
1

State Committee of communication, information and telecommunication

technologies

Tashkent University of Information Technologies

Faculty: CIF

Direction: Information Security

Coursework
Theme:

Protocols of the distribution of cryptography keys and

digital signature protocols

Completed by: M. Salimov

student group 233-12

Checked by: __________________

- Tashkent in 2014 -

2

Content

Introduction…………………………………………………………………...3

Chapter I. Protocols of the distribution of cryptographic keys…………….....5

1.1 Cryptographic protocol……………………………………………….5

1.2 Cipher………………………………………………………...……….9

1.3 Symmetric ciphers…………………………………………………...10

1.4 Asymmetric ciphers………………………………………………….10

1.5 Data Encryption Standard (DES)……………………………………11

1.6 Rivest, Shamir and Adleman (RSA)………………………………...16

Chapter II. Digital signature protocols………………………………………20

2.1 Digital Signature…………………………………………………….20

2.2 Hash function………………………………………………………..22

Conclusion…………………………………………………………………...25

References…………………………………………………………………...26

Appendix…………………………………………………………………….27

3

Introduction

Cryptography is a method of storing and transmitting data in a particular form

so that only those for whom it is intended can read and process it. The term is most

often associated with scrambling plaintext (ordinary text, sometimes referred to as

cleartext) into ciphertext (a process called encryption), then back again (known as

decryption).

Cryptography is closely related to the disciplines of cryptology and

cryptanalysis. Cryptography includes techniques such as microdots, merging words

with images, and other ways to hide information in storage or transit. However, in

today's computer-centric world, cryptography is most often associated with

scrambling plaintext (ordinary text, sometimes referred to as cleartext)

into ciphertext (a process called encryption), then back again (known as

decryption). Individuals who practice this field are known as cryptographers.

Modern cryptography concerns itself with the following four objectives:

1) Confidentiality (the information cannot be understood by anyone for

whom it was unintended)

2) Integrity (the information cannot be altered in storage or transit between

sender and intended receiver without the alteration being detected)

3) Non-repudiation (the creator/sender of the information cannot deny at a

later stage his or her intentions in the creation or transmission of the information)

4) Authentication (the sender and receiver can confirm each other’s identity

and the origin/destination of the information)

Procedures and protocols that meet some or all of the above criteria are

known as cryptosystems. Cryptosystems are often thought to refer only to

mathematical procedures and computer programs; however, they also include the

regulation of human behavior, such as choosing hard-to-guess passwords, logging

off unused systems, and not discussing sensitive procedures with outsiders.

The word is derived from the Greek kryptos, meaning hidden. The origin of

cryptography is usually dated from about 2000 BC, with the Egyptian practice of

hieroglyphics. These consisted of complex pictograms, the full meaning of which

4

was only known to an elite few. The first known use of a modern cipher was by

Julius Caesar (100 BC to 44 BC), who did not trust his messengers when

communicating with his governors and officers. For this reason, he created a

system in which each character in his messages was replaced by a character three

positions ahead of it in the Roman alphabet.

In recent times, cryptography has turned into a battleground of some of the

world's best mathematicians and computer scientists. The ability to securely store

and transfer sensitive information has proved a critical factor in success in war and

business.

Because governments do not wish certain entities in and out of their countries

to have access to ways to receive and send hidden information that may be a threat

to national interests, cryptography has been subject to various restrictions in many

countries, ranging from limitations of the usage and export of software to the

public dissemination of mathematical concepts that could be used to develop

cryptosystems. However, the Internet has allowed the spread of powerful programs

and, more importantly, the underlying techniques of cryptography, so that today

many of the most advanced cryptosystems and ideas are now in the public domain.

5

Chapter I. Protocols of the distribution of cryptographic keys

Cryptographic protocol

Cryptographic protocol (Eng. Cryptographic protocol) - is an abstract or

concrete protocol that includes a set of cryptographic algorithms. The basis of the

protocol is a set of rules governing the use of cryptographic algorithms and

transformations in information processes.

The functions of cryptographic protocols

 Data origin authentication

 Authentication of the parties

 Data Privacy

 Non-repudiation

 Non-repudiation with proof of receipt

 Non-repudiation with proof of source

 Data integrity

 Ensuring the integrity of the connection without recovery

 Ensuring the integrity of the connection with the restoration

 Access control

Classification

 Protocols of encryption / decryption

 Protocols of the electronic digital signature (EDS)

 Protocols of identification / authentication

 Authenticated key distribution protocols

Protocols encrypt / decrypt the basis of this protocol class contains some

symmetrical or asymmetrical encryption algorithm / decryption. The encryption

algorithm is executed to transfer the message sender, whereby an open connection

is converted from a form encrypted. Decryption algorithm is performed on the

reception by the recipient, whereby the encrypted message is converted from the

open mold. This ensures the confidentiality of the property.

6

To ensure the integrity of the properties of the transmitted messages

symmetric encryption / decryption, usually combined with an algorithm for

calculating insert (WPI) for transmission and reception on check WPI, which uses

an encryption key. When using asymmetric encryption algorithms / decryption

wholeness provided separately by calculating the electronic digital signature (EDS)

for transmission and digital signature verification at the reception, which ensures

the properties of reliability and authenticity of the received message.

Protocols of the electronic digital signature (EDS) At the heart of the protocol

of this class contains an algorithm for calculating the electronic signature on the

transfer using the sender's private key and digital signature verification at the

reception with the corresponding public key extracted from the open directory, but

protected from modification. In case of a positive test result report is usually

completed backup operations of the received message, its digital signature and the

corresponding public key. Archive operation can not be performed if the electronic

signature is used only to ensure the integrity and authenticity of the properties of

the received message, but not non-repudiation. In this case, after verification,

digital signature can be deleted immediately or after a limited period of time-out.

Protocols of identification / authentication

At the core authentication protocol contains an algorithm checks the fact that

an identifiable object (user, device, process, ...), to present a name (Cipher), knows

the secret information known only to the claimed subject matter, and verification

method is, of course, indirectly, the there is no presentation of this sensitive

information.

Usually with each name (Cipher) of the object is associated list of its rights

and powers in the system, recorded in a secure database. In this case, the

authentication protocol can be extended to the authentication protocol in which the

identified object is checked for eligibility to order services.

If the authentication protocol used by EDS, the role of secret information

plays a secret key electronic signature and electronic signature verification is

performed using the public key digital signature, knowledge of which is impossible

7

to determine the corresponding private key, but makes sure that it is known to the

author of EDS.

Authenticated key distribution protocols

Protocols of this class combine user authentication protocol generation and

key distribution over a communication channel. The protocol has two or three

members; third party is the center of the generation and distribution of keys

(TSGRK), called for brevity server S. The protocol consists of three phases, with

the names: generation, registration and communication. Generating the server S

generates numerical values of system parameters, including a secret key and a

public key. At the stage of registration server S identifies users on documents (for

personal appearance or through authorized persons) for each object generates a key

and / or identification information and generates a security token containing the

necessary system constants and the public key of the server S (if necessary). At the

stage of communication is implemented properly authenticated key exchange

protocol, which completes the formation of a common session key.

Tasks

 Providing various authentication modes

 Generation, distribution and approval of cryptographic keys

 Protection interactions of participants

 The division of responsibilities between the parties

Variety of attacks on protocols

 Attacks against cryptographic algorithms

 Attacks against cryptographic methods used to implement protocols

 Attacks against the protocols themselves (active or passive)

Requirements for the safety protocol

1. Authentication (non-broadcast):

 authentication entity

 message Authentication

 replay protection

8

2. Authentication when sending to multiple locations or when connecting

to the subscription / notification:

 implicit (hidden) authentication recipient

 origin authentication

3. Authorization (trusted third party)

4. Properties together key generation:

 authentication key

 validation key

 protection from reading ago

 the formation of new keys

 protected by the opportunity to negotiate security settings

5. Confidentiality

6. Anonymity:

 protection Ciphers listening (unlink ability)

 protection Ciphers from other members

7. Limited protection against attacks such as "denial of service"

8. Invariance of the sender

9. Non-repudiation of the earlier acts committed:

 accountability

 proof of the source

 proof of the recipient

10. Safe temporary property

9

Cipher

Cipher - any text conversion system with a secret (key) to ensure the privacy

of information transmitted. Ciphers are used for secret correspondence with

diplomatic representatives of their governments, in the armed forces for the text of

secret documents on the technical means of communication, banks, security of

transactions, as well as some Internet services for various reasons.

Cipher can be a set of symbols (conditional alphabet of numbers or letters) or

an algorithm for transforming ordinary numbers and letters. The process of

classifying messages using encryption cipher called. The science of creating and

using ciphers called cryptography. Cryptanalysis - the science of methods for

obtaining the initial value of encrypted information.

An important parameter of any cipher is key - parameter of cryptographic

algorithm, which provides a choice of one of the plurality of conversion

transformations possible for this algorithm. In modern cryptography is assumed

that all the secrecy of the cryptographic algorithm is concentrated in the key, but

not the details of the algorithm (Kerckhoffs's principle).

Not to be confused with the coding cipher - a fixed conversion of information

from one form to another. In the latter there is no concept of the key and not

performed Kerckhoffs's principle. In our time, the coding is almost never used to

protect information from unauthorized access, but only on the transmission errors

(noiseless coding) and other purposes not related to protection.

Types of ciphers

Ciphers may use the same key for encryption and decryption, or two different

keys. On this basis distinguish:

 Uses a symmetric cipher key to encrypt and decrypt.

 Asymmetric cipher uses two different keys.

Ciphers can be designed to either encrypt the entire text at once, or encrypt it

as they become available. Thus, there are:

 A block cipher encrypts the entire block of text at once, giving the ciphertext

after receipt of all information.

10

 A stream cipher encrypts the information and gives the ciphertext as they

become available, thus having the ability to handle unlimited text size, using a

fixed amount of memory.

Naturally, the block cipher that can be converted in-line, dividing the input

data into blocks and encoding them separately.

There are also now unused substitution ciphers that have (for the most part)

cryptographically weak.

Symmetric ciphers

Symmetric cryptosystems (also symmetric encryption, symmetric ciphers) -

encryption method in which to encrypt and decrypt apply the same cryptographic

key. Before the invention of asymmetric encryption schemes only there were a way

is a symmetric encryption. Key algorithm should be kept secret by both sides.

Encryption algorithm selected by the parties prior to the exchange of messages.

Asymmetric ciphers

Asymmetric cipher - a system of encryption and / or digital signatures (EDS),

where the public key is transmitted via an open (ie, insecure, available for follow-

up) channel, and is used to verify the digital signature and to encrypt the message.

To generate the digital signature and to decrypt the message using a secret key. [1]

The cryptographic public key systems are now widely used in a variety of network

protocols, in particular in the TLS and its predecessor SSL (underlying HTTPS), in

SSH. Also used in PGP, S / MIME.

 RSA

 Elgamal

 Elliptic curve cryptography, ECC - (cryptosystem based on elliptic curves)

11

Data Encryption Standard

The Data Encryption Standard (DES) was once a predominant symmetric-

key algorithm for the encryption of electronic data. It was highly influential in the

advancement of modern cryptography in the academic world. Developed in the

early 1970s at IBM and based on an earlier design by Horst Feistel, the algorithm

was submitted to the National Bureau of Standards (NBS) following the agency's

invitation to propose a candidate for the protection of sensitive, unclassified

electronic government data. In 1976, after consultation with the National Security

Agency (NSA), the NBS eventually selected a slightly modified version

(strengthened against differential cryptanalysis, but weakened against brute force

attacks), which was published as an official Federal Information Processing

Standard (FIPS) for the United States in 1977. The publication of an NSA-

approved encryption standard simultaneously resulted in its quick international

adoption and widespread academic scrutiny. Controversies arose out

of classified design elements, a relatively short key length of the symmetric-

key block cipher design, and the involvement of the NSA, nourishing suspicions

about a backdoor. The intense academic scrutiny the algorithm received over time

led to the modern understanding of block ciphers and their cryptanalysis.

12

DES is now considered to be insecure for many applications. This is chiefly

due to the 56-bit key size being too small; in January, 1999, distributed.net and

the Electronic Frontier Foundation collaborated to publicly break a DES key in 22

hours and 15 minutes (see chronology). There are also some analytical results

which demonstrate theoretical weaknesses in the cipher, although they are

infeasible to mount in practice. The algorithm is believed to be practically secure

in the form of Triple DES, although there are theoretical attacks. In recent years,

the cipher has been superseded by the Advanced Encryption Standard (AES).

Furthermore, DES has been withdrawn as a standard by the National Institute of

Standards and Technology(formerly the National Bureau of Standards).

Some documentation makes a distinction between DES as a standard and

DES as an algorithm, referring to the algorithm as the DEA (Data Encryption

Algorithm).

Description

Figure 1— The overall Feistel structure of DES

13

For brevity, the following description omits the exact transformations and

permutations which specify the algorithm; for reference, the details can be found

in DES supplementary material.

DES is the archetypal block cipher — an algorithm that takes a fixed-length

string of plaintext bits and transforms it through a series of complicated operations

into another ciphertext bit string of the same length. In the case of DES, the block

size is 64 bits. DES also uses a key to customize the transformation, so that

decryption can supposedly only be performed by those who know the particular

key used to encrypt. The key ostensibly consists of 64 bits; however, only 56 of

these are actually used by the algorithm. Eight bits are used solely for

checking parity, and are thereafter discarded. Hence the effective key length is 56

bits, and it is always quoted as such.

The key is nominally stored or transmitted as 8 bytes, each with odd parity.

According to ANSI X3.92-1981 (Now, known as ANSIINCITS 92-1981), section

3.5:

One bit in each 8-bit byte of the KEY may be utilized for error detection in

key generation, distribution, and storage. Bits 8, 16,..., 64 are for use in ensuring

that each byte is of odd parity.

Like other block ciphers, DES by itself is not a secure means of encryption

but must instead be used in a mode of operation. FIPS-81 specifies several modes

for use with DES. Further comments on the usage of DES are contained in FIPS-

74.

Decryption uses the same structure as encryption but with the keys used in

reverse order. (This has the advantage that the same hardware or software can be

used in both directions.)

Overall structure

This section does not cite any references or

sources. Please help improve this section by adding

citations to reliable sources. Unsourced material may

14

be challenged and removed. (August 2009)

The algorithm's overall structure is shown in Figure 1: there are 16 identical

stages of processing, termed rounds. There is also an initial and final permutation,

termed IP and FP, which are inverses (IP "undoes" the action of FP, and vice

versa). IP and FP have no cryptographic significance, but were included in order to

facilitate loading blocks in and out of mid-1970s 8-bit based hardware.[21]

Before the main rounds, the block is divided into two 32-bit halves and

processed alternately; this criss-crossing is known as the Feistel scheme. The

Feistel structure ensures that decryption and encryption are very similar

processes — the only difference is that the sub keys are applied in the reverse order

when decrypting. The rest of the algorithm is identical. This greatly simplifies

implementation, particularly in hardware, as there is no need for separate

encryption and decryption algorithms.

The ⊕ symbol denotes the exclusive-OR (XOR) operation. The F-

function scrambles half a block together with some of the key. The output from the

F-function is then combined with the other half of the block, and the halves are

swapped before the next round. After the final round, the halves are swapped; this

is a feature of the Feistel structure which makes encryption and decryption similar

processes.

The Feistel (F) function

The F-function, depicted in Figure 2, operates on half a block (32 bits) at a

time and consists of four stages:

Figure 2—The Feistel function (F-function) of DES

15

1. Expansion — the 32-bit half-block is expanded to 48 bits using

the expansion permutation, denoted E in the diagram, by duplicating half of the

bits. The output consists of eight 6-bit (8 * 6 = 48 bits) pieces, each containing a

copy of 4 corresponding input bits, plus a copy of the immediately adjacent bit

from each of the input pieces to either side.

2. Key mixing — the result is combined with a sub key using an XOR

operation. 16 48-bit sub keys — one for each round — are derived from the main

key using the key schedule (described below).

3. Substitution — after mixing in the sub key, the block is divided into

eight 6-bit pieces before processing by the S-boxes, or substitution boxes. Each of

the eight S-boxes replaces its six input bits with four output bits according to a

non-linear transformation, provided in the form of a lookup table. The S-boxes

provide the core of the security of DES — without them, the cipher would be

linear, and trivially breakable.

4. Permutation — finally, the 32 outputs from the S-boxes are

rearranged according to a fixed permutation, the P-box. This is designed so that,

after permutation, each S-box's output bits are spread across 4 different S boxes in

the next round.

The alternation of substitution from the S-boxes, and permutation of bits from

the P-box and E-expansion provides so-called "confusion and diffusion"

respectively, a concept identified by Claude Shannon in the 1940s as a necessary

condition for a secure yet practical cipher.

Key schedule

Figure 3— The key-schedule of DES

16

Figure 3 illustrates the key schedule for encryption — the algorithm which

generates the sub keys. Initially, 56 bits of the key are selected from the initial 64

by Permuted Choice 1 (PC-1) — the remaining eight bits are either discarded or

used as parity check bits. The 56 bits are then divided into two 28-bit halves; each

half is thereafter treated separately. In successive rounds, both halves are rotated

left by one or two bits (specified for each round), and then 48 sub key bits are

selected by Permuted Choice 2 (PC-2) — 24 bits from the left half, and 24 from

the right. The rotations (denoted by "<<<" in the diagram) mean that a different set

of bits is used in each sub key; each bit is used in approximately 14 out of the 16

sub keys.

The key schedule for decryption is similar — the sub keys are in reverse order

compared to encryption. Apart from that change, the process is the same as for

encryption. The same 28 bits are passed to all rotation boxes.

Security and cryptanalysis

Although more information has been published on the cryptanalysis of DES

than any other block cipher, the most practical attack to date is still a brute force

approach. Various minor cryptanalytic properties are known, and three theoretical

attacks are possible which, while having a theoretical complexity less than a brute

force attack, require an unrealistic number of known or chosen plaintexts to carry

out, and are not a concern in practice.

RSA

RSA is one of the first practicable public-key cryptosystems and is widely

used for secure data transmission. In such a cryptosystem, the encryption key is

public and differs from the decryption key which is kept secret. In RSA, this

asymmetry is based on the practical difficulty of factoring the product of two

large prime numbers, the factoring problem. RSA stands for Ron Rivest, Adi

Shamir and Leonard Adleman, who first publicly described the algorithm in

1977. Clifford Cocks, an English mathematician, had developed an equivalent

system in 1973, but it was not declassified until 1997.

17

A user of RSA creates and then publishes a public key based on the two

large prime numbers, along with an auxiliary value. The prime numbers must be

kept secret. Anyone can use the public key to encrypt a message, but with currently

published methods, if the public key is large enough, only someone with

knowledge of the prime numbers can feasibly decode the message. Breaking

RSA encryption is known as the RSA problem. It is an open question whether it is

as hard as the factoring problem.

Operation

The RSA algorithm involves three steps: key generation, encryption and

decryption.

Key generation

RSA involves a public key and a private key. The public key can be known by

everyone and is used for encrypting messages. Messages encrypted with the public

key can only be decrypted in a reasonable amount of time using the private key.

The keys for the RSA algorithm are generated the following way:

1. Choose two distinct prime numbers p and q.

 For security purposes, the integers p and q should be chosen at

random, and should be of similar bit-length. Prime integers can be efficiently

found using a primarily test.

2. Compute n = pq.

 n is used as the modulus for both the public and private keys. Its

length, usually expressed in bits, is the key length.

3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q -1), where φ

is Euler's totient function.

4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1;

i.e., e and φ(n) are coprime.

 e is released as the public key exponent.

 e having a short bit-length and small Hamming weight results in more

efficient encryption – most commonly 216 + 1 = 65,537. However, much smaller

values of e (such as 3) have been shown to be less secure in some settings.[5]

18

5. Determine d as d ≡ e−1 (mod φ(n)); i.e., d is the multiplicative

inverse of e (modulo φ(n)).

 This is more clearly stated as: solve for d given d⋅e ≡ 1 (mod φ(n))

 This is often computed using the extended Euclidean algorithm. Using the

pseudo code in the Modular integers section, inputs a and n correspond

to e and φ(n), respectively.

 d is kept as the private key exponent.

The public key consists of the modulus n and the public (or encryption)

exponent e. The private key consists of the modulus n and the private (or

decryption) exponent d, which must be kept secret. p, q, and φ(n) must also be kept

secret because they can be used to calculate d.

 An alternative, used by PKCS#1, is to choose d matching de ≡ 1 (mod

λ) with λ = lcm(p − 1, q − 1), where lcm is the least common multiple. Using λ

instead of φ(n) allows more choices for d. λ can also be defined using

the Carmichael function, λ(n).

 The ANSI X9.31 standard prescribes, IEEE 1363 describes,

and PKCS#1 allows, that p and q match additional requirements: being strong

primes, and being different enough that Fermat factorization fails.

Encryption

Alice transmits her public key (n, e) to Bob and keeps the private key d secret.

Bob then wishes to send message M to Alice.

He first turns M into an integer m, such that 0 ≤ m < n by using an agreed-

upon reversible protocol known as a padding scheme. He then computes the

ciphertext c corresponding to

This can be done efficiently, even for 500-bit numbers, using Modular

exponentiation. Bob then transmits c to Alice.

Note that at least nine values of m will yield a ciphertext c equal to m,[note

1] but this is very unlikely to occur in practice.

19

Decryption

Alice can recover m from c by using her private key exponent d via

computing

Given m, she can recover the original message M by reversing the padding

scheme.

(In practice, there are more efficient methods of calculating cd using the

precomputed values below.)

20

Chapter II. Digital signature protocols

Digital Signature

A digital signature is a mathematical scheme for demonstrating the

authenticity of a digital message or document. A valid digital signature gives a

recipient reason to believe that the message was created by a known sender, such

that the sender cannot deny having sent the message (authentication and non-

repudiation) and that the message was not altered in transit (integrity). Digital

signatures are commonly used for software distribution, financial transactions, and

in other cases where it is important to detect forgery or tampering.

Explanation

Digital signatures are often used to implement electronic signatures, a broader

term that refers to any electronic data that carries the intent of a signature,[1] but not

all electronic signatures use digital signatures. In some countries, including the

United States, India, Brazil,[4] and members of the European Union, electronic

signatures have legal significance.

Digital signatures employ a type of asymmetric cryptography. For messages

sent through a no secure channel, a properly implemented digital signature gives

the receiver reason to believe the message was sent by the claimed sender. In many

instances, common with Engineering companies for example, digital seals are also

required for another layer of validation and security. Digital seals and signatures

are equivalent to handwritten signatures and stamped seals.[5] Digital signatures are

equivalent to traditional handwritten signatures in many respects, but properly

implemented digital signatures are more difficult to forge than the handwritten

type. Digital signature schemes, in the sense used here, are cryptographically

based, and must be implemented properly to be effective. Digital signatures can

also provide non-repudiation, meaning that the signer cannot successfully claim

they did not sign a message, while also claiming their private key remains secret;

further, some non-repudiation schemes offer a time stamp for the digital signature,

so that even if the private key is exposed, the signature is valid. Digitally signed

messages may be anything representable as a bit string: examples

21

include electronic mail, contracts, or a message sent via some other cryptographic

protocol.

Definition

Main article: Public-key cryptography

A digital signature scheme typically consists of three algorithms;

 A key generation algorithm that selects a private key uniformly at

random from a set of possible private keys. The algorithm outputs the private key

and a corresponding public key.

 A signing algorithm that, given a message and a private key, produces a

signature.

 A signature verifying algorithm that, given a message, public key and a

signature, either accepts or rejects the message's claim to authenticity.

Two main properties are required. First, the authenticity of a signature

generated from a fixed message and fixed private key can be verified by using the

corresponding public key. Secondly, it should be computationally infeasible to

generate a valid signature for a party without knowing that party's private key. A

digital signature is an authentication mechanism that enables the creator of

message to attach a code that act as a signature. It is formed by taking the hash of

message and encrypting the message with creator's private key.

A diagram showing how a digital signature is applied and then verified.

22

Hash function

A cryptographic hash function is a hash function which is

considered practically impossible to invert, that is, to recreate the input data from

its hash value alone. These one-way hash functions have been called "the

workhorses of modern cryptography".[1] The input data is often called the message,

and the hash value is often called the message digest or simply the digest.

The ideal cryptographic hash function has four main properties:

 it is easy to compute the hash value for any given message

 it is infeasible to generate a message that has a given hash

 it is infeasible to modify a message without changing the hash

 it is infeasible to find two different messages with the same hash.

Cryptographic hash functions have many information security applications,

notably in digital signatures, message authentication codes (MACs), and other

forms of authentication. They can also be used as ordinary hash functions, to index

data in hash tables, for fingerprinting, to detect duplicate data or uniquely identify

files, and as checksums to detect accidental data corruption. Indeed, in information

security contexts, cryptographic hash values are sometimes called

(digital) fingerprints, checksums, or just hash values, even though all these terms

stand for more general functions with rather different properties and purposes.

Hash functions based on block ciphers

There are several methods to use a block cipher to build a cryptographic hash

function, specifically a one-way compression function.

The methods resemble the block cipher modes of operation usually used for

encryption. All well-known hash functions, including MD4, MD5, SHA-

1 and SHA-2 are built from block-cipher-like components designed for the

purpose, with feedback to ensure that the resulting function is not invertible. SHA-

3 finalists included functions with block-cipher-like components (e.g., Skein,

BLAKE) though the function finally selected, Keccak, was built on

a cryptographic sponge instead.

23

A standard block cipher such as AES can be used in place of these custom

block ciphers; that might be useful when an embedded system needs to implement

both encryption and hashing with minimal code size or hardware area. However,

that approach can have costs in efficiency and security. The ciphers in hash

functions are built for hashing: they use large keys and blocks, can efficiently

change keys every block, and have been designed and vetted for resistance

to related-key attacks. General-purpose ciphers tend to have different design goals.

In particular, AES has key and block sizes that make it nontrivial to use to generate

long hash values; AES encryption becomes less efficient when the key changes

each block; and related-key attacks make it potentially less secure for use in a hash

function than for encryption.

Merkle-Damgard construction

Main article: Merkle–Damgård construction

The Merkle–Damgård hash construction.

A hash function must be able to process an arbitrary-length message into a

fixed-length output. This can be achieved by breaking the input up into a series of

equal-sized blocks, and operating on them in sequence using a one-way

compression function. The compression function can either be specially designed

for hashing or be built from a block cipher. A hash function built with the Merkle–

Damgård construction is as resistant to collisions as is its compression function;

any collision for the full hash function can be traced back to a collision in the

compression function.

The last block processed should also be unambiguously length padded; this is

crucial to the security of this construction. This construction is called the Merkle–

24

Damgård construction. Most widely used hash functions, including SHA-

1 and MD5, take this form.

The construction has certain inherent flaws, including length-extension and

generate-and-paste attacks, and cannot be parallelized. As a result, many entrants

in the current NIST hash function competition are built on different, sometimes

novel, constructions.

25

Conclusion

The above communication protocols to establish a common key provide great

opportunities for the development of secure communication protocols for dynamic

groups. On the basis of these you can build complex authentication protocols,

digital signature, proof of knowledge.

There are many problems associated with signatures for the groups. First and

foremost is the problem of resistance to attack users' associations and the problem

of removing the band members and their keys. In the area of the proposed

anonymity for participants in the group is a major problem. Also not completely

defined intergroup interaction and cases with simultaneous membership in multiple

groups (using multiple keys recognized irrational) and education subgroups.

Existing schemes are preliminary.

Interaction protocols with network technologies. In view of the purely

practical aspects of these materials are not taken into account.

The challenge now secure communication within a group dynamic

composition of the participants received increased attention due to the widespread

use of technologies of the Internet. Maybe soon there will be new key distribution

protocols that do not contain deficiencies described protocols.

26

References

1. G. Ateniese, M. Steiner, G. Tsudik “Authenticated Group Key Agreement

and Friends”, in ACM Symposium on Computer and Communication Security,

November 1998.

2. M. Steiner, G. Tsudik, M. Waidner “Diffie-Hellman key distribution

extended to groups”, in ACM Conference on Computer and Communications

Security, pp.31-37, ACM Press, Mar. 1996.

3. G. Ateniese, D. Hasse, O. Chevassut, Y. Kim, G. Tsudik “The Design of a

Group Key Agreement API”, IBM Research Division, Zurich Research Laboratiry.

4. Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Sclossnagle, J.

Schultz, J. Stanton, G. Tsudik “Secure Group Communications in Asynchronous

Networks with Failures: Integration and Experiments”, 1999.

5. G. Caronni, M. Waldvoget, D. Sun, B. Plattner “Efficient Security for

Large and Dynamic Multicast Groups”, Computer Engineering and Networks

Laboratory.

6. RSA Laboratories, http://www.rsalab.com

7. http://en.wikipedia.org/

27

Appendix

The program code in JAVA

DES class
package cryptprotocols;
/*
 * @author Mumin
 */
import javax.crypto.*;
import javax.crypto.spec.*;
class DesCipher {
 // Algorithm used
 private final static String ALGORITHM = "DES";
 /**
 * Encrypt data
 * @param secretKey - a secret key used for encryption
 * @param data - data to encrypt
 * @return Encrypted data
 * @throws Exception
 */
 public static String cipher(String secretKey, String data) throws Exception

{
 // Key has to be of length 8
 if (secretKey == null || secretKey.length() != 8)
 throw new Exception("Invalid key length - 8 bytes key needed!");
 SecretKey key = new SecretKeySpec(secretKey.getBytes(),

ALGORITHM);
 Cipher cipher = Cipher.getInstance(ALGORITHM);
 cipher.init(Cipher.ENCRYPT_MODE, key);

 return toHex(cipher.doFinal(data.getBytes()));
 }
 /**
 * Decrypt data
 * @param secretKey - a secret key used for decryption
 * @param data - data to decrypt
 * @return Decrypted data
 * @throws Exception
 */

28

 public static String decipher(String secretKey, String data) throws
Exception {

 // Key has to be of length 8
 if (secretKey == null || secretKey.length() != 8)
 throw new Exception("Invalid key length - 8 bytes key needed!");

 SecretKey key = new SecretKeySpec(secretKey.getBytes(),

ALGORITHM);
 Cipher cipher = Cipher.getInstance(ALGORITHM);
 cipher.init(Cipher.DECRYPT_MODE, key);

 return new String(cipher.doFinal(toByte(data)));
 }
 // Helper methods
 private static byte[] toByte(String hexString) {
 int len = hexString.length()/2;
 byte[] result = new byte[len];
 for (int i = 0; i < len; i++)
 result[i] = Integer.valueOf(hexString.substring(2*i, 2*i+2),

16).byteValue();
 return result;
 }

 public static String toHex(byte[] stringBytes) {
 StringBuffer result = new StringBuffer(2*stringBytes.length);

 for (int i = 0; i < stringBytes.length; i++) {

result.append(HEX.charAt((stringBytes[i]>>4)&0x0f)).append(HEX.charAt(string
Bytes[i]&0x0f));

 }
 return result.toString();
 }
 private final static String HEX = "0123456789ABCDEF";
 // Helper methods - end
 /*
 * Quick test
 * @param args
 */
}

29

RSA class
package cryptprotocols;
import com.sun.org.apache.xerces.internal.impl.dv.util.Base64;
import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.spec.*;
import java.util.Scanner;
import javax.crypto.*;
/*
 * @author Mumin
 */
class RSAencrypt{
 Cipher c;
 RSAencrypt() throws NoSuchAlgorithmException,

NoSuchPaddingException{
 c = Cipher.getInstance("RSA");
 }
public String RSAencrypt(String plaintext, String file) throws

InvalidKeyException, IllegalBlockSizeException, BadPaddingException,
FileNotFoundException, NoSuchAlgorithmException, InvalidKeySpecException,
UnsupportedEncodingException{

int k = 0;
Scanner reader = new Scanner(new File(file));
String[] str = new String[2];
while (reader.hasNext()){
 str[k] = reader.next();k++;
}

BigInteger pub_m = new BigInteger(str[0]);
BigInteger pub_x = new BigInteger(str[1]);

KeyFactory keyFactory = KeyFactory.getInstance("RSA");
RSAPublicKeySpec new_pubks = new RSAPublicKeySpec(pub_m, pub_x);
PublicKey new_public = keyFactory.generatePublic(new_pubks);

c.init(Cipher.ENCRYPT_MODE, new_public);
byte[] encrypted = c.doFinal(plaintext.getBytes("utf8"));

30

String result = Base64.encode(encrypted);
return result;
}

public String RSAdecrypt(String ciphertext, String file) throws

FileNotFoundException, NoSuchAlgorithmException, InvalidKeySpecException,
InvalidKeyException, IllegalBlockSizeException, BadPaddingException,
UnsupportedEncodingException{

int k = 0;
Scanner reader = new Scanner(new File(file));
String[] str = new String[2];
while (reader.hasNext()){
 str[k] = reader.next();k++;
}

BigInteger pr_m = new BigInteger(str[0]);
BigInteger pr_x = new BigInteger(str[1]);

KeyFactory keyFactory = KeyFactory.getInstance("RSA");
RSAPrivateKeySpec new_prks = new RSAPrivateKeySpec(pr_m, pr_x);
PrivateKey new_private = keyFactory.generatePrivate(new_prks);

 byte[] data1=Base64.decode(ciphertext);
 c.init(Cipher.DECRYPT_MODE, new_private);
 byte[] decrypted = c.doFinal(data1);

 String result = new String(decrypted);
 return result;
}
}
HASH function class
package cryptprotocols;
/*
 * @author Mumin
 */
import java.io.UnsupportedEncodingException;
import java.math.BigInteger;
import java.security.*;

31

public class MD5Hash {

 public String getHash(String str) throws NoSuchAlgorithmException,
 UnsupportedEncodingException {

 MessageDigest m = MessageDigest.getInstance("MD5");
 m.reset();
 // передаем в MessageDigest байт-код строки
 m.update(str.getBytes("utf-8"));
 // получаем MD5-хеш строки без лидирующих нулей
 String s2 = new BigInteger(1, m.digest()).toString(16);
 StringBuilder sb = new StringBuilder(32);
 // дополняем нулями до 32 символов, в случае необходимости
 //System.out.println(32 - s2.length());
 for (int i = 0, count = 32 - s2.length(); i < count; i++) {
 sb.append("0");
 }
 // возвращаем MD5-хеш
 return sb.append(s2).toString();
 }
}
Main frame
package cryptprotocols;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 * @author Mumin
 */
public class CryptProtocols extends JFrame implements ActionListener{
 JLabel label;
 JButton b1,b2;
 JRadioButton ch1,ch2,ch3;
 ButtonGroup radioButtonGroup;

 public static void main(String[] args) {
 // TODO code APPLICATION logic here
 CryptProtocols cr8 = new CryptProtocols();
 }

32

 public CryptProtocols(){
 setLayout(new BorderLayout());
 setBackground(Color.WHITE);
 setSize(200, 175);
 Font appletFont = new Font("Monospased", Font.BOLD, 20);
 this.setFont(appletFont);

 Panel panel=new Panel();
 panel.setLayout(new GridLayout(0,1));
 label = new JLabel("Choose the programm...");
 radioButtonGroup = new ButtonGroup();
 ch1 = new JRadioButton("DES");
 ch2 = new JRadioButton("RSA");
 ch3 = new JRadioButton("DigitalSignature");
 panel.add(label);
 panel.add(ch1);
 panel.add(ch2);
 panel.add(ch3);
 radioButtonGroup.add(ch1);
 radioButtonGroup.add(ch2);
 radioButtonGroup.add(ch3);
 this.add(panel, "Center");

 Panel centerPanel = new Panel();
 centerPanel.setLayout(new GridLayout(1,2));
 b1 = new JButton("Select");
 b1.addActionListener(this);
 b2 = new JButton("Exit");
 b2.addActionListener(this);
 centerPanel.add(b1,"West");
 centerPanel.add(b2,"East");
 this.add(centerPanel, "South");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocationRelativeTo(null);
 setVisible(true);
 }
 @Override
 public void actionPerformed(ActionEvent e) {

33

 JButton button = (JButton) e.getSource();
 if (button==b1){
 if (ch1.isSelected()) {DES des = new DES();}
 else if (ch2.isSelected()) {RSA rsa = new RSA();}
 else if (ch3.isSelected()) {DS ds=new DS();}
 }
 else if (button==b2) {System.exit(0);
 }
 }
}
DES frame
package cryptprotocols;
import java.awt.*;
import java.awt.event.*;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.*;
/*
 * @author Mumin
 */

public class DES extends JFrame implements ActionListener{
 JLabel l1,l2,l3;
 JTextArea t1,t2;
 JTextField tf;
 JButton b1,b2;
 public DES(){
 setLayout(new BorderLayout());
 setBackground(Color.WHITE);
 setSize(600, 300);

 Panel panel = new Panel();
 panel.setLayout(new GridLayout());
 l1 = new JLabel("Plaintext...");
 l2 = new JLabel("Ciphertext...");
 panel.add(l1);
 panel.add(l2);
 this.add(panel, "North");

34

 Panel centerPanel = new Panel();
 centerPanel.setLayout(new GridLayout());
 t1 = new JTextArea();
 t2 = new JTextArea();
 t2.setBackground(Color.CYAN);
 centerPanel.add(t1);
 centerPanel.add(t2);
 this.add(centerPanel, "Center");

 Panel southPanel = new Panel();
 southPanel.setLayout(new GridLayout(2,2));
 l3 = new JLabel("Enter the 8-digit key: ");
 tf = new JTextField();
 b1 = new JButton("Encrypt");
 b1.addActionListener(this);
 b2 = new JButton("Dencrypt");
 b2.addActionListener(this);
 southPanel.add(l3);
 southPanel.add(tf);
 southPanel.add(b1);
 southPanel.add(b2);
 this.add(southPanel, "South");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocationRelativeTo(null);
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 JButton button = (JButton) e.getSource();
 DesCipher ds = new DesCipher();

 if (button==b1) {
 try {
 t2.setText(ds.cipher(tf.getText(),t1.getText()));
 } catch (Exception ex) {
 Logger.getLogger(DES.class.getName()).log(Level.SEVERE, null, ex);
 }

35

}
 else if (button==b2) {
 try {
 t2.setText(ds.decipher(tf.getText(), t1.getText()));
 } catch (Exception ex) {
 Logger.getLogger(DES.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 }
}
RSA frame
package cryptprotocols;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.spec.*;
import java.util.logging.*;
import javax.crypto.*;
import javax.swing.*;
/*
 * @author Mumin
 */
public class RSA extends JFrame implements ActionListener{
 public String dir_patch = "";
 JLabel l1,l2,l3;
 JTextArea t1,t2;
 JTextField tf1,tf2;
 JButton b1,b2,b3,b4,b5;
 public RSA(){
 setLayout(new BorderLayout());
 setBackground(Color.WHITE);
 setSize(600, 300);

 Panel panel = new Panel();
 panel.setLayout(new GridLayout());
 l1 = new JLabel("Plaintext...");
 l2 = new JLabel("Ciphertext...");

36

 panel.add(l1);
 panel.add(l2);
 this.add(panel, "North");

 Panel centerPanel = new Panel();
 centerPanel.setLayout(new GridLayout());
 t1 = new JTextArea();
 t2 = new JTextArea();
 t2.setBackground(Color.CYAN);
 centerPanel.add(t1);
 centerPanel.add(t2);
 this.add(centerPanel, "Center");

 Panel southPanel = new Panel();
 southPanel.setLayout(new GridLayout(4,2));
 b3 = new JButton("Private key ");
 b3.addActionListener(this);
 b4 = new JButton("Public key ");
 b4.addActionListener(this);
 l3 = new JLabel("Press to generate keys: ");
 b5 = new JButton("Generate");
 b5.addActionListener(this);
 tf1 = new JTextField("Private key file");
 tf2 = new JTextField("Public key file");
 b1 = new JButton("Encrypt");
 b1.addActionListener(this);
 b2 = new JButton("Dencrypt");
 b2.addActionListener(this);
 southPanel.add(b3);
 southPanel.add(b4);
 southPanel.add(l3);
 southPanel.add(b5);
 southPanel.add(tf1);
 southPanel.add(tf2);
 southPanel.add(b1);
 southPanel.add(b2);
 this.add(southPanel, "South");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

37

 setLocationRelativeTo(null);
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 JButton button = (JButton) e.getSource();
 if (button==b1) {try {
 RSAencrypt rsac = new RSAencrypt();
 try {
 try {
 t2.setText(rsac.RSAencrypt(t1.getText(), tf1.getText()));
 } catch (UnsupportedEncodingException ex) {

 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (InvalidKeyException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IllegalBlockSizeException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (BadPaddingException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (FileNotFoundException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InvalidKeySpecException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (NoSuchAlgorithmException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (NoSuchPaddingException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 }
}
 else if (button==b2) {try {
 RSAencrypt rsac = new RSAencrypt();
 try {
 try {
 t2.setText(rsac.RSAdecrypt(t1.getText(), tf2.getText()));
 } catch (UnsupportedEncodingException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);

38

 }
 } catch (InvalidKeyException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IllegalBlockSizeException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (BadPaddingException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (FileNotFoundException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InvalidKeySpecException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (NoSuchAlgorithmException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (NoSuchPaddingException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 else if (button==b3) {getfile();tf1.setText(dir_patch);}
 else if (button==b4) {getfile();tf2.setText(dir_patch);}
 else if (button==b5) {try {
 try {
 generateKeys(tf1.getText(), tf2.getText());
 } catch (FileNotFoundException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IOException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 }
 } catch (NoSuchAlgorithmException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InvalidKeySpecException ex) {
 Logger.getLogger(RSA.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 }

 public void getfile(){
 JFileChooser fileChooser = new JFileChooser();

39

fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);

 int ret = fileChooser.showDialog(this, "Open");
 String patch = null;
 if (ret == JFileChooser.APPROVE_OPTION)
 {
 patch = fileChooser.getSelectedFile().getAbsolutePath();
 dir_patch = patch;
 final File folder = new File(patch);
 }
 }
 public void generateKeys(String publicFile,String privateFile) throws

NoSuchAlgorithmException, InvalidKeySpecException, FileNotFoundException,
IOException{

 KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA");
 KeyPair keyPair = keyPairGen.generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
PublicKey publicKey = keyPair.getPublic();

KeyFactory keyFactory = KeyFactory.getInstance("RSA");
RSAPrivateKeySpec rSAPrivateKey = keyFactory.getKeySpec(privateKey,

RSAPrivateKeySpec.class);

BigInteger pr_m = rSAPrivateKey.getModulus();
BigInteger pr_x = rSAPrivateKey.getPrivateExponent();

RSAPublicKeySpec rsaPublicKey = keyFactory.getKeySpec(publicKey,

RSAPublicKeySpec.class);

BigInteger pub_m = rsaPublicKey.getModulus();
BigInteger pub_x = rsaPublicKey.getPublicExponent();

String pubf = "keys/"+tf1.getText()+".txt";
String prf = "keys/"+tf2.getText()+".txt";

File publicKeyFile = new File(pubf);
File privateKeyFile = new File(prf);

FileOutputStream f1 = null;

40

FileOutputStream f2 = null;

f1 = new FileOutputStream(publicKeyFile);
f2 = new FileOutputStream(privateKeyFile);

f1.write(pub_m.toString().getBytes());
f1.write(" ".getBytes());
f1.write(pub_x.toString().getBytes());

f2.write(pr_m.toString().getBytes());
f2.write(" ".getBytes());
f2.write(pr_x.toString().getBytes());

tf1.setText(pubf);
tf2.setText(prf);
 }
}
Digital Signature frame
package cryptprotocols;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 * @author Mumin
 */
public class DS extends JFrame implements ActionListener{
 JButton b1,b2;

 public DS(){
 setLayout(new BorderLayout());
 setBackground(Color.WHITE);
 setSize(350, 70);

 Panel centerPanel = new Panel();
 centerPanel.setLayout(new GridLayout(1,2));
 b1 = new JButton("Get Digital Signature");
 b1.addActionListener(this);
 b2 = new JButton("Check Digital Signature");
 b2.addActionListener(this);

41

 centerPanel.add(b1);
 centerPanel.add(b2);
 this.add(centerPanel, "Center");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocationRelativeTo(null);
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 JButton button = (JButton) e.getSource();
 if (button==b1) {DigitalSignature dig = new DigitalSignature();}
 else if (button==b2) {CheckDS ds = new CheckDS();}
 }

}
Check Digital Signature frame
package cryptprotocols;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.security.*;
import java.security.spec.InvalidKeySpecException;
import java.util.Scanner;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.crypto.BadPaddingException;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.swing.*;
/*
 * @author Mumin
 */
public class CheckDS extends JFrame implements ActionListener{
 public String dir_patch = "";
 JLabel l1,l2,l3;
 JButton b1,b2,b3,b4;
 JTextField tf1;

42

 public CheckDS(){
 setLayout(new BorderLayout());
 setBackground(Color.WHITE);
 setSize(400, 150);

 Panel centerPanel = new Panel();
 centerPanel.setLayout(new GridLayout(4,2));
 l1 = new JLabel("Document for cheking...");
 l2 = new JLabel("Public key...");
 l3 = new JLabel("Signature...");
 b3 = new JButton("Check");
 b3.addActionListener(this);
 b1 = new JButton("Select");
 b1.addActionListener(this);
 b4 = new JButton("Select");
 b4.addActionListener(this);
 b2 = new JButton("Select");
 b2.addActionListener(this);
 tf1 = new JTextField();
 centerPanel.add(l1);
 centerPanel.add(b1);
 centerPanel.add(l3);
 centerPanel.add(b4);
 centerPanel.add(l2);
 centerPanel.add(b2);
 centerPanel.add(b3);
 centerPanel.add(tf1);

 this.add(centerPanel,"Center");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocationRelativeTo(null);
 setVisible(true);
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 JButton button = (JButton) e.getSource();

43

 if (button==b1) {getfile();b1.setText(dir_patch);
 }
 else if (button==b2) {getfile();b2.setText(dir_patch);
 }
 else if (button==b4) {getfile();b4.setText(dir_patch);
 }
 else if (button==b3) {
 try {
 getdigital();
 } catch (NoSuchAlgorithmException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (UnsupportedEncodingException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (FileNotFoundException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (NoSuchPaddingException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InvalidKeyException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IllegalBlockSizeException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (BadPaddingException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (InvalidKeySpecException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 } catch (IOException ex) {
 Logger.getLogger(CheckDS.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 }
 public void getfile(){
 JFileChooser fileChooser = new JFileChooser();

fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);
 int ret = fileChooser.showDialog(this, "Open");
 String patch = null;
 if (ret == JFileChooser.APPROVE_OPTION)
 {
 patch = fileChooser.getSelectedFile().getAbsolutePath();

44

 dir_patch = patch;
 final File folder = new File(patch);

 }
 }
 public void getdigital() throws NoSuchAlgorithmException,

UnsupportedEncodingException, FileNotFoundException,
NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException,
BadPaddingException, InvalidKeySpecException, IOException{

 String s = "";
 Scanner in = null;
 try {
 in = new Scanner(new File(b1.getText()));
 } catch (FileNotFoundException ex) {
Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE,

null, ex);
 }
 while(in.hasNext())
 s += in.nextLine();
 MD5Hash md5 = new MD5Hash();
 String hesh = md5.getHash(s);

 String sign = "";
 Scanner on = null;
 try {
 on = new Scanner(new File(b4.getText()));
 } catch (FileNotFoundException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 }
 while(on.hasNext())
 sign += on.nextLine();
 RSAencrypt rsa = new RSAencrypt();
 String plainhash = rsa.RSAdecrypt(sign, b2.getText());
 if (hesh.equals(plainhash)) {tf1.setText("Successfully");
 tf1.setForeground(Color.green);}
 else {tf1.setText("Error");
 tf1.setForeground(Color.red);}

45

 System.out.println(hesh);
 System.out.println(plainhash);
 }
}
Get Digital Signature frame
package cryptprotocols;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.math.BigInteger;
import java.security.*;
import java.security.spec.*;
import java.util.Scanner;
import java.util.logging.*;
import javax.crypto.*;
import javax.swing.*;
/*
 * @author Mumin
 */

public class DigitalSignature extends JFrame implements ActionListener{
 public String dir_patch = "";
 JLabel l1,l2,l3;
 JTextField tf1,tf2,tf3;
 JButton b1,b2,b3,b4;
 public DigitalSignature(){
 setLayout(new BorderLayout());
 setBackground(Color.WHITE);
 setSize(400, 175);

 Panel centerPanel = new Panel();
 centerPanel.setLayout(new GridLayout(5,2));
 l1 = new JLabel("Document for verification...");
 l2 = new JLabel("Private key...");
 l3 = new JLabel("Generate keys...");
 tf1 = new JTextField("Private key...");
 tf2 = new JTextField("Public key...");
 tf3 = new JTextField("Signature...");
 b1 = new JButton("Select");

46

 b2 = new JButton("Select");
 b3 = new JButton("Generate");
 b4 = new JButton("GetDS");
 b1.addActionListener(this);
 b2.addActionListener(this);
 b3.addActionListener(this);
 b4.addActionListener(this);
 centerPanel.add(l1);
 centerPanel.add(b1);
 centerPanel.add(l2);
 centerPanel.add(b2);
 centerPanel.add(l3);
 centerPanel.add(b3);
 centerPanel.add(tf1);
 centerPanel.add(tf2);
 centerPanel.add(tf3);
 centerPanel.add(b4);
 this.add(centerPanel,"Center");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLocationRelativeTo(null);
 setVisible(true);
 }
 @Override
 public void actionPerformed(ActionEvent e) {
 JButton button = (JButton) e.getSource();
 if (button==b1) {getfile();b1.setText(dir_patch);
 }
 else if (button==b2) {getfile();b2.setText(dir_patch);
 }
 else if (button==b3) {try {
 generateKeys(tf1.getText(), tf2.getText());
 } catch (NoSuchAlgorithmException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (InvalidKeySpecException ex) {

47

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (FileNotFoundException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (IOException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 }
 }
 else if (button==b4) {
 try {
 getdigital();
 } catch (NoSuchAlgorithmException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (UnsupportedEncodingException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (FileNotFoundException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (NoSuchPaddingException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (InvalidKeyException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (IllegalBlockSizeException ex) {

48

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (BadPaddingException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (InvalidKeySpecException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 } catch (IOException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 }
 }
 }
 public void getfile(){
 JFileChooser fileChooser = new JFileChooser();

fileChooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);
 int ret = fileChooser.showDialog(this, "Open");
 String patch = null;
 if (ret == JFileChooser.APPROVE_OPTION)
 {
 patch = fileChooser.getSelectedFile().getAbsolutePath();
 dir_patch = patch;
 final File folder = new File(patch);
 }
 }
 public void generateKeys(String publicFile,String privateFile) throws

NoSuchAlgorithmException, InvalidKeySpecException, FileNotFoundException,
IOException{

 KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA");
 KeyPair keyPair = keyPairGen.generateKeyPair();
PrivateKey privateKey = keyPair.getPrivate();
PublicKey publicKey = keyPair.getPublic();

49

KeyFactory keyFactory = KeyFactory.getInstance("RSA");
RSAPrivateKeySpec rSAPrivateKey = keyFactory.getKeySpec(privateKey,

RSAPrivateKeySpec.class);

BigInteger pr_m = rSAPrivateKey.getModulus();
BigInteger pr_x = rSAPrivateKey.getPrivateExponent();

RSAPublicKeySpec rsaPublicKey = keyFactory.getKeySpec(publicKey,

RSAPublicKeySpec.class);

BigInteger pub_m = rsaPublicKey.getModulus();
BigInteger pub_x = rsaPublicKey.getPublicExponent();

String pubf = "keys/"+tf1.getText()+".txt";
String prf = "keys/"+tf2.getText()+".txt";

File publicKeyFile = new File(pubf);
File privateKeyFile = new File(prf);

FileOutputStream f1 = null;
FileOutputStream f2 = null;

f1 = new FileOutputStream(publicKeyFile);
f2 = new FileOutputStream(privateKeyFile);

f1.write(pub_m.toString().getBytes());
f1.write(" ".getBytes());
f1.write(pub_x.toString().getBytes());

f2.write(pr_m.toString().getBytes());
f2.write(" ".getBytes());
f2.write(pr_x.toString().getBytes());

tf1.setText(pubf);
tf2.setText(prf);
 }
 public void getdigital() throws NoSuchAlgorithmException,

UnsupportedEncodingException, FileNotFoundException,

50

NoSuchPaddingException, InvalidKeyException, IllegalBlockSizeException,
BadPaddingException, InvalidKeySpecException, IOException{

 String s = "";
 Scanner in = null;
 try {
 in = new Scanner(new File(b1.getText()));
 } catch (FileNotFoundException ex) {

Logger.getLogger(DigitalSignature.class.getName()).log(Level.SEVERE, null,
ex);

 }
 while(in.hasNext())
 s += in.nextLine();
 MD5Hash md5 = new MD5Hash();
 String hashstr=md5.getHash(s);

 RSAencrypt rsa = new RSAencrypt();
 String result = rsa.RSAencrypt(hashstr, b2.getText());

 String sign = "signatures/"+tf3.getText()+".txt";
 File file = new File(sign);
 FileOutputStream signfile = null;
 signfile = new FileOutputStream(file);
 signfile.write(result.getBytes());
 tf3.setText("Successfully");
 tf3.setForeground(Color.green);
 }
}

51

Program results
Main frame

1. DES cipher

2. RSA cipher

3. Digital Signature

52

3.1. Get DigitalSignature

3.2. Chesk Digital Signature

