and the most common words are detailed in the

following.

The simplest level of measurement is expressed as nominal data which

indicates which named category is applicable. For example, a customer

may live in an urban area, a rural area or a mixed area. This nominal data

variable will consist of a column of urban/rural/mixed with one row for

each customer. If there are only two levels, for example, ‗buy‘ or ‗no buy‘,

then the data is referred to as binary variables. If there is any order

associated with the categories, then they are referred to as ordinal data. For

example, text associated with reasons for returning goods may read

something like:

The clothes were the wrong size.

This comment could be classified as a size complaint. The frequency

of size complaints could be compared with the frequency of non-size-

related complaints. Size/non-size related is a binary variable having two

levels, and we could usefully compare the number of complaints at each

level.

If the reason for returning is

The clothes were too big,

then we could classify this complaint as a ‗too big‘ mismatched size

complaint, and we could compare the frequency of ‗too big‘ with ‗too

small‘ mismatched sizes or ‗non-size‘ related. A variable containing the

information about complaints classified as too big/too small/unspecified

size/non-size related is a categorical variable with nominal measurement at

 33

four levels.

There could also be an ordinal-level measurement if the categories are

related in a descending or ascending order. For example, the variable levels

could be first return, second return, third return, etc. If there are more than

two levels for a nominal variable but there is no implied order, then some

data mining procedures may require them to be converted to a series of

indicator variables. For example, urban/rural/mixed could be converted to

three indica- tor variables: urban or not, rural or not and mixed or not. The

last variable is redundant as its value is indicated when neither of urban

nor rural is true.[16]

Variables that represent size are referred to as measures,

measurements or metrics and are described as being on a metric level. In

data mining, the term ‗metric‘ includes counts of some data type, like page

views, and may correspond to a column of data.

The measurement level would be interval if the variable is the number

of occurrences, for example, the number of returns for a customer (i.e. the

number of times a customer returned an order). In this case, there could be

lots of customers with zero returns but a few customers with one, two,

three or more returns. This is discrete data measured on an interval scale.

Another example of interval-level measures or metrics is provided by

altmetrics, which are measurements of interaction based on the social web

resulting in variables like the number of hits or mentions across the web.

Subjects such as netnography explore web activity in great detail.

Many data items are measured on a continuous scale, for example, the

distance travelled to make a purchase. Continuous data does not need to be

whole numbers like 4km but can be fractions of whole numbers like 5.68

km. Continuous data may be interval type or ratio type. Interval data has

equal intervals between units (e.g. 3.5 is 1 less than 4.5, and 4.5 is 1 less

than 5.5). Ratio data is interval-type data with the additional feature that

zero is meaningful and ratios are constant (e.g. 12 is twice as big as 6, and

 34

6 is twice as big as 3).

Nominal and ordinal variables are referred to as categorical or

classification variables. They often represent dimensions, factors or custom

variables that allow you to break down a metric by a particular value, like

screen views by screen name.[17]

To summarise, in data mining, we consider classification or

categorical variables which can be nominal, binary and ordinal as well as

scale or metric variables which can be count, continuous, interval or ratio.

Qualitative data, such as pictures or text, can be summarised into

quantitative data. For example, an analysis of content can be expressed in

terms of counts and measured in terms of impact or quantity of

relationships. Content analysis may give rise to nominal data in which the

categories can be named but do not have any implied order.

2. R for Machine Learning

R is an extremely powerful language for manipulating and analysing

data. Its meteoric rise in popularity within the data science and machine

learning communities has made it the de facto lingua franca for analytics.

R‘s success in the data analysis community stems from two factors

described in the preceding epitaphs: R provides most of the technical

power that statisticians require built into the default language, and R has

been supported by a community of statisticians who are also open source

devotees.

There are many technical advantages afforded by a language designed

specifically for statistical computing. As the description from the R Project

notes, the language provides an open source bridge to S, which contains

many highly specialised statistical operations as base functions. For

example, to perform a basic linear regression in R, one must simply pass

the data to the lm function, which then returns an object containing detailed

information about the regression (coefficients, standard errors, residual

 35

values, etc.). This data can then be visualised by passing the results to the

plot function, which is designed to visualise the results of this analysis.

In other languages with large scientific computing communities, such

as Python, duplicating the functionality of lm requires the use of several

third-party libraries to represent the data (NumPy), perform the analysis

(SciPy), and visualise the results (mat-plotlib). As we will see in the

following chapters, such sophisticated analyses can be performed with a

single line of code in R.[18]

In addition, as in other scientific computing environments, the

fundamental data type in R is a vector. Vectors can be aggregated and

organised in various ways, but at the core, all data is represented this way.

This relatively rigid perspective on data structures can be limiting, but is

also logical given the application of the language. The most frequently

used data structure in R is the data frame, which can be thought of as a

matrix with attributes, an internally defined ―spreadsheet‖ structure, or

relational database-like structure in the core of the language.

Fundamentally, a data frame is simply a column-wise aggregation of

vectors that R affords specific functionality to, which makes it ideal for

working with any manner of data.

R operates on named data structures. The simplest such structure is

the numeric vector, which is a single entity consisting of an ordered

collection of numbers. To set up a vector named x, say, consisting of five

numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c() which in this

context can take an arbitrary number of vector arguments and whose value

is a vector got by concatenating its arguments end to end.7

A number occurring by itself in an expression is taken as a vector of

length one.

Notice that the assignment operator (‗<-‘), which consists of the two

 36

characters ‗<‘ (―less than‖) and ‗-‘ (―minus‖) occurring strictly side-by-

side and it ‗points‘ to the object receiving the value of the expression. In

most contexts the ‗=‘ operator can be used as an alternative.

Assignment can also be made using the function assign(). An

equivalent way of making the same assignment as above is with:

> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))

The usual operator, <-, can be thought of as a syntactic short-cut to

this.

Assignments can also be made in the other direction, using the

obvious change in the assignment operator. So the same assignment could

be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is printed

and lost. So now if we were to use the command

> 1/x

the reciprocals of the five values would be printed at the terminal (and

the value of x, of course, unchanged).

The further assignment

> y <- c(x, 0, x)

would create a vector y with 11 entries consisting of two copies of x

with a zero in the middle place.[20]

Vectors can be used in arithmetic expressions, in which case the

operations are performed element by element. Vectors occurring in the

same expression need not all be of the same length. If they are not, the

value of the expression is a vector with the same length as the longest

vector which occurs in the expression. Shorter vectors in the expression are

recycled as often as need be (perhaps fractionally) until they match the

length of the longest vector. In particular a constant is simply repeated. So

with the above assignments the command

> v <- 2*x + y + 1

 37

generates a new vector v of length 11 constructed by adding together,

element by element, 2*x repeated 2.2 times, y repeated just once, and 1

repeated 11 times.

The elementary arithmetic operators are the usual +, -, *, / and ^ for

raising to a power. In addition all of the common arithmetic functions are

available. log, exp, sin, cos, tan, sqrt, and so on, all have their usual

meaning. max and min select the largest and smallest elements of a vector

respectively. range is a function whose value is a vector of length two,

namely c(min(x), max(x)). length(x) is the number of elements in

x, sum(x) gives the total of the elements in x, and prod(x) their product.

Two statistical functions are mean(x) which calculates the sample

mean, which is the same as sum(x)/length(x), and var(x) which

gives

sum((x-mean(x))^2)/(length(x)-1)

or sample variance. If the argument to var() is an n-by-p matrix the

value is a p-by-p sample covariance matrix got by regarding the rows as

independent p-variate sample vectors.

sort(x) returns a vector of the same size as x with the elements

arranged in increasing order; however there are other more flexible sorting

facilities available (see order() or sort.list() which produce a

permutation to do the sorting).

Note that max and min select the largest and smallest values in their

arguments, even if they are given several vectors. The parallel maximum

and minimum functions pmax and pmin return a vector (of length equal to

their longest argument) that contains in each element the largest (smallest)

element in that position in any of the input vectors.

For most purposes the user will not be concerned if the ―numbers‖ in a

numeric vector are integers, reals or even complex. Internally calculations

are done as double precision real numbers, or double precision complex

 38

numbers if the input data are complex.

To work with complex numbers, supply an explicit complex part. Thus

sqrt(-17)

will give NaN and a warning, but

sqrt(-17+0i)

will do the computations as complex numbers.

Character quantities and character vectors are used frequently in R, for

example as plot labels. Where needed they are denoted by a sequence of

characters delimited by the double quote character, e.g., "x-values",

"New iteration results".

Character strings are entered using either matching double (") or

single (') quotes, but are printed using double quotes (or sometimes

without quotes). They use C-style escape sequences, using \ as the escape

character, so \\ is entered and printed as \\, and inside double quotes " is

entered as \". Other useful escape sequences are \n, newline, \t, tab and

\b, backspace—see ?Quotes for a full list.

Character vectors may be concatenated into a vector by the c()

function; examples of their use will emerge frequently.

The paste() function takes an arbitrary number of arguments and

concatenates them one by one into character strings. Any numbers given

among the arguments are coerced into character strings in the evident way,

that is, in the same way they would be if they were printed. The arguments

are by default separated in the result by a single blank character, but this

can be changed by the named argument, sep=string, which changes it to

string, possibly empty.[20]

For example

> labs <- paste(c("X","Y"), 1:10, sep="")

makes labs into the character vector

c("X1", "Y2", "X3", "Y4", "X5", "Y6", "X7", "Y8", "X9", "Y10")

 39

Note particularly that recycling of short lists takes place here too; thus

c("X", "Y") is repeated 5 times to match the sequence 1:10.

Vectors are the most important type of object in R, but there are

several others which we will meet more formally in later sections.

- matrices or more generally arrays are multi-dimensional

generalizations of vectors. In fact, they are vectors that can be

indexed by two or more indices and will be printed in special

ways.

- factors provide compact ways to handle categorical data.

- lists are a general form of vector in which the various elements

need not be of the same type, and are often themselves vectors

or lists. Lists provide a convenient way to return the results of

a statistical computation.

- data frames are matrix-like structures, in which the columns

can be of different types. Think of data frames as ‗data

matrices‘ with one row per observational unit but with

(possibly) both numerical and categorical variables. Many

experiments are best described by data frames: the treatments

are categorical but the response is numeric.

- functions are themselves objects in R which can be stored in

the project‘s workspace. This provides a simple and convenient

way to extend R.[19]

3. Text Regression

Cross-validation and regularisation are both powerful tools that allow

us to use complex models that can mimic very intricate patterns in our data

without overfitting. One of the most interesting cases in which we can

employ regularisation is when we use text to predict some continuous

output; for example, we might try to predict how volatile a stock will be

 40

based on its IPO filings. When using text as an input for a regression

problem, we almost always have far more inputs (words) than observations

(documents). If we have more observations than 1-grams (single words),

we can simply con- sider 2-grams (pairs of words) or 3-grams (triplets of

words) until we have more n-grams than documents. Because our data set

has more columns than rows, unregularised linear regression will always

produce an overfit model. For that reason, we have to use some form of

regularisation to get any meaningful results.

To give you a sense of this problem, we‘ll work through a simple case

study in which we try to predict the relative popularity of the top-100-

selling books that O‘Reilly has ever published using only the descriptions

of those books from their back covers as input. To transform these text

descriptions into a useful set of inputs, we‘ll convert each book‘s

description into a vector of word counts so that we can see how often

words such as ―the‖ and ―Perl‖ occur in each description. The results of

our analysis will be, in theory, a list of the words in a book‘s description

that predict high sales.[14]

To get started, let‘s load in our raw data set and transform it into a

document term matrix using the tm package:

ranks <- read.csv('data/oreilly.csv', stringsAsFactors =

FALSE) library('tm')

documents <- data.frame(Text = ranks$Long.Desc.)

row.names(documents) <- 1:nrow(documents)

corpus <- Corpus(DataframeSource(documents))

corpus <- tm_map(corpus, tolower)

corpus <- tm_map(corpus, stripWhitespace)

corpus <- tm_map(corpus, removeWords, stopwords('english'))

dtm <- DocumentTermMatrix(corpus)

Here we‘ve loaded in the ranks data set from a CSV file, created a

 41

data frame that contains the descriptions of the books in a format that tm

understands, created a corpus from this data frame, standardized the case

of the text, stripped whitespace, removed the most common words in

English, and built our document term matrix. With that work done, we‘ve

finished all of the substantive transformations we need to make to our data.

With those finished, we can manipulate our variables a little bit to make it

easier to describe our regression problem to glmnet:

x <- as.matrix(dtm) y <- rev(1:100)

Here we‘ve converted the document term matrix into a simple numeric

matrix that‘s easier to work with. And we‘ve encoded the ranks in a

reverse encoding so that the highest-ranked book has a y-value of 100 and

the lowest-ranked book has a y-value of 1. We do this so that the

coefficients that predict the popularity of a book are positive when they

signal an increase in popularity; if we used the raw ranks instead, the

coefficients for those same words would have to be negative. We find that

less intuitive, even though there‘s no substantive difference between the

two coding systems.

Finally, before running our regression analysis, we need to initialize

our random seed and load the glmnet package:

set.seed(1)

library(‘glmnet')

Having done that setup work, we can loop over several possible values

for Lambda to see which gives the best results on held-out data. Because

we don‘t have a lot of data, we do this split 50 times for each value of

Lambda to get a better sense of the accuracy we get from different levels of

regularisation. In the following code, we set a value for Lambda, split the

data into a training set and test set 50 times, and then assess our model‘s

performance on each split.[15,16]

 42

performance <- data.frame()

for (lambda in c(0.1, 0.25, 0.5, 1, 2, 5)) {

for (i in 1:50) {

indices <- sample(1:100, 80) training.x <- x[indices,]

training.y <- y[indices]

test.x <- x[-indices,] test.y <- y[-indices]

glm.fit <- glmnet(training.x, training.y) predicted.y <-

predict(glm.fit, test.x, s = lambda) rmse <-

sqrt(mean((predicted.y - test.y) ^ 2))

performance <- rbind(performance, data.frame(Lambda =

lambda,

} }

Iteration = i, RMSE = rmse))

After computing the performance of the model for these different

values of Lambda, we can compare them to see where the model does best:

ggplot(performance, aes(x = Lambda, y = RMSE)) +

stat_summary(fun.data = 'mean_cl_boot', geom = 'errorbar') +

stat_summary(fun.data = 'mean_cl_boot', geom = ‘point')

4. Building survey model from data

These models describe important relationships in the data, including

the strength and direction—positive or negative—of the relation. The

models can encode linear and nonlinear relationships in the data. They can

also be used to confirm a hypothesis about relationships. All these uses

help to summarise and understand the data. However, one of the most

widely used applications of a model is for making predictions. For

example, a data set of historical purchases along with customer

geographical and demographic data (such as the customer‘s age, location,

salary, and so on) could be collected and used to generate a model that

encodes what type of products clients purchase. Once the model is built, it

 43

could be used to identify from a list of potential clients those most likely to

make a purchase, and customers on this prioritised list could be targeted

with marketing material or other promotions. (see Figure 4)

In this chapter, we will review how models can be built from data sets.

A model is usually built to predict values for a specific variable. For

example, were a data set composed of historical data containing attributes

of pharmaceuticals and their observed side effects to be collected, a model

can be generated from this data to predict the side effects from the

pharmaceuticals‘ attributes.

A variable that a model is to predict is often referred to as a y-variable

or response variable. The variables that will be encoded in the model and

used in predicting this response are referred to as the x-variables or the

independent variables. In Figure 6.1, a data table composed of cars is used

to generate a model. Because we want the model to predict the car‘s fuel

efficiency, we have chosen the response variable to be miles per gallon

(MPG).[17] Other variables will be used as independent variables (x-

variables). In this case, these will be Cylinders (x1), Displacement (x2),

Horsepower (x3), Weight (x4), and Acceleration (x5). A generalized format

for the model is shown where some function of the independent variables

(xi) is used to predict the response (y), which in this case is MPG.

 44

Figure 4 - Data model

Models built to predict categorical variables (such as a binary variable

or a nominal variable) are referred to as classification models, whereas

models that predict continuous variables are called regression models.

There are many ways to generate classification and regression models. For

example, a classification tree is a method for building a classification

model while a multiple linear regression is a method for building a

regression model. Specific approaches may have restrictions relating to the

types of variables that can be used in the model as, for example, a model

that requires continuous variables to have a normal frequency distribution.

For certain types of models it is possible to fine-tune the performance of

the model by varying different parameters. In building a model, it will be

important to understand the restrictions placed on the types of independent

or response variables or both, as well as how to optimize the performance

of the model by varying the values of the parameters. Another way in

which approaches to modelling differ is in the ease of access to the internal

calculations, otherwise known as the transparency of the model, in order to

explain the results: is it possible to understand how the model calculated a

prediction or is the model a ―black box‖ that only calculates a prediction

result with no corresponding explanation? Issues related to transparency

may be important in explaining the results when the model is deployed in

certain situations.[18]

Although the response variable is known, when building models it is

not always apparent beforehand which variables should be used as

independent variables. Therefore, the selection of the independent

variables is an important step in building a model. A good model will make

reliable predictions, be plausible, and use as few independent variables as

possible. These approaches can be used to prioritize candidate independent

variables to use in building a model, especially where there are many

variables to consider. However, care should be taken when using statistical

 45

tests to prioritize large numbers of potential independent variables as a

correction may need to be used. For example, a matrix of scatterplots could

be used to visually identify which variables have the strongest relationship

to the response variable. In addition, knowledge of the problem can also

guide the choice of variables to use in the models. Alternatively, we could

build multiple models with different combinations of independent variables

and select the best fitting model.

Another issue to consider when selecting independent variables is the

relationship between the independent variables. Combinations of variables

that have strong relationships to each other should be avoided since they

will be essentially encoding the same relationship to the response.

Including all the variables from each group of strongly related variables

produces overly complex models (violating the ―as simple as possible

rule‖) and with some approaches to modelling can produce results that are

difficult to interpret.

In developing a model, it may also be necessary to use derived

variables, that is, a new variable that is a function of one or more variables.

For example, if the model expects the variables of a data set to have a

normal frequency distribution and some variables have an exponential

frequency distribution, it may be necessary to create new variables using a

log trans- formation. As another example, because most modelling methods

require numeric data, if a data set has nominal variables that will be used

in the model, the values of these variables must be transformed into

numbers. For example, if color is an important variable with values

―Blue,‖ ―Green,‖ ―Red,‖ and ―Yellow,‖ color could be transformed into a

series of binary dummy variables.[19]

 46

Figure 5 - Training and testing sets

In this chapter, we discuss how to generate models from data sets. The

data set used to build a model is referred to as the training set. To

objectively test the performance of a generated model, a test set with

observations different from those in the training set is used to test how well

the model performs. The model uses the values of each observation in the

test set to predict a value for the response variable. From these predictions,

a variety of metrics, such as the number of correct versus incorrect

predictions made, are used to assess the accuracy of the model. The use of

training and test sets is illustrated in Figure 5.

A good way to build and test a model would be to use all the

observations in the original data set as the training set to build the model

and to use new, independent observations as the test set to measure

accuracy. However, because the number of available test sets is often

small, a common way to test the performance of a model is to use a

category of methods called cross- validation. In the k-fold partitioning

method, the original data set is divided into k equally sized partitions. The

model is measured k times. In the first iteration, one of the partitions is

selected as the test set and the remaining partitions comprise the training

set. The model is tested and an accuracy score is generated. In each

subsequent iteration, a partition different from any already used as a test

set is selected as the test set and the remaining partitions become the

training set. Another score is calculated. At the end of this process, the

accuracy of the model is based on the average of the k scores. For example,

suppose we partition a data set into 10 partitions where each partition

consists of observations randomly selected from the data set. In each of the

10 iterations, we designate one partition (10% of the data set) as the test set

and the other 9 partitions (90% of the data set) as the training set. At the

end of the 10 iterations, an average of the 10 scores is used to assess the

model‘s accuracy. Taking k-fold partitioning to an extreme would result in

 47

the case where k is the number of observations in the data set and each

partition contains a single observation. This is a cross-validation method

known as leave-one-out.

In cross-validation, each partition will have been used as a test set or,

in other words, every observation in the data set will have been tested

once. This ensures that a prediction will be calculated for every

observation in the data set and avoids introducing bias into a model. Bias

is a measure of the model‘s accuracy and indicates how close the

predictions of the response value made by the model are to the actual

response value of new observations. It can be introduced when models

become overly complex by optimizing the model for just the training set

used to build the model. When the performance is tested for these

overtrained models against either a separate test set or through cross-

validation, the performance will be poorer. In cross-validation methods,

bias can be introduced when training sets overlap (some observations are

used more than once) or the combined training sets do not cover the data

set (some observations are never used).[15]

For classification models, one way to assess the performance of a

model is to look at the results of applying the models (such as the results

from a test set or the cross-validation results) and determine how many

observations are correctly or incorrectly classified. The accuracy or

concordance of the model is based on the proportion or percentage of

correctly predicted observations in comparison to the whole set. For

example, if the test set contained 100 observations and the model predicted

78 correctly (22 incorrectly), then the concordance would be 78/100 or

78%.

A common type of classification model is a model to predict a binary

response, where a true response is coded as 1 and a false response is coded

as 0. For example, a model could be built to predict, based on geological

data, whether there is evidence of an oil deposit, with a true response.

 48

5. Applying classification techniques to survey systems

Classification is one of the fundamental cognitive processes used to

organize and apply our knowledge about the world. It is common both in

everyday life and in business, where we might want to classify customers,

employees, transactions, stores, factories, devices, docu- ments, or any

other types of instances into a set of predefined meaningful classes or

categories. It is therefore not surprising that building classification models

by analyzing available data is one of the central data mining tasks that

attracted more research interest and found more applications than any other

task studied in the field.

The classification task consists in assigning instances from a given

domain, described by a set of discrete- or continuous-valued attributes, into

a set of classes, which can be considered values of a selected discrete

target attribute, also called the target concept. Correct class labels are

generally unknown, but are provided for a subset of the domain. It can be

used to create the classification model, which is a machine-friendly

representation of the knowledge needed to classify any possible instance

from the same domain, described by the same set of attributes. This

follows the general assumptions of inductive learning, of which the

classification task is the most common instantiation.

The assumed general unavailability of class labels, but their

availability for a given sub- set of the domain, may seem at first

inconsistent, but it is essential for the idea of inductive inference on which

all data mining methods are based. It also perfectly corresponds to the

requirements of most practical applications of classification, where the

class represents some property of classified instances that is either hard

and costly to determine, or (more typically) that becomes known later than

is needed. This is why applying a classification model to assign class labels

 49

to instances is commonly referred to as prediction.[10]

The term ―concept‖ comes from the traditional machine learning

terminology and is used to refer to a classification function c ∶ X → C,

representing the true assignment of all instances from the domain to a

finite set of classes (or categories) C. It can be considered simply a

selected target nominal attribute. Concept values will be referred to as

class labels or classes.

A particularly simple, but interesting kind of concepts is that with just

a two-element set of classes, which can be assumed to be C = {0, 1} for

convenience. Such concepts are some- times called single concepts,

opposed to multiconcepts with |C | > 2. Single concepts best correspond to

the original notion of concepts, borrowed by machine learning from

cognitive psychology. An instance x is said to ―belong to‖ or ―be an

example of‖ concept c when c(x) = 1. When c(x) = 0, the instance is said

―not to belong to‖ or ―to be a negative example of‖ concept c.

Classification tasks with single concepts will be referred to as two-class

classification tasks.

The target concept is assumed to be unknown in general, except for

some set of instances D ⊂ X (otherwise no data mining would be possible).

Some or all of these available labeled instances constitute the training set

T ⊆ D.

A classification model h ∶ X → C produces class predictions for all

instances x ∈ X and is supposed to be a good approximation of the target

concept c on the whole domain. Classification models are briefly called

classifiers, although the latter term sometimes also refers to classification

algorithms, used to create classification models.

For two-class classification tasks (single concepts), a particular kind

of scoring classification models deserves special interest. These are the

classification models that predict class labels in a two-step process: they

first map instances into real numbers called scores and then they assign one

 50

class label (1, by convention) to instances with sufficiently high scores and

the other class label (0) to the remaining instances.

More precisely, a scoring model is represented by a scoring function

� ∶ X → and a labeling function � ∶ → {0, 1}. The former assigns

real-valued scores to all instances from the domain, and the latter converts

these scores to class labels using a cutoff rule, such as

{

�(r) =
1 if r ≥ �

(1.1) 0 otherwise

where � is a cutoff value. The model is then the composition of its

scoring and labeling functions, h(x) = �(�(x)).

It is a common convention to consider scoring classification models

sharing the same scoring function and differing only in the labeling

function (i.e., using different cutoff values) as the same single model,

working in different operating points. Classification algorithms capable of

generating scoring classification models typically create a scoring function

and a cutoff value for one default operating point, but a number of other

operating points can be obtained by using different cutoff values.[12]

Classification models that generate class labels directly, without

scoring and labeling functions, are sometimes called discrete classifiers.

A related interesting and useful special kind of classification models

are probabilistic classifiers, which estimate class probabilities for instances

being classified, and then make predictions based on these probabilities. A

probabilistic classifier assigns to each instance x ∈ X and class d ∈ C a

probability estimate P(d |x) of instance x belonging to class d of the target

concept c. The estimated class probabilities can be used to generate class

labels using the obvious maximum-probability rule:

h(x) = arg max P(d |x) (1.2) d∈ C

or – under nonuniform misclassification costs – the less obvious

 51

minimum-cost rule, as dis- cussed in Section 6.3.3.

For two-class tasks, probabilistic classifiers constitute a particularly

common subclass of scoring classifiers, with the estimated probabilit ies of

class 1 for particular instances considered scores, i.e., �(x) = P(1|x).

LimeSurvey has many question types. Some of them presented here:

Question types

- Arrays

• Array

• Array (5 point choice)

• Array (10 point choice)

• Array (Yes/No/Uncertain)

• Array (Increase/Same/Decrease)

• Array by column

• Array dual scale

• Array (Numbers)

• Array (Text)

- Mask questions

• Date

• File upload

• Gender

• Language switch

• Numerical input

• Multiple numerical input

• Ranking

• Text display

• Yes/No

• Equation

- Multiple choice questions

• Multiple choice

 52

• Multiple choice with comments

- Single choice questions

• 5 point choice

• List (Dropdown)

• List (Radio)

• List with comment

- Text questions

• Short free text

• Long free text

• Huge free text

• Multiple short text

The Array question type (sometimes referred to as Array Multi

Flexible) further extends the List question type. Using this question type a

matrix can be displayed in which columns are represented by subquestion

and the same answer options are shown for each row. The text of the

question can be either a specific question or a description.

In terms of output there is no difference in how responses are stored

compared to question type 'List(Radio). In both cases the given answer is

stored in its separate column in the result table.

Beside the most flexible array types 'Array', 'Array (Text)' and 'Array

(Numbers)' LimeSurvey also supports a number of convenience array types

which have predefined answer options.

Ranking question type allows you to present your participants with a

list of possible answers/options, which they may then rank in order of

preference.

Text display question type does not collect input from the user and

simply displays text. It can be used to provide further instructions or a

design break in the survey.

Sometimes you want the participant to mark more than one answer

 53

option in the same question; this is achieved using checkboxes.

Multiple choice question type can collect input of multiple selections

through checkboxes.

Multiple choice with comments question type can collect input of

multiple selections through checkboxes, while allowing the user to provide

additional comments with their submissions.

Single choice questions are those where the participant can only pick a

single predefined answer option.

5 point choice question shows a vertical 1 to 5 scale where the

participant may select one answer option at a time.

List (Dropdown) question type collects input from a dropdown menu.

You can also create subcategories within this list by using the advanced

setting 'Category separator'.

List (Radio) question type collects input from a list of radio buttons.

List with comment question type displays a list of radio buttons, while

allowing the participants to provide a additional comment with their

submission.

The linear model representation is a special case of the parametric

representation which assumes that the model‘s predictions are calculated

by applying a representation function to attribute values and a set of real-

valued parameters. This is particularly natural and extremely common for

regression models which make real-valued predictions. The same approach

can also be adopted to represent classification models, though. Moreover,

such models can be created by the same or nearly the same algorithms as

those that normally deliver regression models. This can be achieved in

several ways, some of which are discussed in this chapter. The chapter will

focus on issues related to adopting parametric regression methods to the

classification task. This is essentially based on using a composite model

representation function, consisting of a real-valued inner representation

 54

function and a discrete outer representation function that assigns class

labels based on the former.[13]

Linear representation is the most common instantiation of the

parametric representation family that will be more thoroughly discussed in

Section 8.2 in the regression context, but can be summarized as follows:

• A fixed model representation function is adopted that determines the

model‘s predicted value for an instance based on the instance‘s attribute

values and a vector of model parameters.

• Creating a model based on a training set consists in estimating its

parameters.

This is in contrast to nonparametric representation, where both the

representation function and parameters have to be derived from the data as

part of the model creation process. We have actually already encountered

these two types of model representation. Decision trees can be viewed as

instantiations of nonparametric representation, with the tree structure

playing the role of the representation function, and per-leaf class

distributions serving as model parameters. The naïve Bayes classifier

adopts a parametric representation, on the other hand, using prior class

probabilit ies and conditional attribute value probabilit ies as parameters to

the fixed representation function that calculates conditional class

probabilit ies given attribute values based on the Bayes rule and the

independence assumption.

In principle, parametric model representation is applicable to both

classification and regression models, since the employed representation

function can be real valued or discrete valued. However, a model

representation function is useful only if reasonably efficient and effective

parameter estimation algorithms are available. This unquestionably favors

real-valued representation functions. Several approaches to parametric

classification are therefore based on wrapping the latter so that they can be

used for class label prediction. This is most natural and easiest to achieve

 55

with two-class classification tasks.[14]

The representation function for parametric classification is the

composite of a real-valued inner representation function and another

(outer) function that assigns binary class labels (as always in this book,

assumed to be from the {0, 1} set) based on its values. The inner

representation function is calculated based on attribute values and model

parameters:

g(x) = F(a(x), w) More specifically, for the linear representation we

have

or, assuming an+1(x) = 1 for all x to include the intercept term �n+1 in

the summation

g(x) = � ia i(x) = w ⚬ a(x)

i=1 �ia i(x) + �n+1

where ⚬ denotes the dot product operator, w is the parameter vector,

and a(x) is the vector of attribute values a1(x),a2(x), ... ,an+1(x). Whenever

referring to w or a(x) in this chapter, they will be assumed to contain n + 1

elements, i.e., include the intercept term �n+1 and the

dmr.linreg

parameter vector for the lcg.plot function

w.plot <- c(2, -3, 4)

repf.linear(lcdat.plot[1:10,1:2], w.plot)

grad.linear(lcdat.plot[1:10,1:2], w.plot)

 # parametric model for the lcg.plot function

m.plot <- ‘class<-‘(list(repf=repf.linear, w=w.plot),

"par")

predict(m.plot, lcdat.plot[1:10,1:2])

 56

corresponding fictitious attribute value an+1(x). When the last elements

of these vectors have to be omitted, this will be explicitly indicated by

adding the 1 ∶ n subscripts.

There are two major approaches to assigning binary class labels based

on linearly represented real-valued inner predictions:

Boundary modeling. Assuming that the inner representation function

represents a boundary between regions of different classes,

Probability modeling. Assuming that the inner representation function

represents, possibly indirectly, class probabilities.

In boundary modeling, hypersurfaces (in the attribute value space)

separating positive and negative instances, called decision boundaries, are

represented parametrically. They partition the domain into regions, with

each region assigned a class label.

Probability modeling is a family of approaches that use a parametric

representation of class probabilities. For two-class tasks this reduces to

representing the probability of class 1. The latter may be then used to

predict class labels as with any probabilistic classifiers, i.e., by using the

maximum probability rule, the minimum cost rule presented in Section

6.3.3, or adjusting operating points by the ROC analysis or similar

methods, as discussed in Section 7.2.5.

These two approaches lead to the following two most commonly used

types of outer rep- resentation functions for linear classification:

• threshold representation, which is a standard way to perform

boundary modeling,

• logit representation, which is is the most popular instantiation of

probability modeling. We will see that, while they differ in important

details, they have actually a lot in common.[9]

For two-class classification tasks partitioning the domain into the

positive and negative regions can be easily achieved by comparing a

parametric representation function against a threshold. Without loss of

 57

generality, the latter may be assumed to be 0, which yields the following

model representation:

h(x) = H(g(x)) =
1 if g(x) ≥ 0

(5.4) 0 otherwise

For a threshold parametric classification model defined as above

predictions are obtained by applying the unit step function H to the inner

representation function g. The latter determines a hypersurface in the (n +

1)-dimensional space (with dimensions corresponding to a1, a2, ... , an, and

g). By comparing against 0 the projection of this hypersurface to n

dimensions (corresponding to a1,a2, ... ,an) is determined. In general, it may

yield one or more n-dimensional hypersurfaces where g crosses the a1, a2,

... , an hyperplane. The model function h, which is a binary-valued function

in an n-dimensional space, assigns 0 or 1 to regions separated by a number

of n-dimensional surfaces, obtained by the projection of an (n + 1)-

dimensional surface.

It is common to use the sign rather than the unit step function for

threshold parametric classification models, assuming class labels are from

the {−1, 1} set rather than the {0, 1} set. This chapter sticks with the latter,

to preserve consistency with conventions used for presenting other

classification algorithms in this book. However, on several occasions the

binary true or predicted class labels will be used as numbers in equations

(and, correspondingly, code examples), whereas the discussion of

classification in other chapters usually does not rely on the numeric

interpretation of class labels[15].

The threshold representation instantiated for linear classification takes

the following form:

{

h(x) = H(w⚬a(x)) =
1 if w⚬a(x) ≥ 0

(5.5) 0 otherwise

In this case, the decision boundary separating the domain regions

assigned the 0 and 1 class labels, represented by the parameter vector, is a

 58

hyperplane in n dimensions. The target con- cept is said to be linearly

separable on a dataset if there exists a hyperplane that separates all

instances of different classes in the dataset (i.e., there exists a parameter

vector that yields correct predictions for all instances in the dataset). The

dataset is then also said to be linearly separable with respect to the target

concept.

Conclusions for the second chapter

In the second chapter it is described the structure of LimeSurvey

project and module‘s structure, the structure of database‘s part needed for

implementing data mining module, the classification algorithms were

adapted for special features which are proper for survey systems and

optimised for usage with such systems as the open source LimeSurvey

project. Also research about possibilit ies of usage data mining techniques

with such software systems was made and regularities in development web-

based questionnaire poll systems with applied data mining abilities were

evolved. The results were tested and approved.

 59

CHAPTER 3. SOFTWARE IMPLEMENTATION OF DATA MINING

MODULE

1. Selection of programming technologies

For implementation data mining module of open source survey system

―LimeSurvey‖ it was selected LAMP technology, as the most popular

platform to develop web applications. LAMP means Linux, Apache,

MySQL and PHP.

Because of ―LimeSurvey‖ is written on PHP language as common web

application, it was had to choose PHP as main language for

implementation. PHP (recursive acronym for PHP: Hypertext

Preprocessor) is a widely-used open source general-purpose scripting

language that is especially suited for web development and can be

embedded into HTML. [23] PHP has good language features such as

support for object-oriented approach and some functional abilit ies like

anonymous functions and closures. But in the data mining field it has week

tools, and it is not very strong language to implement data mining

techniques. So in Internet you will find not a lot of libraries useful for data

mining systems written in PHP. Because of this, it was selected additional

language for implementation - R language.

R provides a wide variety of statistical (linear and nonlinear

modelling, classical statistical tests, time-series analysis, classification,

clustering, …) and graphical techniques, and is highly extensible.

R is an integrated suite of software facilities for data manipulation,

calculation and graphical display. It includes

- an effective data handling and storage facility,

- a suite of operators for calculations on arrays, in particular

matrices,

- a large, coherent, integrated collection of intermediate tools for

data analysis,

 60

- graphical facilities for data analysis and display either on-

screen or on hardcopy, and

- a well-developed, simple and effective programming language

which includes conditionals, loops, user-defined recursive

functions and input and output facilities.[24]

MySQL was selected as database management system. It is the most

popular database for PHP projects, and it has enough performance.

MySQL is (as of July 2013) the world's second most widely used

relational database management system (RDBMS) and most widely used

open-source RDBMS. MySQL is a popular choice of database for use in

web applications, and is a central component of the widely used LAMP

open source web application software stack.

Major features as available in MySQL 5.6:

- Cross-platform support

- Stored procedures, using a procedural language that closely

adheres to SQL/PSM

- Triggers

- Cursors

- Updatable views

- Online DDL when using the InnoDB Storage Engine.

- Information schema

- Sub-SELECTs (i.e. nested SELECTs)

- Built-in Replication support (i.e. Master-Master Replication &

Master-Slave Replication) with one master per slave, many

slaves per master. Multi-master replication is provided in

MySQL Cluster, and multi-master support can be added to

unclustered configurations using Galera Cluster.

- Full-text indexing and searching

http://en.wikipedia.org/wiki/Select_(SQL)
http://en.wikipedia.org/wiki/Database_replication
http://en.wikipedia.org/wiki/Multi-master_replication
http://en.wikipedia.org/wiki/MySQL_Cluster
http://en.wikipedia.org/wiki/Index_(database)

 61

- Embedded database library

- Unicode support and etc.[25]

Because of ―LimeSurvey‖ uses Yii Framework as main library, it is

used also for development custom data mining module.

Yii is a high-performance PHP framework best for developing Web

2.0 applications.

Yii comes with rich features: MVC, DAO/ActiveRecord, I18N/L10N,

caching, authentication and role-based access control, scaffolding, testing,

etc. It can reduce your development time significantly.[26]

2. Description of implementation classes and methods

To implement data mining module in questionnaire poll system Yii

Framework was used. It supports MVC design pattern which provide

abilities to separate business logic (Model) from presentation layer (View)

and controlling execution of request (Controller). So the implementation of

the module include controllers, models, views and some helper classes.

Here is the description of the most important classes.

SurveyController - controller to work with questionnaires.

It consists of methods presented in Table 1.

Table 1 - SurveyController methods

accessRules() Specifies the access control rules. This method is

used by the 'accessControl' filter.

actionView() Displays a particular model.

actionCreate() Creates a new model. If creation is successful, the

browser will be redirected to the 'view' page.

actionUpdate() Updates a particular model. If update is successful,

the browser will be redirected to the 'view' page.

http://en.wikipedia.org/wiki/Unicode
http://www.yiiframework.com/performance/
http://www.yiiframework.com/features/

 62

Table 1 - SurveyController methods

actionDelete() Deletes a particular model. If deletion is

successful, the browser will be redirected to the

'admin' page.

actionIndex() List all surveys blanks

actionAdmin() Manages all models.

loadModel() Returns the data model based on the primary key

given in the GET variable. If the data model is not

found, an HTTP exception will be raised.

StatisticsController - controller which is used for viewing statistics

for results of survey.

It consists of further methods (see Table 2).

Table 2 - StatisticsController methods

accessRules() Specifies the access control rules. This method is

used by the 'accessControl' filter.

init() Initialize controller object

actionIndex() Show statistics for surveys

AnalyticController - controller that implement data mining

techniques to operate with survey reports.

Methods of this controller are presented in Table 3.

Table 3 - AnalyticController methods

actionView() View appropriate report based on question report.

It includes request of R scripts to work with data

structures.

 63

Table 3 - AnalyticController methods

init() Initialize controller object

actionIndex() Show analytics for surveys

actionCommon() Helper function for common operations

actionEducationProc

ess()

Action to rebuild education data sets for using in

data analytics

Class ModelStatistic implements main business logic of developed

system‘s module.

Methods of this class are presented in Table 4.

Table 4 - ModelStatistics methods

init() Initialize model‘s object

ToAssosiative() Convert array of multivalve answers to

associative array.

ToPercentage() Convert values of given array to percents values

ToPersentage1() Helper method for previous method

ToArray() Converts given associative array to common

array

ToArrayInverse() Converts array to transformed array to be used

in classification algorithms

transformConditions() Change some conditions like ‗or‘ and ‗and‘ to

appropriate operations with data arrays

getMethodic() Gets appropriate method to consolidate results:

addition or subtraction.

 64

Table 4 - ModelStatistics methods

getFrequency() Gets frequency for multivalve types of

questions.

RProcessInterface is used in wrappers for a synchronous R interpreter

process. Input commands are sent using write(). It is possible to obtain

back the input, the output, the list of errors and the overall result (input +

output + errors). Obtaining can be done for all data (since the launch of the

process) or only for the last write(). CommandLineRProcess implements

RProcessInterface and it is useful to integrate R language with PHP.

Through this class it is possible to run R scripts and get results from PHP

code. Methods of this class are described in Table 5.

Table 5 - RProcessInterface methods

start() Starts the R process and also resets errors,

input and output

stop() Stops the R process

restart() Restarts the R process (stops and starts it).

isRunning() Checks if the R process is running

write() Writes lines of commands to R interpreter

getAllInput() Returns all input to the R interpreter

getAllOutput() Returns all output from the R interpreter

getAllResult() Returns all input, output and errors (as text or

array, depending on $asArray parameter)

getLastWriteInput() Returns the most recent input to the R

interpreter (since the last call of write()

method)

 65

Table 5 - RProcessInterface methods

getLastWriteOutput() Returns the most recent output from the R

interpreter (since the last call of write()

method)

getLastWriteResult() Returns the most recent input, output and

errors (since the last call of write() method)

hasErrors() Determines if there were errors since the last

call of start() method

getErrors() Gets the array of errors (elements are of type

RError) since the last call of start() method

hasLastWriteErrors() Determines if there were errors since the last

call of write() method

getLastWriteErrorCount() Gets the number of errors that occurred since

the last call of write() method

getLastWriteErrors() Gets the array of errors (elements are of type

RError) that occurred since the last call of

write() method

isErrorSensitive() Check if R process is currently sensitive to

errors

setErrorSensitive() Sets sensitivity to R errors

So it was implemented module for survey statistics and reporting.

Listings of source code can be found in Appendix.

In the next section main user forms and actions are described.

 66

3. Description of module’s user interfaces

Enter to system

There is two different screens to for entering into system: for users

who want to answer questionnaire, and administrator who can get reports

and create surveys.

Enter in your address bar in browser this URL:

http://statistics.eduinca.net to get main page of application for users. User

must enter special code to start survey. Code is provided by administrator.

That code can be used only once to prevent multiple answers from one

user.

The web application is available in two languages: Russian and

English. User can select one of them. Administrator have to click ―Enter‖

tab, input login and password to enter into administration panel. In the

figure 1 there is login page of application.

Figure 1 - Login page

In administration panel of EduinCA Survey project administrator can

create surveys. First he have to create survey, then add some question

http://statistics.eduinca.net/

 67

groups. In one survey there may be more than one question group. Then

administrator creates questions of questionnaire. Type of question may be

list, multi-select, array of value or one of many others. Administration

panel to operate with surveys is presented on Figure 2.

Figure 2 - Survey administration panel

When preparation of survey completed, administrator gives users

access codes to complete questionnaires. Users log in with these codes, and

they will see such list of questions (see Figure 3). Because LimeSurvey

supports many languages, administrator can create translated

questionnaires if he plans to support multilingual audience.

Figure 3 - Questionnaire list

 68

After survey completes in statistics application administrator can view

all completed questionnaires. In Figure 4 there are 124 questionnaires

completed by participants.

Figure 4 - List of completed questionnaires

Administrator can view answers of every single participant. In Figure

5 sample questions are presented.

 69

Figure 5 - Sample questions list

In ―Analytics‖ section administrator can get reports and graphics

about completed surveys. Common report participants by countries is in

Figure 6.

To get complex reports administrator can input request sentence, for

example ―How many independent entrepreneurs?‖. System will give him

predictions about response filters based on the questionnaire structure. If

prediction is wrong, administrator can manually select needed options. The

request string and response filters are showed in Figure 7.

 70

Figure 6 - Common report dividing participants by countries

Figure 7 - The request string and response filters

After that administrator can get complex report by selected filters (see

Figure 8).

 71

Figure 8 - Report for complex request

Conclusions for the third chapter

In the third chapter the development means and technologies were

chosen for implementation special module of questionnaire poll system.

Module is developed using PHP language and Yii Framework, and

database management system MySQL.

Model classes, controllers classes, form classes were designed and

implemented. Also some helper classes were created.

In this chapter workflow with survey was described. It was explained

how administrator can create survey, add questions, operate with

completed results; how he can use custom requests to get complex reports

quickly.

 72

CONCLUSIONS

The master's thesis was purposed to research of using data mining

techniques in web-based qualifying evaluation and questionnaire poll

systems on the example of the module for data mining analysis of open

source ―LimeSurvey‖ project.

Results of the thesis‘s research are:

- Analysed the possibility of using classification data mining

techniques in questionnaire poll systems;

- Analysed the process of surveying;

- Developed data mining classification algorithm with the

structure of questionnaire lists and other requirements of the

development of survey systems;

- Studied the effect of the structure of questionnaire list on the

data mining techniques in special ―LimeSurvey‖ module;

- Implemented special module for survey application;

- Validation of the results at the operating system.

Overview of questionnaire poll and qualifying evaluation systems is

presented. Main concepts of data mining are described, it was analysed

some data mining techniques applied to survey systems. Also LimeSurvey

project was introduced.

Web surveys continue to pose many challenges and benefits for

surveyors, much like they did in their early days. Typically, responses can

be gathered from large numbers of people in a very short amount of time.

Web surveys can also often be conducted at a fairly low cost, especially

when e-mail is the only form of communication with sample members.

Thousands or even tens of thousands of questionnaires can be completed in

a single day with the results available for review and analysis immediately.

It was described the structure of LimeSurvey project and module‘s

structure, the structure of database‘s part needed for implementing data

 73

mining module, the classification algorithms were adapted for special

features which are proper for survey systems and optimised for usage with

such systems as the open source LimeSurvey project. Also research about

possibilit ies of usage data mining techniques with such software systems

was made and regularities in development web-based questionnaire poll

systems with applied data mining abilities were evolved. The results were

tested and approved.

For research it was selected linear classification algorithm as the most

appropriate to structure of data set and business problem.

The development means and technologies were chosen for

implementation special module of questionnaire poll system. Module is

developed using PHP language and Yii Framework, and database

management system MySQL.

Model classes, controllers classes, form classes were designed and

implemented. Also some helper classes were created.

Workflow with survey was described. It was explained how

administrator can create survey, add questions, operate with completed

results; how he can use custom requests to get complex reports quickly.

Regardless of the industry where data mining is going to be used, the

first thing to decide is whether the solution is needed to describe an

existing situation or relationship or to predict a situation or result that may

happen in the future.

Just to clarify, a description just describes what happened in the past;

it is not necessary to control whether the input data are available in the

future as well. Descriptions can be generated using supervised and

unsupervised methods. Prediction, however, is always based on supervised

methods. It is important that the same kind and quality of input data is

available for training, testing and deployment.

 74

REFERENCES

1. Law of the Republic of Uzbekistan № 560-II of 11.12.2003 ―On

Informatization‖

2. Presidential Decree № UP-3080 of 30.05.2002 ―On further

development of computerization and introduction of information and

communication technologies‖

3. Law of the Republic of Uzbekistan № 611-II of 29.04.2004 ―On

electronic document‖

4. Report of the President of Uzbekistan Islam Karimov at the meeting of

the Cabinet of Ministers on the main results of the socioeconomic

development of the country in 2014 and important priorities of

economic program for 2015. – 17.01.2015

5. Sommerville, Ian. Software engineering. — 9th ed., Addison-Wesley,

2011 — p.790

6. Ellis Byron. Real-Time Analytics: Techniques to Analyze and

Visualize Streaming Data — John Wiley & Sons, Inc., 2014 — p.435

7. Don A. Dillman, Jolene D. Smyth, Leah Melani Christian. Internet,

phone, mail, and mixed-mode surveys — 4th ed., John Wiley & Sons,

Inc., 2014 — p.530

8. Dean Jared. Big Data, Data Mining, and Machine Learning: Value

Creation for Business Leaders and Practitioners — John Wiley & Sons,

Inc., 2014 — p.289

9. Ahlemeyer-Stubbe A., Coleman Sh. A Practical Guide to Data Mining

for Business and Industry — John Wiley & Sons, Inc., 2014 — p.329

10. Cichosz, P. Data Mining Algorithms: Explained Using R — John

Wiley & Sons, Inc., 2015 — p.718

11. Bell Jason. Machine Learning: Hands-On for Developers and Technical

Professional — John Wiley & Sons, Inc., 2015 — p.407

12. Conway Drew, White John Myles. Machine Learning for Hackers —

 75

O‘Reilly Media, Inc., 2012 — p.322

13. Bowles Michael. Machine Learning in Python: Essential Techniques

for Predictive Analysis — John Wiley & Sons, Inc., 2015 — p.361

14. Glenn J. Myatt, Wayne P. Johnson. Making sense of data I : a practical

guide to exploratory data analysis and data mining — 2nd ed., John

Wiley & Sons, Inc., 2014 — p.250

15. Cuesta Hector. Practical Data Analysis: Transform, model, and

visualize your data through hands-on projects, developed in open

source tools — Packt Publishing, 2013 — p.360

16. Zumel Nina, Mount John. Practical Data Science with R — Manning

Publications Co., 2014 — p.417

17. Michael J. Crawley. Statistics: an Introduction Using R — 2nd ed.,

John Wiley & Sons, Ltd, 2015 — p.357

18. Kirk Matthew. Thoughtful Machine Learning: A test-driven approach

— O‘Reilly Media, Inc., 2015 — p.235

19. Stowell Sarah. Using R for Statistics — Apress, 2014— p.232

20. Hackeling Gavin. Mastering Machine Learning with scikit-learn: Apply

effective learning algorithms to real-world problems using scikit-learn

— Packt Publishing, 2014 — p.238

21. Хан И.В., Черепанов А.А. Использование мобильной

технологической платформы для организации систем контроля

знаний // Сборник докладов научно-методической конференции

Ташкентского университета информационных технологий и его

филиалов «Проблемы повышения качества подготовки кадров для

отраслей связи и информатизации». – Ташкент, 2014. – Том 1. – с.

67-68

22. Хан И.В., Черепанов А.А., Сайдалиева Э.М. Проблемы реализации

систем анкетирования // Сборник докладов Республиканской

научно-технической конференции «Перспективы эффективного

развития информационных технологий и телекоммуникационных

 76

систем». – Ташкент, 2014. – Том 1. – с. 167-169

23. http://php.net (Official documentation for PHP language)

24. http://www.r-project.org/about.html (Official project‘s site for R

language)

25. http://en.wikipedia.org/wiki/MySQL (Wikipedia: MySQL)

26. http://www.yiiframework.com (Official documentation for Yii

Framework)

27. http://en.wikipedia.org/wiki/LimeSurvey (Wikipedia: LimeSurvey)

http://php.net/
http://www.r-project.org/about.html
http://en.wikipedia.org/wiki/MySQL
http://www.yiiframework.com/
http://en.wikipedia.org/wiki/LimeSurvey

 77

APPENDIX

Listing of file ModelStatistic.php

<?php

/*

 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates

 * and open the template in the editor.
 */

class ModelStatistic

{
 protected $_command;

 protected $_data;
 protected $_id;

 protected $_tableName;

 public function __get($name) {

 if (method_exists($this, ($method = 'get_' . $name))) {
 return $this->$method();

 } else {
 return;

 }
 }

 /**

 * Инициализация комманды
 */

 protected function init()
 {
 //if(is_null($this->_command)){

 $this->_command = Yii::app()->db->createCommand();
 //}

 }
 /**

 *
 * @param array() $attributes Основные столбцы

 * @param array() $tables Указываются в виде array($join => $condition)
таблицы с которыми будет соединяться данная таблица
 * и условия соединения
 * @param array() $group Указываются столбцы группировки

 * @param array() $where Указываются в виде array($condition => $value)
условия отбора данных из таблиц и их значения

 78

 */
 protected function buildCommand($attributes = null, $tables = null, $group =

null, $where = null)
 {
 if(!is_null($attributes)){

 $this->_command->select($attributes);
 }

 $this->_command->from($this->_tableName);
 if(!is_null($tables))

 {
 if(is_array($tables))

 {
 foreach($tables as $join => $condition)

 {
 $this->_command->join($join, $condition);

 }
 }

 }
 if(!is_null($where)){
 if(is_array($where)){

 foreach ($where as $columns => $params) {
 $this->_command->where($columns, $params);

 }
 }

 }
 if(!is_null($group)){

 $this->_command->group($group);
 }

 }

 protected function ToAssosiative($array, $column, $value)
 {
 $data = array();

 if(is_array($column))
 {

 $column1 = $column[0];
 $column2 = $column[1];

 $keys = array();
 foreach($array as $row)

 {
 if(!in_array($row[$column1], $keys))

 {
 array_push($keys, $row[$column1]);

 $data[$row[$column1]] = array('5' => 0, '4' => 0, '3' => 0, '2' => 0,
'1' => 0, '0' => 0);

 79

 }
 //$val = $row[$column2];

 //if (!isset($val))
 //{
 //$val = 'n/a';

 //}
 $data[$row[$column1]][$row[$column2]] = $row[$value];

 }
 }

 else
 {

 $data[$row[$column]] = array('5' => 0, '4' => 0, '3' => 0, '2' => 0, '1' =>
0, 'n/a' => 0);

 foreach($array as $row)
 {

 $data[$row[$column]] = $row[$value];
 }

 }
 return $data;
 }

 protected function ToPercentage($array)

 {
 $data = array();

 if(is_array($array))
 {

 foreach($array as $item => $itemValue)
 {

 $sum = 0;
 $flag = false;

 if (is_array($itemValue))
 {

 foreach($itemValue as $row => $rowValue)
 {

 $sum = 0;
 foreach($rowValue as $key => $value)

 {
 $sum += $value;

 }
 foreach($rowValue as $key => $value)

 {
 $data[$item][$row][$key] = round($value/$sum*100);

 }
 }

 80

 }
 else

 {
 $sum += $rowValue;
 $flag = true;

 }
 }

 if($flag)
 {

 foreach($array as $item => $itemValue)
 {

 $data[$item] = round($itemValue/$sum*100);
 }

 $flag = false;
 }

 }
 return $data;

 }

 protected function ToPersentage1($array, $sum)

 {
 $data = array();

 foreach($array as $ikey => $ivalue)
 {

 foreach($ivalue as $key => $value)
 {

 if ($sum != 0){
 $temp = $value/$sum;

 }
 else{

 $temp = $value;
 }
 $data[$ikey][$key] = round($temp*100, 0);

 }
 }

 return $data;
 }

 protected function ToArray($assosiative)

 {
 $data = array();

 $index = 1;
 foreach($assosiative as $ikey => $ivalue)

 {
 foreach ($ivalue as $key => $value)

 81

 {
 $data[$index] = $value;

 $index++;
 }
 }

 return $data;
 }

 protected function ToArrayInverse($array, $column = null)

 {
 $data = array();

 foreach ($array as $item)
 {

 $bool = true;
 $newkey;

 foreach ($item as $key => $value)
 {

 if($bool){
 $newkey = $value;
 $bool = !$bool;

 }
 else{

 if($column != null){
 $data[$newkey] = array($column => $value);

 }
 else{

 $data[$newkey] = $value;
 }

 }
 }

 }
 return $data;
 }

 protected function transformConditions($conditions = null)

 {
 if (is_array($conditions)&&isset($conditions))

 {
 $counter = 1;

 foreach($conditions as $column => $value)
 {

 $condition = $column . '=:p' . $counter;
 $where = array(':p' . $counter => $value);

 $where[$counter++] = array($condition => $value);
 }

 82

 }
 }

 function __construct($attributes = null, $tables = null) {
 $this->init();

 $this->buildCommand($attributes = null, $tables = null);
 }

 public function getId() {

 return $this->_id;
 }

 public function getTotalItemCount()

 {
 return count($this->_data);

 }

 public function getCountByCountries($byInvolved = false)
 {
 $this->init();

 if($byInvolved == true)
 {

 $attributes = array('u.country_id', 'involved_person_id');
 }

 else
 {

 $attributes = array('u.country_id');
 }

 $tables = array(
 'tbl_university u' => 'university_id = u.id_university',

);
 $this->setCommonCount($attributes, $tables);
 return $this->_command->queryAll();

 }

 public function getMethodicByUniversities($columns = null, $byInvolved =
false)

 {
 if (!isset($columns))

 $columns = array('common_q1');
 $data = array();

 foreach($columns as $column)
 {

 if($byInvolved == true)
 {

 83

 $attributes = array('university_id as id', $column,
'involved_person_id', 'count(id_answer) as num');

 $group = array('university_id', $column, 'involved_person_id');
 }
 else

 {
 $attributes = array('university_id as id', $column, 'count(id_answer) as

num');
 $group = array('university_id', $column);

 }
 $this->init();

 $this->buildCommand($attributes, null, $group);
 $records = $this->_command->queryAll();

 $data[$column] = $this->ToAssosiative($records, array('id', $column),
'num');

 //var_dump($data);//die();
 }//var_dump($data);

 $d = $this->ToPercentage($data);
 //var_dump('

');
 //var_dump($d);die();

 return $d;
 }

 public function setCount()

 {
 $attributes = array('c.id_country as id', 'c.name_' . Yii::app()->language,

'count(id_answer) as num');
 $tables = array(

 'tbl_university u' => 'university_id = u.id_university',
 'tbl_country c' => 'u.country_id = c.id_country',

);
 $group = array('id', 'c.name_' . Yii::app()->language);
 $where = array('involved_person_id = :id' => array(':id' => '1'));

 $this->buildCommand($attributes, $tables, $group, $where);
 }

 /**

 *
 * @param array() $columns Столбцы для выборки и группировки

 * @param array() $tables Соединение с таблицами
 * @param array() $conditions Условия отбора всех строк

 */
 protected function setCommonCount($columns, $tables = null, $conditions =

null)
 {

 84

 $group = null;
 $where = null;

 if(isset($columns)&&isset($columns))
 {
 $attributes = array_merge(array('count(id_answer) as num'), $columns);

 $group = $columns;
 }

 else
 {

 $attributes = array('count(id_answer) as num');
 }

 if (is_array($conditions)&&isset($conditions))
 {

 $counter = 1;
 foreach($conditions as $column => $value)

 {
 $condition = $column . '=:p' . $counter;

 $where = array(':p' . $counter => $value);
 $where[$counter++] = array($condition => $value);
 }

 }
 $this->buildCommand($attributes, $tables, $group, $where);

 }

 public function getMethodic($column, $persentage = false, $involved = true)
 {

 $data = array();
 $this->setCommonCount($column, $involved);

 $result = $this->_command->queryAll();
 $data[$column] = array('5' => 0, '4' => 0, '3' => 0, '2' => 0, '1' => 0, '0' =>

0);
 $sum = 0;
 foreach ($result as $row)

 {
 $sum += $row['num'];

 switch($row[$column])
 {

 case 1: $data[$column]['1'] += $row['num']; break;
 case 2: $data[$column]['2'] += $row['num']; break;

 case 3: $data[$column]['3'] += $row['num']; break;
 case 4: $data[$column]['4'] += $row['num']; break;

 case 5: $data[$column]['5'] += $row['num']; break;
 default: $data[$column]['0'] += $row['num']; break;

 }
 }

 85

 if($persentage){
 return $this->ToPersentage1($data, $sum);

 }
 else{
 return $data;

 }
 }

 public function getFrequency($column, $persentage = false, $involved = true)

 {
 $data = array();

 $this->setCommonCount($column, $involved);
 $result = $this->_command->queryAll();

 $data[$column] = array('1' => 0, '2' => 0, '3' => 0, '4' => 0, '5' => 0);
 $sum = 0;

 foreach ($result as $row)
 {

 $sum += $row['num'];
 switch($row[$column])
 {

 case 1: $data[$column]['1'] += $row['num']; break;
 case 2: $data[$column]['2'] += $row['num']; break;

 case 3: $data[$column]['3'] += $row['num']; break;
 case 4: $data[$column]['4'] += $row['num']; break;

 case 5: $data[$column]['5'] += $row['num']; break;
 default: $sum -= $row['num']; break;

 }
 }

 if($persentage){
 return $this->ToArray($this->ToPersentage1($data, $sum));

 }
 else{
 return $this->ToArray($data);

 }
 }

 public function getPracticeParticipation($column, $default = 'Нет')

 {
 $attributes = 'c.name_' . Yii::app()->language . ', count(id_answer) as num';

 $tables = array(
 'tbl_university u' => 'university_id = u.id_university',

 'tbl_country c' => 'u.country_id = c.id_country',
);

 $group = array('c.name_' . Yii::app()->language);
 if($default == 'Нет'){

 86

 $where = array(
 $column . '=:value and involved_person_id = :id' => array(':value' =>

$default, ':id' => 1)
);
 }

 else{
 $where = array(

 $column . '<>:value and involved_person_id = :id' => array(':value' =>
$default, ':id' => 1)

);
 }

 $this->buildCommand($attributes, $tables, $group, $where);
 return $this->ToArrayInverse($this->_command->queryAll());

 }

 public function getDiploma($column)
 {

 $this->setCommonCount($column);
 }
}

Listing of file AbstractRProcess.php

<?php

namespace Cherepanov\PHPR\Process;

use Cherepanov\PHPR\Exception\RErrorsException;

use Cherepanov\PHPR\Exception\RProcessException;

abstract class AbstractRProcess implements RProcessInterface

{
 protected $inputLineCount = 0;

 protected $inputLog = array();

 protected $outputLog = array();

 protected $errors = array();

 protected $lastWriteCommandCount = 0;

 protected $lastWriteErrorCount = 0;

 protected $isRunning = false;

 protected $errorSensitive = false;

 protected $cachedAllResultAsString;

 protected $cachedLastWriteResultAsString;

 protected $cachedAllResultAsArray;

 protected $cachedLastWriteResultAsArray;

 protected abstract function doStart();

 87

 protected abstract function doStop();

 protected abstract function doWrite(array $rInputLines);

 public function start()

 {

 $this->mustNotBeRunning();

 $this->inputLineCount = 0;

 $this->inputLog = array();

 $this->outputLog = array();

 $this->errors = array();

 $this->lastWriteCommandCount = 0;

 $this->lastWriteErrorCount = 0;

 $this->doStart();

 $this->isRunning = true;

 }

 public function stop()

 {

 $this->mustBeRunning();

 $this->doStop();

 $this->isRunning = false;

 }

 public function restart()

 {

 $this->stop();

 $this->start();

 }

 public function isRunning()
 {

 return !$this->isRunning;

 }

 public function write($rInput)

 {

 if (!is_string($rInput)) {

 throw new \InvalidArgumentException(

 sprintf("R input must be a string, %s given",

 var_export($rInput, true)));

 }

 $this->mustBeRunning();

 $this->lastWriteCommandCount = 0;
 $this->lastWriteErrorCount = 0;

 88

 $cachedAllResultAsString = null;

 $cachedLastWriteResultAsString = null;
 $cachedAllResultAsArray = null;

 $cachedLastWriteResultAsArray = null;

 try {

 $rInputLines = explode("\n", $rInput);

 $this->doWrite($rInputLines);

 } catch (Exception $e) {

 try {

 $this->stop();

 } catch (Exception $e) {

 }

 throw $e;

 }

 $errorCount = $this->getLastWriteErrorCount();
 if ($this->errorSensitive && $errorCount) {

 throw new RErrorsException($this->getLastWriteInput(true), $this-

>getLastWriteOutput(true), $this->getLastWriteErrors());

 };

 return $errorCount;

 }

 public function getAllInput($asArray = false)

 {

 return $asArray ? $this->inputLog : implode("\n", $this->inputLog);

 }

 public function getAllOutput($asArray = false)
 {

 return $asArray ? $this->outputLog : implode("\n", $this->outputLog);

 }

 public function getAllResult($asArray = false)

 {

 $commandCount = count($this->inputLog);

 if ($commandCount == 0) {

 return $asArray ? array() : '';

 }

 ;

 if ($asArray) {

 if (!$this->cachedAllResultAsArray) {
 $this->cachedAllResultAsArray = $this

 ->getResult(true, 0, $commandCount - 1);

 89

 }

 return $this->cachedAllResultAsArray;
 } else {

 if (!$this->cachedAllResultAsString) {

 $this->cachedAllResultAsString = $this

 ->getResult(false, 0, $commandCount - 1);

 }

 return $this->cachedAllResultAsString;

 }

 }

 public function getLastWriteInput($asArray = false)

 {

 $lastWriteInput = array_slice($this->inputLog,

 -$this->lastWriteCommandCount, $this->lastWriteCommandCount);

 return $asArray ? $lastWriteInput : implode("\n", $lastWriteInput);

 }

 public function getLastWriteOutput($asArray = false)

 {

 $lastWriteOutput = array_slice($this->outputLog,

 -$this->lastWriteCommandCount, $this->lastWriteCommandCount);

 return $asArray ? $lastWriteOutput : implode("\n", $lastWriteOutput);

 }

 public function getLastWriteResult($asArray = false)

 {

 if ($this->lastWriteCommandCount) {

 return $asArray ? array() : '';

 }

 $commandCount = count($this->inputLog);

 if ($asArray) {

 if (!$this->cachedAllResultAsArray) {

 $this->cachedLastWriteResultAsArray = $this

 ->getResult(true,

 $commandCount - $this->lastWriteCommandCount,

 $commandCount - 1);

 }

 return $this->cachedLastWriteResultAsArray;

 } else {

 if (!$this->cachedLastWriteResultAsString) {

 $this->cachedLastWriteResultAsString = $this

 ->getResult(false,

 $commandCount - $this->lastWriteCommandCount,

 $commandCount - 1);
 }

 return $this->cachedLastWriteResultAsString;

 90

 }

 }

 public function hasErrors()

 {

 return count($this->errors) != 0;

 }

 public function getErrorCount()

 {

 return count($this->errors);

 }

 public function getErrors()

 {

 return $this->errors;

 }

 public function hasLastWriteErrors()

 {

 return $this->lastWriteErrorCount != 0;

 }

 public function getLastWriteErrorCount()

 {

 return $this->lastWriteErrorCount;

 }

 public function getLastWriteErrors()

 {

 $lastWriteErrors = array_slice($this->errors,
 -$this->lastWriteErrorCount, $this->lastWriteErrorCount);

 return $lastWriteErrors;

 }

 public function isErrorSensitive()

 {

 return $this->errorSensitive;

 }

 public function setErrorSensitive($trueOrFalse)

 {

 if (!is_bool($trueOrFalse)) {

 throw new \InvalidArgumentException(

 sprintf(
 'New value of error sensitivity must be boolean, %s given',

 var_export($trueOrFalse, true)));

 91

 }

 $this->errorSensitive = $trueOrFalse;
 }

 private function mustBeRunning()

 {

 if (!$this->isRunning) {

 throw new RProcessException(

 'R process is stopped, it must be started');

 }

 }

 private function mustNotBeRunning()

 {

 if ($this->isRunning) {

 throw new RProcessException(

 'R process has been started, it must be stopped');
 }

 }

 /**

 * @see AbstractRProcess::getAllResult()

 */

 private function getResult($asArray, $commandNumberFrom,

$commandNumberTo)

 {

 if (!is_int($commandNumberFrom) || !is_int($commandNumberTo)

 || $commandNumberFrom < 0

 || $commandNumberTo >= count($this->inputLog)

 || $commandNumberFrom > $commandNumberTo) {

 throw new \InvalidArgumentException(
 sprintf('Wrong command range: %s, %s',

 var_export($commandNumberFrom, true),

 var_export($commandNumberTo, true)));

 }

 $errorsByCommandNumbers = array();

 foreach ($this->errors as $error) {

 $n = $error->getCommandNumber();

 if ($n >= $commandNumberFrom && $n <= $commandNumberTo) {

 $errorsByCommandNumbers[$n] = $error;

 }

 }

 $resultAsArray = array();
 for ($n = $commandNumberFrom; $n <= $commandNumberTo; ++$n) {

 $errorMessage = null;

 92

 if (array_key_exists($n, $errorsByCommandNumbers)) {

 $errorMessage = $errorsByCommandNumbers[$n]->getErrorMessage();
 }

 $resultAsArray[] = array($this->inputLog[$n], $this->outputLog[$n],

 $errorMessage);

 }

 if ($asArray) {

 return $resultAsArray;

 }

 $resultbyCommands = array();

 foreach ($resultAsArray as $resultCommand) {

 $in = '> ' . str_replace("\n", "\n+ ", $resultCommand[0]);

 $out = $resultCommand[2] ? : $resultCommand[1];

 if (strlen($out)) {

 $resultByCommands[] = $in . "\n" . $out;

 } else {

 $resultByCommands[] = $in;

 }

 }

 return implode("\n", $resultByCommands);

 }

}

Listing of file StatisticsController.php

<?php

class StatisticsController extends Controller

{
 protected $menuItem = 'statistic';

 public $layout = '//layouts/column2';

 private $_university;

 public function init(){

 parent::init();

 $dataProvider = new CActiveDataProvider('University');

 foreach($dataProvider->getData() as $activeRecord)

 {

 $this->_university[$activeRecord->getAttribute('id_university')] =

$activeRecord->getAttribute('name');

 }

 93

 }

 /**
 * Specifies the access control rules.

 * This method is used by the 'accessControl' filter.

 * @return array access control rules

 */

 public function accessRules()

 {

 return array(

 array('allow', // allow authenticated user to perform 'create' and

'update' actions

 'actions'=>array('index','view'),

 'users'=>array('administrator'),

),

 array('allow',

 'actions' => array('index'),

 'users' => '@',
),

 array('deny', // deny all users

 'users'=>array('*'),

),

);

 }

 public function actionIndex()

 {

 $dataArray = array();

 $surveyModel = new Survey();

 $surveyDataProvider = new CActiveDataProvider('Survey', array('pagination'

=> false));

 $index = 0;
 foreach($surveyDataProvider->getData() as $activeSurvey)

 {

 $data = array();

 $surveyinuniversityModel = new SurveyInUniversity();

 $id = $activeSurvey->getAttribute('id_survey');

 $data['id'] = $id;

 $data['name'] = $activeSurvey->getAttribute('name_' . Yii::app()-

>language);

 $data['year'] = $activeSurvey->getAttribute('year');

 $data['date'] = $activeSurvey->getAttribute('date_till');

 $surveyinuniversityModel->survey_id = $id;

 $surveyinuniversityDataProvider = $surveyinuniversityModel->search();

 $universities = '';

 $teachersInvolved = 0;

 $teachersNotInvolved = 0;
 $studentsInvolved = 0;

 $studentsNotInvolved = 0;

 94

 $activeCodes = 0;

 $completeCodes = 0;
 foreach($surveyinuniversityDataProvider->getData() as

$activeSurveyInUniversity)

 {

 $universities .= $this->_university[$activeSurveyInUniversity-

>getAttribute('university_id')] . "\n";

 $teachersInvolved += $activeSurveyInUniversity-

>getAttribute('involved_teachers');

 $teachersNotInvolved += $activeSurveyInUniversity-

>getAttribute('teachers_num') - $activeSurveyInUniversity-

>getAttribute('involved_teachers');

 $studentsInvolved += $activeSurveyInUniversity-

>getAttribute('involved_students');

 $teachersNotInvolved += $activeSurveyInUniversity-

>getAttribute('students_num') - $activeSurveyInUniversity-

>getAttribute('involved_students');
 $codeModel = new Code();

 $codeModel->survey_in_university_id = $activeSurveyInUniversity-

>getAttribute('id_survey_in_university');

 $codeModel->completed = 1;

 $activeCodes += $codeModel->search()->getItemCount();

 $codeModel->completed = 0;

 $completeCodes += $codeModel->search()->getItemCount();

 }

 $data['universities'] = $universities;

 $data['teachers_involved'] = $teachersInvolved;

 $data['teachers_not_involved'] = $teachersNotInvolved;

 $data['students_involved'] = $studentsInvolved;

 $data['students_not_involved'] = $studentsNotInvolved;
 $data['active_codes'] = $activeCodes;

 $data['complete_codes'] = $completeCodes;

 $dataArray[$index] = $data;

 unset($data);

 $index++;

 }

 $dataProvider = new CArrayDataProvider($dataArray, array(

 'id' => 'id',

 'sort' => array(

 'attributes' => array('id')

),

 'pagination' => array(

 'pageSize' => 10,

)

));
 $this->render('index', array('dataProvider' => $dataProvider));

 }

 95

}

